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Abstract

For a recurrent linear diffusion on R+ we study the asymptotics of the distribution of its local
time at 0 as the time parameter tends to infinity. Under the assumption that the Lévy measure
of the inverse local time is subexponential this distribution behaves asymptotically as a multiple
of the Lévy measure. Using spectral representations we find the exact value of the multiple.
For this we also need a result on the asymptotic behavior of the convolution of a subexponential
distribution and an arbitrary distribution on R+. The exact knowledge of the asymptotic behavior
of the distribution of the local time allows us to analyze the process derived via a penalization
procedure with the local time. This result generalizes the penalizations obtained in Roynette,
Vallois and Yor [26] for Bessel processes.
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1 Introduction

1. Let X be a linear regular recurrent diffusion taking values in R+ with 0 an instantaneously
reflecting boundary and +∞ a natural boundary. Let Px and Ex denote, respectively, the probability
measure and the expectation associated with X when started from x ≥ 0. We assume that X is
defined in the canonical space C of continuous functions ω : R+ 7→ R+. Let

C t := σ{ω(s) : s ≤ t}

denote the smallest σ-algebra making the co-ordinate mappings up to time t measurable and take
C to be the smallest σ-algebra including all σ-algebras Ct , t ≥ 0.

We let m and S denote the speed measure and the scale function of X , respectively (for basic concepts
for linear diffusions, see e.g. [4]). We normalize S by S(0) = 0 and remark that S(+∞) = +∞ since
we assume X to be recurrent. It is also assumed that m does not have atoms. Recall that X has a
jointly continuous transition density p(t; x , y) with respect to m, i.e.,

Px(X t ∈ A) =

∫

A

p(t; x , y)m(d y),

where A is a Borel subset of R+. Moreover, p is symmetric in x and y, that is, p(t; x , y) = p(t; y, x).
The Green or the resolvent kernel of X is defined for λ > 0 via

Rλ(x , y) :=

∫ ∞

0

e−λt p(t; x , y) d t, (1.1)

Let {L(y)t : t ≥ 0} denote the local time of X at y normalized via

L
(y)
t = lim

δ↓0

1

m((y, y +δ))

∫ t

0

1[y,y+δ)(Xs) ds. (1.2)

For y = 0 we write simply Lt , and define for ℓ≥ 0

τℓ := inf{s : Ls > ℓ}, (1.3)

i.e., τ := {τℓ : ℓ ≥ 0} is the right continuous inverse of {Lt}. As is well known τ is an increasing
Lévy process, in other words, a subordinator and its Lévy exponent is given by

E0
�
exp(−λτℓ)

�
= exp

�
−ℓ/Rλ(0,0)

�

= exp(−ℓ
∫ ∞

0

ν(dv)(1− e−λv)), (1.4)

where ν is the Lévy measure of τ. The assumption that the speed measure does not have an atom
at 0 implies that τ does not have a drift.

2. We are interested in the asymptotic behavior of the distribution of Lt as t tends to infinity. The
basic assumption under which this study is done is the subexponentiality of the Lévy measure of τ
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(see Section 4). The subexponentiality assumption is equivalent with the relation (cf. Proposition
4.1)

P(τℓ ≥ t) ∼
t→+∞

ℓν((t,+∞)) ∀ ℓ > 0.

Here and throughout the paper the notation

f (x) ∼
x→a

g(x),

where f and g are real valued functions and a is allowed to take also “values” +∞ or −∞, means
that

lim
x→a

f (x)

g(x)
= 1.

Since τ is the inverse of L, it also holds (see Proposition 4.1)

P0(Lt ≤ ℓ) ∼
t→+∞

ℓν((t,+∞)).

To extend this for an arbitrary starting state x > 0, we first show that (see Proposition 4.2)

Px(H0 > t) ∼
t→+∞

S(x)ν((t,+∞)),

where H0 := inf{t : X t = 0}, and then (see Proposition 4.3)

Px(Lt ≤ ℓ) ∼
t→+∞

(S(x) + ℓ)ν((t,+∞)). (1.5)

Our motivation for relation (1.5) arose from the desire to generalize the penalization result obtained
for Bessel processes in Roynette, Vallois and Yor [26] (see also [23], [25], and the monograph
[27]). We remark that in [26] only Bessel processes are considered and the calculations are based
on the explicit knowledge of the densities of the hitting times and Lévy measures. We feel that
it is important to increase understanding of the assumptions needed to guarantee the validity of
such results for more general diffusions. In this paper it is seen that subexponentiality of the Lévy
measure is such an assumption. To be able to deduce (1.5) we apply the theory of strings due to
M.G. Krein combined with a lemma on subexponentiality (see Lemma 2.4). In particular, we prove
that (see Theorem 5.2 and Example 5.3)

lim
t→∞

E0(h(Lt) |Cu)

E0(h(Lt))
= S(Xu)h(Lu) + 1− H(Lu) =: Mh

u a.s., (1.6)

where h is a probability density function on R+ (with some nice properties) and H is the correspond-
ing distribution function. Formula (1.6) coincides with formula (1.7) in [26] when we take X to be
a Bessel process of dimension 0< δ < 2.

We remark also that the assumption that the Lévy measure is subexponential implies that X is null
recurrent. In C. Profeta [21] penalisations of positively recurrent diffusions are studied via Krein’s
theory. In this case the asymptotic behaviour of the local time is drastically different.

3. The paper is organised as follows. In the next section basic properties on subexponentiality are
presented and a new result (Lemma 2.4) on the limiting behavior of the convolution of an subexpo-
nential and a more general distribution is derived. In Section 3 we study the spectral representations
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of the hitting time distributions and the Lévy measure. In Section 4 results on subexponentiality and
the spectral representations are combined to yield relation (1.5). Hereby we also need a weak form
of a Tauberian theorem given as Lemma 6.1 in Appendix. The application in penalizations is dis-
cussed in Section 5. To make the paper more readable we state and prove first the general theorem
on penalizations. After this the penalization with local time is treated and (1.6) is proved. The
paper is concluded by characterizing the law of the canonical process under the penalized mea-
sure induced by the martingale Mh. Using absolute continuity and the compensation formula for
excursions we are able to shorten the proof when compared with the one in [26].

2 Subexponentiality

In this section we present some basic results on subexponential probability distributions. Later, in
Section 4, it is assumed that the probability distribution induced by the tail of the Lévy measure of
τ is subexponential. This assumption allows us to deduce the crucial limiting behavior of the first
hitting time distribution (see Proposition 4.2).

Definition 2.1. The probability distribution function F on (0,+∞) such that

F(0+) = 0, F(x)< 1 ∀x > 0, lim
x→∞

F(x) = 1 (2.1)

is called subexponential if

lim
x→+∞

F ∗ F(x)/ F(x) = 2 (2.2)

where ∗ denotes the convolution and F(x) := 1− F(x) the complementary distribution function.

For the following two lemmas and their proofs we refer Chistyakov [5] and Embrechts et al. [7].

Lemma 2.2. If F is a probability distribution function satisfying (2.1) and

F(x) ∼
x→∞

x−α H(x)

with α≥ 0 and H a slowly varying function then F is subexponential.

