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RANDOM WALK ON PERIODIC TREES

CHRISTIANE TAKACS

1. Introduction

This paper deals with biased random walks on infinite trees. A tree, although
large, is a very simple structure to walk on. Therefore many questions concerning
the walk are answered for trees. The so-called type problem, i. e., the question
whether a biased walk is recurrent or transient, was solved by Lyons [4]. He proved
that the critical value of the bias for the type of a biased random walk is the
branching number of the underlying tree. In the case of a transient walk, the
asymptotic rate of escape (speed) is the next interesting topic. For n-ary trees
computation of the speed is trivial. For some special trees (e. g. the Fibonacci tree,
[7]) it can also be calculated. For the so-called random environment on Z, which can
be interpreted as a special class of random trees, the speed was calculated in 1978
by Solomon [11]. In 1995, the speed of a simple random walk on a Galton-Watson
tree [6] was calculated. The last method only applies to a simple random walk,
because it requires the knowledge of the walk-invariant tree, which only in the case
of a simple random walk equals the augmented Galton-Watson tree. Recently, the
walk-invariant random environment on Z was calculated (independently by Alili [1]
and Roland Takacs (personal communication)), too. This in combination with the
method of [6], provides another way of calculating the speed of a random walk on
a random environment on Z.

A periodic tree τ(u) is a rooted labeled tree with N types of vertices, where the
root is of type u and each vertex of type v has g(v, w) successors of type w. We
suppose that ((g(v, w)) arises from a directed, weighted and di-connected graph,
and denote by ρ∗ its spectral radius. We consider a λ-biased random walk (λ > 0)
on τ(u), which is defined by the following. Start at the root, where you choose
any of the edges coming out with equal probability, and at each vertex x different
from the root choose the edge pointing towards the root with probability λ

λ+deg(x)−1

and each other edge with probability 1
λ+deg(x)−1

. Then for large λ this walk will

be recurrent and for small λ it will be transient. We choose the bias λ such that
the walk is transient. On the other hand we interpret the tree τ(u) as an electric
network, whose edges are weighted with conductances, where the edges incident
with the root are weighted with unit conductances, and at each other vertex the
conductance of the edge pointing towards the root equals λ times the conductance of
another edge. We denote by C(u) the effective conductance of this electric network.
From the connections between random walk and electric networks we know that
at the exit-times, i. e., at the times, when the random walker leaves a generation
of the tree forever, the transition probabilities are described by the splitting of an
electric current (see [3], [4], [12]). For periodic trees the effective conductances,
the current, and thus the stationary random periodic tree at the exit-times can
be calculated, i. e., the tree as it is watched by the random walker at exit-times
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after a long time of walking. In the present paper we use the distribution of this
tree to calculate the distribution of the walk-invariant random periodic tree. This
connection is established by Theorem 2.2, and is the fundamental tool to achieve
our main result (Corollary 3.6).

Theorem 1.1. Let (Yn)n∈N0 be a λ-biased random walk on a periodic tree τ(u),
where Y0 is the root of τ(u) and let 0 < λ < ρ∗. Then for its speed the following
equality holds almost surely

lim
n→∞

1

n
|Yn − Y0| =

(
N∑
v=1

g(v) + λ

C(v) qG(v)

)−1

,

where |Yn − Y0| denotes the distance of the vertices Yn and Y0 on the tree, g(v) :=∑
w g(v, w), and qG(v) is the amount of current flowing through vertices of type v

in the stationary state.

In the present paper we confine ourselves to trees without recurrent subtrees.
This restriction can be overcome. So e. g. the speed of a random walk on a ”Back-
bone with Dangling Ends” [2] can as well be calculated. A paper on this topic is
in preparation.

Acknowledgements: I am grateful to Professor P. Weiß and to my husband,
Roland Takacs, for numerous discussions and many ideas, hints and corrections.

2. The Main Theorem

Let G be a finite, directed, weighted and di-connected graph with vertex-set V :=
{1, . . . , N} and weight function g : {1, . . . , N}×{1, . . . , N} → N0, where g(u, v) =
0 iff (u, v) is not an edge of G. We call vertices with at least one directed edge
between them neighbours. Let g(u) :=

∑
v g(u, v), G := (g(u, v)) and denote by ρ∗

the spectral radius (largest positive eigenvalue) of G. Let C := (C(1), . . . , C(N))T

and for λ > 0

Λ : RN→ RN with Λ (x1, . . . , xN)
T

=

(
x1

x1 + λ
, . . . ,

xN
xN + λ

)T
,

further let
←
G := {(. . . , u−2, u−1, u0) : ∀i ∈N0 g(u−i−1, u−i) > 0} and denote by S

the shift- operator, i. e., S(. . . , u−2, u−1, u0) = (. . . , u−2, u−1).

