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Abstract

We use the Malliavin calculus for Poisson processes in order to compute sensitivities for
European and Asian options with underlying following a jump type diffusion.
The main point is to settle an integration by parts formula (similar to the one in the Malliavin
calculus) for a general multidimensional random variable which has an absolutely continuous
law with differentiable density. We give an explicit expression of the differential operators
involved in this formula and this permits to simulate them and consequently to run a Monte
Carlo algorithm.
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1 Introduction

In the last years, following the pioneering papers [9], [8] a lot of work concerning the numerical
applications of the stochastic variational calculus (Malliavin calculus) has been done. This
mainly concerns applications in mathematical finance: computations of conditional expectations
(which appear in the american option pricing, for example) and of sensitivities (the so called
Greeks). The models at hand are usually log-normal type diffusions and then one may use the
standard Malliavin calculus. But nowadays people are more and more interested in jump type
diffusions (see [5]) and then one has to use the stochastic variational calculus corresponding to
Poisson point processes. Such a calculus has already been developped in [2] concerning the noise
coming from the amplitudes of the jumps and in [4] concerning the jump times. More recently
[3] gives a unified approach using the language of the Dirichlet forms. Another point of view,
based on chaos decomposition may be found in [7], [1], [12], [14] and [11].

The aim of our paper is to give a concrete application of the Malliavin calculus approach for
sensitivity computations (Greeks) for jump diffusion models. We give two examples: in the first
one, we use the Malliavin calculus with respect to the jump amplitudes. In the second one, we
add a Brownian part and differentiate with respect to both the jump amplitudes and to the
Wiener increments.

The Malliavin integration by parts formula used in this paper is an elementary one. Notice
that any numerical scheme used in a Monte Carlo algorithm appears as a function of a finite
number of random variables H1, . . . ,Hn. It turns out that, if the law of these random variables
is absolutely continuous with respect to the Lebesgue measure and has a smooth density, then
the strategy developed in the Malliavin calculus may be implemented for H1, . . . ,Hn and an
integration by parts formula is derived. This is not specific for the Brownian motion or for a
Poisson point process but represents an elementary abstract calculus.

The paper is organized as follows. In Section 1 we present the problem: we give the stochastic
equation verified by the underling asset which is a one dimensional jump diffusion (one may
consider multi-dimensional diffusions as well but we stay in the one dimensional setting just to
avoid technical difficulties). Then we precise how an integration by parts formula may be used
in the Monte Carlo algorithm to compute sensitivities. In Section 2 we give the integration by
parts formula. In Section 3 we use the Malliavin’s calculus with respect to the amplitudes of the
jumps in order to compute sensitivities. In section 4, we consider a Merton’s model in which
stochastic integrals driven by a Brownian motion and by a compound Poisson process appear.
We have the choice of using the Malliavin’s calculus with respect to the Brownian motion, to the
amplitudes of the jumps or to both of them. We perform the three algorithms and we compare
the empirical variance of each of them. It turns out that the most performant algorithm (with
the smallest variance) is that one based on both the Brownian motion and the amplitudes of
the jumps. So the numerical experiments (there is no theorical result) indicate that one has
to use the integration by parts formula with respect to all the noise which is available in the
model. The numerical results are contained in section 5. We compare the Malliavin method to
the finite difference method. For European and Asian call options, the results are rather similar
but for digital options, the results given by the Malliavin method are much better than these
given by the finite difference method. This can be explained by the larger irregularity of the
payoff function.
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2 The problem

We compute the sensitivities of an option with payoff φ, where the asset (St)t≥0 follows a
one-dimensional jump diffusion process driven by a compound Poisson process. Let us precise
our problem.
Let N be a compound Poisson process. We denote by (Ti)i∈N the jump times of t → Nt, and by
(Jt)t≥0 the corresponding standard Poisson process with parameter λ > 0, that is Jt counts the
number of jumps up to t and for all n ≥ 1, Tn − Tn−1 has exponential distribution with mean
λ. For all i ∈ N∗, we define ∆i = NTi −NTi−1 , so ∆i represents the jump amplitude at time Ti.
The random variables (∆i)i∈N∗ are independent and identically distributed. We assume that
the law of ∆i is absolutely continuous with respect to the Lebesgue measure and we denote by
ρ its density, that is ∆i ∼ ρ(a) da, for all i ∈ N∗.