Lemma 2.3. If F is subexponential then

(i) uniformly on compact y-sets

lim
x→∞

F(x + y)/F(x) = 1, (2.3)

(ii) for all ǫ > 0,
lim

x→+∞
eǫ x F(x) = +∞ (2.4)

The proof of the next lemma uses some ideas from Teugels [30] p. 1006.

Lemma 2.4. Let F and G be two probability distributions on R+. Assume that

(1) F is subexponential,

(2) limx→∞ G(x)/F(x) = c > 0.

1966



Then

lim
x→∞

F ∗ G(x)/
�

G(x) + F(x)
�
= 1. (2.5)

Proof. Let ǫ ∈ (0,1). By assumption (2) there exists δ = δ(ǫ) such that for x > δ

c (1− ǫ)F(x)≤ G(x)≤ c (1+ ǫ)F(x). (2.6)

Observe that

F ∗ G(x) = 1− F ∗ G(x) = 1− F(x) + F(x)−
∫ x

0

G(x − y) dF(y)

= F(x) +

∫ x

0

G(x − y) dF(y).

We assume now, throughout the proof, that x > δ and write

F ∗ G(x)

G(x) + F(x)
=

G(x)

G(x) + F(x)

�
I1(x) + I2(x)

�
+

F(x)

G(x) + F(x)
, (2.7)

where

I1(x) :=

∫ x−δ

0

G(x − y)

G(x)
dF(y)

and

I2(x) :=

∫ x

x−δ

G(x − y)

G(x)
dF(y).

Obviously, by assumption (2), the claim (2.5) follows if we show that

lim
x→∞

I1(x) = 1 (2.8)

and
lim

x→∞
I2(x) = 0. (2.9)

Proof of (2.9). Since G(x − y)≤ 1 we have

I2(x)≤
∫ x

x−δ

dF(y)

G(x)
=

F(x)− F(x −δ)
G(x)

=
F(x −δ)− F(x)

G(x)

=
F(x)

G(x)

�
F(x −δ)

F(x)
− 1

�
.

Using now (2.3) and assumption (2) yields (2.9).

Proof of (2.8). Since
G(x − y)≥ G(x)
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we have

I1(x) =

∫ x−δ

0

G(x − y)

G(x)
dF(y)≥ F(x − δ).

Consequently,
lim inf
x→+∞

I1(x)≥ 1. (2.10)

To derive an upper estimate, notice first that

I1(x)≤
1+ ǫ

1− ǫ

∫ x−δ

0

F(x − y)

F(x)
dF(y), (2.11)

because, from (2.6),
x > δ ⇒ G(x)≥ c(1− ǫ)F(x)

and
y ≤ x −δ ⇒ x − y ≥ δ ⇒ G(x − y)≤ c(1+ ǫ)F(x − y).

Next we develop the integral term in (2.11) as follows

∫ x−δ

0

F(x − y) dF(y)

=

∫ x−δ

0

�
1− F(x − y)

�
dF(y)

= F(x −δ)−
∫ x−δ

0

F(x − y) dF(y)

= F(x)−
∫ x−δ

0

F(x − y) dF(y) + F(x −δ)− F(x)

= F(x)−
∫ x−δ

0

F(x − y) dF(y)−
∫ x

x−δ
dF(y)

= F(x)−
∫ x−δ

0

F(x − y) dF(y)

−
∫ x

x−δ
F(x − y) dF(y)−

∫ x

x−δ
F(x − y) dF(y)

≤ F(x)−
∫ x

0

F(x − y) dF(y).

Hence, ∫ x−δ

0

F(x − y) dF(y)≤ F(x)− F ∗ F(x) = F ∗ F(x)− F(x).

Consequently, from (2.11),

I1(x)≤
�

1+ ǫ

1− ǫ

� �
F ∗ F(x)− F(x)

F(x)

�
,

1968



and using (2.2) and letting ǫ→ 0 we obtain

lim sup
x→+∞

I1(x)≤ 1

which together with (2.10) proves (2.8) completing the proof of Lemma 2.4

3 Spectral representations

Spectral representations play a crucial role in our study of asympotic properties of the hitting time
distributions. In this section we recall basic properties of these representations and derive some
useful estimates. For references on spectral theory of strings, we list in chronological order [10],
[12], [6], [13], [17], [15], [16], [14], and [18].

Besides the diffusion X itself, it is important to study X when killed at the first hitting time of 0,
denoted bX = {bX t : t ≥ 0}, i.e., the diffusion with the sample paths

bX t :=

(
X t , t < H0,

∂ , t ≥ H0,
(3.1)

where H0 := inf{t : X t = 0}, and ∂ is a point isolated from R+ (a “cemetary” point). Then {bX t : t ≥
0} is a diffusion with the same scale and speed as X . Let p̂ denote the transition density of bX with
respect to m :

Px(bX t ∈ d y) = Px(X t ∈ d y; t < H0) = p̂(t; x , y)m(d y). (3.2)

Recall that the density of the Px -distribution of H0 exists and is given by

fx0(t) := Px(H0 ∈ d t)/d t = lim
y↓0

p̂(t; x , y)

S(y)
. (3.3)

Moreover, the Lévy measure ν of the inverse local time τ, see (1.2) and (1.3), is absolutely contin-
uous with respect to the Lebesgue measure, and the density of ν satisfies

ν̇(v) := ν(dv)/dv = lim
x↓0

fx0(v)

S(x)
(3.4)

We define now the basic eigenfunctions A(x;γ) and C(x;γ) associated with X and bX , respectively,
via the integral equations (recall that S is continuous and m has no atoms)

A(x;γ) = 1− γ
∫ x

0

dS(y)

∫ y

0

m(dz)A(z;γ),

C(x;γ) = S(x)− γ
∫ x

0

dS(y)

∫ y

0

m(dz)C(z;γ), (3.5)

and the initial values

A(0;γ) = 1, A′(0;γ) := lim
x↓0

A(x;γ)− 1

S(x)
= 0, (3.6)
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C(0;γ) = 0, C ′(0;γ) := lim
x↓0

C(x;γ)

S(x)
= 1. (3.7)

The function A is connected with the (reflected) process X and the function C with the (killed)
process bX . We are mainly working with the function C , see, for instance, Proposition 3.3 and 3.7.
For these results we need an upper bound (cf. Lemma 3.1). This is obtained via an approximation
scheme which we explain next.

Let {An}and {Cn} be two families of functions defined by

A0(x) = 1, An+1(x) =

∫ x

0

dS(y)

∫ y

0

m(dz)An(z) (3.8)

and

C0(x) = S(x), Cn+1(x) =

∫ x

0

dS(y)

∫ y

0

m(dz)Cn(z), (3.9)

respectively. Then the functions A(x;γ) and C(x;γ) are explicitly given by

A(x;γ) =
∞∑

n=0

(−γ)n An(x). (3.10)

and

C(x;γ) =
∞∑

n=0

(−γ)n Cn(x), (3.11)

respectively (see Kac and Krein [10] p. 29). In the next lemma we give an estimate which shows
that the series for C converges rapidly for all values on γ and x ≥ 0. A similar estimate for A can be
found in Dym and McKean [6] p. 162.

