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Abstract

We define a dynamic model of random networks, where new vertices are connected to old ones
with a probability proportional to a sublinear function of their degree. We first give a strong limit
law for the empirical degree distribution, and then have a closer look at the temporal evolution of
the degrees of individual vertices, which we describe in terms of large and moderate deviation
principles. Using these results, we expose an interesting phase transition: in cases of strong
preference of large degrees, eventually a single vertex emerges forever as vertex of maximal
degree, whereas in cases of weak preference, the vertex of maximal degree is changing infinitely
often. Loosely speaking, the transition between the two phases occurs in the case when a new
edge is attached to an existing vertex with a probability proportional to the root of its current
degree.
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1 Introduction

1.1 Motivation

Dynamic random graph models, in which new vertices prefer to be attached to vertices with higher
degree in the existing graph, have proved to be immensely popular in the scientific literature re-
cently. The two main reasons for this popularity are, on the one hand, that these models can be
easily defined and modified, and can therefore be calibrated to serve as models for social networks,
collaboration and interaction graphs, or the web graph. On the other hand, if the attachment prob-
ability is approximately proportional to the degree of a vertex, the dynamics of the model can offer
a credible explanation for the occurrence of power law degree distributions in large networks.

The philosophy behind these preferential attachment models is that growing networks are built
by adding nodes successively. Whenever a new node is added it is linked by edges to one or more
existing nodes with a probability proportional to a function f of their degree. This function f , called
attachment rule, or sometimes weight function, determines the qualitative features of the dynamic
network.

The heuristic characterisation does not amount to a full definition of the model, and some clarifi-
cations have to be made, but it is generally believed that none of these crucially influence the long
time behaviour of the model.

It is easy to see that in the general framework there are three main regimes:

• the linear regime, where f (k)� k;

• the superlinear regime, where f (k)� k;

• the sublinear regime, where f (k)� k.

The linear regime has received most attention, and a major case has been introduced in the much-
cited paper Barabási and Albert [1999]. There is by now a substantial body of rigorous mathematical
work on this case. In particular, it is shown in Bollobás et al. [2001], Móri [2002] that the empirical
degree distribution follows an asymptotic power law and in Móri [2005] that the maximal degree
of the network is growing polynomially of the same order as the degree of the first node.

In the superlinear regime the behaviour is more extreme. In Oliveira and Spencer [2005] it is
shown that a dominant vertex emerges, which attracts a positive proportion of all future edges.
Asymptotically, after n steps, this vertex has degree of order n, while the degrees of all other vertices
are bounded. In the most extreme cases eventually all vertices attach to the dominant vertex.

In the linear and sublinear regimes Rudas et al. [2007] find almost sure convergence of the empirical
degree distributions. In the linear regime the limiting distribution obeys a power law, whereas in
the sublinear regime the limiting distributions are stretched exponential distributions. Apart from
this, there has not been much research so far in the sublinear regime, which is the main concern of
the present article, though we include the linear regime in most of our results.
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Specifically, we discuss a preferential attachment model where new nodes connect to a random
number of old nodes, which in fact is quite desirable from the modelling point of view. More
precisely, the node added in the nth step is connected independently to any old one with probability
f (k)/n, where k is the (in-)degree of the old node. We first determine the asymptotic degree
distribution, see Theorem 1.1, and find a result which is in line with that of Rudas et al. [2007].
The result implies in particular that, if f (k) = (k+ 1)α for 0 ¶ α < 1, then the asymptotic degree
distribution (µk) satisfies

logµk ∼−
1

1−α k1−α,

showing that power law behaviour is limited to the linear regime. Under the assumption that the
strength of the attachment preference is sufficiently weak, we give very fine results about the prob-
ability that the degree of a fixed vertex follows a given increasing function, see Theorem 1.13 and
Theorem 1.15. These large and moderate deviation results, besides being of independent interest,
play an important role in the proof of our main result. This result describes an interesting dichotomy
about the behaviour of the vertex of maximal degree, see Theorem 1.5:

• The strong preference case: If
∑

n 1/ f (n)2 < ∞, then there exists a single dominant vertex
–called persistent hub– which has maximal degree for all but finitely many times. However,
only in the linear regime the number of new vertices connecting to the dominant vertex is
growing polynomially in time.

• The weak preference case: If
∑

n 1/ f (n)2 =∞, then there is almost surely no persistent hub. In
particular, the index, or time of birth, of the current vertex of maximal degree is a function of
time diverging to infinity in probability. In Theorem 1.8 we provide asymptotic results for the
index and degree of this vertex, as time goes to infinity.

A rigorous definition of the model is given in Section 1.2, and precise statements of the principal
results follow in Section 1.3. In Section 1.4 we state fine results on the evolution of degrees, which
are useful in the proofs of our main results, but also of independent interest. These include laws of
large numbers, a central limit theorem and large deviation principles for the degree evolutions. At
the end of that section, we also give a short overview over the further parts of this paper.

1.2 Definition of the model

We now explain how precisely we define our preferential attachment model given a monotonically
increasing attachment rule f : N ∪ {0} −→ (0,∞) with f (n) ¶ n+ 1 for all n ∈ N ∪ {0}. At time
n= 1 the network consists of a single vertex (labeled 1) without edges and for each n ∈ N the graph
evolves in the time step n→ n+ 1 according to the following rule

• add a new vertex (labeled n+ 1) and

• insert for each old vertex m a directed edge n+ 1→ m with probability

f (indegree of m at time n)
n

.
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The new edges are inserted independently for each old vertex. Note that the assumptions imposed
on f guarantee that in each evolution step the probability for adding an edge is smaller or equal
to 1. Formally we are dealing with a directed network, but indeed, by construction, all edges are
pointing from the younger to the older vertex, so that the directions can trivially be recreated from
the undirected (labeled) graph.

There is one notable change to the recipe given in Krapivsky and Redner [2001]: We do not add one
edge in every step but a random number, a property which is actually desirable in most applications.
Given the graph after attachment of the nth vertex, the expected number of edges added in the next
step is

1

n

n
∑

m=1

f
�

indegree of m at time n
�

.

This quantity converges, as n → ∞ almost surely to a deterministic limit λ, see Theorem 1.1.
Moreover, the law of the number of edges added is asymptotically Poissonian with parameter λ.
Observe that the outdegree of every vertex remains unchanged after the step in which the vertex was
created. Hence our principal interest when studying the asymptotic evolution of degree distributions
is in the indegrees.

1.3 Presentation of the main results

We denote by Z [m, n], for m, n ∈ N, m ¶ n, the indegree of the mth vertex after the insertion of
the nth vertex, and by Xk(n) the proportion of nodes of indegree k ∈ N∪ {0} at time n, that is

Xk(n) =
1

n

n
∑

i=1

1l{Z [i,n]=k}.

Denote µk(n) = EXk(n), X (n) = (Xk(n): k ∈ N∪ {0}), and µ(n) = (µk(n): k ∈ N∪ {0}).

Theorem 1.1 (Asymptotic empirical degree distribution).

(a) Let

µk =
1

1+ f (k)

k−1
∏

l=0

f (l)
1+ f (l)

for k ∈ N∪ {0},

which is a sequence of probability weights. Then, almost surely,

lim
n→∞

X (n) = µ

in total variation norm.

(b) If f satisfies f (k) ¶ ηk+1 for some η ∈ (0, 1), then the conditional distribution of the outdegree
of the (n+ 1)st incoming node (given the graph at time n) converges almost surely in the total
variation norm to the Poisson distribution with parameter λ := 〈µ, f 〉.
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Remark 1.2. In the model introduced in Krapivsky and Redner [2001] and studied by Rudas et al.
[2007], every new vertex is connected to exactly one existing vertex. Every vertex is chosen with a
probability proportional to a function w : N∪{0} → [0,∞) of its indegree. The asymptotic indegree
distribution they obtain coincides with ours if f is chosen as a constant multiple of w. This is
strong evidence that these models show the same qualitative behaviour, and that our further results
hold mutatis mutandis for preferential attachment models in which new vertices connect to a fixed
number of old ones.

Example 1.3. Suppose f (k) = γk + β for fixed γ,β ∈ (0,1] and for all k ∈ N ∪ {0}. Then the
asymptotic empirical distribution can be expressed in terms of the Γ-function,

µk =
1

γ

Γ(k+ β

γ
)Γ(β+1

γ
)

Γ(k+ 1+β+γ
γ
)Γ(β

γ
)

By Stirling’s formula, Γ(t + a)/Γ(t)∼ ta as t tends to infinity. Hence,

µk ∼
Γ(β+1

γ
)

γΓ(β
γ
)

k−(1+
1
γ
), as k→∞.

This is in line with the linear case in the classical model, where new vertices connect to a fixed
number m of old ones chosen with a probability proportional to their degree plus a constant a >−m.
Independently of the chosen variant of the model, there are analogues of Theorem 1.1 with degree
sequences (µk) of order k−(3+a/m), see for instance Móri [2002] and Bollobás et al. [2001] for the
case a = 0 and Hofstad [2009] for the general case. The tail behaviour of our and the classical
models coincide if γ= 1

2+a/m
.

Example 1.4. Suppose f (k)∼ γkα, for 0 < α < 1 and γ > 0, then a straightforward analysis yields
that

logµk ∼−
k+1
∑

l=1

log
�

1+ (γlα)−1�∼−1
γ

1
1−α k1−α .

Hence the asymptotic degree distribution has stretched exponential tails.

Our main result describes the behaviour of the vertex of maximal degree, and reveals an interesting
dichotomy between weak and strong forms of preferential attachment.

Theorem 1.5 (Vertex of maximal degree). Suppose f is concave. Then we have the following di-
chotomy:

Strong preference. If
∞
∑

k=0

1

f (k)2
<∞,

then with probability one there exists a persistent hub, i.e. there is a single vertex which has
maximal indegree for all but finitely many times.
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Weak preference. If
∞
∑

k=0

1

f (k)2
=∞,

then with probability one there exists no persistent hub and the time of birth, or index, of the
current hub tends to infinity in probability.

Remark 1.6. Without the assumption of concavity of f , the assertion remains true in the weak
preference regime. In the strong preference regime our results still imply that, almost surely, the
number of vertices, which at some time have maximal indegree, is finite.

Remark 1.7. In the weak preference case the information about the order of the vertices is asymp-
totically lost: as a consequence of the proof of Theorem 1.5, we obtain that, for any two vertices
n< n′,

lim
m→∞
P(Z [n, m]>Z [n′, m]) = 1

2
.

Conversely, in the strong preference case, the information about the order is not lost completely and
one has

lim
t→∞
P(Z [n, m]>Z [n′, m])> 1

2
.

Our next aim is to determine the typical age and indegree evolution of the hub in the strong prefer-
ence case. For this purpose we make further assumptions on the attachment rule f . We now assume
that

• f is regularly varying with index 0 ¶ α < 1
2
,

• for some η < 1, we have f ( j) ¶ η( j+ 1) for all j ∈ N∪ {0}.
(1)

We define two increasing ‘scaling’ functions,

Ψ(n) :=
n−1
∑

m=1

1

m
∼ log n for n ∈ N, (2)

and

Φ(n) :=
n−1
∑

k=0

1

f (k)
for n ∈ N∪ {0}, (3)

and we extend the definition of Φ to the positive real line by linearly interpolating between integer
points.

Theorem 1.8 (Limit law for age and degree of the vertex of maximal degree). Suppose f satisfies (1).
Let m∗n be the index of the hub at time n, and Zmax

n the maximal indegree at time n ∈ N. Then there
exists a slowly varying function ¯̀ such that, in probability,

log m∗n ∼
1

2

1−α
1− 2α

(log n)
1−2α
1−α

¯̀(log n)

and

Zmax
n −Φ−1�Ψ(n)

�

∼
1

2

1−α
1− 2α

log n.
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Remark 1.9. A slightly more general (and more technical) version of this result will be stated as
Proposition 1.18. The rôle of the scaling functions and the definition of the slowly varying function ¯̀

will be made explicit in Section 1.4.

The results presented in the next section will shed further light on the evolution of the degree of a
fixed vertex, and unlock the deeper reason behind the dichotomy described in Theorem 1.5. These
results will also provide the set-up for the proof of Theorems 1.5 and 1.8.

1.4 Fine results for degree evolutions

In order to analyse the network further, we scale the time as well as the way of counting the indegree.
Recall the definitions (2) and (3). To the original time n ∈ N we associate an artificial time Ψ(n)
and to the original degree j ∈ N ∪ {0} we associate the artificial degree Φ( j). An easy law of large
numbers illustrates the role of these scalings.

Proposition 1.10 (Law of large numbers). For any fixed vertex labeled m ∈ N, we have that

lim
n→∞

Φ(Z [m, n])
Ψ(n)

= 1 almost surely .

Remark 1.11. Since Ψ(n)∼ log n, we conclude that for any m ∈ N, almost surely,

Φ(Z [m, n])∼ log n as n→∞.

In particular, we get for an attachment rule f with f (n) ∼ γn and γ ∈ (0,1], that Φ(n) ∼ 1
γ

log n
which implies that

logZ [m, n]∼ log nγ, almost surely.

In order to find the same behaviour in the classical linear preferential attachment model, one again
has to choose the parameter as a = m(1

γ
− 2) in the classical model, cf. Remark 1.3.

Similarly, an attachment rule with f (n)∼ γnα for α < 1 and γ > 0 leads to

Z [m, n]∼ (γ(1−α) log n)
1

1−α almost surely.

We denote by T := {Ψ(n): n ∈ N} the set of artificial times, and by S := {Φ( j) : j ∈ N∪ {0}} the set
of artificial degrees. From now on, we refer by time to the artificial time, and by (in-)degree to the
artificial degree. Further, we introduce a new real-valued process (Z[s, t])s∈T,t¾0 via

Z[s, t] := Φ(Z [m, n]) if s =Ψ(m), t =Ψ(n) and m ¶ n,

and extend the definition to arbitrary t by letting Z[s, t] := Z[s, s∨max(T∩ [0, t])]. For notational
convenience we extend the definition of f to [0,∞) by setting f (u) := f (buc) for all u ∈ [0,∞) so
that

Φ(u) =

∫ u

0

1

f (v)
dv.

We denote by L [0,∞) the space of càdlàg functions x : [0,∞)→ R endowed with the topology of
uniform convergence on compact subsets of [0,∞).
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Figure 1: The degree evolution of a vertex in the artificial scaling: In the strong preference case, on
the left, the distance of degrees is converging to a positive constant; in the weak preference case,
on the right, fluctuations are bigger and, as time goes to infinity, the probability that the younger
vertex has bigger degree converges to 1/2.