Proposition 2.1. ([4], Theorem 5.1) We have ρ∗ ≥ 1. For 0 < λ < ρ∗ equation

GΛ(C) = C(2.1)

has a unique strictly positive solution. (C(v) > 0 for all v ∈ V is a consequence of
G being connected.)

The following theorem will be the main tool for the investigation of random
walks on trees generated by G.

Theorem 2.2. Let 0 < λ < ρ∗ and C the unique strictly positive solution of equa-
tion 2.1.
a) A Markov chain with state space V and transition matrix Q := (qG(u, v)),where

qG(u, v) :=
g(u, v)

C(u)

C(v)
C(v) + λ

,
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has a unique stationary distribution qG, which is a normalized left-eigenvector of
Q belonging to the eigenvalue 1, and Q is ergodic with respect to qG.

b) A Markov chain with state space
←
G and transition probabilities

q(
←
u,
←
v ) :=

{
g(u0,v0)
C(u0)

C(v0)
C(v0)+λ if

←
u = S

←
v

0 otherwise

has a unique stationary distribution q, where q ((. . . V × V ×A−n × . . .× A0)) =∫
A−n

∫
A−n+1

. . .
∫
A0
qG(u−1, d u0) . . . qG(u−n, d u−n+1)qG(d u−n) for all A−n, . . . ,

A0 ⊂ V . Also q is ergodic with respect to q.
c) The distribution p, equivalent to q with density

dp

dq

(←
u
)

= s
g(u0) + λ

C(u0)
, where s :=

(
N∑
u=1

g(u) + λ

C(u)
qG(u)

)−1

,

is a stationary distribution of a Markov chain with state space
←
G and transition

probabilities

p(
←
u,
←
v ) :=


g(u0,v0)
g(u0)+λ

if
←
u = S

←
v and S

←
u 6= ←v

λ
g(u0)+λ

if
←
u 6= S

←
v and S

←
u =

←
v

g(u0,v0)+λ
g(u0)+λ if

←
u = S

←
v and S

←
u =

←
v

0 otherwise

.

Also p is ergodic with respect to p. Any p - invariant probability measure absolutely
continuous to q equals p.

Proof. a) Because of G being connected the Markov chain is recurrent, and the
assertions hold for any recurrent chain with finite state space.

b) Each realization of a stationary Markov chain with state space
←
G and transition

probabilities q is of the form

(. . . , (. . . , u−2, u−1), (. . . , u−2, u−1, u0), (. . . , u−2, u−1, u0, u1), . . . ),

and this sequence uniquely matches the sequence (. . . , u−2, u−1, u0, u1, . . . ) of suc-
cessively neighboring elements of V and is a realization of the (uniquely determined)
stationary Markov chain with state space V , transition probabilities qG and sta-
tionary distribution qG. This proves our claim.

c.a) We first show the p - invariance of p. Let A be a measurable subset of
←
G,

←
u ∈

←
G, v ∈ V and denote by

←
uv := (. . . , u−2, u−1, u0, v) and Av := {←uv :

←
u ∈ A}.

Then q - invariance of q∫
1A(

←
u) dq(

←
u) =

∫
1A(

←
u) q(

←
w,
←
u) dq(

←
w)
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together with the definition of q implies firstly∫
1A(
←
u ) (1 +

λ

C(u0)
) dq(

←
u)

=

∫ N∑
u=1

1A(
←
wu) (1 +

λ

C(u)
)
g(w0, u)

C(w0)

C(u)

C(u) + λ
dq(
←
w)

=
N∑
u=1

∫
1A(

←
wu)

g(w0, u)

C(w0)
dq(
←
w)

and consequently by definition of p∫
1A(
←
u )

λ

g(u0)
dp(
←
u) = s

N∑
u=1

∫
1A(

←
wu)

g(w0, u)

C(w0)
dq(
←
w)− s q(A),(2.2)

and secondly ∫
1Av(

←
w) (1 +

λ

C(w0)
) dq(

←
w)