Lemma 3.1. The functions x 7→ Cn(x), x ≥ 0, n= 0,1,2, . . . , are positive, increasing and satisfy

Cn(x)≤
1

n!
S(x)

�∫ x

0

M(y) dS(y)

�n

(3.12)

where M(z) = m((0, z)).

Proof. The fact that Cn are positive and increasing is immediate from (3.9). Clearly (3.12) holds for
n= 0. Hence, consider

Cn+1(x) =

∫ x

0

dS(y)

∫ y

0

m(du)Cn(u)

≤
∫ x

0

dS(y)

∫ y

0

m(du)
1

n!
S(u)

�∫ u

0

M(z) dS(z)

�n

≤
1

n!
S(x)

∫ x

0

dS(y)

∫ y

0

m(du)

�∫ u

0

M(z) dS(z)

�n

≤
1

n!
S(x)

∫ x

0

dS(y)

�∫ y

0

M(z) dS(z)

�n

M(y)

=
1

(n+ 1)!
S(x)

�∫ x

0

M(y)dS(y)

�n+1

,
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where we have used the facts that x 7→ S(x) is increasing and x 7→ M(x) is positive.

Lemma 3.2. The function x 7→ C(x;γ) satisfies the inequality

|C(x;γ)| ≤ S(x) exp

�
|γ|
∫ x

0

M(z)dS(z)

�
. (3.13)

Proof. This follows readily from (3.11) and (3.12).

From Krein’s theory of strings it is known (see [6] p.176, and [10; 17; 16]) that there exists a
σ-finite measure denoted ∆, called the principal spectral measure of X , with the property

∫ ∞

0

∆(dz)

z + 1
<∞ (3.14)

such that the transition density of X can be represented as

p(t; x , y) =

∫ ∞

0

e−γt A(x;γ)A(y;γ)∆(dγ). (3.15)

We remark that from the assumption that m does not have an atom at 0 it follows (see [6] p.192)
that ∆([0,∞)) =∞.

Analogously, for the killed process bX there exists (see [15], [18]) a σ-finite measure, denoted b∆
and called the principal spectral measure of bX , such that

∫ ∞

0

b∆(dz)

z(z + 1)
<∞, (3.16)

and ∫ ∞

0

b∆(dz)

z
=∞. (3.17)

The transition density of bX can be represented as

p̂(t; x , y) =

∫ ∞

0

e−γt C(x;γ)C(y;γ) b∆(dγ). (3.18)

The result of the next proposition can be found also in [18]. Since the proof in [18] is not complete
in all details we found it worthwhile to give here a new proof.

Proposition 3.3. (i) The density of the Px -distribution of the first hitting time H0 has the spectral

representation

fx0(t) =

∫ ∞

0

e−γt C(x;γ) b∆(dγ). (3.19)

(ii) The density of the Lévy measure of the inverse local time at 0 has the spectral representation

ν̇(t) =

∫ ∞

0

e−γt b∆(dγ). (3.20)
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Proof. (i) Combining (3.3) and (3.18) yields

fx0(t) = lim
y↓0

p̂(t; x , y)

S(y)

= lim
y↓0

∫ ∞

0

e−γt C(x;γ)
C(y;γ)

S(y)
b∆(dγ).

We show that the limit can be taken inside the integral by the Lebesgue dominated convergence
theorem. Let t > 0 be fixed an choose ǫ such that

t −
∫ ǫ

0

M(z)dS(z)≥ t/2.

Then, from Lemma 3.2, for γ > 0 and 0< y < ǫ we have

e−γt
|C(y;γ)|

S(y)
≤ exp

�
−γ
�

t −
∫ y

0

M(z)dS(z)

��
≤ e−γt/2

Consequently, it remains to show that

∫ ∞

0

e−γt/2
��C(x;γ)

�� b∆(dγ)<∞. (3.21)

By the Cauchy-Schwartz inequality

�∫ ∞

0

e−γt/2
��C(x;γ)

�� b∆(dγ)
�2

≤
∫ ∞

0

e−γt/2 �C(x;γ)
�2 b∆(dγ)

∫ ∞

0

e−γt/2 b∆(dγ)

= p̂(t/2; x , x)

∫ ∞

0

e−γt/2 b∆(dγ).

Clearly, p̂(t/2; x , x) <∞ and, by (3.16),
∫∞

0
e−γt/2 b∆(dγ)<∞. These estimates allow us to use the

Lebesgue dominated convergence theorem and since (cf. (3.7))

lim
y→0

C(y;γ)/S(y) = C ′(0;γ) = 1

the proof of (i) is complete. Representation (3.20) can be proved similarly using formula (3.4),
(3.19), (3.7) and the estimates derived above. We leave the details to the reader.

Remark 3.4. Consider

∫ ∞

0

(1∧ t) ν̇(t) d t =

∫ ∞

0

d t (1∧ t)

∫ ∞

0

b∆(dγ)e−γt

=

∫ ∞

0

b∆(dγ)
∫ ∞

0

d t (1∧ t)e−γt .
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A straightforward integration yields

∫ ∞

0

(1∧ t)e−γt d t =
1

γ2

�
1− e−γ

�
,

and, consequently, (3.16) is equivalent with (cf. [15])

∫ ∞

0

(1∧ t) ν̇(t) d t <∞,

which is the crucial property of the Lévy measure of a subordinator. For (3.17), see [10] p. 82. and

[18].

Example 3.5. Let R = {Rt : t ≥ 0} and bR = {bRt : t ≥ 0} be Bessel processes of dimension 0 < δ < 2
reflected at 0 and killed at 0, respectively. We compute explicit spectral representations associated with

R and bR.

From, e.g., [4] p. 133 the following information concerning R and bR can be found:

Speed measure

m(d x) = 2 x1−2α d x α := (2− δ)/2. (3.22)

Scale function

S(x) =
1

2α
x2α. (3.23)

Transition density of R (w.r.t. m)

p(t; x , y) =
1

2t
(x y)α exp

�
−

x2+ y2

2t

�
I−α

�
x y

t

�
, x , y > 0. (3.24)

Transition density of bR (w.r.t. m)

p̂(t; x , y) =
1

2t
(x y)α exp

�
−

x2+ y2

2t

�
, Iα

�
x y

t

�
, x , y > 0. (3.25)

Here, Iα stands for the modified Bessel function of order α, i.e.,

Iν(z) =

∞∑

n=0

(z/2)ν+2n

Γ(n+ 1)Γ(ν + n+ 1)
,

see [1] p. 374. To find the Krein measure ∆ associated with R we exploit formulas (3.15) and (3.24)

with x = y = 0 and use

Iν(z) ∼
1

Γ(ν + 1)

�
z

2

�ν
, z→ 0

to obtain

p(t; 0, 0) = lim
x ,y→0

p(t; x , y) =
t−(1−α)

21−αΓ(1−α) =
∫ ∞

0

e−γt∆(dγ).
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Inverting the Laplace transform yields

∆(dγ) =
γ−α dγ

21−α (Γ(1−α))2 . (3.26)

We apply formula (3.10), (3.22), and (3.23) to find the function A(x;γ), and, hence, compute first

directly via (3.8)

An(x) =
Γ(1−α) x2n

2nΓ(n+ 1)Γ(n+ 1−α) , n= 0,1,2, . . . .