Proposition 1.12 (Central limit theorem). In the case of weak preference, for all s ∈ T,
�Z[s, s+ϕ∗κt]−ϕ

∗
κtp

κ
: t ¾ 0

�

⇒ (Wt : t ¾ 0) ,

in distribution on L [0,∞), where (Wt : t ¾ 0) is a standard Brownian motion and (ϕ∗t )t¾0 is the
inverse of (ϕt)t¾0 given by

ϕt =

∫ Φ−1(t)

0

1

f (u)2
du.

We now briefly describe the background behind the findings above. In the artificial scaling, an in-
degree evolution is the sum of a linear drift and a martingale, and the perturbations induced by
the martingale are of lower order than the drift term. Essentially, we have two cases: Either the
martingale converges almost surely, the strong preference regime, or the martingale diverges, the
weak preference regime. The crucial quantity which separates both regimes is

∑∞
k=0 f (k)−2 with con-

vergence leading to strong preference. Its appearance can be explained as follows: The expected
artificial time a vertex spends having natural indegree k is 1/ f (k). Moreover, the quadratic vari-
ation grows throughout that time approximately linearly with speed 1/ f (k). Hence the quadratic
variation of the martingale over the infinite time horizon behaves like the infinite sum above.

In the weak preference regime, the quadratic variation process of the martingale converges to the
function (ϕt) when scaled appropriately, explaining the central limit theorem. Moreover, the differ-
ence of two distinct indegree evolutions, satisfies a central limit theorem as well, and it thus will
be positive and negative for arbitrarily large times. In particular, this means that hubs cannot be
persistent. In the case of strong preference, the quadratic variation is uniformly bounded and the
martingales converge with probability one. Hence, in the artificial scaling, the relative distance of
two indegree evolutions freezes for large times. As we will see, in the long run, late vertices have
no chance of becoming a hub, since the probability of this happening decays too fast.
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Investigations so far were centred around typical vertices in the network. Large deviation princi-
ples, as provided below, are the main tool to analyse exceptional vertices in the random network.
Throughout we use the large-deviation terminology of Dembo and Zeitouni [1998] and, from this
point on, the focus is on the weak preference case.

We set f̄ := f ◦ Φ−1, and recall from Lemma A.1 in the appendix that we can represent f̄ as
f̄ (u) = uα/(1−α) ¯̀(u) for u > 0, where ¯̀ is a slowly varying function. This is the slowly varying
function appearing in Theorem 1.8.

We denote by I [0,∞) the space of nondecreasing functions x : [0,∞)→ R with x(0) = 0 endowed
with the topology of uniform convergence on compact subintervals of [0,∞).

Theorem 1.13 (Large deviation principles). Under assumption (1), for every s ∈ T, the family of
functions

�1

κ
Z[s, s+κt]: t ¾ 0

�

κ>0

satisfies large deviation principles on the space I [0,∞),

• with speed (κ
1

1−α ¯̀(κ)) and good rate function

J(x) =

(

∫∞
0

x
α

1−α
t [1− ẋ t + ẋ t log ẋ t] d t if x is absolutely continuous,

∞ otherwise.

• and with speed (κ) and good rate function

K(x) =

(

a f (0) if x t = (t − a)+ for some a ¾ 0,

∞ otherwise.

Remark 1.14. The large deviation principle states, in particular, that the most likely deviation from
the growth behaviour in the law of large numbers is having zero indegree for a long time and after
that time typical behaviour kicking in. Indeed, it is elementary to see that a delay time of aκ has a
probability of e−aκ f (0)+o(κ), as κ ↑ ∞.

More important for our purpose is a moderate deviation principle, which describes deviations on a
finer scale. Similar as before, we denote by L (0,∞) the space of càdlàg functions x : (0,∞)→ R
endowed with the topology of uniform convergence on compact subsets of (0,∞), and always use
the convention x0 := lim inft↓0 x t .

Theorem 1.15 (Moderate deviation principle). Suppose (1) and that (aκ) is regularly varying, so
that the limit

c := lim
κ↑∞

aκ κ
2α−1
1−α ¯̀(κ) ∈ [0,∞)

exists. If κ
1−2α
2−2α ¯̀(κ)−

1
2 � aκ� κ, then, for any s ∈ T, the family of functions

�Z[s, s+κt]−κt

aκ
: t ¾ 0

�

κ>0
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satisfies a large deviation principle on L (0,∞) with speed (a2
κ κ

2α−1
1−α ¯̀(κ)) and good rate function

I(x) =

¨

1
2

∫∞
0
( ẋ t)2 t

α
1−α d t − 1

c
f (0) x0 if x is absolutely continuous and x0 ¶ 0,

∞ otherwise,

where we use the convention 1/0=∞.

Remark 1.16. If c = ∞ there is still a moderate deviation principle on the space of functions
x : (0,∞)→ R with the topology of pointwise convergence. However, the rate function I , which has
the same form as above with 1/∞ interpreted as zero, fails to be a good rate function.

Let us heuristically derive the moderate deviation principle from the large deviation principle. Let
(yt)t¾0 denote an absolutely continuous path with y0 ¶ 0. We are interested in the probability that

P
�Z[s, s+κt]−κt

aκ
≈ yt

�

= P
�Z[s, s+κt]

κ
≈ t +

aκ
κ

yt

�

.

Now note that x 7→ 1− x + x log x attains its minimal value in one, and the corresponding second
order differential is one. Consequently, using the large deviation principle together with Taylor’s
formula we get

logP
�Z[s, s+κt]−κt

aκ
≈ yt

�

∼−
1

2
κ

2α−1
1−α ¯̀(κ)a2

κ

∫ ∞

0

t
α

1−α ẏ2
t d t − aκ f (0)|y0|.

Here, the second term comes from the second large deviation principle. If c is zero, then the second
term is of higher order and a path (yt)t¾0 has to start in 0 in order to have finite rate. If c ∈ (0,∞),
then both terms are of the same order. In particular, there are paths with finite rate that do not start
in zero. The case c =∞ is excluded in the moderate deviation principle and it will not be considered
in this article. As the heuristic computations indicate in that case the second term vanishes, which
means that the starting value has no influence on the rate as long as it is negative. Hence, one
can either prove an analogue of the second large deviation principle, or one can consider a scaling
where the first term gives the main contribution and the starting value has no influence on the rate
as long as it is negative. In the latter case one obtains a rate function, which is no longer good.

Remark 1.17. Under assumption (1) the central limit theorem of Proposition 1.12 can be stated as

a complement to the moderate deviation principle: For aκ ∼ κ
1−2α
2−2α ¯̀(κ)−

1
2 , we have

�

Z[s, s+κt]−κt

aκ
: t ¾ 0

�

⇒
�

q

1−α
1−2α

W
t

1−2α
1−α

: t ¾ 0
�

.

See Section 2.1 for details.

We now state the refined version of Theorem 1.8 in the artificial scaling. It is straightforward to
derive Theorem 1.8 from Proposition 1.18. The result relies on the moderate deviation principle
above.
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Proposition 1.18 (Limit law for age and degree of the vertex of maximal degree). Suppose f satisfies
assumption (1) and recall the definition of ¯̀ from the paragraph preceding Theorem 1.13. Defining s∗t
to be the index of the hub at time tone has, in probability,

s∗t ∼ Z[s∗t , t]− t ∼
1

2

1−α
1− 2α

t
1−2α
1−α

¯̀(t)
=

1

2

1−α
1− 2α

t

f̄ (t)
.

Moreover, in probability on L (0,∞),

lim
t→∞

�Z[s∗t , s∗t + tu]− tu

t
1−2α
1−α ¯̀(t)−1

: u ¾ 0
�

=
�

1−α
1−2α

�

u
1−2α
1−α ∧ 1

�

: u ¾ 0
�

.

The remainder of this paper is devoted to the proofs of the results of this and the preceding section.
Rather than proving the results in the order in which they are stated, we proceed by the techniques
used. Section 2 is devoted to martingale techniques, which in particular prove the law of large
numbers, Proposition 1.10, and the central limit theorem, Proposition 1.12. We also prove absolute
continuity of the law of the martingale limit which is crucial in the proof of Theorem 1.5. Section 3
is using Markov chain techniques and provides the proof of Theorem 1.1. In Section 4 we collect
the large deviation techniques, proving Theorem 1.13 and Theorem 1.15. Section 5 combines the
various techniques to prove our main result, Theorem 1.5, along with Proposition 1.18. An appendix
collects the auxiliary statements from the theory of regular variation and some useful concentration
inequalities.

2 Martingale techniques

In this section we show that in the artificial scaling, the indegree evolution of a vertex can be written
as a martingale plus a linear drift term. As explained before, this martingale and its quadratic
variation play a vital role in our understanding of the network.

2.1 Martingale convergence

Lemma 2.1. Fix s ∈ T and represent Z[s, · ] as

Z[s, t] = t − s+Mt .

Then (Mt)t∈T,t ¾ s is a martingale. Moreover, the martingale converges almost surely if and only if

∫ ∞

0

1

f (u)2
du<∞, (4)

and otherwise it satisfies the following functional central limit theorem: Let

ϕt :=

∫ Φ−1(t)

0

1

f (v)2
dv =

∫ t

0

1

f̄ (v)
dv,
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and denote by ϕ∗ : [0,∞)→ [0,∞) the inverse of (ϕt); then the martingales

Mκ :=
�

1
p
κ

Ms+ϕ∗κt

�

t¾0
for κ > 0

converge in distribution to standard Brownian motion as κ tends to infinity. In any case the processes
( 1
κ

Z[s, s+κt])t¾0 converge, as κ ↑ ∞, almost surely, in L [0,∞) to the identity.

Proof. For t =Ψ(n) ∈ T we denote by ∆t the distance between t and its right neighbour in T, i.e.

∆t =
1

n
=

1

Ψ−1(t)
. (5)

One has

E
�

Z[s, t +∆t]− Z[s, t]
�

�Gn
�

= E
�

Φ ◦Z [i, n+ 1]−Φ ◦Z [i, n]
�

�Gn
�

=
f (Z [i, n])

n
×

1

f (Z [i, n])
=

1

n
.

Moreover, recalling the definition of the bracket 〈M〉, e.g. from 12.12 in Williams [1991], we have

〈M〉t+∆t − 〈M〉t =
�

1− f̄ (Z[s, t])∆t
� 1

f̄ (Z[s, t])
∆t ¶

1

f̄ (Z[s, t])
∆t. (6)

Observe that by Doob’s L2-inequality (see, e.g., 14.11 in Williams [1991]) and the uniform bound-
edness of f̄ (·)−1 one has

ai :=
E[sups ¶ t ¶ s+2i+1 |Mt |2]

�

2i/2 log2i�2 ¶
4E|Mmax(T∩[0,s+2i+1])|2

�

2i/2 log2i�2 =
4E〈M〉max(T∩[0,s+2i+1])

�

2i/2 log2i�2 ¶ C
1

i2 ,

where C > 0 is a constant only depending on f (0). Moreover, by Chebyshev’s inequality, one has

P
�

sup
t ¾ s+2i

|Mt |p
t − s log(t − s)

¾ 1
�

¶
∞
∑

k=i

P
�

sup
s+2k¶t¶s+2k+1

M2
t

(t − s) log2(t − s)
¾ 1
�

¶
∞
∑

k=i

E
h

sup
s+2k¶t¶s+2k+1

M2
t

(t − s) log2(t − s)

i

¶
∞
∑

k=i

ak.

As
∑

ak <∞, letting i tend to infinity, we conclude that almost surely

limsup
t→∞

|Mt |p
t − s log(t − s)

¶ 1. (7)

In particular, we obtain almost sure convergence of ( 1
κ

Z[s, s+ κt])t ¾ 0 to the identity. As a conse-
quence of (6), for any ε > 0, there exists a random almost surely finite constant η = η(ω,ε) such
that, for all t ¾ s,

〈M〉t ¶
∫ t−s

0

1

f (Φ−1((1− ε)u))
du+η.
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Note that Φ : [0,∞)→ [0,∞) is bijective and substituting (1− ε)κu by Φ(v) leads to

〈M〉t ¶
1

1− ε

∫ Φ−1((1−ε)(t−s))

0

1

f (v)2
dv+η ¶

1

1− ε

∫ Φ−1(t−s)

0

1

f (v)2
dv+η.

Thus, condition (4) implies convergence of the martingale (Mt).

We now assume that (ϕt)t ¾ 0 converges to infinity. Since ε > 0 was arbitrary the above estimate
implies that

lim sup
t→∞

〈M〉t
ϕt−s

¶ 1, almost surely.

To conclude the converse estimate note that
∑

t∈T(∆t)2 <∞ so that we get with (6) and (7) that

〈M〉t ¾
∫ t−s

0

1

f (Φ−1((1+ ε)u))
du−η ¾

1

1+ ε

∫ Φ−1(t−s)

0

1

f (v)2
dv−η,

for an appropriate finite random variable η. Therefore,

lim
t→∞

〈M〉t
ϕt−s

= 1 almost surely. (8)

The jumps of Mκ are uniformly bounded by a deterministic value that tends to zero as κ tends to∞.
By a functional central limit theorem for martingales (see, e.g., Theorem 3.11 in Jacod and Shiryaev
[2003]), the central limit theorem follows once we establish that, for any t ¾ 0,

lim
κ→∞
〈Mκ〉t = t in probability,

which is an immediate consequence of (8). �

Proof of Remark 1.17. We suppose that f is regularly varying with index α < 1
2
. By the central

limit theorem the processes

(Y κt : t ¾ 0) :=
�Z[s, s+ϕ∗tϕκ]−ϕ

∗
tϕκ

p

ϕ(κ)
: t ¾ 0

�

for κ > 0

converge in distribution to the Wiener process (Wt) as κ tends to infinity. For each κ > 0 we consider
the time change (τκt )t¾0 := (ϕκt/ϕκ). Using that ϕ is regularly varying with parameter 1−2α

1−α we
find uniform convergence on compacts:

(τκt )→ (t
1−2α
1−α ) =: (τt) as κ→∞.