=

∫
1Av(

←
uv) (1 +

λ

C(v) )
g(u0, v)

C(u0)

C(v)
C(v) + λ

dq(
←
u)

=

∫
1A(

←
u)

g(u0, v)

C(u0)
dq(
←
u)

and consequently by definition of p∫
1A(

←
u)

g(u0, v)

g(u0) + λ
dp(
←
u) = s

∫
1Av(

←
w)

λ

C(w0)
dq(
←
w) + s q(Av).(2.3)

Note that q - invariance of q also implies

N∑
v=1

q(Av) =
N∑
v=1

∫
q(
←
u, Av) dq(

←
u) =

∫
q(
←
u,

N⋃
v=1

Av) dq(
←
u)

=

∫
1A(

←
u) dq(

←
u) = q(A)

Thus summation of equation (2.2) and equation (2.3) over all v ∈ V yields the p -
invariance of p:

p(A) =
N∑
u=1

∫
1A(

←
wu)

g(w0, u)

g(w0) + λ
dp(
←
w) +

∫
1A(S

←
w)

λ

g(w0) + λ
dp(
←
w)

=

∫
p(
←
w,A) dp(

←
w)

c.b) The concrete formula for s is a consequence of p being a (probability) distri-
bution:

1 = p(
←
G) = s

∫
g(u0) + λ

C(u0)
dq(
←
u) = s

N∑
u=1

g(u) + λ

C(u)
qG(u)

c.c) We prove ergodicity of p with respect to p: By ergodicity of q with respect to
q a measurable set A being q - invariant implies q(A) ∈ {0, 1} and consequently
p(A) ∈ {0, 1} by equivalence of p and q. Thus it is enough to prove that any p -
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invariant set is q - invariant. Let A be p - invariant, i. e., ([10], p. 96) p almost
surely

←
u ∈ A⇒ ∀vwithg(u0, v) > 0,

←
uv ∈ A ∧ S←u ∈ A, and

←
u /∈ A⇒ ∀vwithg(u0, v) > 0,

←
uv /∈ A ∧ S←u /∈ A

This implies p almost surely (and thus q almost surely)

q(
←
u, A) =

{
1 if

←
u ∈ A

0 otherwise
,

i. e., A is q- invariant.
c.d) Let p′ be p - invariant and absolutely continuous with respect to q. Then

p′ � p and p is ergodic with respect to p′. Denote by pj(
←
u, A) := p(

←
u, A) for

j = 1 and inductively pj(
←
u, A) :=

∫
pj−1(

←
v , A) p(

←
u, d

←
v ) for j > 1. Then for each

measurable set A ergodicity of p with respect to p (respectively p′) implies ([10],

p. 94) p(A) = limn→∞
1
n

∑n
j=1 pj(

←
u, A) = p′(A), where the left equality is true p

almost surely (and thus p′ almost surely) and the right p′ almost surely.

Corollary 2.3. In the setting of Theorem 2.2 the following equation is true:

N∑
u=1

g(u) − λ
C(u)

qG(u) = 1

Proof. qG being a left eigenvector of Q means that for all v ∈ V
N∑
u=1

qG(u)
g(u, v)

C(u)

C(v)
C(v) + λ

= qG(v)

This implies

N∑
u=1

qG(u)
g(u, v)

C(u)
= qG(v) +

λ

C(v) q
G(v)

Because of qG being a (probability) distribution we conclude

N∑
u=1

g(u)− λ
C(u)

qG(u) =
N∑
u=1

qG(u)
N∑
v=1

g(u, v)

C(u)
−

N∑
v=1

λ

C(v) q
G(v) =

N∑
v=1

qG(v) = 1

3. Periodic Trees, Random Walk, Speed

We use the graph G for the construction of trees. We refer to the vertices of G
as types. Let u be a type. Then τ(u) is a rooted, labeled tree with the following
properties:

• Each vertex has a type.
• Each vertex of type v has g(v, w) neighbours of type w, which we call its

successors. Additionally each vertex, except the root, has exactly one prede-
cessor, whose successor it is.

• The root is of type u and is denoted by u.
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We call τ(u) a periodic tree with root u (generated by G). We call G the gen-
erating graph of τ(u). For convenience we denote by τ(u∗) a rooted, labeled tree,
which arises from τ(u) by linking an additional vertex u∗ to u and distinguishing
this as the root of τ(u∗).
Note that our definition is slightly different from the definition in [4].