Consequently, after some manipulations, we have

A(x;γ) = Γ(1−α)2−α
�

x
p

2γ
�α

J−α
�

x
p

2γ
�

,

where J denotes the usual Bessel function of the first kind, i.e.,

Jν(z) =

∞∑

n=0

(−1)n(z/2)ν+2n

Γ(n+ 1)Γ(ν + n+ 1)
,

and, finally, putting pieces together into (3.15) yields

p(t; x , y) =
1

2

∫ ∞

0

e−γt (x y)α J−α
�

x
p

2γ
�

J−α
�

y
p

2γ
�

dγ. (3.27)

Next we compute the Krein measure b∆ associated with bR. For this, we deduce from (3.3), (3.4), (3.23),

and (3.25)

ν̇(t) = lim
x ,y→0

p̂(t; x , y)

S(x)S(y)
=

21−αα t−(1+α)

Γ(α)
=

∫ ∞

0

e−γt b∆(dγ), (3.28)

and, consequently, inverting the Laplace transform gives

b∆(dγ) =
21−α γα

(Γ(α))2
dγ (3.29)

Similarly as above, we apply formula (3.11) to find the function C(x;γ), and, hence, compute first

directly via (3.9)

Cn(x) =
Γ(α) x2α+2n

2n+1Γ(n+ 1)Γ(n+ 1+α)
, n= 0,1,2, . . . .

Consequently, after some manipulations,

C(x;γ) = Γ(α)2(α−2)/2 γ−α/2 xα Jα

�
x
p

2γ
�

.

and

p̂(t; x , y) =
1

2

∫ ∞

0

e−γt (x y)α Jα

�
x
p

2γ
�

Jα

�
y
p

2γ
�

dγ. (3.30)

See also Karlin and Taylor [11] p. 338.
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Example 3.6. Taking above α= 1/2 yields formulas for Brownian motion. Recall

J1/2(z) =

r
2

πz
sin z, and J−1/2(z) =

r
2

πz
cos z.

Consequently, from (3.27)

p(t; x , y) =
1

π

∫ ∞

0

e−γ t cos(x
p

2γ) cos(y
p

2γ)
dγ
p

2γ
(3.31)

=
1

2
p

2πt

�
e−(x−y)2/(2t)+ e−(x+y)2/(2t)

�
,

and from (3.30)

p̂(t; x , y) =
1

π

∫ ∞

0

e−γt
sin(x

p
2γ)

p
2γ

sin(y
p

2γ)
p

2γ

p
2γ dγ

=
1

2
p

2πt

�
e−(x−y)2/(2t)− e−(x+y)2/(2t)

�
.

Moreover,

fx0(t) =
1

π

∫ ∞

0

e−γt sin(x
p

2γ) dγ=
x

t 3/2
p

2π
e−x2/(2t),

and

ν̇(t) =
1

π

∫ ∞

0

e−γt
p

2γ dγ=
1

t 3/2
p

2π
. (3.32)

From (3.31) we obtain ∆(dγ) = dγ/(π
p

2γ), and from (3.32) b∆(dγ) =
p

2γ dγ/π. See also Karlin

and Taylor [11] p. 337 and 393, and [4] p. 120.

Proposition 3.7. (i) The complementary Px -distribution function of H0 has the spectral representation

Px(H0 > t) =

∫ ∞

0

1

γ
e−γt C(x;γ) b∆(dγ). (3.33)

(ii) The Lévy measure has the spectral representation

ν((t,∞)) =
∫ ∞

t

ν̇(s) ds =

∫ ∞

0

1

γ
e−γt b∆(dγ). (3.34)

Proof. Formulas (3.33) and (3.34) follow from (3.19) and (3.20), respectively, using Fubini’s theo-
rem. To obtain (3.34) is straightforward but for (3.33) the applicability of Fubini’s theorem needs
to be justified. Indeed, from (3.19) we have informally

Px(H0 > t) =

∫ ∞

t

fx0(s) ds =

∫ ∞

t

ds

∫ ∞

0

b∆(dγ)e−γs C(x;γ)

=

∫ ∞

0

b∆(dγ)
∫ ∞

t

ds e−γs C(x;γ)
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leading to (3.33). To make this rigorous, we verify that for all x > 0

∫ ∞

0

1

γ
e−γt |C(x;γ)| b∆(dγ)<∞.

Consider first for ǫ > 0

K1 :=

∫ ǫ

0

1

γ
e−γt |C(x;γ)| b∆(dγ).

By the basic estimate (3.13) for 0< γ < ǫ

|C(x;γ)| ≤ S(x) exp

�
ǫ

∫ x

0

M(z)dS(z)

�
.

and, consequently,

K1 ≤ S(x) exp

�
ǫ

∫ x

0

M(z)dS(z)

�∫ ∞

0

1

γ
e−γt b∆(dγ)<∞

by (3.16). Next, let

K2 :=

∫ ∞

ǫ

1

γ
e−γt |C(x;γ)| b∆(dγ).

By the Cauchy-Schwartz inequality

K2
2 ≤

∫ ∞

ǫ

γ−2 e−γt b∆(dγ)
∫ ∞

ǫ

e−γt (C(x;γ))2 b∆(dγ).

The first term on the right hand side is finite by (3.16). For the second term we have

∫ ∞

ǫ

e−γt (C(x;γ))2 b∆(dγ)≤
∫ ∞

0

e−γt (C(x;γ))2 b∆(dγ).

≤ p̂(t; x , x)<∞.

The proof of (3.33) is now complete.

4 Asymptotic behavior of the distribution of Lt as t → +∞

We make the following assumption concerning the Lévy measure of the inverse local time process
{τℓ : ℓ≥ 0} valid throughout the rest of the paper (if nothing else is stated)

(A) The probability distribution function

x 7→
ν((1, x])

ν((1,+∞)) , x > 1,

is assumed to be subexponential.
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It is known, see Sato [29] p. 164, that Assumption (A) is equivalent with

P(τℓ ≥ t) ∼
t→+∞

ℓν((t,+∞)) ∀ ℓ > 0, (4.1)

and also with
The law of τℓ is subexponential for every ℓ > 0. (4.2)

Proposition 4.1. For any fixed ℓ > 0, it holds

P0(Lt ≤ ℓ) ∼
t→+∞

ℓν((t,+∞)). (4.3)

Proof. The claim follows immediately from (4.1) since

P0(Lt ≤ ℓ) = P(τℓ ≥ t).

Our goal is to study the asymptotic behavior of Lt under Px . For this, we analyze first the distribution
of the hitting time H0. The proof of the next proposition is based on Lemma 6.1 stated and proved
in Section 6 below.