Therefore,
�Z[s, s+κt]−κt

p

ϕ(κ)
: t ¾ 0

�

= (Y κτκt : t ¾ 0)⇒ (Wτt
: t ¾ 0).

and, as shown in Lemma A.1, ϕκ ∼
1−α
1−2α

κ
1−2α
1−α ¯̀(κ)−1. �
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2.2 Absolute continuity of the law of M∞

In the sequel, we consider the martingale (Mt)t¾s,t∈T given by Z[s, t]− (t − s) for a fixed s ∈ T in
the case of strong preference. We denote by M∞ the limit of the martingale.

Proposition 2.2. If f is concave, then the distribution of M∞ is absolutely continuous with respect to
Lebesgue measure.

Proof. For ease of notation, we denote Yt = Z[s, t], for t ∈ T, t ¾ s. Moreover, we fix c > 0 and let
At denote the event that Yu ∈ [u− c, u+ c] for all u ∈ [s, t]∩T.
Now observe that for two neighbours v− and v in S

P
�

{Yt+∆t = v} ∩ At
�

= (1− f̄ (v)∆t)P
�

{Yt = v} ∩ At
�

+ f̄ (v−)∆t P
�

{Yt = v−} ∩ At
�

. (9)

Again we use the notation ∆t = 1
Ψ−1(t) . Moreover, we denote ∆ f̄ (v) = f̄ (v)− f̄ (v−). In the first

step of the proof we derive an upper bound for

h(t) =max
v∈S
P
�

{Yt = v} ∩ At
�

for t ∈ T, t ¾ s.

With (9) we conclude that

P
�

{Yt+∆t = v} ∩ At
�

¶ (1−∆ f̄ (v)∆t)h(t).

For w ¾ 0 we denote ς(w) =maxS∩ [0, w]. Due to the concavity of f , we get that

h(t +∆t) ¶ (1−∆ f̄ (ς(t + c+ 1))∆t)h(t).

Consequently,
h(t) ¶

∏

u∈[s,t)∩T

(1−∆ f̄ (ς(u+ c+ 1))∆u)

and using that log(1+ x) ¶ x we obtain

h(t) ¶ exp
�

−
∑

u∈[s,t)∩T

∆ f̄ (ς(u+ c+ 1))∆u
�

. (10)

We continue with estimating the sum Σ in the latter exponential:

Σ =
∑

u∈[s,t)∩T

∆ f̄ (ς(u+ c+ 1))∆u ¾
∫ t

s

∆ f̄ (ς(u+ c+ 1)) du.

Next, we denote by f lin the continuous piecewise linear interpolation of f |N0
. Analogously, we set

Φlin(v) =
∫ v

0
1

f lin(u) du and f̄ lin(v) = f lin ◦ (Φlin)−1(v). Using again the concavity of f we conclude
that

∫ t

s

∆ f̄ (ς(u+ c+ 1)) du ¾
∫ t

s

( f lin)′(Φ−1(u+ c+ 1)) du,

and that

f lin ¾ f ⇒ Φlin ¶ Φ ⇒ (Φlin)−1 ¾ Φ−1 ⇒ ( f lin)′ ◦ (Φlin)−1 ¶ ( f lin)′ ◦Φ−1.
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Hence,

Σ ¾
∫ t

s

( f lin)′(Φ−1(u+ c+ 1)) du ¾
∫ t

s

( f lin)′ ◦ (Φlin)−1(u+ c+ 1) du.

For Lebesgue almost all arguments one has

( f̄ lin)′ = ( f lin ◦ (Φlin)−1)′ = ( f lin)′ ◦ (Φlin)−1 · ((Φlin)−1)′ = ( f lin)′ ◦ (Φlin)−1 · f lin ◦ (Φlin)−1

so that

( f lin)′ ◦ (Φlin)−1 =
( f̄ lin)′

f̄ lin
= (log f̄ lin)′.

Consequently,
Σ ¾ log f̄ lin(t + c+ 1)− log f̄ lin(s+ c+ 1)

Using that f lin ¾ f and (Φlin)−1 ¾ Φ−1 we finally get that

Σ ¾ log f̄ (t + c+ 1)− log c∗,

where c∗ is a positive constant not depending on t. Plugging this estimate into (9) we get

h(t) ¶
c∗

f̄ (t + c+ 1)
.

Fix now an interval I ⊂ R of finite length and note that

P
�

{Mt ∈ I} ∩ At
�

= P
�

{Yt ∈ t − s+ I} ∩ At
�

¶ #[(t − s+ I)∩ S∩ At] · h(t).

Now (t− s+ I)∩S∩At is a subset of [t− c, t+ c] and the minimal distance of two distinct elements
is bigger than 1

f̄ (t+c)
. Therefore, #[(t − s+ I)∩ S∩ At] ¶ |I | f̄ (t + c) + 1, and

P
�

{Mt ∈ I} ∩ At
�

¶ c∗ |I |+
c∗

f̄ (t + c)
.

Moreover, for any open and thus immediately also for any arbitrary interval I one has

P
�

{M∞ ∈ I} ∩ A∞
�

¶ lim inf
t→∞
P
�

{Mt ∈ I} ∩ At
�

¶ c∗ |I |,

where A∞ =
⋂

t∈[s,∞)∩T At . Consequently, the Borel measure µc on R given by µc(E) =
E[1lA∞1lE(M∞)], is absolutely continuous with respect to Lebesgue measure. The distribution µ
of M∞, i.e. µ(E) = E[1lE(M∞)], can be written as monotone limit of the absolutely continuous
measures µc , as c ↑ ∞, and it is therefore also absolutely continuous. �

3 The empirical indegree distribution

In this section we prove Theorem 1.1. For k ∈ N ∪ {0} and n ∈ N let µk(n) = E[Xk(n)] and
µ(n) = (µk(n))k∈N∪{0}. We first prove part (a), i.e. that X (n) converges almost surely to µ, as
n → ∞, in the total variation norm. To do this we associate the sequence (µ(n))n∈N to a time
inhomogeneous Markov chain on N ∪ {0}, which has µ as invariant measure. Then a coupling
argument proves convergence of µ(n) to µ, as n→∞. Finally, the almost sure convergence of X (n)
is verified by a mass concentration argument based on the Chernoff inequality.

We then prove part (b), i.e. that the outdegree of new vertices is asymptotically Poisson with inten-
sity 〈µ, f 〉. Here we derive and analyze a difference equation for the total sum of indegrees in the
linear model, see (14). The general result is then obtained by a stochastic domination argument.
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3.1 Proof of Theorem 1.1 (a)

We start by deriving a recursive representation for µ(n). For k ∈ N∪ {0},

E[Xk(n+ 1)|X (n)] =
1

n+ 1

�
n
∑

i=1

E
h

−1l{Z [i,n]=k<Z [i,n+1]}+ 1l{Z [i,n]<k=Z [i,n+1]}

�

�

�X (n)
i

+ nXk(n) + 1l{k=0}

�

= Xk(n) +
1

n+ 1

h

−nXk(n)
f (k)

n
+ nXk−1(n)

f (k− 1)
n

− Xk(n) + 1l{k=0}

i

.

Thus the linearity and the tower property of conditional expectation gives

µk(n+ 1) = µk(n) +
1

n+ 1
( f (k− 1)µk−1(n)− (1+ f (k))µk(n) + 1l{k=0}).

Now defining Q ∈ RN×N as

Q =













− f (0) f (0)
1 −( f (1) + 1) f (1)
1 −( f (2) + 1) f (2)
...

. . . . . .













(11)

and conceiving µ(n) as a row vector we can rewrite the recursive equation as

µ(n+ 1) = µ(n)
�

I +
1

n+ 1
Q
�

,

where I = (δi, j)i, j∈N denotes the unit matrix. Next we show that µ is a probability distribution with
µQ = 0. By induction, we get that

1−
k
∑

l=0

µl =
k
∏

l=0

f (l)
1+ f (l)

for any k ∈ N ∪ {0}. Since
∑∞

l=0 1/ f (l) ¾
∑∞

l=0 1/(l + 1) = ∞ it follows that µ is a probability
measure on the set N∪ {0}. Moreover, it is straightforward to verify that

f (0)µ0 = 1−µ0 =
∞
∑

l=1

µl

and that for all k ∈ N∪ {0}
f (k− 1)µk−1 = (1+ f (k))µk,

hence µQ = 0.

Now we use the matrices P(n) := I+ 1
n+1

Q to define an inhomogeneous Markov process. The entries

of each row of P(n) sum up to 1 but (as long as f is not bounded) each P(n) contains negative
entries... Nonetheless one can use the P(n) as a time inhomogeneous Markov kernel as long as at
the starting time m ∈ N the starting state l ∈ N∪ {0} satisfies l ¶ m− 1.
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We denote for any admissible pair l, m by (Y l,m
n )n¾ m a Markov chain starting at time m in state l

having transition kernels (P(n))n¾ m. Due to the recursive equation we now have

µk(n) = P(Y 0,1
n = k).

Next, fix k ∈ N∪{0}, let m> k arbitrary, and denote by ν the restriction of µ to the set {m, m+1, . . . }.
Since µ is invariant under each P(n) we get

µk = (µP(m) . . . P(n))k =
m−1
∑

l=0

µl P(Y l,m
n = k) + (νP(m) . . . P(n))k.

Note that in the n-th step of the Markov chain, the probability to jump to state zero is 1
n+1

for all

original states in {1, . . . , n−1} and bigger than 1
n+1

for the original state 0. Thus one can couple the

Markov chains (Y l,m
n ) and (Y 0,1

n ) in such a way that

P(Y l,m
n+1 = Y 0,1

n+1 = 0 |Y l,m
n 6= Y 0,1

n ) =
1

n+1
,

and that once the processes meet at one site they stay together. Then

P(Y l,m
n = Y 0,1

n ) ¾ 1−
n−1
∏

i=m

i

i+ 1
−→ 1.

Thus (νP(m) . . . P(n))k ∈ [0,µ([m,∞))] implies that

limsup
n→∞

�

�

�µk − P(Y (0,1)
n = k)

m−1
∑

l=0

µ∗l

�

�

� ¶ µ([m,∞)).

As m→∞ we thus get that
lim

n→∞
µk(n) = µk.

In the next step we show that the sequence of the empirical indegree distributions (X (n))n∈N con-
verges almost surely to µ. Note that n Xk(n) is a sum of n independent Bernoulli random variables.
Thus Chernoff’s inequality (Chernoff [1981]) implies that for any t > 0

P
�

Xk(n) ¶ E[Xk(n)]− t
�

¶ e−nt2/(2E[Xk(n)]) = e−nt2/(2µk(n)).

Since
∞
∑

n=1

e−nt2/(2µk(n)) <∞,

the Borel-Cantelli lemma implies that almost surely lim infn→∞ Xk(n) ¾ µk for all k ∈ N ∪ {0}. If
A⊂ N∪ {0} we thus have by Fatou’s lemma

lim inf
n→∞

∑

k∈A

Xk(n) ¾
∑

k∈A

lim inf
n→∞

Xk(n) = µ(A).
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Noting that µ is a probability measure and passing to the complementary events, we also get

limsup
n→∞

∑

k∈A

Xk(n) ¶ µ(A).

Hence, given ε > 0, we can pick N ∈ N so large that µ(N ,∞)< ε, and obtain for the total variation
norm

limsup
n↑∞

1
2

∞
∑

k=0

�

�Xk(n)−µk

�

�¶ lim sup
n↑∞

1
2

N
∑

k=0

�

�Xk(n)−µk

�

�+ 1
2

lim
n↑∞

∞
∑

k=N+1

Xk(n) +
1
2
µ(N ,∞)¶ ε.

This establishes almost sure convergence of (X (n)) to µ in the total variation norm.

3.2 Proof of Theorem 1.1 (b)

We now show that the conditional law of the outdegree of a new node converges almost surely
in the weak topology to a Poisson distribution. In the first step we will prove that, for η ∈ (0, 1),
and the affine linear attachment rule f (k) = ηk + 1, one has almost sure convergence of Yn :=
1
n

∑n
m=1Z [m, n] = 〈X (n), id〉 to y := 1/(1−η). First observe that

Yn+1 =
1

n+1

�

nYn+
n
∑

m=1

∆Z [m, n]
�

= Yn+
1

n+1

�

−Yn+
n
∑

m=1

∆Z [m, n]
�

,

where ∆Z [m, n] := Z [m, n + 1] − Z [m, n]. Given the past Fn of the network formation, each
∆Z [m, n] is independent Bernoulli distributed with success probability 1

n
(ηZ [m, n] + 1). Conse-

quently,

E[Yn+1|Fn] = Yn+
1

n+1

�

−Yn+
n
∑

m=1

1
n
(ηZ [m, n] + 1)

�

= Yn+
1

n+1

�

−(1−η)Yn+ 1
�

,

and

〈Y 〉n+1− 〈Y 〉n ¶
1

(n+1)2

n
∑

m=1

1
n
(ηZ [m, n] + 1) = 1

(n+1)2 [ηYn+ 1]. (12)

Now note that due to Theorem 1.5 (which can be used here, as it will be proved independently of
this section) there is a single node that has maximal indegree for all but finitely many times. Let m∗

denote the random node with this property. With Remark 1.11 we conclude that almost surely

logZ [m∗, n]∼ log nη. (13)

Since for sufficiently large n

Yn =
1

n

n
∑

m=1

Z [m, n]¶Z [m∗, n],

equations (12) and (13) imply that 〈Y 〉· converges almost surely to a finite random variable.
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Next, represent the increment Yn+1− Yn as

Yn+1− Yn =
1

n+1

�

−(1−η)Yn+ 1
�

+∆Mn+1, (14)

where ∆Mn+1 denotes a martingale difference. We shall denote by (Mn)n∈N the corresponding
martingale, that is Mn =

∑n
m=2∆Mm. Since 〈Y 〉· is convergent, the martingale (Mn) converges

almost surely. Next, we represent (14) in terms of Ȳn = Yn − y as the following inhomogeneous
linear difference equation of first order:

Ȳn+1 =
�

1− 1−η
n+1

�

Ȳn+∆Mn+1...

The corresponding starting value is Ȳ1 = Y1− y =−y , and we can represent its solution as

Ȳn =−y h1
n+

n
∑

m=2

∆Mm hm
n

for

hm
n :=







0 if n< m
∏n

l=m+1

�

1− 1−η
l

�

if n ¾ m.