We deal with two models. In the first one, the asset St is a pure jump diffusion solution of the
SDE

St = β +
Jt∑

i=1

c(Ti,∆i, ST−
i

) +
∫ t

0
b(u, Su) du . (1)

In the second one, we add a Brownian part :

St = β +
Jt∑

i=1

c(Ti,∆i, ST−
i

) +
∫ t

0
b(u, Su) du +

∫ t

0
σ(u, Su) dWu . (2)

Our aim is to compute ∂βE(φ(ST )) (respectively ∂βE
(

φ(
1
T

∫ T

0
Su du)

)
), that is the Delta of

an European (respectively Asian) option of payoff φ. In several papers (such as [8], [9], [10]),
a Malliavin calculus approach is used. We will follow a similar strategy in our frame, using
Malliavin calculus for jump type diffusions. In the case of European option for example, we
write

∂

∂β
E(φ(ST )) = E

(
φ′(ST )

∂ST

∂β

)
= E

(
φ′(ST )

∂ST

∂β
1{JT =0}

)
+

∞∑
n=1

E
(

E
(

φ′(ST )
∂ST

∂β
|σ(Ti, i ∈ N)

)
1{JT =n}

)
.

On {JT = 0} there is no jump on ]0, T ]. Thus, in the case of the first model (1), ST and ∂ST
∂β

solve a deterministic integral equation. In the examples that we consider in this paper, the
solutions of these equations are explicit, so that this term is explicitly known. Concerning the
Merton’s model (2), we use the integration by parts formula of the standard Malliavin calculus
(based on the Wiener increments) and we obtain

E
(

φ′(ST )
∂ST

∂β
1{JT =0}

)
= E

(
φ(ST ) HW

0 (ST , ∂βST )1{JT =0}
)
.
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Assume now that JT = n 6= 0. Then, using an integration by parts formula on {JT = n}, we
write :

E
(

φ′(ST )
∂ST

∂β
|σ(Ti, i ∈ N)

)
1{JT =n}

= E
(

φ(ST ) Hn(ST ,
∂ST

∂β
) |σ(Ti, i ∈ N)

)
1{JT =n} ,

where Hn is a weight involving “Malliavin derivatives” of ST and of ∂ST
∂β . These differential

operators are similar to those in [2], but the frame here is much more simple, since there are
no accumulation of small jumps. So we will derive this integration by parts formula using
elementary arguments. We obtain

∞∑
n=1

E
(

E
(

φ′(ST )
∂ST

∂β
|σ(Ti, i ∈ N)

)
1{JT =n}

)
= E

(
φ(ST ) HJT

(ST ,
∂ST

∂β
)1{JT≥1}

)
.

In order to employ this formula in a Monte-Carlo algorithm, we proceed as follows: we simulate
the jump times (T i

n)n∈N, i = 1, . . . ,M and the jump amplitudes (∆i
n)n∈N, i = 1, . . . ,M , and we

compute the corresponding J i
T , Si

T and H i
Ji

T
. Then we write

E
(

φ(ST ) HJT
(ST ,

∂ST

∂β
)1{JT≥1}

)
' 1

M

M∑
i=1

φ(Si
T ) H i

Ji
T
1{Ji

T≥1} .

In the case of Merton’s model we proceed as follows: we first simulate the jump times Ti, i ∈ N.
Once they are fixed we construct an Euler scheme in which the times Ti, i ∈ N are included
in the discretization grid. Then we simulate the amplitudes of the jumps and the Brownian
increments and we thus perform the Monte-Carlo algorithm.

3 Malliavin calculus for simple functionals

On a probability space (Ω,F , P ) we consider a sequence of independent random variables
(Vn, n ∈ N∗). We suppose that for all n ≥ 1, Vn has moments of any order.