Example 3.1. A Fibonacci tree has two types of vertices. Each vertex of type 1 is
followed by one vertex of type 2 and each vertex of type 2 is followed by one vertex
of type 1 and one vertex of type 2. Note that in this case τ(1) is isomorphic to
τ(2∗).

1 2
1

1

1

1 12

121 1212

122
1221

1222

1 12

121 1212

122
1221

1222

1*

Figure 1. Graph and generated (Fibonacci) tree τ(1), as well as
τ(1∗) with possible labelings

Example 3.2. A tree with three types of vertices.

1 2

3

1 2 3

Figure 2. Graph and generated tree τ(1)

The types of the successors of a vertex are determined by the type of the vertex
itself. This is not true for the type of the predecessor. Different graphs may generate
isomorphic trees.

2
1 1 2

2

2
1 2

2

1

1
2 2

2

1 2 3

Figure 3. Different generating graphs of the binary tree

We consider a biased random walk [4] with bias λ on a periodic tree. We
always assume that the random walker starts at the root of the tree. Then at each
vertex the random walker moves to all successors of the vertex with equal proba-
bilities but to the predecessor (if available) with λ times higher (lower) probability.
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In case λ ≥ 1 the λ-biased random walk is also called homesick, then the higher
probability of moving to the predecessor balances the in general higher number of
successors.
This random walk on τ(u) may now be recurrent or transient. For fixed λ
this depends on the size of the tree, more precisely on its branching number [4]
brτ(u). By [4] a λ-biased random walk on τ(u) is recurrent, if brτ(u) < λ and
transient, if brτ(u) > λ. The case brτ(u) = λ must be checked separately.
The branching number of a periodic tree (generated by G) equals ρ∗ (immediate
from [4]). A λ-biased random walk with λ = ρ∗ is recurrent ([5], Theorem 4.3).

Example 3.3. Fibonacci tree (Example 3.1) G =

(
0 1
1 1

)
, ρ∗ = (1 +

√
5)/2

Example 3.4. Tree from Example 3.2 G =

 0 1 0
0 0 2
3 0 0

, ρ∗ = 3
√

6

In the present paper we want to calculate the asymptotic rate of escape
(speed) of a biased random walk on a periodic tree, i. e., the asymptotic ratio of
the distance covered by the random walker and the number of moves needed. Only
in the case of a transient random walk, where each vertex is visited only finitely
many times, we may expect a speed different from 0.
Now let a random walker start at the root u of the periodic tree τ(u), then after
some time he (or she) will leave it forever moving to a successor of type u1, later
this will also be left forever towards a successor of type u2 and so on. After some
time the random walker will find him(her)self at a vertex of type un, which has a
predecessor of type un−1, which itself has a predecessor of type un−2, . . . , which
finally has a predecessor of type u. Thus, if the random walk is already lasting
for an infinite period of time, the tree observed by the random walker from his

(her) present position, may be described (up to isomorphism) by a sequence
←
u :=

(. . . , u−2, u−1, u0) ∈
←
G of types of the successive predecessors. Therefore we define

a rooted labeled tree τ(
←
u) with the following properties:

• Each vertex has a type
• Each vertex of type v has g(v, w) neighbours of type w, which we call its suc-

cessors. Additionally each vertex has exactly one predecessor, whose successor
it is.

• The root is of type u0 and has a predecessor of type u−1, which has a prede-
cessor of type u−2 . . . . The root indicates the position of the random walker.

We call τ(
←
u) the periodic tree with root

←
u generated by G. We call G the

generating graph of τ(
←
u).

According to the above considerations the transition probabilities p(
←
u,
←
v ) of

Theorem 2.2 correspond to transition probabilities of an infinitely long lasting
and therefore stationary λ-biased random walk. The stationary distribution p
thus describes the random tree, at whose root the random walker presently finds

him(her)self. In particular pG(u) := ({←u : u0 = u}) is the probability of the event
that the random walker is at a vertex of type u. By ergodicity of the Markov chain
this equals the frequency of vertices of type u on almost every infinite path covered
by the random walker. Note that the sequence of types along the path is not a
Markov chain itself.
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u–3–4u –1u
–2u

0u

Figure 4. Fibonacci tree τ(
←
u) with

←
u = (. . . , 1, 2, 2, 1, 2)

This interpretation leads to the following corollary to Theorem 2.2 concerning the
speed of a biased random walk on a periodic tree.