Setting ∆hm
n = hm

n − hm−1
n we conclude with an integration by parts argument that

n
∑

m=2

∆Mm hm
n =

n
∑

m=2

∆Mm

�

1−
n
∑

k=m+1

∆hk
n

�

= Mn−
n
∑

m=2

n
∑

k=m+1

∆Mm∆hk
n

= Mn−
n
∑

k=3

k−1
∑

m=2

∆Mm∆hk
n = Mn−

n
∑

k=3

Mk−1∆hk
n.

(15)

Note that hm
n and ∆hm

n tend to 0 as n tends to infinity so that
∑n

k=m+1∆hk
n = 1−hm

n tends to 1. With
M∞ := limn→∞Mn and εm = supn¾m |Mn−M∞| we derive for m ¶ n

�

�Mn−
m
∑

k=3

Mk−1∆hk
n−

n
∑

k=m+1

Mk−1∆hk
n

�

�

¶ |Mn−M∞|
︸ ︷︷ ︸

→0

+
m
∑

k=3

|Mk−1|∆hk
n

︸ ︷︷ ︸

→0

+ |
n
∑

k=m+1

(M∞−Mk−1)∆hk
n|

︸ ︷︷ ︸

¶ εm

+
�

1−
n
∑

k=m+1

∆hk
n

�

|M∞|

︸ ︷︷ ︸

→0

.

Since limm→∞ εm = 0, almost surely, we thus conclude with (15) that
∑n

m=2∆Mm hm
n tends to 0.

Consequently, limn→∞ Yn = y , almost surely. Next, we show that also 〈µ, id〉 = y . Recall that µ is
the unique invariant distribution satisfying µQ = 0 (see (11) for the definition of Q). This implies
that for any k ∈ N

f (k− 1)µk−1− ( f (k) + 1)µk = 0, or equivalently, µk = f (k− 1)µk−1− f (k)µk

Thus

〈µ, id〉=
∞
∑

k=1

kµk =
∞
∑

k=1

k
�

f (k− 1)µk−1− f (k)µk
�

.
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One cannot split the sum into two sums since the individual sums are not summable. However,
noticing that the individual term f (k)µkk ≈ k2µk tends to 0, we can rearrange the summands to
obtain

〈µ, id〉= f (0)µ0+
∞
∑

k=1

f (k)µk = 〈µ, f 〉= η〈µ, id〉+ 1.

This implies that 〈µ, id〉= y and that for any m ∈ N

〈X (n), 1l[m,∞) · id〉= 〈X (n), id〉 − 〈X (n), 1l[0,m) · id〉 → 〈µ, 1l[m,∞) · id〉, almost surely.

Now, we switch to general attachment rules. We denote by f an arbitrary attachment rule that is
dominated by an affine attachment rule f a. The corresponding degree evolutions will be denoted
by (Z [m, n]) and (Z a[m, n]), respectively. Moreover, we denote by µ and µa the limit distributions
of the empirical indegree distributions. Since by assumption f ¶ f a, one can couple both degree
evolutions such that Z [m, n] ¶ Z a[m, n] for all n ¾ m ¾ 0. Now

〈X (n), f 〉 ¶ 〈X (n), 1l[0,m) · f 〉+ 〈X a(n), 1l[m,∞) · f a〉

so that almost surely

limsup
n→∞

〈X (n), f 〉 ¶ 〈µ, 1l[0,m) · f 〉+ 〈µa, 1l[m,∞) · f a〉.

Since m can be chosen arbitrarily large we conclude that

lim sup
n→∞

〈X (n), f 〉 ¶ 〈µ, f 〉.

The converse estimate is an immediate consequence of Fatou’s lemma. Hence,

lim
n→∞
E
h

n
∑

m=1

∆Z [m, n]
�

�

�Fn

i

= 〈µ, f 〉.

Since, conditional on Fn,
∑n

m=1∆Z [m, n] is a sum of independent Bernoulli variables with success
probabilities tending uniformly to 0, we finally get that L (

∑n
m=1∆Z [m, n]|Fn) converges in the

weak topology to a Poisson distribution with parameter 〈µ, f 〉.

4 Large deviations

In this section we derive tools to analyse rare events in the random network... We provide large
and moderate deviation principles for the temporal development of the indegree of a given vertex.
This will allow us to describe the indegree evolution of the node with maximal indegree in the
case of weak preferential attachment. The large and moderate deviation principles are based on an
exponential approximation to the indegree evolution processes, which we first discuss.
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4.1 Exponentially good approximation

In order to analyze the large deviations of the process Z[s, · ] (orZ [m, ·, ]) we use an approximating
process. We first do this on the level of occupation measures. For s ∈ T and 0 ¶ u< v we define

Ts[u, v) = sup{t ′− t : Z[s, t] ¾ u, Z[s, t ′]< v, t, t ′ ∈ T}

to be the time the process Z[s, ·] spends in the interval [u, v). Similarly, we denote by Ts[u] the time
spent in u. Moreover, we denote by (T[u])u∈S a family of independent random variables with each
entry T[u] being Exp( f (u))-distributed, and denote

T[u, v) :=
∑

w∈S
u¶w<v

T[w] for all 0 ¶ u ¶ v.

The following lemma shows that T[u, v) is a good approximation to Ts[u, v) in many cases.

Lemma 4.1. Fix η1 ∈ (0, 1), let s ∈ T and denote by τ the entry time into u of the process Z[s, ·]. One
can couple (Ts[u])u∈S and (T[u])u∈S such that, almost surely,

1l{ f̄ (u)∆τ¶η1}|Ts[u]− T[u]| ¶ (1∨η2 f̄ (u))∆τ,

where η2 is a constant only depending on η1.

Proof. We fix t ∈ T with f̄ (u)∆t ¶ η1. Note that it suffices to find an appropriate coupling
conditional on the event {τ = t}. Let U be a uniform random variable and let F and F̄ denote the
(conditional) distribution functions of T[u] and Ts[u], respectively. We couple T[u] and Ts[u] by
setting T[u] = F−1(U) and Ts[u] = F̄−1(U), where F̄−1 denotes the right continuous inverse of F̄ .
The variables T[u] and Ts[u] satisfy the assertion of the lemma if and only if

F
�

v − (1∨η2 f̄ (u))∆t
�

¶ F̄(v) ¶ F
�

v + (1∨η2 f̄ (u))∆t
�

for all v ¾ 0. (16)

We compute

1− F̄(v) =
∏

t¶w,w+∆w¶t+v
w∈T

�

1− f̄ (u)∆w
�

= exp
∑

t¶w,w+∆w¶t+v
u∈T

log
�

1− f̄ (u)∆w
�

Next observe that, from a Taylor expansion, for a suitably large η2 > 0, we have − f̄ (u)∆w −
η2 f̄ (u)2[∆w]2 ¶ log

�

1− f̄ (u)∆w
�

¶ − f̄ (u)∆w, so that

1− F̄(v) ¶ exp
�

− f̄ (u)
∑

t¶w,w+∆w¶t+v
w∈T

∆w
�

¶ exp
�

− f̄ (u)(v−∆t)
�

= 1− F(v −∆t).

This proves the left inequality in (16). It remains to prove the right inequality. Note that

1− F̄(v) ¾ exp
�

−
∑

t¶w,w+∆w¶t+v
w∈T

( f̄ (u)∆w+η2 f̄ (u)2[∆w]2)
�
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and
∑

t¶w,w+∆w¶t+v
w∈T

[∆w]2 ¶
∞
∑

m=[∆t]−1

1

m2 ¶
1

[∆t]−1− 1
¶ ∆t.

Consequently, 1− F̄(v) ¾ exp{− f̄ (u)(v+η2 f̄ (u)∆t)}= 1− F(v+η2 f̄ (u)∆t). �

As a direct consequence of this lemma we obtain an exponential approximation...

Lemma 4.2. Suppose that, for some η < 1 we have f ( j) ¶ η( j+ 1) for all j ∈ N∪ {0}. If

∞
∑

j=0

f ( j)2

( j+ 1)2
<∞,

then for each s ∈ T one can couple Ts with T such that, for all λ ¾ 0,

P
�

sup
u∈S
|Ts[0, u)− T[0, u)| ¾ λ+

p
2K
�

¶ 4 e−
λ2

2K ,

where K > 0 is a finite constant only depending on f .

Proof. Fix s ∈ T and denote by τu the first entry time of Z[s, ·] into the state u ∈ S. We couple the
random variables T[u] and Ts[u] as in the previous lemma and let, for v ∈ S,

Mv =
∑

u∈S
u<v

�

Ts[u]− T[u]
�

= Ts[0, v)− T[0, v).

Then (Mv)v∈S is a martingale. Moreover, for each v = Φ( j) ∈ S one has τv ¾ Ψ( j + 1) so that
∆τv ¶ 1/( j+ 1). Consequently, using the assumption of the lemma one gets that

∆τv f̄ (v) ¶
1

j+ 1
f ( j) =: cv ¶ η < 1.

Thus by Lemma 4.1 there exists a constant η′ < ∞ depending only on f (0) and η such that the
increments of the martingale (Mv) are bounded by

|Ts[v]− T[v]| ¶ η′ cv .

By assumption we have K :=
∑

v∈S c2
v <∞ an we conclude with Lemma A.4 that for λ ¾ 0,

P
�

sup
u∈S
|Ts[0, u)− T[0, u)| ¾ λ+

p
2K
�

¶ 4 e−
λ2

2K .

�

We define (Zt)t ¾ 0 to be the S-valued process given by

Zt :=max{v ∈ S : T[0, v) ¶ t}, (17)

and start by observing its connection to the indegree evolution. The following corollary holds in full
generality, in particular without assumption (1).
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Corollary 4.3. In distribution on the Skorokhod space, we have

lim
s↑∞
(Z[s, s+ t])t ¾ 0 = (Zt)t ¾ 0.

Proof. Recall that Lemma 4.1 provides a coupling between (Ts[u])u∈S and (T[u])u∈S for any fixed
s ∈ T. We may assume that the coupled random variables (T̄s[u])u∈S and (T̄[u])u∈S are defined
on the same probability space for all s ∈ T (though this does not respect the joint distributions of
(Ts[u])u∈S for different values of s ∈ T). Denote by (Z̄[s, · ])s∈T and (Z̄t) the corresponding processes
such that T̄s[0, u) + s = s+

∑

v<u T̄s[v] and T̄[0, u) =
∑

v<u T̄[v] are the entry times of (Z̄[s, s+ t])
and (Z̄t) into the state u ∈ S. By Lemma 4.1 one has that, almost surely, lims↑∞ T̄s[0, u) = T̄[0, u)
and therefore one obtains almost sure convergence of (Z̄[s, s + t])t¾0 to (Z̄t)t¾0 in the Skorokhod
topology, which implies the stated convergence in distribution. �

Proposition 4.4. Uniformly in s, the processes

• ( 1
κ

Zκt : t ¾ 0)κ>0 and ( 1
κ

Z[s, s+κt]: t ¾ 0)κ>0;

• ( 1
aκ
(Zκt −κt): t ¾ 0)κ>0 and ( 1

aκ
(Z[s, s+κt]−κt): t ¾ 0)κ>0,

are exponentially equivalent on the scale of the large, respectively, moderate deviation principles.

Proof. We only present the proof for the first large deviation principle of Theorem 1.13 since all
other statements can be inferred analogously.

We let Uδ(x) denote the open ball around x ∈ I [0,∞) with radius δ > 0 in an arbitrarily fixed
metric d generating the topology of uniform convergence on compacts, and, for fixed η > 0, we
cover the compact set K = {x ∈ I [0,∞): I(x) ¶ η} with finitely many balls (Uδ(x))x∈I, where
I ⊂ K . Since every x ∈ I is continuous, we can find ε > 0 such that for every x ∈ I and increasing
and right continuous τ : [0,∞)→ [0,∞) with |τ(t)− t| ¶ ε,

y ∈ Uδ(x) ⇒ yτ(·) ∈ U2δ(x).

For fixed s ∈ T we couple the occupation times (Ts[0, u))u∈S and (T[0, u))u∈S as in Lemma 4.2,
and hence implicitly the evolutions (Z[s, t])t¾s and (Zt)t¾0... Next, note that Z[s, s + · ] can be
transformed into Z· by applying a time change τ with |τ(t) − t| ¶ supu∈S |Ts[0, u) − T[0, u)|.
Consequently,

P
�

d
� 1
κ

Z[s, s+κ · ], 1
κ

Zκ·
�

¾ 3δ
�

¶ P
�

1
κ

Zκ· 6∈
⋃

x∈I
Uδ(x)

�

+ P
�

sup
u∈S
|T̄s[0, u)− T̄[0, u)| ¾ κε

�

,

and an application of Lemma 4.2 gives a uniform upper bound in s, namely

limsup
κ→∞

sup
s∈S

1

κ
1

1−α ¯̀(κ)
logP

�

d
� 1
κ

Z[s, s+κ · ], 1
κ

Zκ·
�

¾ 3δ
�

¶ −η.

Since η and δ > 0 were arbitrary this proves the first statement. �
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4.2 The large deviation principles

By the exponential equivalence, Proposition 4.4, and by [Dembo and Zeitouni, 1998, Theorem
4.2.13] it suffices to prove the large and moderate deviation principles in the framework of the
exponentially equivalent processes (17) constructed in the previous section.

The first step in the proof of the first part of Theorem 1.13, is to show a large deviation principle for
the occupation times of the underlying process. Throughout this section we denote

aκ := κ1/(1−α)¯̀(κ).

We define the function ξ: R→ (−∞,∞] by

ξ(u) =

(

log 1
1−u

if u< 1,

∞ otherwise.

Its Legendre-Fenchel transform is easily seen to be

ξ∗(t) =

(

t − 1− log t if t > 0,

∞ otherwise.

Lemma 4.5. For fixed 0 ¶ u< v the family ( 1
κ

T[κu,κv))κ>0 satisfies a large deviation principle with
speed (aκ) and rate function Λ∗u,v(t) = supζ∈R[tζ−Λu,v(ζ)], where

Λu,v(ζ) =

∫ v

u

s
α

1−αξ(ζs−α/(1−α)) ds.