Hypothesis 3.1 For every n ∈ N∗, the law of Vn is absolutely continuous with respect to the
Lebesgue measure and has the density pn which is continuously differentiable on R and such that

for all k ∈ N, lim
y→±∞

|y|k pn(y) = 0. We also assume that ∂yln(pn(y)) =
∂ypn(y)
pn(y)

has at most

polynomial growth.

We introduce some notations. For k ≥ 1, we denote by Ck
↑ (Rn) the space of the functions

f : Rn → R which are k times differentiable and such that f and its derivatives up to order k have

at most polynomial growth. For a multi-index α = (α1, . . . , αk) we denote ∂k
αf =

∂k

∂α1 . . . ∂αk

f .
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In the case k = 0, C0
↑(Rn) denotes the set of the functions f : Rn → R which are continuous

with respect to each argument and have at most polynomial growth.

We define now the simple functionals and the simple processes.
A random variable F is called a simple functional if there exists some n ∈ N∗ and some
measurable function f : Rn → R such that

F = f(V1, . . . , Vn) .

We denote by S(n,k) the space of the simple functionals such that f ∈ Ck
↑ (Rn).

A simple process of length n is a sequence of random variables
U = (Ui)i≤n such that

Ui = ui(V1(ω), . . . , Vn(ω)) .

We denote by P(n,k) the space of the simple processes of length n such that ui ∈ Ck
↑ (Rn), i =

1, . . . , n. Note that if U ∈ P(n,k) then Ui ∈ S(n,k), i ∈ N∗.
We define now the differential operators which appear in the Malliavin’s calculus.

� The Malliavin derivative D : S(n,1) → P(n,0):
if F = f(V1, . . . , Vn), then

DiF := ∂if(V1(ω), . . . , Vn(ω)) =
(

∂f

∂xi

)
(V1(ω), . . . , Vn(ω)),

DF := (DiF )i≤n ∈ P(n,0) .

� The Skorohod integral δ : P(n,1) → S(n,0):

δ(U) := −
n∑

i=1

(DiUi + θi(Vi) Ui)

= −
n∑

i=1

(
∂ui

∂xi
(V1, . . . , Vn) + θi(Vi) ui(V1, . . . , Vn)

)
,

with
θi(y) := ∂y ln(pi)(y) = (p′i

pi
)(y) if pi(y) > 0 ,

:= 0 if pi(y) = 0 .

Remark 3.1 For every p ∈ N and for every F ∈ S(n,1) and U ∈ P(n,1), one has

E

 n∑
j=1

|DjF |2
p

< ∞ and E (|δ(U)|p) < ∞ .

This comes from the following hypothesis: E |Vi|p < ∞, for all i and f , ui, and ∂ ln(pi), i =
1, . . . , n, have at most polynomial growth.

The operator δ is the adjoint of D (this is the reason of being of θi):
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Proposition 3.1 Let F ∈ S(n,1) and U ∈ P(n,1) then

E(< DF, U >) = E(F δ(U)) , (3)

where < ., . > is the scalar product in Rn.

Proof. One writes

E (< DF, U >) = E

(
n∑

i=1

DiF Ui

)

=
n∑

i=1

E ((ui ∂if) (V1, . . . , Vn))

=
n∑

i=1

∫
Rn

(ui ∂if) (a1, . . . , an) p1(a1) . . . pn(an) da1 . . . dan

=−
n∑

i=1

∫
Rn

f(a1, . . . , an)
(

∂iui + ui
p′i
pi

)
pi(ai)

∏
j 6=i

pj(aj) da1 . . . dan ,

the last equality being obtained by integration by parts, where we have used that for all k ∈ N,

lim
y→±∞

|y|k pi(y) = 0,
p′i
pi
∈ C0

↑(Rn) and f, ui ∈ C1
↑(Rn). Coming back to expectations we obtain

(3).