Corollary 3.5. Let (Xn)n∈N0 be a λ-biased random walk on a random periodic

tree τ(
←
u ), where the distribution of

←
u is p and X0 =

←
u and let 0 < λ < ρ∗. Then

for its speed the following equality holds almost surely

lim
n→∞

1

n
|Xn −X0| = s

where |Xn −X0| denotes the distance of the vertices Xn and X0 on the tree and s
is defined as in Theorem 2.2.

Proof. For all vertices x, y of a periodic tree τ(
←
u) we define

[x, y] :=

 1 if y is a successor of x
−1 if x is a successor of y
0 otherwise

Because of the transience of the random walk on τ(u0), τ(u−1), . . . almost surely

lim
n→∞

n−1∑
j=0

[Xj , Xj+1] =∞

Thus almost surely there exists an m such that

m−1∑
j=0

[Xj , Xj+1] = min{
n−1∑
j=0

[Xj , Xj+1] : n ∈N}

With this we have
n−1∑
j=0

[Xj, Xj+1] ≤ |Xn −X0| ≤ 2 |Xm −X0|+
n−1∑
j=0

[Xj, Xj+1]

and consequently

lim
n→∞

1

n
|Xn −X0| = lim

n→∞

1

n

n−1∑
j=0

[Xj, Xj+1]

Denote by θ(Xn) the sequence of types of the successive predecessors of Xn, then
(θ(Xn))n∈N0 equals the Markov chain of Theorem 2.2 c).
For the moment we assume that G has at least three edges. In this case by the zero-
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one law of Hewitt-Savage q almost surely X0 (=
←
u ) does not have period two. Thus

for all n ∈N almost surely θ(Xn+1) = θ(Xn−1)⇔ Xn+1 = Xn−1 and consequently

[θ(Xn), θ(Xn+1)] := [Xn, Xn+1] =

{
1 if Sθ(Xn+1) = θ(Xn)
−1 if Sθ(Xn) = θ(Xn+1)

Birkhoff’s ergodic theorem implies that almost surely

lim
n→∞

1

n
|Xn −X0| = lim

n→∞

1

n

n−1∑
j=0

[θ(Xn), θ(Xn+1)] = E[θ(X0), θ(X1)]

and by Theorem 2.2 and Corollary 2.3

E[θ(X0), θ(X1)] =
N∑
u=1

g(u) − λ
g(u) + λ

pG(u) =
N∑
u=1

g(u) − λ
g(u) + λ

s
g(u) + λ

C(u)
qG(u) = s

If G has at most two edges,
←
G has at most two elements. In this case p = q equals

the uniform distribution on
←
G. The sequence ([Xn, Xn+1] + [Xn+1, Xn+2])n∈N0

then is a sequence of i.i.d. random variables and by the strong law of large numbers
its Cesaro limit almost surely equals its expectation, which is easily calculated as
2s.

Corollary 3.6. Let (Yn)n∈N0 be a λ-biased random walk on a periodic tree τ(u),
where u ∈ V and Y0 = u and let 0 < λ < ρ∗. Then for its speed the following
equality holds almost surely

lim
n→∞

1

n
|Yn − Y0| = s

where |Yn − Y0| denotes the distance of the vertices Yn and Y0 on the tree and s is
defined as in Theorem 2.2.

Proof. We interpret τ(u) as a subtree of τ(
←
u ) with u0 = u and (Yn)n∈N0 as random

walk on it with Y0 =
←
u . Let (Xn)n∈N0 be a biased random walk on a random

periodic tree as in Corollary 3.5. Let A denote the event that the predecessor of
X0 is never visited and for all k ∈ N Bk the event that X0 is visited k-times.
Then {(X0)0 = u}, A and Bk occur with positive probability even together and
by transience of (Xn)n∈N0 almost surely (Xn)n∈N0 ∈

⋃
k∈NBk. On the conditions

{(X0)0 = u}, A and Bk the distribution of (Xn)n∈N0 equals the distribution of
(Yn)n∈N0 provided that Y0 is visited k times. Thus the distribution of (Xn)n∈N0

on conditions {(X0)0 = u} and A, and the distribution of (Yn)n∈N0 are equivalent.
This proves our claim.