Proposition 4.2. For any x > 0, it holds

Px(H0 > t) ∼
t→+∞

S(x)ν((t,+∞)). (4.4)

Proof. Recall from (3.33) and (3.34) in Proposition 3.7 the spectral representations

Px(H0 > t) =

∫ ∞

0

1

γ
e−γt C(x;γ) b∆(dγ) (4.5)

and

ν((t,+∞)) =
∫ ∞

0

1

γ
e−γt b∆(dγ). (4.6)

We apply Lemma 6.1 with µ(dγ) = b∆(dγ)/γ, g1(γ) = C(x;γ) and g2(γ) = S(x). Then, the mapping
t 7→ Px(H0 > t) has the rôle of f1 and t 7→ S(x)ν((t,+∞)) the rôle of f2. Condition (6.1) takes the
form

lim
t→∞

S(x)ν((t,+∞))ebt =+∞

and this holds by Assumption (A) and (2.4). Moreover, condition (6.2) means now

lim
γ→0

C(x;γ)/S(x) = 1

and this is true since using estimate (3.12) in (3.11) we obtain
����
C(x;γ)

S(x)
− 1

����≤ α |γ|e
β |γ|

with some α and β depending only on x . Consequently, (6.3) in Lemma 6.1 holds and, hence, the
proof of the proposition is complete.
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The main result of this section is as follows.

Proposition 4.3. For any x > 0 and ℓ > 0, it holds

Px(Lt ≤ ℓ) ∼
t→+∞

(S(x) + ℓ)ν((t,+∞)). (4.7)

Proof. Since Lt increases only when X is at 0 we may write

Px(Lt ≤ ℓ) = Px(H0 > t) + Px(H0 < t , Lt ≤ ℓ)
= Px(H0 > t) + Px(H0 < t , Lt−H0

◦ θH0
≤ ℓ)

= Px(H0 > t) + Px(H0 < t , t − H0 ≤ τ̂ℓ),

where θ· denotes the usual shift operator and τ̂ℓ is a subordinator starting from 0, independent of
H0 and identical in law with τℓ (under P0), by the strong Markov property. Consequently,

Px(Lt ≤ ℓ) = Px(H0 > t) + Px(τ̂ℓ+ H0 ≥ t)− Px(τ̂ℓ+ H0 ≥ t , H0 > t)

= Px(τ̂ℓ+ H0 ≥ t).

We use Lemma 2.4 and take therein F to be the Px -distribution τ̂ℓ (which is the same as the P0-
distribution τℓ) and G the Px -distribution of H0. Then, by (4.2), F is subexponential and from (4.3)
and (4.4) we have

lim
t→∞

Px(H0 > t)

Px(τ̂ℓ > t)
=

S(x)

ℓ
> 0.

Consequently, by Lemma 2.4,

lim
t→∞

Px(τ̂ℓ+ H0 > t)

Px(τ̂ℓ > t) + Px(H0 > t)
= 1,

in other words,

Px(Lt ≤ ℓ) ∼
t→∞

Px(H0 > t) + Px(τ̂ℓ > t)

∼
t→∞

S(x)ν((t,∞)) + ℓν((t,∞)),

as claimed.

Example 4.4. For a Bessel process of dimension d ∈ (0,2) reflected at 0 we have from (3.28) in
Example 3.5

ν((t,+∞)) =
21−α

Γ(α)
t−α,

and Assumption (A) holds by Lemma 2.2. Consequently,

Px(Lt < ℓ) ∼
t→∞

(S(x) + ℓ)ν((t,+∞)).

where the scale function is as in Example 3.5. Taking here α = 1/2 gives formulae for reflecting
Brownian motion. We remark that our normalization of the local time (see (1.2)) is different from
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the one used in Roynette et al. [26] Section 2. In our case, from (1.4) and (3.28) it follows (cf. also
[4] p. 133 where the resolvent kernel is explicitly given) that

E0
�
exp(−λτℓ)

�
= exp

�
−ℓ
Γ(1−α)
Γ(α)

21−αλα
�

. (4.8)

Comparing now formula (2.11) in [26] with (4.8) it is seen that

bLt = 2α Lt

where bL denotes the local time used in [26].

5 Penalization of the diffusion with its local time

5.1 General theorem of penalization

Recall that (C ,C , {Ct}) denotes the canonical space of continuous functions, and let P be a proba-
bility measure defined therein. In the next theorem we present the general penalization result which
we then specialize to the penalization with local time.

Theorem 5.1. Let {Ft : t ≥ 0} be a stochastic process (so called weight process) satisfying

0< E(Ft)<∞ ∀ t > 0.

Suppose that for any u≥ 0

lim
t→∞

E(Ft |Cu)

E(Ft)
=: Mu (5.1)

exists a.s. and

E(Mu) = 1. (5.2)

Then

1) M = {Mu : u≥ 0} is a non-negative martingale with M0 = 1,

2) for any u≥ 0 and Λ ∈ Cu

lim
t→∞

E(1Λ Ft)

E(Ft)
= E(1ΛMu) =: Q(u)(Λ), (5.3)

3) there exits a probability measure Q on (C ,C ) such that for any u> 0

Q(Λ) = Q(u)(Λ) ∀Λ ∈ Cu.

Proof. We have (cf. Roynette et al. [24])

E(1Λu
Ft)

E(Ft)
= E

�
1Λu

E(Ft |Cu)

E(Ft)

�
,

and by (5.1) and (5.2) the family of random variables
�

E(Ft |Cu)

E(Ft)
: t ≥ 0

�
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is uniformly integrable by Sheffe’s lemma (see, e.g., Meyer [20]), and, hence, (5.3) holds in L1(Ω).
To verify the martingale property of M notice that if u< v then Λu ∈ Cv and by (5.3) we have also

lim
t→∞

E(1Λu
Ft)

E(Ft)
= E(1Λu

Mv).

Consequently,
E(1Λu

Mv) = E(1Λu
Mu),

i.e., M is a martingale. Since the family {Q(u) : u ≥ 0} of probability measures is consistent, claim 3
follows from Kolmogorov’s existence theorem (see, e.g., Billingsley [2] p. 228-230).

5.2 Penalization with local time

We are interested in analyzing the penalizations of diffusion X with the weight process given by

Ft := h(Lt), t ≥ 0 (5.4)

with a suitable function h. In particular, if h = 1[0,ℓ) for some fixed ℓ > 0 then Ft = 1{Lt<ℓ}. In the
next theorem we prove under some assumtions on h the validity of the basic penalization hypotheses
(5.1) and (5.2) for the weight process {Ft : t ≥ 0}. The explicit form of the corresponding martingale
Mh is given. In Section 5.3 it will be seen that Mh remains to be a martingale for more general
functions h, and properties of X under the probability measure induced by Mh are discussed.

In Roynette et al. [26] this kind of penalizations via local times of Bessel processes with dimension
parameter d ∈ (0,2) are studied. Our work generalizes Theorem 1.5 in [26] for diffusions with
subexponential Lévy measure.

Theorem 5.2. Let h : [0,∞) 7→ [0,∞) be a Borel measurable, right-continuous and non-increasing

function with compact support in [0, K] for some given K > 0. Assume also that

∫ K

0

h(y) d y = 1,

and define for x ≥ 0

H(x) :=

∫ x

0

h(y) d y.