We introduce now the Ornstein Uhlenbeck operator L = δ(D) : S(n,2) → S(n,0) :

LiF := DiDiF + θi DiF , for i = 1, . . . , n

LF := −
n∑

i=1

LiF

= −
n∑

i=1

(∂i(∂if)(V1, . . . , Vn) + θi(Vi) (∂if)(V1, . . . , Vn)) . (4)

Remark 3.2 Since θi, f ∈ C2
↑(Rn), one has E|LF |p < ∞ for all p.

Suppose that F,G ∈ S(n,2) then, as an immediate consequence of the duality relation (3) one
obtains

E(F LG) = E(< DF, DG >) = E(G LF ) . (5)

Moreover, the standard differential calculus rules give the following chain rule.

Lemma 3.1 (i) Let φ ∈ C1
b (Rd) and let F = (F 1, . . . , F d), F i ∈ S(n,1). Then φ(F ) ∈ S(n,1) and

Dφ(F ) =
d∑

k=1

∂kφ(F ) DF k , (6)

(ii) Let F,G ∈ S(n,2) then

L(F G) = F LG + G LF − 2 < DF, DG > . (7)
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Finally, given F = (F 1, . . . , F d), F i ∈ S(n,1), we introduce the Malliavin covariance matrix

σij
F =< DF i, DF j >=

n∑
p=1

(
∂pf

i ∂pf
j
)
(V1, . . . , Vn) ,

where F i = f i(V1, . . . , Vn).
We are now able to state the integration by parts formula.

Theorem 3.1 Let F = (F 1, . . . , F d) ∈ Sd
(n,2), G ∈ S(n,1). We assume that the matrix σF is

invertible and denote γF := σ−1
F .

We also suppose that
E
(
(det γF )4

)
< ∞ . (8)

Then for every smooth function φ : Rd → R, every i = 1, . . . , d

E(∂iφ(F ) G) = E(φ(F ) H i(F,G)) , (9)

with H i(F,G) ∈ L1 and

H i(F,G) =
d∑

j=1

G γji
F LF j − γji

F < DF j , DG > −G < DF j , Dγji
F > . (10)

Proof. Using the chain rule we obtain for each j = 1, . . . , d

< Dφ(F ), DF j > =
n∑

r=1

< Drφ(F ), DrF
j >

=
n∑

r=1

d∑
i=1

∂iφ(F ) < DrF
i, DrF

j >

=
d∑

i=1

∂iφ(F ) σij
F ,

so that ∂iφ(F ) =
d∑

j=1

< Dφ(F ), DF j > γji
F . Moreover, using (7)

< Dφ(F ), DF j >=
1
2
(
−L(φ(F ) F j) + φ(F ) LF j + F j L(φ(F ))

)
.

Then the duality relation gives

E(∂iφ(F ) G)

=
1
2

E

G

 d∑
j=1

−L(φ(F ) F j) + φ(F ) LF j + F j L(φ(F ))

 γji
F


=

d∑
j=1

1
2

E
[
φ(F )

(
−F j L(γji

F G) + G γji
F LF j + L(G F j γji

F )
)]

=
d∑

j=1

E
[
φ(F )

(
G γji

F LF j− < DF j , D(G γji
F ) >

)]
.
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By hypothesis (8), the above expectations are finite, so the proof is complete.

4 Integration by parts with respect to the jump amplitudes

In this section we use the integration by parts formula (9) with respect to ∆i ∼ ρ(a) da, i ∈ N∗,
which are the amplitudes of the jumps of (Nt)t≥0. Let (St)t≥0 be solution of the SDE

St = β +
Jt∑

i=1

c(Ti,∆i, STi−) +
∫ t

0
b(r, Sr) dr . (11)

We work under the following hypothesis.

Hypothesis 4.1 ρ is continuously differentiable,
ρ′

ρ
has at most polynomial growth on R and

for all k ∈ N, lim
y→±∞

|y|k ρ(y) = 0.