Proof. For fixed u < v denote by Iκ = I[u,v)
κ = { j ∈ N∪ {0}: Φ( j) ∈ [κu,κv)}. We get, using (S j) for

the underlying sequence of Exp( f ( j))-distributed independent random variables,

Λκ(θ) := logEeθT[κu,κv)/κ

=
∑

j∈Iκ

logEe
θ
κ

S j =
∑

j∈Iκ

log
1

1− θ
κ f ( j)

=
∑

t∈Φ(Iκ)

ξ
� θ

κ f (Φ−1(t))

�

=

∫

Īκ

f (Φ−1(t))ξ
� θ

κ f (Φ−1(t))

�

d t,

where Īκ = Ī[u,v)
κ =

⋃

j∈Iκ
[Φ( j),Φ( j+ 1)). Now choose θ in dependence on κ as θκ = ζκ1/(1−α)¯̀(κ)

with ζ < uα/(1−α). Then
∫

Īκ

f̄ (t)ξ
� θκ

κ f̄ (t)

�

d t = κ

∫

Īκ/κ
f̄ (κs)ξ

� θκ

κ f̄ (κs)

�

ds

= κ1/(1−α)
∫

Īκ/κ
s
α

1−α ¯̀(κs)ξ
� ζ¯̀(κ)

s
α

1−α ¯̀(κs)

�

ds.
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Note that inf Īκ/κ and sup Īκ/κ approach the values u and v, respectively. Hence, we conclude with
the dominated convergence theorem that one has

Λκ(θκ)∼ κ1/(1−α)¯̀(κ)

∫ v

u

s
α

1−αξ( ζ

s
α

1−α
) ds

︸ ︷︷ ︸

=Λu,v(ζ)

as κ tends to infinity. Now the Gärtner-Ellis theorem implies the large deviation principle for the
family (T[κu,κv))κ>0 for 0 < u < v. It remains to prove the large deviation principle for u = 0.
Note that

ET[0,κv) = E
∑

j∈Iκ

S j =

∫

Īκ

f (Φ−1(t))
1

f (Φ−1(t))
d t ∼ κv

and

var(T[0,κv)) =
∑

j∈Iκ

var(S j) =

∫

Īκ

f (Φ−1(t))
1

f (Φ−1(t))2
d t ®

1

f (0)
κv.

Consequently, T[0,κε)
κ

converges in probability to ε. Thus for t < v

P
�

1
κ

T[0,κv) ¶ t
�

¾ P
�

1
κ

T[0,κε) ¶ (1+ ε)ε
�

︸ ︷︷ ︸

→1

P
�

1
κ

T[κε,κv) ¶ t − (1+ ε)ε
�

and for sufficiently small ε > 0

lim inf
κ→∞

1

aκ
logP

�

1
κ

T[0,κv) ¶ t
�

¾ −Λ∗ε,v(t − (1+ ε)ε),

while the upper bound is obvious. �

The next lemma is necessary for the analysis of the rate function in Lemma 4.5. It involves the
function ψ defined as ψ(t) = 1− t + t log t for t ¾ 0.

Lemma 4.6. For fixed 0< x0 < x1 there exists an increasing function η: R+→ R+ with limδ↓0ηδ = 0
such that for any u, v ∈ [x0, x1] with δ := v− u> 0 and all w ∈ [u, v], t > 0 one has

�

�

�Λ∗u,v(t)−w
α

1−α tψ
�δ

t

�

�

�

� ¶ ηδ
�

δ+ tψ
�δ

t

�

�

.

We now extend the definition of Λ∗ continuously by setting, for any u ¾ 0 and t ¾ 0,

Λ∗u,u(t) = u
α

1−α t.

For the proof of Lemma 4.6 we use the following fact, which can be verified easily.

Lemma 4.7. For any ζ > 0 and t > 0, we have |ξ∗(ζt)−ξ∗(t)| ¶ 2|ζ− 1|+ | logζ|+ 2|ζ− 1|ξ∗(t).

Proof of Lemma 4.6. First observe that

γδ := sup
x0<u<v<x1

v−u¶ δ

(v/u)
α

1−α
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tends to 1 as δ tends to zero. By Lemma 4.7, there exists a function (η̄δ)δ>0 with limδ↓0 η̄δ = 0 such
that for all ζ ∈ [1/γδ,γδ] and t > 0

|ξ∗(ζt)− ξ∗(t)| ¶ η̄δ(1+ ξ∗(t)).

Consequently, one has for any δ > 0, x0 < w, w̄ < x1 with |w− w̄| ¶ δ and ζ ∈ [1/γδ,γδ] that

|w̄
α

1−αξ∗(ζt)−w
α

1−αξ∗(t)| ¶ w̄
α

1−α |ξ∗(ζt)− ξ∗(t)|+ ξ∗(t)|w̄
α

1−α −w
α

1−α |
¶ cη̄δ(1+ ξ

∗(t)) + cδξ∗(t),

where c <∞ is a constant only depending on x0, x1 and α. Thus for an appropriate function (ηδ)δ>0
with limδ↓0ηδ = 0 one gets

|w̄
α

1−αξ∗(ζt)−w
α

1−αξ∗(t)| ¶ ηδ(1+ ξ∗(t)). (18)

Fix x0 < u< v < x1 and set δ := v− u. We estimate, for θ ¾ 0,

δu
α

1−αξ(θ v−α/(1−α)) ¶ Λu,v(θ) ¶ δv
α

1−αξ(θu−α/(1−α)),

and the reversed inequalities for θ ¶ 0. Consequently,

Λ∗u,v(δt) = sup
θ
[θ t −Λu,v(θ)]

¶ δ sup
θ
[θ t − u

α
1−αξ(θ v−α/(1−α))]∨δ sup

θ
[θ t − v

α
1−αξ(θu−α/(1−α))]

= δu
α

1−αξ∗((v/u)
α

1−α t)∨δv
α

1−αξ∗((u/v)
α

1−α t).

Since (v/u)α/(1−α) and (u/v)α/(1−α) lie in [1/γδ,γδ] we conclude with (18) that for w ∈ [u, v)

Λ∗u,v(δt) ¶ w
α

1−αξ∗(t)δ+ηδ(1+ ξ
∗(t))δ.

To prove the converse inequality, observe

Λ∗u,v(t) ¾
�

δ sup
θ¶0
[θ t − u

α
1−αξ(θ v−α/(1−α))]

�

∨
�

δ sup
θ¾0
[θ t − v

α
1−αξ(θu−α/(1−α))]

�

.

Now note that the first partial Legendre transform can be replaced by the full Legendre transform
if t ¶ (u/v)α(1−α). Analogously, the second partial Legendre transform can be replaced if t ¾
(v/u)α(1−α). Thus we can proceed as above if t 6∈ (1/γδ,γδ) and conclude that

Λ∗u,v(t) ¾ w
α

1−αξ∗(t)δ−ηδ(1+ ξ∗(t))δ.

The latter estimate remains valid on (1/γδ,γδ) if xα/(1−α)1 (ξ∗(1/γδ)∨ξ∗(γδ)) ¶ ηδ. Since γδ tends
to 1 and ξ∗(1) = 0 one can make ηδ a bit larger to ensure that the latter estimate is valid and
limδ↓0ηδ = 0. This establishes the statement. �

As the next step in the proof of Theorem 1.13 we formulate a finite-dimensional large deviation
principle, which can be derived from Lemma 4.5.
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Lemma 4.8. Fix 0= t0 < t1 < · · ·< tp. Then the vector
�

1
κ

Zκt j
: j ∈ {1, . . . , p}

�

satisfies a large deviation principle in {0 ¶ a1 ¶ · · · ¶ ap} ⊂ Rp with speed aκ and rate function

J(a1, . . . , ap) =
p
∑

j=1

Λ∗a j−1,a j
(t j − t j−1), with a0 := 0 .

Proof. First fix 0= a0 < a1 < · · ·< ap. Observe that, whenever s j−1 < s j with s0 = 0,

P
� 1
κ

Zκt j
¾ a j >

1
κ

Zκs j
for j ∈ {1, . . . , p}

�

¾ P
�

s j − s j−1 <
1
κ

T[a j−1κ, a jκ) ¶ t j − t j−1 for j ∈ {1, . . . , p}
�

.

Moreover, supposing that 0< t j − t j−1− (s j − s j−1) ¶ δ for a δ > 0, we obtain

P
�

a j ¶
1
κ

Zκt j
< a j + ε for j ∈ {1, . . . , p}

�

¾ P( 1
κ

Zκt j
¾ a j >

1
κ

Zκs j
and T[a jκ, (a j + ε)κ) ¾ δ for j ∈ {1, . . . , p}

�

By Lemma 4.5, given ε > 0 and A> 0, we find δ > 0 such that, for κ large,

P
� 1
κ

T[a jκ, (a j + ε)κ)< δ
�

¶ e−Aaκ .

Hence, for sufficiently small δ we get with the above estimates that

lim inf
κ→∞

1

aκ
logP

�

a j + ε >
1
κ

Zκt j
¾ a j for j ∈ {1, . . . , p}

�

¾ lim inf
κ→∞

1

aκ
logP

�

s j − s j−1 <
1
κ

T[a j−1κ, a jκ) ¶ t j − t j−1 for j ∈ {1, . . . , p}
�

¾ −
p
∑

j=1

Λ∗a j−1,a j
(t j − t j−1).

Next, we prove the upper bound. Fix 0= a0 ¶ . . . ¶ ap and 0= b0 ¶ . . . ¶ bp with a j < b j , and
observe that by the strong Markov property of (Zt),

P
�

b j >
1
κ

Zκt j
¾ a j for j ∈ {1, . . . , p}

�

=
p
∏

j=1

P
�

b j >
1
κ

Zκt j
¾ a j

�

� bi >
1
κ

Zκt i
¾ ai for i ∈ {1, . . . , j− 1}

�

¶
p
∏

j=1

P
� 1
κ

T[b j−1κ, a jκ)< t j − t j−1 ¶
1
κ

T[a j−1κ, b jκ)
�

.

Consequently,

lim sup
κ↑∞

1

aκ
logP

�

b j >
1
κ

Zκt j
¾ a j for j ∈ {1, . . . , p}

�

¶ −
p
∑

j=1

r j ,
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where

r j =







Λ∗b j−1,a j
(t j − t j−1) if a j − b j−1 ¾ t j − t j−1,

Λ∗a j−1,b j
(t j − t j−1) if b j − a j−1 ¶ t j − t j−1,

0, otherwise.

Using the continuity of (u, v) 7→ Λ∗u,v(t) for fixed t, it is easy to verify continuity of each r j of the
parameters a j−1, a j , b j−1, and b j . Suppose now that (a j) and (b j) are taken from a predefined
compact subset of Rd . Then we have

p
∑

j=1

�

�r j −Λ∗a j−1,a j
(t j − t j−1)

�

� ¶ ϑ
�

max{b j − a j : j = 1, . . . , p}
�

,

for an appropriate function ϑ with limδ↓0 ϑ(δ) = 0... Now the upper bound follows with an obvious
exponential tightness argument. �

We can now prove a large deviation principle in a weaker topology, by taking a projective limit and
simplifying the resulting rate function with the help of Lemma 4.6.

Lemma 4.9. On the space of increasing functions with the topology of pointwise convergence the family
of functions

�

1
κ

Zκt : t ¾ 0
�

κ>0

satisfies a large deviation principle with speed (aκ) and rate function J.

Proof. Observe that the space of increasing functions equipped with the topology of pointwise
convergence can be interpreted as projective limit of the spaces {0 ¶ a1 ¶ · · · ¶ ap} with the
canonical projections given by π(x) = (x(t1), . . . , x(tp)) for 0 < t1 < . . . < tp. By the Dawson-
Gärtner theorem, we obtain a large deviation principle with good rate function

J̃(x) = sup
0<t1<...<tp

p
∑

j=1

Λ∗x(t j−1),x(t j)
(t j − t j−1).

Note that the value of the variational expression is nondecreasing, if additional points are added to
the partition. It is not hard to see that J̃(x) =∞, if x fails to be absolutely continuous.

Indeed, there exists δ > 0 and, for every n ∈ N, a partition δ ¶ sn
1 < tn

1 ¶ · · · ¶ sn
n < tn

n ¶
1
δ

such
that

∑n
j=1 tn

j − sn
j → 0 but

∑n
j=1 x(tn

j )− x(sn
j ) ¾ δ. Then, for any λ > 0,

J̃(x) = sup
0<t1<...<tp
λ1,...,λp∈R

p
∑

j=1

λ j
�

t j − t j−1
�

−Λx(t j−1),x(t j)(λ j)

¾
n
∑

j=1

h

−λ
�

tn
j − sn

j

�

+

∫ x(tn
j )

x(sn
j )

u
α

1−α log
�

1+λu
−α
1−α
�

du
i

¾ −λ
n
∑

j=1

�

tn
j − sn

j

�

+δ
1

1−α log
�

1+λδ
α

1−α
�

−→ δ
1

1−α log
�

1+λδ
α

1−α
�

,
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which can be made arbitrarily large by choice of λ.

From now on suppose that x is absolutely continuous. The remaining proof is based on the equation

J̃(x) = sup
0<t1<...<tp

p
∑

j=1

�

t j − t j−1
�

x(t j)
α

1−α ψ
� x(t j)− x(t j−1)

t j − t j−1

�

. (19)

Before we prove its validity we apply (19) to derive the assertions of the lemma. For the lower bound
we choose a scheme 0< tn

1 < · · ·< t p
n, with p depending on n, such that t p

n →∞ and the mesh goes
to zero. Define, for tn

j−1 ¶ t < tn
j ,

xn
j (t) =

1

tn
j − tn

j−1

∫ tn
j

tn
j−1

ẋs ds =
x(tn

j )− x(tn
j−1)

tn
j − tn

j−1
.

Note that, by Lebesgue’s theorem, xn
j (t)→ ẋ t almost everywhere. Hence

J̃(x) ¾ lim inf
n→∞

∫ tn
p

0

x
α

1−α
t ψ

�

xn
j (t)
�

d t ¾
∫ ∞

0

x
α

1−α
t lim inf

n→∞
ψ
�

xn
j (t)
�

d t = J(x).

For the upper bound we use the convexity of ψ to obtain

ψ
� x(t j)− x(t j−1)

t j − t j−1

�

=ψ
� 1

t j − t j−1

∫ t j

t j−1

ẋ t d t
�

¶
1

t j − t j−1

∫ t j

t j−1

ψ
�

ẋ t
�

d t.

Hence

J̃(x) ¶ sup
0<t1<...<tp

p
∑

j=1

x(t j)
α

1−α

∫ t j

t j−1

ψ
�

ẋ t
�

d t = J(x) ,

as required to complete the proof.