4. Electric Networks, Random Walk, Exit

To interpret a tree as an electric network we think of its edges as being
weighted with conductances. We refer to a random walk as being charac-
terized by conductances, if at each vertex the random walker traverses each
adjacent edge with a probability proportional to its conductance. If we choose for
all vertices x of τ(u) the conductance of the edge between x and its predecessor
equal to λ1−|x−u| - we denote the arising network by τ(u, λ) - the random walk
characterized by these conductances is a λ-biased random walk. Let τ(u∗, λ) arise
in the same way from τ(u∗).
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Example 4.1. The electric network τ(1, λ) arising from the Fibonacci tree τ(1).
Note that it is isomorphic to τ(2∗, λ).

1
λ–1

λ–1

λ
–2

λ
–2

λ
–2

λ
–3

λ
–3

λ
–3

λ
–3

λ
–3

Figure 5. Tree and electric network

If a random walk characterized by conductances is started at the root of a tree,
it is well known [3] that the escape probability equals the ratio of the effective
conductance of the network and the sum of the conductances of the edges adjacent
to the root. The effective conductance is the electric current flowing through
the network, if a unit potential is applied between the root and infinity.
We denote the effective conductance of τ(u, λ) by C(u). Then the conductances
C(1), . . . , C(N) are a solution of equation 2.1 by Ohm’s and Kirchhoff’s laws. This
system may be interpreted as fixed-point-equation for the operator GΛ. A straight
forward fixed-point-iteration [4] converges for each initial value C ≥ G 1 towards
its unique strictly positive solution. Starting with G 1, in the n-th iteration con-
ductances C(n)(1), . . . , C(n)(N) of the trees τ(1), . . . , τ(N) grounded in generation
n+ 1 are computed.

1
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λ
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λ
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λ
–2

λ
–3

λ
–3

λ
–3

λ
–3

λ
–3

1 C (2)/λ

1

λ–1

λ–1 λ
–2

λ
–2

λ
–2

λ
–3

1 λ–1
λ

–2

λ
–2

λ
–3

λ
–3

λ
–3

λ
–3

λ
–3

λ
–3

λ
–3

1

1 C (2)/λ

C (1)/λ

Figure 6. Networks τ(1, λ) and τ(2, λ) arising from Fibonacci trees

Example 4.2. For the Fibonacci tree we demonstrate why the effective conduc-
tances are a solution of equation 2.1. Let 0 < λ < (1 +

√
5)/2. The effective

conductance of τ(1, λ) equals a conductance 1 and a conductance C(2)/λ in series.
The effective conductance of τ(2, λ) equals two conductances in parallel, where the
first equals a conductance 1 and a conductance C(2)/λ in series and the second a
conductance 1 and a conductance C(1)/λ in series.
Thus equation 2.1 is of the form:

C(1) = (1 + λ/C(2))−1

C(2) = (1 + λ/C(2))−1 + (1 + λ/C(1))−1

Its only strictly positive solution is C(1) =
√
λ + 1−λ and C(2) = 1/

√
λ + 1 +1−λ
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Example 4.3. Continuation of Example 3.2. Let 0 < λ < 3
√

6. In this case
equation 2.1 is of the form:

C(1) = (1 + λ/C(2))−1

C(2) = 2(1 + λ/C(3))−1

C(3) = 3(1 + λ/C(1))−1

and has the only strictly positive solution

C(1) = (6− λ3)/(6 + 3λ+ λ2),

C(2) = (6− λ3)/(3 + λ + λ2),

C(3) = (6− λ3)/(2 + 2λ+ λ2).

Let (Xn)n∈N0 be a biased random walk on a periodic tree τ(
←
u) with X0 =

←
u .

If at a time k ∈ N0 the random walker moves towards a successor of Xk and never
returns to Xk, we say, the event exit (E) occurs at time k, i. e., {(Xn+k)n∈N0 ∈ E},
we call k an exit-time and Xk an exit-vertex. For every vertex x of a periodic
tree we denote by θ0(x) the type of x and note that

P [(Xn+k)n∈N0 ∈ E | θ0(Xk+1) = v, θ0(Xk) = u]

equals the probability of the event that a biased random walker starting at the root
v∗ of τ(v∗) immediately leaves v∗ forever, which equals

C(v)
C(v) + λ

by the formula for the escape probability. We then calculate

P [(Xn+k)n∈N0 ∈ E | θ0(Xk) = u]

=
N∑
v=1

P [θ0(Xk+1) = v | θ0(Xk) = u ]P [(Xn+k)n∈N0 ∈ E | θ0(Xk+1) = v , θ0(Xk) = u]