Hypothesis 4.2 The functions (a, x) → c(t, a, x) and x → b(t, x) are twice continuously
differentiable and there exists a constant K > 0 and α ∈ N such that:

i) |c(t, a, x)| ≤ K (1 + |a|)α(1 + |x|)
|b(t, x)| ≤ K (1 + |x|)

ii) |∂xc(t, a, x)|+
∣∣∂2

xc(t, a, x)
∣∣+ |∂ac(t, a, x)| ≤ K (1 + |a|)α

|∂xb(t, x)|+
∣∣∂2

xb(t, x)
∣∣ ≤ K

Hypothesis 4.3 There exists η > 0 such that

|∂ac(t, a, x)| ≥ η > 0 .

4.1 The deterministic equation

We introduce the following deterministic equation.
We fix some 0 < u1 < . . . < un < T , and we denote u = (u1, . . . , un). We also fix a =
(a1, . . . , an) ∈ Rn. To u and a we associate the equation

st = β +
Jt(u)∑
i=1

c(ui, ai, su−i
) +

∫ t

0
b(r, sr) dr, 0 ≤ t ≤ T , (12)

where Jt(u) = k if uk ≤ t < uk+1.
We use this deterministic equation in order to express St as a simple functional: on {Jt = n}
one has

St = st(T1, . . . , Tn,∆1, . . . ,∆n) ,

∂∆iSt = ∂aist(T1, . . . , Tn,∆1, . . . ,∆n) ,

∂2
∆j ,∆i

St = ∂2
aj ,ai

st(T1, . . . , Tn,∆1, . . . ,∆n) ,

∂βSt = ∂βst(T1, . . . , Tn,∆1, . . . ,∆n) .
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So in order to compute the derivatives of St, we have to compute those of st. Under hypothesis
4.2, we may perform these computations by differentiating with respect to aj , j = 1, . . . , n in
(12). We obtain

• For i ≤ Jt(u), ∂aist satisfies the equation

∂aist = ∂ac(ui, ai, su−i
) +

Jt(u)∑
j=i+1

∂xc(uj , aj , su−j
) ∂aisu−j

+
∫ t

ui

∂xb(r, sr) ∂aisr dr . (13)

•

∂2
ai

st = ∂2
ac(ui, ai, su−i

) +
Jt(u)∑
j=i+1

∂2
xc(uj , aj , su−j

)
(
∂aisu−j

)2

+
Jt(u)∑
j=i+1

∂xc(uj , aj , su−j
) ∂2

ai
su−j

+
∫ t

ui

∂xb(r, sr) ∂2
ai

sr dr

+
∫ t

ui

∂2
xb(r, sr) (∂aisr)

2 dr . (14)

• For i < j

∂2
aj ,ai

st = ∂2
a,xc(uj , aj , su−j

) +
Jt(u)∑

k=j+1

∂2
xc(uk, ak, su−k

) ∂aisu−k
∂ajsu−k

+
Jt(u)∑

k=j+1

∂xc(uk, ak, su−k
) ∂2

aj ,ai
su−k

+
∫ t

uj

∂xb(r, sr) ∂2
aj ,ai

sr dr

+
∫ t

uk

∂2
xb(r, sr) ∂aisr ∂ajsr dr , (15)

and for i > j, we obtain ∂2
aj ,ai

st by symmetry.

• ∂βst is computed by

∂βst = 1 +
Jt(u)∑
i=1

∂xc(ui, ai, su−i
) ∂βsu−i

+
∫ t

0
∂xb(r, sr) ∂βsr dr . (16)

Lemma 4.1 (i) The function (a1, . . . , an) → st(u1, . . . , un, a1, . . . , an) ∈ C2
↑(Rn), and

(a1, . . . , an) → ∂βst(u1, . . . , un, a1, . . . , an) ∈ C1
↑(Rn).

(ii) On {JT = n}, |∂ansT |2 ≥ η2 e−2 T K > 0.
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Proof. (i) Proceed by recurrence using hypothesis 4.2 in (12), (13), (14), (15), and in (16).

(ii) Using (13), ∂ansT = ∂ac(tn, an, st−n
) +

∫ T

tn

∂xb(r, sr) ∂ansr dr, so

|∂ansT | =
∣∣∣∂ac(tn, an, st−n

)
∣∣∣ exp

(∫ T

tn

∂xb(r, sr) dr

)
≥ η e−T K .