Then for any u≥ 0

lim
t→∞

E0(h(Lt) |Cu)

E0(h(Lt))
= S(Xu)h(Lu) + 1− H(Lu) =: Mh

u a.s. (5.5)

and

E0

�
Mh

u

�
= 1. (5.6)

Consequently, statements 1), 2) and 3) in Theorem 5.1 hold.
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Proof. I) We prove first (5.5).
a) To begin with, the following result on the behavior of the denominator in (5.5) is needed: for
any a ≥ 0

Ea(h(Lt)) ∼
t→+∞

(S(a)h(0) + 1) ν((t,∞)). (5.7)

To show this, let µ denote the measure induced by h, i.e., µ(d y) =−dh(y). Then

h(x) =

∫

(x ,K]

µ(d y) =

∫

(0,K]

1{y>x}µ(d y), (5.8)

and, consequently,

Ea(h(Lt)) = Ea

 ∫

(0,K]

1{ℓ>Lt}µ(dℓ)

!
=

∫

(0,K]

Pa(Lt < ℓ)µ(dℓ).

By Proposition 4.3

lim
t→∞

Pa(Lt < ℓ)

ν((t,∞)) = S(a) + ℓ.

Moreover, for ℓ≤ K
Pa(Lt < ℓ)

ν((t,∞)) ≤
Pa(Lt < K)

ν((t,∞)) → S(a) + K as t →∞,

and, by the dominated convergence theorem,

lim
t→∞

∫

(0,K]

Pa(Lt < ℓ)

ν((t,∞)) µ(dℓ) =
∫

(0,K]

(S(a) + ℓ)µ(dℓ).

Hence,

Ea(h(Lt)) ∼
t→+∞

 ∫

(0,K]

(S(a) + ℓ)µ(dℓ)

!
ν((t,∞)), (5.9)

and the integral in (5.9) can be evaluated as follows:
∫

(0,K]

(S(a) + ℓ)µ(dℓ) = S(a)

∫

(0,K]

µ(dℓ) +

∫

(0,K]

ℓµ(dℓ)

= S(a)h(0) +

∫

(0,K]

µ(dℓ)

∫ ℓ

0

du

= S(a)h(0) +

∫ K

0

du

∫

(u,K)

µ(dℓ)

= S(a)h(0) +

∫ K

0

h(u)du (5.10)

= S(a)h(0) + 1.

This concludes the proof of (5.7).
b) To proceed with the proof of (5.5), recall that {Ls : s ≥ 0} is an additive functional, that is,
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Lt = Lu + Lt−u ◦ θu for t > u where θu is the usual shift operator. Hence, by the Markov property,
for t > u

E0(h(Lt) |Cu) = E0(h(Lu+ Lt−u ◦ θu) |Cu) = H(Xu, Lu, t − u) (5.11)

with
H(a,ℓ, r) := Ea(h(ℓ+ Lr)).

Using (5.7) and (5.10) where h is replaced by h(·+ ℓ) we obtain

H(a,ℓ, r) ∼
t→+∞

�
S(a)h(ℓ) +

∫ ∞

0

h(ℓ+ u)du

�
ν((t,∞)).

Bringing together (5.11) and (5.7) with a = 0 yields

lim
t→∞

E0(h(Lt) |Cu)

E0(h(Lt))
=

S(Xu)h(Lu) +
∫∞

Lu
h(x)d x

∫∞
0

h(x)d x

completing the proof of (5.5).
II) To verify (5.6), we show that {Mh

t : t ≥ 0} defined in (5.5) is a non-negative martingale with
Mh

0 = 1 (cf. Theorem 5.1 statement 1)).
a) First, consider the process S(X ) = {S(X t) : t ≥ 0}. Since the scale function is increasing S(X )

is a non-negative recurrent linear diffusion. Moreover, e.g., from Meleard [19] Proposition 1.4
where the case with two reflecting boundaries is considered, it is, in fact, a sub-martingale with the
Doob-Meyer decomposition

S(X t) = Ỹt + L̃t , (5.12)

where Ỹ is a martingale and L̃ is a local time of S(X ) at 0 (since S(0) = 0). Because L̃ increases
only when S(X ) is at 0 or, equivalently, X is at 0, L̃ is also a local time of X at 0. Consequently,
L̃ is a multiple of L a.s. (for this property see Blumenthal and Getoor [3] p. 217), i.e., there is a
non-random constant c such that for all t ≥ 0

L̃t = c Lt (5.13)

We claim that L̃ coincides with L, that is c = 1, (for the normalization of L, see (1.2)). To show this,
recall that

Ex(L
(y)
t ) =

∫ t

0

p(s; x , y) ds,

which yields (cf. (1.1))

Rλ(0,0) =

∫ ∞

0

λe−λt E0(Lt) d t.

From (5.12) and (5.13) we have E0(Lt) =
1

c
E0(S(X t)), and, hence,

Rλ(0,0) =
1

c

∫ ∞

0

λe−λt E0(S(X t)) d t

=
1

c

∫ ∞

0

S(y)λRλ(0, y)m(d y). (5.14)
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Next recall that the resolvent kernel can be expressed as

Rλ(x , y) = w−1
λ
ψλ(x)ϕλ(y), 0≤ x ≤ y, (5.15)

where wλ is a constant (Wronskian) and ϕλ andψλ are the fundamental decreasing and increasing,
respectively, solutions of the generalized differential equation

d

dm

d

dS
u= λu (5.16)

characterized (probabilistically) by

Ex

�
e−λH y

�
=

Rλ(x , y)

Rλ(y, y)
(5.17)

(see Itô and McKean [9] p. 130, 150 and [4] p. 18, 19). Consequently, (5.14) is equivalent with

ϕλ(0) =
1

c

∫ ∞

0

S(y)λϕλ(y)m(d y)

=
1

c

∫ ∞

0

S(y)
d

dm

d

dS
ϕλ(y)m(d y)

=
1

c

∫ ∞

0

dS(y)

∫ ∞

y

m(dz)
d

dm

d

dS
ϕλ(z)

=
1

c

∫ ∞

0

dS(y)

�
d

dS
ϕλ(+∞)−

d

dS
ϕλ(y)

�
, (5.18)

where for the third equality we have used Fubini’s theorem. Next we claim that

d

dS
ϕλ(+∞) := lim

x→∞

d

dS
ϕλ(x) = 0. (5.19)

To prove this, recall that the Wronskian (a constant) is given for all z ≥ 0 by

wλ = ϕλ(z)
d

dS
ψλ(z) +ψλ(z)

�
−

d

dS
ϕλ(z)

�
. (5.20)

Notice that both terms on the right hand side are non-negative. Since the boundary point +∞ is
assumed to be natural it holds that limz→∞ Hz = +∞ a.s. and, therefore, (cf. (5.17))

lim
z→∞

ψλ(z) = +∞.

Consequently, letting z→ +∞ in (5.20) we obtain (5.19). Now (5.18) takes the form

ϕλ(0) =−
1

c

�
ϕλ(+∞)−ϕλ(0)

�
.

This implies that c = 1 since ϕλ(+∞) = 0 by the assumption that +∞ is natural (cf. (5.17)).
b) To proceed with the proof that Mh is a martingale, consider first the case with continuously
differentiable h. Then, applying (5.12),

dMh
t = h(Lt)(dỸt + d Lt) + S(X t)h

′(Lt)d Lt − h(Lt)d Lt = h(Lt)dỸt , (5.21)
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where we have used that
S(X t)h

′(Lt)d Lt = S(0)h′(Lt)d Lt = 0.