It remains to prove (19). We fix t ′ and t ′′ with t ′ < t ′′ and x(t ′) > 0, and partitions t ′ = tn
0 < · · · <

tn
n = t ′′ with δn := sup j x(tn

j )− x(tn
j−1) converging to 0. Assume n is sufficiently large such that

ηδn
¶ 1

2
(t ′)

α
1−α , with η as in Lemma 4.6. Then,

n
∑

j=1

Λ∗x(tn
j−1),x(t

n
j )
(tn

j − tn
j−1)

¾
1

2
(t ′)

α
1−α

h
n
∑

j=1

(tn
j − tn

j−1)ψ
�

x(tn
j )− x(tn

j−1)

tn
j − tn

j−1

�

︸ ︷︷ ︸

(∗)

−(x(t ′′)− x(t ′))
i

,
(20)

and (∗) is uniformly bounded as long as J̃(x) is finite. On the other hand also the finiteness of the
right hand side of (19) implies uniform boundedness of (∗). Hence, either both expressions in (19)
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are infinite or we conclude with Lemma 4.6 that for an appropriate choice of tn
j ,

sup
t ′=t0<···<tp=t ′′

p
∑

j=1

Λ∗x(t j−1),x(t j)

�

t j − t j−1
�

= lim
n→∞

n
∑

j=1

Λ∗x(tn
j−1),x(t

n
j )

�

tn
j − tn

j−1

�

= lim
n→∞

n
∑

j=1

�

tn
j − tn

j−1

�

x(tn
j )

α
1−α ψ

� x(tn
j )− x(tn

j−1)

tn
j − tn

j−1

�

= sup
t ′=t0<···<tp=t ′′

p
∑

j=1

�

t j − t j−1
�

x(t j)
α

1−α ψ
� x(t j)− x(t j−1)

t j − t j−1

�

.

This expression easily extends to formula (19). �

Lemma 4.10. The level sets of J are compact in I [0,∞).

Proof. We have to verify the assumptions of the Arzelà-Ascoli theorem. Fix δ ∈ (0,1), t ¾ 0, and
a function x ∈ I [0,∞) with finite rate J . We choose δ′ ∈ (0,δ) with x t+δ′ =

1
2
(x t + x t+δ), denote

ε = x t+δ − x t , and observe that

J(x) ¾
∫ t+δ

t

x
α

1−α
s [1− ẋs + ẋs log ẋs] ds

¾ (δ−δ′)
�ε

2

�
α

1−α

∫ t+δ

t+δ′
[1− ẋs + ẋs log ẋs]

ds

δ−δ′
.

Here we used that xs ¾ ε/2 for s ∈ [t+δ′, t+δ]. Next, we apply Jensen’s inequality to the convex
function ψ to deduce that

J(x) ¾ (δ−δ′)
�ε

2

�
α

1−α
ψ
� 1

δ−δ′
ε

2

�

.

Now assume that ε
2
¾ δ. Elementary calculus yields

J(x) ¾ δ
�ε

2

�
α

1−α
ψ
�1

δ

ε

2

�

¾
�ε

2

�
1

1−α log
ε

2eδ
.

If we additionally assume ε ¾ 2eδ
1
2 , then we get (J(x)/ logδ−

1
2 )1−α ¾ ε. Therefore, in general

x t+δ − x t ¶ max
�

2
� J(x)

logδ−
1
2

�1−α
, 2eδ

1
2

�

.

Hence the level sets are uniformly equicontinuous. As x0 = 0 for all x ∈ I [0,∞) this implies that
the level sets are uniformly bounded on compact sets, which finishes the proof. �

We now improve our large deviation principle to the topology of uniform convergence on compact
sets, which is stronger than the topology of pointwise convergence. To this end we introduce, for
every m ∈ N, a mapping fm acting on functions x : [0,∞)→ R by

fm(x)t = x t j
if t j := j

m
¶ t < j+1

m
=: t j+1. (21)
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Lemma 4.11. For every δ > 0 and T > 0, we have

lim
m→∞

lim sup
κ↑∞

1

aκ
logP

�

sup
0¶t¶T

�

� fm
� 1
κ

Zκ ·
�

t −
1
κ

Zκt

�

�> δ
�

=−∞.

Proof. Note that

P
�

sup
0¶t¶T

�

� fm
� 1
κ

Zκ ·
�

t −
1
κ

Zκt

�

� ¾ δ
�

¶
T m
∑

j=0

P
� 1
κ

Zκt j+1
− 1
κ

Zκt j
¾ δ

�

.

By Lemma 4.9 we have

limsup
κ↑∞

1

aκ
logP

� 1
κ

Zκt j+1
− 1
κ

Zκt j
¾ δ

�

¶ inf
�

J(x): x t j+1
− x t j

¾ δ
	

,

and, by Lemma 4.10, the right hand side diverges to infinity, uniformly in j, as m ↑ ∞. �

Proof of the first large deviation principle in Theorem 1.13. We apply [Dembo and Zeitouni,
1998, Theorem 4.2.23], which allows to transfer the large deviation principle from the topolog-
ical Hausdorff space of increasing functions with the topology of pointwise convergence, to the
metrizable space I [0,∞) by means of the sequence fm of continuous mappings approximating the
identity. Two conditions need to be checked: On the one hand, using the equicontinuity of the sets
{I(x) ¶ η} established in Lemma 4.10, we easily obtain

limsup
m→∞

sup
J(x)¶ η

d
�

fm(x), x
�

= 0,

for every η > 0, where d denotes a suitable metric on I [0,∞). On the other hand, by Lemma 4.11,
we have that ( fm(

1
κ

Zκ ·)) are a family of exponentially good approximations of ( 1
κ

Zκ ·). �

The proof of the second large principle can be done from first principles.

Proof of the second large deviation principle in Theorem 1.13. For the lower bound observe
that, for any T > 0 and ε > 0,

P
�

sup
0¶t¶T

| 1
κ

Zκt − (t − a)+|< ε
�

¾ P
�

sup
0¶t¶T

| 1
κ

Zκt − (t − a)+|< ε, Zκa = 0
�

¾ P
�

Zκa = 0
�

P
�

sup
a¶t¶T

| 1
κ
(Zκt − Zκa)− (t − a)|< ε

�

,

and recall that the first probability on the right hand side is exp{−κ a f (0)} and the second converges
to one, by the law of large numbers. For the upper bound note first that, by the first large deviation
principle, for any ε > 0 and closed set A⊂ {J(x)> ε},

limsup
κ↑∞

1

κ
logP

� 1
κ

Zκ · ∈ A
�

=−∞.
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Note further that, for any δ > 0 and T > 0, there exists ε > 0 such that J(x) ¶ ε implies
sup0¶t¶T |x − y|< δ, where yt = (t − a)+ for some a ∈ [0, T]... Then, for θ < f (0),

P
�

sup
0¶t¶T

| 1
κ

Zκt − y| ¶ δ
�

¶ P
�

Zκa ¶ δκ
�

= P
�

T[0,κδ] ¾ κa
�

¶ e−κaθ
∏

Φ( j)¶κδ

Eexp
�

θS j
	

= e−κaθ exp
∑

Φ( j)¶κδ

log
1

1− θ
f ( j)

,

and the result follows because the sum on the right is bounded by a constant multiple of κδ. �

4.3 The moderate deviation principle

Recall from the beginning of Section 4.2 that it is sufficient to show Theorem 1.15 for the approx-
imating process Z defined in (17). We initially include the case c = ∞ in our consideration, and
abbreviate

bκ := aκ κ
2α−1
1−α ¯̀(κ)� κ

α
1−α ¯̀(κ),

so that we are looking for a moderate deviation principle with speed aκbκ.

Lemma 4.12. Let 0 ¶ u< v, suppose that f and aκ are as in Theorem 1.15 and define

I[u,v) =

∫ v

u

s−
α

1−α ds = 1−α
1−2α

�

v
1−2α
1−α − u

1−2α
1−α

�

.

Then the family
�

T[κu,κv)−κ(v− u))
aκ

�

κ>0

satisfies a large deviation principle with speed (aκbκ) and rate function

I[u,v)(t) =







1
2I[u,v)

t2 if u> 0 or t ¶ 1
c
I[0,v) f (0),

1
c

f (0) t − 1
2
I[0,v)(

1
c

f (0))2 if u= 0 and t ¾ 1
c
I[0,v) f (0).

Proof. Denoting by Λκ the logarithmic moment generating function of bκ (T[κu,κv)− κ(v − u)),
observe that

Λκ(θ) = logEexp
�

θ bκ
�

T[κu,κv)−κ(v− u)
�	

=
∑

w∈S∩[κu,κv)

logEexp
�

θ bκ
�

T[w]
�	

− θκbκ(v− u)

=
∑

w∈S∩[κu,κv)

ξ
� θ bκ

f̄ (w)

�

− θκbκ (v− u) =

∫

Iκ

f̄ (w)ξ
� θ bκ

f̄ (w)

�

dw− θκbκ (v− u), (22)

where Iκ = {w ¾ 0 : ι(w) ∈ [κu,κv)} and ι(w) =maxS∩[0, w]. Since κu ¶ inf Iκ < κu+( f (0))−1

and κv ¶ sup Iκ < κv+ ( f (0))−1 we get

�

�

�Λκ(θ)−
∫

Iκ

�

f̄ (w)ξ
� θ bκ

f̄ (w)

�

− θ bκ
�

dw
�

�

� ¶
2θ bκ
f (0)

. (23)
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Now focus on the case u> 0. A Taylor approximation gives ξ(w) = w+ 1
2
(1+ o(1))w2, as w ↓ 0. By

dominated convergence,
∫

Iκ

�

f̄ (w)ξ
� θ bκ

f̄ (w)

�

− θ bκ
�

dw ∼
1

2

∫

Iκ

1

f̄ (w)
dw× θ2 b2

κ

∼
1

2

κ
1−2α
1−α

¯̀(κ)

∫ v

u

w−
α

1−α dw× θ2 b2
κ

= aκbκ
1

2
I[u,v) θ

2 .

Together with (23) we arrive at

Λκ(θ)∼ aκbκ
1

2
I[u,v)θ

2.

Now the Gärtner-Ellis theorem implies that the family ((T[κu,κv)− κ(v − u))/aκ) satisfies a large
deviation principle with speed (aκbκ) having as rate function the Fenchel-Legendre transform of
1
2
I[u,v)θ

2 which is I[u,v).

Next, we look at the case u = 0. If θ ¾ 1
c

f (0) then Λκ(θ) = ∞ for all κ > 0, so assume the
contrary. The same Taylor expansion as above now gives

f̄ (w)ξ
� θ bκ

f̄ (w)

�

− θ bκ ∼
1

2

θ2 b2
κ

f̄ (w)

as w ↑ ∞. In particular, the integrand in (22) is regularly varying with index − α
1−α > −1 and we

get from Karamata’s theorem, see e.g. [Bingham et al., 1987, Theorem 1.5.11], that

Λκ(θ)∼
1

2
θ2 b2

κ

κ
1−2α
1−α

¯̀(κ)

∫ v

0

s−α/(1−α) ds = aκbκ
1

2
I[0,v) θ

2. (24)

Consequently,

lim
κ→∞

1

aκbκ
Λκ(θ) =

(

1
2
I[0,v)θ

2 if θ < 1
c

f (0),
∞ otherwise.

The Legendre transform of the right hand side is

I[0,v)(t) =

(

1
2I[0,v)

t2 if t ¶ 1
c
I[0,v) f (0),

1
c

f (0) t − 1
2
I[0,v)

�1
c

f (0)
�2 if t ¾ 1

c
I[0,v) f (0).

Since I[0,v) is not strictly convex the Gärtner-Ellis Theorem does not imply the full large deviation
principle. It remains to prove the lower bound for open sets (t,∞) with t ¾ 1

c
I[0,v) f (0). Fix

ε ∈ (0, u) and note that, for sufficiently large κ,

P
�

(T[κu,κv)−κv)/aκ > t
�

¾ P
�

(T[κε,κv)−κ(v − ε))/aκ >
1
c
I[0,v) f (0)

�

× P
�

(T (0,κε)−κε)/aκ >−ε
�

︸ ︷︷ ︸

→1

P
�

T[0]/aκ > t − 1
c
I[0,v) f (0) + ε

�

.
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so that by the large deviation principle for ((T[κε,κv)−κ(v−ε))/aκ) and the exponential distribution
it follows that

lim inf
κ→∞

1

aκbκ
logP

�

(T[0,κv)−κv)/aκ > t
�

¾ −
(1

c
I[0,v) f (0))2

2I[ε,v)
− (t − 1

c
I[0,v) f (0) + ε)

1
c

f (0).

Note that the right hand side converges to −I[0,v)(t) when letting ε tend to zero. This establishes
the full large deviation principle for ((T[0,κv)−κv)/aκ). �

We continue the proof of Theorem 1.15 with a finite-dimensional moderate deviation principle,
which can be derived from Lemma 4.12.

Lemma 4.13. Fix 0= t0 < t1 < · · ·< tp. Then the vector

�

1
aκ

�

Zκt j
−κt j

�

: j ∈ {1, . . . , p}
�

satisfies a large deviation principle in Rp with speed aκbκ and rate function

I(a1, . . . , ap) =
p
∑

j=1

I[t j−1,t j)(a j−1− a j), with a0 := 0 .

Proof. We note that, for −∞ ¶ a( j) < b( j) ¶ ∞, we have (interpreting conditions on the right as
void, if they involve infinity)

P
�

a( j) aκ ¶ Zκt j
−κt j < b( j) aκ for all j

�

= P
�

T[0,κt j + aκa( j)) ¶ κ t j , T[0,κt j + aκb( j))> κ t j for all j
�

.

To continue from here we need to show that the random variables T[0,κt+aκb) and T[0,κt)+aκb
are exponentially equivalent in the sense that

lim
κ→∞

a−1
κ b−1

κ logP
�

�

�T[0,κt + aκb)− T[0,κt)− aκb
�

�> aκε
�

=−∞ . (25)

Indeed, first let b > 0. As in Lemma 4.12, we see that for any t ¾ 0 and θ ∈ R,

a−1
κ b−1

κ logEexp
�

θ bκ
�

T[κt,κt + aκb)− aκb
�	

−→ 0, (26)

Chebyshev’s inequality gives, for any A> 0,

P
�

T[0,κt + aκb)− T[0,κt)− aκb > aκε
�

¶ e−Aaκbκ Eexp
�A
ε

bκ
�

T[κt,κt + aκb)− aκb
�	

.