=
N∑
v=1

g(u, v)

g(u) + λ

C(v)
C(v) + λ

=
C(u)

g(u) + λ
,

where the last equality is due to equation 2.1. Therefore conditioned on the event
E the random walker being at a vertex of type u, moves to a vertex of type v with
the probability

P [θ0(Xk+1) = v | θ0(Xk) = u, (Xn+k)n∈N0 ∈ E]

=
P [(Xn+k)n∈N0 ∈ E | θ0(Xk+1) = v , θ0(Xk) = u]P [θ0(Xk+1) = v | θ0(Xk) = u]

P [(Xn+k)n∈N0 ∈ E | θ0(Xk) = u]

=
g(u, v)

C(u)

C(v)
C(v) + λ

= qG(u, v)

Note that an electric current entering a vertex of type u (from its predecessor) is
reduced by even this factor towards the current leaving it via vertices of type v.
Thus watching the random walker only at exit-times and noting the types of the
exit-vertices yields a Markov chain with state space V and transition probabilities
qG. So qG is the distribution of the type of an exit-vertex of an infinitely lasting
and thus stationary biased random walk. Analogously q describes the random
periodic tree, whose root the random walker leaves forever at an exit-time. Because
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the sequence of the successive exit-vertices equals the infinite ray covered by the
random walker, ergodicity of qG with respect to qG implies that qG(u) also equals
the frequency of vertices of type u on almost every such infinite ray.

Example 4.4. Continuation of Example 3.1: qG = (
√
λ+1−1√

λ+1−1+λ
, λ√

λ+1−1+λ
)

Example 4.5. Continuation of Example 3.2: Trivially qG = (1/3, 1/3, 1/3)

Corollary 4.6. Let (Xn)n∈N0 be a λ-biased random walk on a random periodic

tree τ(
←
u ), where the distribution of

←
u is p and X0 =

←
u and let 0 < λ < ρ∗. Then

for all k ∈N0

P [(Xn+k)n∈N0 ∈ E] = s

where s is defined as in Theorem 2.2.

Proof. Stationarity of the chain implies

P [(Xn+k)n∈N0 ∈ E]

=
N∑
u=1

P [(Xn+k)n∈N0 ∈ E | θ0(Xk) = u] pG(u)

= s

N∑
u=1

C(u)

g(u) + λ

g(u) + λ

C(u)
qG(u)

= s

N∑
u=1

qG(u) = s

Example 4.7. Continuation of Example 3.1, computation of pG and s:

s−1 = qG(1)(1 + λ)/C(1) + qG(2)(2 + λ)/C(2) implies

s =
(
√
λ+ 1− λ)(

√
λ + 1 + 2)

λ+ 1 + (λ + 2)
√
λ+ 1

This result was also achieved by [7] (Ad-hoc method). The frequencies of the differ-
ent types on the path are almost surely equal to

pG(1) =

√
λ+ 1

λ + 2 +
√
λ + 1

pG(2) =
λ+ 2

λ + 2 +
√
λ + 1

Example 4.8. Continuation of Example 3.2:

s−1 = qG(1)(1 + λ)/C(1) + qG(2)(2 + λ)/C(2) + qG(3)(3 + λ)/C(3) implies

s =
3(6− λ2)

3λ3 + 12λ2 + 22λ+ 18

We avoid the lengthy formulas for the quantities pG but instead only note that

pG(2) < pG(1) ≤ pG(3)
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Corollary 4.9. In the setting of Theorem 2.2

s =

(
1 + 2λ

N∑
u=1

1

C(u)
qG(u)

)−1

=

(
2
N∑
u=1

g(u)

C(u)
qG(u)− 1

)−1

Proof. Definition of s and Corollary 2.3.

Remark 4.1. a) By the Kac lemma [9] s−1 equals the expected period of time be-
tween two exit-times. Thus it can be interpreted as the mean delay, necessary to
overcome one generation of the tree. The expectation is taken of the same random
walk as considered in Corollary 3.5.
b) This mean delay is by 1 lower than twice the mean effective resistance, the re-
ciprocal of the effective conductance, of the network τ(u∗, λ), where the mean is
taken over all types u of exit-vertices. Note that the effective resistance of τ(u∗, λ)
equals the reciprocal of the escape probability from the root u∗ as well as the expected
number of visits to u∗ [3].
c) The mean delay is by 1 lower than twice the mean reciprocal of the escape probabil-
ity from the root u of τ(u), where the mean is taken over all types u of exit-vertices.