Consequently, Mh is a continuous local martingale, and it is a continuous martingale if for any T > 0
the process {Mh

t : 0 ≤ t ≤ T} is uniformly integrable (u.i.). To prove this, we use again (5.12) and
write

Mh
t = h(Lt)Ỹt + h(Lt)Lt + 1− H(Lt). (5.22)

Since h is non-increasing and has a compact support in [0, K] we have

|h(Lt)Lt + 1− H(Lt)| ≤ K sup
x∈[0,K]

h(x) +

∫ ∞

0

h(u)du

showing that {h(Lt)Lt + 1− H(Lt) : t ≥ 0} is u.i. Moreover, since {h(Lt) : t ≥ 0} is bounded and
{Ỹt : 0 ≤ t ≤ T} is u.i. it follows that {h(Lt)Ỹt : 0 ≤ t ≤ T} is u.i.. Consequently, {Mh

t : 0 ≤ t ≤ T}
is u.i., as claimed, and, hence, {Mh

t : t ≥ 0} is a true martingale implying (5.6). By the monotone
class theorem (see, e.g., Meyer [20] T20 p. 28) we can deduce that {Mh

t : t ≥ 0} remains a
martingale if the assumtion “h is continuously differentiable” is relaxed to be “h is bounded and
Borel-measurable”. The proof of Theorem 5.2 is now complete.

Example 5.3. Let h(x) := 1[0,ℓ)(x) with ℓ > 0. Then

h(0) = 1,

∫ ∞

x

h(y)d y = (ℓ− x)+,

∫ ∞

0

h(y)d y = ℓ,

and the martingale Mh takes the form

Mh
u =

1

ℓ

�
S(Xu)1{Lu<ℓ} + (ℓ− Lu)+

�

=
1

ℓ

�
S(Xu) + ℓ− Lu

�
1{Lu<ℓ}

=
1

ℓ

�
S(Xu∧τℓ) + ℓ− Lu∧τℓ

�

= 1+
1

ℓ

�
S(Xu∧τℓ)− Lu∧τℓ

�
.

= 1+
1

ℓ
Ỹu∧τℓ .

5.3 The law of X under the penalized measure

In this section we study the process X under the penalized measure Q introduced in Theorem 5.2.
In fact, we consider a more general situation, and assume that h is “only” a Borel measurable and
non-negative function defined on R+ such that

∫ ∞

0

h(x)d x = 1. (5.23)

For such a function h we define

Mh
t := S(X t)h(Lt) + 1− H(Lt), (5.24)
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where

H(x) :=

∫ x

0

h(y)d y.

It can be proved (see Roynette et al. [24] Section 3.2 and [26] Section 3) that {Mh
t : t ≥ 0} is also

in this more general case a martingale such that E0(M
h
t ) = 1 and limt→∞Mh

t = 0. Therefore, we
may define, for each u≥ 0, a probability measure Qh on (C ,Cu) by setting

Qh(Λu) := E0

�
1Λu

Mh
u

�
Λu ∈ Cu. (5.25)

The notation Eh is used for the expectation with respect to Qh. Next two propositions constitute a
generalization of Theorem 1.5 in [26].

Proposition 5.4. Under Qh, the random variable L∞ := limt→∞ Lt is finite a.s. and

Qh(L∞ ∈ dℓ) = h(ℓ) dℓ.

Proof. For u≥ 0 and ℓ≥ 0 it holds {Lu ≥ ℓ} ∈ Cu, and, consequently,

Qh(Lu ≥ ℓ) = E0

�
1{Lu≥ℓ}M

h
u

�
= E0

�
1{τℓ≤u}M

h
u

�
.

By optional stopping,

E0

�
1{τℓ≤u}M

h
u

�
= E0

�
1{τℓ≤u}M

h
τℓ

�
,

but

Mh
τℓ
= S(Xτℓ)h(Lτℓ) + 1− H(Lτℓ) = S(0)h(ℓ) + 1− H(ℓ)

=

∫ ∞

ℓ

h(y) d y. (5.26)

As a result,

Qh(Lu ≥ ℓ) =
�∫ ∞

ℓ

h(y) d y

�
P0(τℓ ≤ u).

Letting here u→∞ and using the fact that τℓ is finite P0−a.s. shows that

Qh(L∞ ≥ ℓ) =
∫ ∞

ℓ

h(y) d y.

Moreover, from assumption (5.23) it now follows that L∞ is Qh-a.s. finite, and the proof is complete.

In the proof of the next proposition we use the process X ↑ = {X ↑t : t ≥ 0} which is obtained from bX
(cf. (3.1)) by conditioning bX not to hit 0. The process X ↑ can be described as Doob’s h-transform
of bX , see, e.g., Salminen, Vallois and Yor [28] p.105. The probability measure and the expectation
operator associated with X ↑ are denoted by P↑ and E↑, respectively. The transition density and the
speed measure associated with X ↑ are given by

p↑(t; x , y) :=
p̂(t; x , y)

S(y)S(x)
, m↑(d y) := S(y)2 m(d y). (5.27)
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Notice (cf. (3.3)) that

p↑(t; 0, y) := lim
x↓0

p↑(t; x , y) =
f y0(t)

S(y)
. (5.28)

Consequently, we have the formula

1= P
↑
0

�
X
↑
t > 0

�
=

∫ ∞

0

p↑(t; 0, y)m↑(d y) =

∫ ∞

0

f y0(t)S(y)m(d y). (5.29)

Proposition 5.5. Let λ denote the last exit time from 0, i.e.,

λ := sup{t : X t = 0}

with λ = 0 if {·} = ;. Then

1) Qh(0< λ <∞) = 1,

2) under Qh

a) {X t : t ≤ λ} and {Xλ+t : t ≥ 0} are independent,

b) conditionally on L∞ = ℓ, the process {X t : t ≤ λ} is distributed as {X t : t ≤ τℓ} under P0,
in other words,

Eh
�

F(X t : t ≤ λ) f (L∞)
�

=

∫ ∞

0

f (ℓ)h(ℓ)E0
�

F(X t : t ≤ τℓ
�

dℓ. (5.30)

where F is a bounded and measurable functional defined in the canonical space (C ,C , (Ct))

and f : [0,∞) 7→ [0,∞) is a bounded and measurable function.

c) the process {Xλ+t : t ≥ 0} is distributed as {X ↑t : t ≥ 0} started from 0.

Proof. Consider for a given T > 0

∆ := Eh
�

F1(Xu : u≤ λ) F2(Xλ+v : v ≤ T ) f (Lλ)1{0<λ<∞}
�

,

where F1 and F2 are bounded and measurable functionals defined in the canonical space
(C ,C , (Ct)) and f : [0,∞) 7→ [0,∞) is a bounded and measurable function. For N > 0 define

λN := sup{u≤ N : Xu = 0}

and
∆
(1)
N := Eh

�
F1(Xu : u≤ λN ) F2(XλN+v : v ≤ T ) f (LλN

)1{λN+T<N}
�

.

Then
∆= lim

N→∞
∆
(1)
N .