A similar estimate can be performed for P(T[0,κt + aκb)− T[0,κt)− aκb < −aκε), and the argu-
ment also extends to the case b < 0. From this (25) readily follows.

Using Lemma 1.15 and independence, we obtain a large deviation principle for the vector
�

1
aκ

�

T[κt j−1,κt j)−κ (t j − t j−1)
�

: j ∈ {1, . . . , p}
�

,
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with rate function

I1(a1, . . . , ap) =
p
∑

j=1

I[t j−1,t j)(a j).

Using the contraction principle, we infer from this a large deviation principle for the vector
�

1
aκ

�

T[0,κt j)−κ t j
�

: j ∈ {1, . . . , p}
�

with rate function

I2(a1, . . . , ap) =
p
∑

j=1

I[t j−1,t j)(a j − a j−1) .

Combining this with (25) we obtain that

a−1
κ b−1

κ logP
�

T[0,κt j + aκa( j)]< κ t j , T[0,κt j + aκb( j)]> κ t j for all j
�

∼ a−1
κ b−1

κ logP
�

− aκb( j) < T[0,κt j]−κ t j <−aκa( j) for all j
�

,

and (observing the signs!) the required large deviation principle. �

We may now take a projective limit and arrive at a large deviation principle in the space P (0,∞) of
functions x : (0,∞)→ R equipped with the topology of pointwise convergence.

Lemma 4.14. The family of functions
�

1
aκ

�

Zκt −κt
�

: t > 0
�

κ>0

satisfies a large deviation principle in the space P (0,∞), with speed aκbκ and rate function

I(x) =

¨

1
2

∫∞
0
( ẋ t)2 t

α
1−α d t − 1

c
f (0) x0 if x is absolutely continuous and x0 ¶ 0.

∞ otherwise.

Proof. Observe that the space of functions equipped with the topology of pointwise convergence
can be interpreted as the projective limit of Rp with the canonical projections given by π(x) =
(x(t1), . . . , x(tp)) for 0< t1 < . . .< tp. By the Dawson-Gärtner theorem, we obtain a large deviation
principle with rate function

Ĩ(x) = sup
0<t1<...<tp

p
∑

j=2

I[t j−1,t j)
�

x t j−1
− x t j

�

+ I[0,t1)
�

− x t1

�

.

Note that the value of the variational expression is nondecreasing, if additional points are added to
the partition. We first fix t1 > 0 and optimize the first summand independently. Observe that

sup
t1<...<tp

p
∑

j=2

I[t j−1,t j)
�

x t j−1
− x t j

�

= 1
2

sup
t1<t2<...<tp

p
∑

j=2

�

x t j
− x t j−1

�2

1−α
1−2α

�

t
1−2α
1−α
j − t

1−2α
1−α

j−1

�

.

Recall that
�

t j − t j−1
�

t
−α
1−α
j ¶ 1−α

1−2α

�

t
1−2α
1−α

j − t
1−2α
1−α

j−1

�

¶
�

t j − t j−1
�

t
−α
1−α
j−1 .
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Hence we obtain an upper and [in brackets] lower bound of

1
2

sup
t1<t2<...<tp

p
∑

j=2

� x t j
− x t j−1

t j − t j−1

�2
t
α

1−α
j[−1]

�

t j − t j−1
�

.

It is easy to see that (using arguments analogous to those given in the last step in the proof of the
first large deviation principle) that this is +∞ if x fails to be absolutely continuous, and otherwise
it equals

1
2

∫ ∞

t1

( ẋ t)
2 t

α
1−α d t.

In the latter case we have

Ĩ(x) = lim
t1↓0

1
2

∫ ∞

t1

( ẋ t)
2 t

α
1−α d t + I[0,t1)

�

− x t1

�

.

If x0 > 0 the last summand diverges to infinity. If x0 = 0 and the limit of the integral is finite, then
using Cauchy-Schwarz,

I[0,t1)
�

− x t1

�

¶ 1
2
I −1
[0,t1)

�

�

�

∫ t1

0

ẋ t d t
�

�

�

2
¶ 1

2

∫ ε

0

( ẋ t)
2 t

α
1−α d t,

hence it converges to zero. If x0 < 0,

lim
t1↓0

I[0,t1)
�

− x t1

�

= lim
t1↓0
−1

c
f (0) x t1

+ 1−α
1−2α

t
α

1−α
1 (1

c
f (0))2 =−1

c
f (0) x0,

as required to complete the proof. �

Lemma 4.15. If c <∞, the function I is a good rate function on L (0,∞).

Proof. Recall that, by the Arzelà-Ascoli theorem, it suffices to show that for any η > 0 the family
{x : I(x) ¶ η} is bounded and equicontinuous on every compact subset of (0,∞).

Suppose that I(x) ¶ η and 0< s < t. Then, using Cauchy-Schwarz in the second step,

|x t − xs|=
�

�

�

∫ t

s

ẋu du
�

�

� ¶
∫ t

s

| ẋu|u
α

2(1−α) u−
α

2(1−α) du

¶
�

∫ t

s

( ẋu)
2 u

α
1−α du

�
1
2
�

∫ t

s

u−
α

1−α du
�

1
2 ¶

q

η 1−α
1−2α

�

t
1−2α
1−α − s

1−2α
1−α
�

1
2 ,

which proves equicontinuity. The boundedness condition follows from this, together with the obser-
vation that 0 ¾ x0 ¾ −cη/ f (0). �

To move our moderate deviation principle to the topology of uniform convergence on compact sets,
recall the definition of the mappings fm from (21). We abbreviate

Z̄ (κ) :=
�

1
aκ

�

Zκt −κt
�

: t > 0
�

.
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Lemma 4.16. ( fm(Z̄ (κ)))m∈N are exponentially good approximations of (Z̄ (κ)) on L (0,∞).

Proof. We need to verify that, denoting by ‖ · ‖ the supremum norm on any compact subset of (0,∞),
for every δ > 0,

lim
m→∞

limsup
κ→∞

a−1
κ b−1

κ logP
�

‖Z̄ (κ)− fm(Z̄
(κ))‖> δ

�

=−∞.

The crucial step is to establish that, for sufficiently large κ, for all j ¾ 2,

P
�

sup
t j−1¶ t<t j

�

�Z̄ (κ)t − Z̄ (κ)t j−1

�

�> δ
�

¶ 2P
�

�

�Z̄ (κ)t j
− Z̄ (κ)t j−1

�

�> δ
2

�

. (27)

To verify (27) we use the stopping time τ := inf{t ¾ t j−1 : |Z̄ (κ)t − Z̄ (κ)t j−1
|> δ}. Note that

P
�

�

�Z̄ (κ)t j
− Z̄ (κ)t j−1

�

�> δ
2

�

¾ P
�

sup
t j−1¶t<t j

�

�Z̄ (κ)t − Z̄ (κ)t j−1

�

�> δ
�

P
�

�

�Z̄ (κ)t j
− Z̄ (κ)t j−1

�

�> δ
2

�

�τ ¶ t j
�

,

and, using Chebyshev’s inequality in the last step,

P
�

�

�Z̄ (κ)t j
− Z̄ (κ)t j−1

�

�> δ
2

�

�τ ¶ t j
�

¾ P
�

�

�Z̄ (κ)t j
− Z̄ (κ)τ

�

� ¶ δ
2

�

�τ ¶ t j
�

¾ 1− 4
δ2 Var

�

Z̄ (κ)t j−t j−1

�

.

As this variance is of order a−2
κ κ

1−2α
1−α ¯̀(κ)−1 → 0, the right hand side exceeds 1

2
for sufficiently

large κ, thus proving (27).

With (27) at our disposal, we observe that, for some integers n1 ¾ n0 ¾ 2 depending only on m
and the chosen compact subset of (0,∞),

P
�

‖Z̄ (κ)− fm(Z̄
(κ))‖> δ

�

¶
n1
∑

j=n0

P
�

sup
t j−1¶t<t j

�

�Z̄ (κ)t − Z̄ (κ)t j−1

�

�> δ
�

¶ 2
n1
∑

j=n0

P
�

�

�Z̄ (κ)t j
− Z̄ (κ)t j−1

�

�> δ
2

�

.

Hence, we get

lim sup
κ→∞

a−1
κ b−1

κ logP
�

‖Z̄ (κ)− fm(Z̄
(κ))‖> δ

�

¶−
n1

inf
j=n0

I[t j−1,t j)(
δ
2
),

and the right hand side can be made arbitrarily small by making m= 1
t j−t j−1

large. �

Proof of Theorem 1.15. We apply [Dembo and Zeitouni, 1998, Theorem 4.2.23] to transfer
the large deviation principle from the topological Hausdorff space P (0,∞) to the metrizable space
L (0,∞) using the sequence fm of continuous functions. There are two conditions to be checked for
this, on the one hand that ( fm(Z̄ (κ)))m∈N are exponentially good approximations of (Z̄ (κ)), as verified
in Lemma 4.16, on the other hand that

limsup
m→∞

sup
I(x)¶η

d
�

fm(x), x
�

= 0,

for every η > 0, where d denotes a suitable metric on L (0,∞). This follows easily from the
equicontinuity of the set {I(x) ¶ η} established in Lemma 4.15. Hence the proof is complete. �
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5 The vertex with maximal indegree

In this section we prove Theorem 1.5 and Proposition 1.18.

5.1 Strong and weak preference: Proof of Theorem 1.5

The key to the proof is Proposition 5.1 which shows that, in the strong preference case, the degree
of a fixed vertex can only be surpassed by a finite number of future vertices. The actual formulation
of the result also contains a useful technical result for the weak preference case.

Recall that ϕt =
∫ t

0
1

f̄ (v)
dv, and let

t(s) = sup{t ∈ S: 4ϕt ¶ s}, for s ¾ 0.

Moreover, we let ϕ∞ = limt→∞ϕt , which is finite exactly in the strong preference case. In this case
t(s) =∞ eventually.

Proposition 5.1. For any fixed η > 0, almost surely only finitely many of the events

As :=
�

∃t ′ ∈ [s, t(s))∩T : Z[s, t ′] ¾ t ′−η
	

, for s ∈ T,

occur.

For the proof we identify a family of martingales and then apply the concentration inequality for
martingales, Lemma A.3. For s ∈ T, let (T̄ s

u)u∈S be given by T̄ s
u = u− Ts[0, u), where Ts[u, v) is the

time spent by the process Z[s, · ] in the interval [u, v).

The following lemma is easy to verify.

Lemma 5.2. Let (t i)i∈N∪{0} be a strictly increasing sequence of nonnegative numbers with t0 = 0 and
limi→∞ t i = ∞. Moreover, assume that λ > 0 is fixed such that λ∆t i := λ (t i − t i−1) ¶ 1, for all
i ∈ N, and consider a discrete random variable X with

P
�

X = t i
�

= λ∆t i

i−1
∏

j=1

(1−λ∆t j) for i ∈ N.

Then

E[X ] =
1

λ
and var(X ) ¶

1

λ2 .

With this at hand, we can identify the martingale property of (T̄ s
u)u∈S.

Lemma 5.3. For any s ∈ S, the process (T̄ s
u)u∈S is a martingale with respect to the natural filtra-

tion (Gu). Moreover, for two neighbours u< u+ in S, one has

var
�

T̄ s
u+
|Gu
�

¶
1

f̄ (u)2
.
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Proof. Fix two neighbours u< u+ in S and observe that given Gu (or given the entry time Ts[0, u)+s
into state u) the distribution of Ts[u] is as in Lemma 5.2 with λ = f̄ (u). Thus the lemma implies
that

E[T̄ s
u+|Gu] = T̄ s

u +
1

f (u)
−E[Ts[u] |Gu] = T̄ s

u

so that (T̄ s
u) is a martingale. The variance estimate of Lemma 5.2 yields the second assertion. �

Proof of Proposition 5.1. We fix η ¾ 1/ f (0) and u0 ∈ S with f̄ (u0) ¾ 2. We consider P(As)
for sufficiently large s ∈ T. More precisely, s needs to be large enough such that t(s) ¾ u0 and
s−η− u0 ¾

p

s/2. We denote by σ the first time t in T for which Z[s, t] ¾ t −η, if such a time
exists, and set σ =∞ otherwise.

We now look at realizations for which σ ∈ [s, t(s)) or, equivalently, As occurs. We set ν = Z[s,σ].
Since the jumps of Z[s, ·] are bounded by 1/ f (0) we conclude that

ν ¶ σ−η+ 1/ f (0) ¶ σ.

Conversely, Ts[0,ν) + s is the entry time into state ν and thus equal to σ; therefore,

ν = Z[s,σ] ¾ Ts[0,ν) + s−η,

and thus T̄ s
ν = ν − Ts[0,ν) ¾ s−η. Altogether, we conclude that

As ⊂
�

∃u ∈ [0, t(s))∩ S: T̄ s
u ¾ s−η

	

.

By Lemma 5.3 the process (T̄ s
u)u∈S is a martingale... Moreover, for consecutive elements u< u+ of S

that are larger than u0, one has

var(T̄ s
u+|Gu) =

1

f̄ (u)2
, T̄ s

u+− T̄ s
u ¶

1

f̄ (u)
¶

1

2
, and T̄ s

u0
¶ u0.

Now we apply the concentration inequality, Lemma A.3, and obtain, writing λs = s − η − u0 −
p

2ϕt(s) ¾ 0, that

P(As) ¶ P
�

sup
u∈[0,t(s))∩S

T̄ s
u ¾ s−η

�

¶ P
�

sup
u∈[u0,t(s))∩S

T̄ s
u − T̄ s

u0
¾ s−η− u0

�

¶ 2exp
�

−
λ2

s

2(ϕt(s)+λs/6)

�

,

where we use that
∑

u∈S∩[0,t(s))

1

f̄ (u)2
= ϕt(s).

As ϕt(s) ¶ s/4, we obtain limsup−1
s

logP(As) ¾
6
5
. Denoting by ι(t) = max[0, t] ∩ T, we finally

get that
∑

s∈T
P(As) ¶

∫ ∞

0

es P(Aι(s)) ds <∞,

so that by Borel-Cantelli, almost surely, only finitely many of the events (As)s∈T occur. �

1260



Proof of Theorem 1.5. We first consider the weak preference case and fix s ∈ T. Recall that
(Z[s, t]− (t − s))t¾s and (Z[0, t]− t)t¾0 are independent and satisfy functional central limit the-
orems (see Theorem 1.12). Thus (Z[s, t] − Z[0, t])t¾s also satisfies a central limit theorem, i.e.
an appropriately scaled version converges weakly to the Wiener process. Since the Wiener process
changes its sign almost surely for arbitrarily large times, we conclude that Z[s, t] will be larger,
respectively smaller, than Z[0, t] for infinitely many time instances. Therefore, s is not a persistent
hub, almost surely. This proves the first assertion.