Remark 4.2. The interpretation of Remark 4.1 c) is further illuminated by the
following heuristic argument based on the first-hitting-time formula of [12]:
Let τ be a weighted, labeled, finite tree with root a. We short its leaves and denote
the resulting vertex by b. Each edge (x, y) is weighted with a conductance c(x, y)
and c(x) :=

∑
y c(x, y). For each vertex x of τ let Ux,τ denote the potential between

x and b, if the current from a to b is 1.
A random walk on τ characterized by the conductances and started at a has an
expected hitting time of b [12] of Ea,τTb =

∑
x c(x)Ux,τ . Note that this quantity

would not be finite for an infinite tree. Let a1, . . . , an be the neighbours of a in τ
and denote by τj the subtree of τ with vertex-set {x : |x− a| > |x− aj|} and root
aj. Denote the current flowing from a to aj by Ij, let

∑n
j=1 Ij = 1 and note that

Ux,τ/Ux,τj = Ij for all vertices x of τj , then

Ea,τTb =
n∑
j=1

Ij Eaj ,τjTb +
n∑
j=1

c(a, aj)Uaj ,τ + c(a)Ua,τ

=
n∑
j=1

Ij Eaj ,τjTb + 2c(a)Ua,τ − 1,

where the last equality follows from Ua,τ = Uaj,τ + Ij/c(a, aj). Using Ohm’s law
with the conductances corresponding to a biased random walk we arrive at Ea,τTb =∑n
j=1 Ij Eaj ,τjTb + 2(g(a)/C(a))− 1. Since Ij equals the probability of moving from

a to aj at an exit-time, the existence of a increases the expected hitting time of b
by the last two terms, which thus correspond to the delay caused by the existence of
a. In the mean over all types of exit- vertices, we conclude

”s−1” = 2
N∑
u=1

g(u)

C(u)
qG(u) − 1

Example 4.10. Since our previous examples could be solved by use of existing lit-
erature, we demonstrate our method for a periodic tree, say τ(2), which is generated
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1 2 3
1 1

1

1

2

21

23
231 2312

212
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Figure 7. Graph G and the generated tree τ(2) with a possible labeling

by the graph G above.

G =

 0 1 0
1 0 1
1 0 0

 , ρ∗ = brτ(2) =
3
√

9−
√

69 +
3
√

9 +
√

69
3
√

18
∼= 1.3247

The speed is interesting for 0 < λ < ρ∗. Equation 2.1 is of the form

C(1) = (1 + λ/C(2))−1

C(2) = (1 + λ/C(1))−1 + (1 + λ/C(3))−1

C(3) = (1 + λ/C(1))−1

The system can be solved for general λ but we avoid the lengthy formulas. Thus the
following applies to the case λ = 1. The only strictly positive solution of equation
2.1 is

C(1) = (
√

6− 1)/5, C(2) = 1/
√

6 and C(3) = (
√

6− 2)/2.

The frequencies of the different types along a ray are almost surely equal to

qG = (1/
√

6, 1/
√

6, 1− 2/
√

6) ∼= (0.408, 0.408, 0.184)

The frequencies of the different types along the path are almost surely equal to

pG(1) = (24−
√

6)/57 ∼= 0.378

pG(2) = (45− 9
√

6)/57 ∼= 0.403

pG(3) = (10
√

6− 12)/57 ∼= 0.219

The speed of a simple random walk on τ(u) is almost surely equal to

s =
1

5 +
√

6

The following figure shows the speed s as a function of λ.

It is now tempting to think s to be a monotone function of λ, but this is not
true as an example of [7] with 32 types of vertices shows, which was pointed out to
me by Y. Peres.

5. Conclusions

The method of calculating the stationary distribution p of the vertices on the
path from the stationary distribution q of the exit-vertices does not only work for
periodic trees. It can also be used when considering Markov chains on directed
unlabeled trees, i. e., trees with a distinguished ray. The advantage of periodic
trees is that q and thus p as well as s can be computed explicitly. For the random
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Figure 8. Speed of a biased random walk as a function of λ

environment the analogous connection between the two stationary distributions has
already been published [1]. If G is not connected, new phenomena may appear, such
as a random walk started at the same vertex having several possible speeds. Our
method can be adapted to these more general situations.
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