By absolute continuity, cf. (5.25),

∆
(1)
N = E0

�
F1(Xu : u≤ λN ) F2(XλN+v : v ≤ T ) f (LλN

)1{λN+T<N}M
h
N

�

= E0

�
F1(Xu : u≤ λN ) F2(XλN+v : v ≤ T ) f (LλN

)1{λN+T<N}

×
�
S(XN )h(LN ) + 1− H(LN )

��
.
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Since F1, F2, and f are bounded and

lim
N→∞

�
1− H(LN )

�
= 0 P0-a.s.

we have

∆= lim
N→∞

E0

�
F1(Xu : u≤ λN ) F2(XλN+v : v ≤ T ) f (LλN

)

×1{λN+T<N} S(XN )h(LN )
�

.

Let ∆(2)N denote the expression after the limit sign. Then we write

∆
(2)
N = E0

�∑

ℓ

F1(Xu : u≤ τℓ−) F2(Xτℓ−+v : v ≤ T )

× f (ℓ) 1{τℓ−+T<N<τℓ} S(XN )h(ℓ)
�

,

where {τℓ} is the right continuous inverse of {Lt} (see (1.3)). By the Master formula (see Revuz
and Yor [22] p. 475 and 483; notice that τℓ− = τℓ) a.e.)

∆
(2)
N =

∫ ∞

0

dℓh(ℓ) f (ℓ)E0

�
F1(Xu : u≤ τℓ)

×
∫

E
n(de) F2(ev : v ≤ T )1{T≤N−τℓ≤ζ(e)} S(eN−τℓ)

�
,

where E denotes the excursion space, e is a generic excursion, ζ(e) is the life time of the excursion
e, and n is the Itô measure in the excursion space (see, e.g., [22] p. 480 and [28]). We claim that
for all T ′ > 0

I :=

∫

E
F2(ev : v ≤ T )1{T≤T ′≤ζ(e)} S(eT ′)n(de)

= E
↑
0

�
F2(X v : v ≤ T )

�
. (5.31)

Notice that the right hand side of (5.31) does not depend on T ′. We prove (5.31) for F2 of the form

F2(ev : v ≤ T ) = G(et1
, . . . , etk

), t1 < t2 < · · ·< tk = T,

where G is a bounded and measurable function. For simplicity, take k = 2 and use Theorem 2 in
[28] to obtain (for notation and results needed, see (3.2), (3.3), (5.27) and (5.28))

I =

∫

[0,∞)3
fx1,0(t1) p̂(t2− t1; x1, x2) p̂(T ′− t2; x2, x3)

×G(x1, x2)S(x3)m(d x1)m(d x2)m(d x3)

=

∫

[0,∞)3
S(x1) fx1,0(t1) p↑(t2− t1; x1, x2) p̂↑(T ′− t2; x2, x3)

×G(x1, x2)S(x2)
2 S(x3)

2 m(d x1)m(d x2)m(d x3)

= E
↑
0

�
G(X t1

, X t2
)
�
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proving (5.31). Consequently, we have (for all N)

∆
(2)
N = E

↑
0

�
F2(X v : v ≤ T )

�
∫ ∞

0

dℓh(ℓ) f (ℓ)E0
�

F1(Xu : u≤ τℓ)
�

,

and choosing here F1, F2, and f appropriately implies claims 1 and 2. In particular, F1 = F2 = 1 and
f = 1 yields Qh

0(0< λ <∞) = 1, and, hence, L∞ = Lλ Qh
0-a.s.

6 Appendix: a technical lemma

The following lemma could be viewed as a “weak” form of the Tauberian theorem (cf. Feller [8]
Theorem 1 p. 443) stating, roughly speaking, that if two functions behave similarly at zero then
their Laplace transforms behave similarly at infinity.

Lemma 6.1. Let µ be a σ-finite measure on [0,+∞) and g1 and g2 two real valued functions such

that for some λ0 > 0

Ci :=

∫

[0,+∞)
e−λ0γ |gi(γ)|µ(dγ)<∞, i = 1,2.

Assume also that g2(γ)> 0 for all γ. Introduce for λ ≥ λ0

fi(λ) :=

∫

[0,+∞)
e−λγ gi(γ)µ(dγ), i = 1,2.

and suppose

lim
λ→+∞

f2(λ)e
bλ =+∞ for all b > 0. (6.1)

Then

g1(γ) ∼
γ→0

g2(γ) (6.2)

implies

f1(λ) ∼
λ→+∞

f2(λ) (6.3)

Proof. By property (6.2) and since g2(γ)> 0 there exist two functions θ∗ and θ ∗ such that for some
ǫ > 0 and for all γ ∈ (0,ǫ)

θ∗(ǫ) g2(γ)≤ g1(γ)≤ θ ∗(ǫ) g2(γ). (6.4)

and
lim
ǫ→0

θ∗(ǫ) = lim
ǫ→0

θ ∗(ǫ) = 1. (6.5)

We assume also that θ∗(ǫ)> 0 and θ ∗(ǫ)> 0. Letting λ ≥ 2λ0 we have for γ≥ ǫ

λγ≥ λ0γ+
λγ

2
≥ λ0γ+

λǫ

2

and ∫ ∞

ǫ

e−λγ |gi(γ)|µ(dγ)≤ e−λǫ/2
∫ ∞

ǫ

e−λ0γ |gi(γ)|µ(dγ)≤ e−λǫ/2 Ci . (6.6)
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Furthermore, from (6.4)
∫ ǫ

0

e−λγ g1(γ)µ(dγ)≤ θ ∗(ǫ)
∫ ǫ

0

e−λγ g2(γ)µ(dγ)

≤ θ ∗(ǫ)
∫ ∞

0

e−λγ g2(γ)µ(dγ)

= θ ∗(ǫ) f2(λ) (6.7)

since g2 is assumed to be positive. Writing

f1(λ) =

∫ ǫ

0

e−λγ g1(γ)µ(dγ) +

∫ ∞

ǫ

e−λγ g1(γ)µ(dγ)

the estimates in (6.6) and (6.7) yield

f1(λ)≤ θ ∗(ǫ) f2(λ) + e−λǫ/2 C1,

which after dividing with f2(λ)> 0 implies using (6.1) and (6.5)

lim sup
λ→+∞

f1(λ)

f2(λ)
= 1. (6.8)

For a lower bound, consider

f1(λ) =

∫

[0,∞)
e−λγ g1(γ)µ(dγ)

≥
∫

[0,ǫ)

e−λγ g1(γ)µ(dγ)−
∫ ∞

ǫ

e−λγ |g1(γ)|µ(dγ)

≥ θ∗(ǫ)
∫

[0,ǫ)

e−λγ g2(γ)µ(dγ)− e−λǫ/2 C1

≥ θ∗(ǫ)
�

f2(λ)−
∫ ∞

ǫ

e−λγ g2(γ)µ(dγ)

�
− e−λǫ/2 C1

≥ θ∗(ǫ) f2(λ)− θ∗(ǫ)e−λǫ/2 C2− e−λǫ/2 C1.

Hence,
f1(λ)

f2(λ)
≥ θ∗(ǫ)−

�
θ∗(ǫ)C2− C1

� 1

eλǫ/2 f2(λ)

showing that

lim inf
λ→+∞

f1(λ)

f2(λ)
≥ 1,

and completing the proof.
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