In the strong preference case recall that ϕ∞ <∞. For fixed η > 0, almost surely, only finitely many
of the events (As)s∈T occur, by Proposition 5.1. Recalling that Z[0, t]− t has a finite limit, we thus
get that almost surely only finitely many degree evolutions overtake the one of the first node. It
remains to show that the limit points of (Z[s, t]− t) for varying s ∈ T are almost surely distinct. But
this is an immediate consequence of Proposition 2.2. �

5.2 The typical evolution of the hub: Proof of Proposition 1.18

From now on we assume that the attachment rule f is regularly varying with index α < 1
2
, and we

represent f and f̄ as

f (u) = uα`(u) and f̄ (u) = u
α

1−α ¯̀(u) for u> 0.

Moreover, we fix
aκ = κ

1−2α
1−α ¯̀(κ)−1.

For this choice of (aκ) the moderate deviation principle, Theorem 1.15, leads to the speed (aκ), in
other words the magnitude of the deviation and the speed coincide. The proof of Proposition 1.18
is based on the following lemma.

Lemma 5.4. Fix 0 ¶ u< v and define Iκ as Iκ = T∩ [aκu, aκv). Then, for all ε > 0,

lim
κ→∞
P
�

max
s∈Iκ

Z[s,κ] ∈ κ+ aκ
h

−v+
q

2−2α
1−2α

v− ε,−u+
q

2−2α
1−2α

v+ ε
i�

= 1.

Proof. Our aim is to analyze the random variable maxs∈Iκ Z[s,κ] for large κ. We fix ζ ¾ −u and
observe that

P(max
s∈Iκ

Z[s,κ]< κ+ aκζ) =
∏

s∈Iκ

P(Z[s,κ]< κ+ aκζ)

(

¶ P(Z[smax,κ]< κ+ aκζ)#Iκ = P(Tsmax
[0,κ+ aκζ) + smax > κ)#Iκ

¾ P(Z[smin,κ]< κ+ aκζ)#Iκ = P(Tsmin
[0,κ+ aκζ) + smin > κ)#Iκ ,

(28)

where smin and smax denote the minimal and maximal element of Iκ.

Next, we observe that limκ→∞ smax/aκ = v and limκ→∞ smin/aκ = u. Consequently, we can deduce
from the moderate deviation principle, Lemma 4.12, together with Lemma 4.2, that

logP(Tsmax
[0,κ+ aκζ) + smax ¶ κ) = logP

�Tsmax
[0,κ+ aκζ)−κ− aκζ

aκ
¶ −

smax

aκ
− ζ
�

∼−aκ I[0,1)(−v− ζ) =−aκ
1

2

1− 2α

1−α
(v+ ζ)2

(29)
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and analogously that

logP(Tsmin
[0,κ+ aκζ) + smin ¶ κ)∼−aκ

1

2

1− 2α

1−α
(u+ ζ)2.

Next we prove that P(maxs∈Iκ Z[s,κ]< κ+ aκζ) tends to 0 when ζ <−v+
Æ

2−2α
1−2α

v.

If ζ < −u, then the statement is trivial since by the moderate deviation principle P(Z[smin,κ] <
κ+ aκζ) tends to zero. Thus we can assume that ζ ¾ −u. By (28) one has

P
�

max
s∈Iκ

Z[s,κ]< κ+ aκζ
�

¶ exp
�

#Iκ log
�

1− P(Tsmax
[0,κ+ aκζ) + smax ¶ κ)

�	

.

and it suffices to show that the term in the exponential tends to −∞ in order to prove the assertion.
The term satisfies

#Iκ log
�

1− P(Tsmax
[0,κ+ aκζ) + smax ¶ κ)

�

∼−#Iκ P(Tsmax
[0,κ+ aκζ) + smax ¶ κ)

=−exp
n

aκ
h 1

aκ
log #Iκ+

1

aκ
logP(Tsmax

[0,κ+ aκζ) + smax ¶ κ)
︸ ︷︷ ︸

=:cκ

io

.

Since 1
aκ

log #Iκ converges to v, we conclude with (29) that

lim
κ→∞

cκ = v − 1−2α
2−2α
(v+ ζ)2.

Now elementary calculus implies that the limit is bigger than 0 by choice of ζ. This implies the first
part of the assertion.

It remains to prove that P(maxs∈Iκ Z[s,κ]< κ+ aκζ) tends to 1 for ζ >−u+
Æ

2−2α
1−2α

v. Now

P
�

max
s∈Iκ

Z[s,κ]< κ+ aκζ
�

¾ exp
n

#Iκ log
�

1− P(Tsmin
[0,κ+ aκζ) + smin ¶ κ)

�

o

and it suffices to show that the expression in the exponential tends to 0. As above we conclude that

#Iκ log(1− P(Tsmin
[0,κ+ aκζ) + smin ¶ κ))

∼−exp
�

aκ
� 1

aκ
log #Iκ+

1

aκ
logP(Tsmin

[0,κ+ aκζ) + smin ¶ κ)
︸ ︷︷ ︸

=:cκ

��

.

We find convergence
lim
κ→∞

cκ = v− 1−2α
2−2α

(u+ ζ)2

and (as elementary calculus shows) the limit is negative by choice of ζ. �

For s ∈ T and κ > 0 we denote by Z̄ (s,κ) = (Z̄ (s,κ)t )t ¾ 0 the random evolution given by

Z̄ (s,κ)t =
Z[s, s+κt]−κt

aκ
.
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Moreover, we let
z = (zt)t¾0 =

�

1−α
1−2α

�

t
1−2α
1−α ∧ 1

�

�

t ¾ 0
.

Proof of Proposition 1.18. 1st Part: By Lemma 5.4 the maximal indegree is related to the unimodal
function h defined by

h(u) =−u+
q

2−2α
1−2α

u, for u ¾ 0.

h attains its unique maximum in umax =
1
2

1−α
1−2α

and h(umax) = umax. We fix c > 4 1−α
1−2α

, let ζ =
max[h(umax)− h(umax ± ε)] and decompose the set [0, umax − ε) ∪ [umax + ε, c) into finitely many
disjoint intervals [ui , vi) i ∈ J, with mesh smaller than ζ/3. Then for the hub s∗κ at time κ > 0 one
has

P(s∗κ ∈ aκ[umax− ε, umax+ ε))

¾ P
�

max
s∈aκ[umax−ε,umax)∩T

Z[s,κ] ¾ κ+ aκ(h(umax)− ζ/3)
�

×
∏

i∈J
P
�

max
s∈aκ[ui ,vi)∩T

Z[s,κ] ¶ κ+ aκ(h(vi) + ζ/2)
�

× P
�

max
s∈[c aκ,∞)∩T

Z[s,κ] ¶ κ
�

.

(30)

By Lemma 5.4 the terms in the first two lines on the right terms converge to 1. Moreover, by Propo-
sition 5.1 the third term converges to 1, if for all sufficiently large κ and κ+ = min[κ,∞) ∩ S, one
has 4ϕκ+ ¶ caκ. This is indeed the case, since one has κ+ ¶ κ+ f (0)−1 so that by Lemma A.1,
4ϕκ+ ∼ 4 1−α

1−2α
aκ. The statement on the size of the maximal indegree is now an immediate conse-

quence of Lemma 5.4.

2nd Part: We now prove that (an appropriately scaled version of) the evolution of a hub typically
lies in an open neighbourhood around z.

Let U denote an open set in L (0,∞) that includes z and denote by U c its complement in L (0,∞).
Furthermore, we set

Aε =
n

x ∈ L (0,∞) : max
t∈[ 1

2
,1]

x t ¾ 2(umax− ε)
o

for ε ¾ 0. We start by showing that z is the unique minimizer of I on the set A0... Indeed, applying
the inverse Hölder inequality gives, for x ∈ A0 with finite rate I(x),

I(x) ¾ 1
2

∫ 1

0

ẋ2
t t

α
1−α d t ¾ 1

2

�

∫ 1

0

| ẋ t | d t
�2�

∫ 1

0

t−
α

1−α d t
�−1
¾ 1

2
1−α
1−2α

= umax = I(z).

Moreover, one of the three inequalities is a strict inequality when x 6= z. Recall that, by Lemma 4.15,
I has compact level sets. We first assume that one of the entries in U c ∩ A0 has finite rate I . Since
U c ∩ A0 is closed, we conclude that I attains its infimum on U c ∩ A0. Therefore,

I(U c ∩ A0) := inf{I(x): x ∈ U c ∩ A0}> I(z) = umax.

Conversely, using again compactness of the level sets, gives

lim
ε↓0

I(U c ∩ Aε) = I(U c ∩ A0).
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Therefore, there exists ε > 0 such that I(U c ∩Aε)> I(z). Certainly, this is also true if U c contains no
element of finite rate.

From the moderate deviation principle, Theorem 1.15, together with the uniformity in s, see Propo-
sition 4.4, we infer that

limsup
κ→∞

1

aκ
max
s∈T

logP
�

Z̄ (s,κ) ∈ U c ∩ Aε
�

¶ −I(U c ∩ Aε)<−I(z)... (31)

It remains to show that P(Z̄ s∗κ,κ ∈ U c) converges to zero. For ε > 0 and sufficiently large κ,

P(Z̄ s∗κ,κ ∈ U c) ¶ P(s∗κ 6∈ aκ[umax− ε, umax+ ε])

+ P
�

max
t∈[ 1

2
,1]

Z̄
s∗κ,κ
t ¶ 2(umax− ε), s∗κ ∈ aκ[umax− ε, umax+ ε]

�

+ P
�

Z̄ s∗κ,κ ∈ U c , max
t∈[ 1

2
,1]

Z̄
s∗κ,κ
t ¾ 2(umax− ε), s∗κ ∈ aκ[umax− ε, umax+ ε]

�

.

By the first part of the proof the first and second term in the last equation tend to 0 for any ε > 0.
The last term can be estimated as follows

P
�

Z̄ s∗κ,κ ∈ U c , Z̄
s∗κ,κ
t ¾ 2(umax− ε), s∗κ ∈ aκ[umax− ε, umax+ ε]

�

¶
∑

s∈T∩aκ[umax−ε,umax+ε]

P(Z̄ (s,κ) ∈ U c ∩ Aε).
(32)

Moreover, log#
�

T∩ aκ[umax − ε, umax + ε]
�

∼ aκ(umax + ε). Since, for sufficiently small ε > 0, we
have I(U c ∩ Aε)> umax+ ε we infer from (31) that the sum in (32) goes to zero. �

A Appendix

A.1 Regularly varying attachment rules

In the following we assume that f : [0,∞) → (0,∞) is a regularly varying attachment rule with
index α < 1, and represent f as f (u) = uα`(u), for u> 0, with a slowly varying function `.

Lemma A.1. 1. One has

Φ(u)∼
1

1−α
u1−α

`(u)

as u tends to infinity and f̄ admits the representation

f̄ (u) = f ◦Φ−1(u) = u
α

1−α ¯̀(u), for u> 0,

where ¯̀ is again a slowly varying function.

2. If additionally α < 1
2
, then

ϕu =

∫ u

0

1

f̄ (u)
du∼

1−α
1− 2α

u
1−2α
1−α

¯̀(u)
.
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Proof. The results follow from the theory of regularly variation, and we briefly quote the relevant
results taken from Bingham et al. [1987]. The asymptotic formula for Φ is an immediate conse-
quence of Karamata’s theorem, Theorem 1.5.11. Moreover, by Theorem 1.5.12, the inverse of Φ is
regularly varying with index (1− α)−1 so that, by Proposition 1.5.7, the composition f̄ = f ◦ Φ−1

is regularly varying with index α
1−α . The asymptotic statement about ϕ follows again by Karamata’s

theorem. �

Remark A.2. In the particular case where f (u)∼ cuα, we obtain

Φ(u)∼ 1
c(1−α) u1−α, Φ−1(u)∼ (c(1−α)u)

1
1−α

and
f̄ (u)∼ c

1
1−α
�

(1−α)u
�

α
1−α .

A.2 Two concentration inequalities for martingales

Lemma A.3. Let (Mn)n∈N∪{0} be a martingale for its canonical filtration (Fn)n∈N∪{0} with M0 = 0. We
assume that there are deterministic σn ∈ R and M <∞ such that almost surely

• var(Mn|Fn−1) ¶ σ2
n and

• Mn−Mn−1 ¶ M.

Then, for any λ > 0 and m ∈ N,

P
�

sup
n¶m

Mn ¾ λ+

s

2
m
∑

n=1

σ2
n

�

¶ 2exp
�

−
λ2

2(
∑m

n=1σ
2
n+Mλ/3)

�

.

Proof. Let τ denote the first time n ∈ N for which Mn ¾ λ+
p

2
∑m

n=1σ
2
n. Then

P(Mm ¾ λ) ¾
m
∑

n=1

P(τ= n)P
�

Mm−Mn ¾ −

s

2
m
∑

i=1

σ2
i

�

�

�τ= n
�

.

Next, observe that var(Mm−Mn |τ= n) ¶
∑m

i=n+1σ
2
i so that by Chebyshev’s inequality

P
�

Mm−Mn ¾ −

s

2
m
∑

i=1

σ2
i

�

�

�τ= n
�

¾ 1/2.

On the other hand, a concentration inequality of Azuma type gives

P(Mm ¾ λ) ¶ exp
�

−
λ2

2(
∑m

n=1σ
2
n+Mλ/3)

�

(see for instance Chung and Lu [2006], Theorem 2.21). Combining these estimates immediately
proves the assertion of the lemma. �

Similarly, one can use the classical Azuma-Hoeffding inequality to prove the following concentration
inequality.
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Lemma A.4. Let (Mn)n∈N∪{0} be a martingale such that almost surely |Mn − Mn−1| ¶ cn for given
sequence (cn)n∈N. Then for any λ > 0 and m ∈ N

P
�

sup
n¶m
|Mn−M0| ¾ λ+

s

2
m
∑

n=1

c2
n

�

¶ 4 exp
�

−
λ2

2
∑m

n=1 c2
n

�

.
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