4.2 Integration by parts formula

We come back to the problem developed in section 1 and we deal with equation (9).
In the case of European options, we write

E

(
φ′(ST )

∂ST

∂β
1{JT =n}

)
= E

[
E

(
φ′(ST )

∂ST

∂β
|σ(Ti, i ∈ N)

)
1{JT =n}

]
= E

(
hn(T1, . . . , Tn)1{JT =n}

)
,

with

hn(t1, . . . , tn)

=E

[
φ′(sT (t1, . . . , tn,∆1, . . . ,∆n))

∂sT

∂β
(t1, . . . , tn,∆1, . . . ,∆n)

]
.

We fix n ≥ 1 and t1, . . . , tn and we apply Theorem 3.1 with
F = sT (t1, . . . , tn,∆1, . . . ,∆n) and G = ∂βsT (t1, . . . , tn,∆1, . . . ,∆n).
By Lemma 4.1, we know that F ∈ S(n,2) and G ∈ S(n,1). So we have to verify that σF is
invertible and that (8) holds true, and then we compute

Hn(F,G) = G γF LF − γF 〈DF,DG〉 −G 〈DF,DγF 〉 . (17)

We have

σF =
n∑

i=1

|∂aisT (t1, . . . , tn,∆1, . . . ,∆n)|2

≥ |∂ansT (t1, . . . , tn,∆1, . . . ,∆n)|2 ≥ η2e−2TK ,

So we can use Theorem 3.1 and we obtain the integration by parts formula (9). For the
computation of the terms involved in the right hand side of (17),

• we use (13) for DF and γF , (16) for G, (13) and (14) for LF , (13), (14) and (15) for DγF ,

• we differentiate with respect to aj in (16) to obtain DG.

In the case of Asian options, the numerical example treated in this paper (see section 6.3) allows
us to write for each fixed n ∈ N∗, on {JT = n},

IT :=
1
T

∫ T

0
Su du = iT (T1, . . . , Tn,∆1, . . . ,∆n), where

(a1, . . . , an) → iT (u1, . . . , un, a1, . . . , an) ∈ C2(Rn) and |∂aniT |2 ≥ δn > 0. Then we can proceed
exactly as before and obtain (17) with
F = iT (t1, . . . , tn,∆1, . . . ,∆n) and G = ∂βiT (t1, . . . , tn,∆1, . . . ,∆n).
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5 Merton Process and Euler scheme

In this section we deal with the Merton model:

St = β +
Jt∑

i=1

c(Ti,∆i, ST−
i

) +
∫ t

0
b(u, Su) du +

∫ t

0
σ(u, Su) dWu ,

where ρ, b and c satisfy the previous hypothesis 4.1, 4.2 and 4.3. Moreover, we assume

Hypothesis 5.1 The function x → σ(u, x) is twice continuously differentiable and there exists
two constants C > 0 and ε > 0 such that:

i) |σ(u, x)| ≤ C (1 + |x|) ,

ii) |∂xσ(u, x)|+
∣∣∂2

xσ(u, x)
∣∣ ≤ C ,

iii) |σ(u, x)| ≥ ε .

We will present two alternative calculus for this model. The first one is based on the Brownian
motion only and the second one is based on both the Brownian motion and the jump amplitudes.
Suppose that the jump times T1 < . . . < Tn are given (this means that we have already simulated
T1, . . . , Tn in the Monte-Carlo algorithm). We include them in the discretization grid: so we
consider a time grid 0 = t0 < t1 < . . . < tm < . . . < tM = T and we assume that Ti = tmi ,
i = 1, . . . , n for some m1 < . . . < mn. For t > 0, we denote m(t) = m if tm ≤ t < tm+1. Then
the corresponding Euler scheme is given by

Ŝt = β +
Jt∑

i=1

c(Ti,∆i, ŜTi−
) +

m(t)−1∑
k=0

σ(tk, Ŝtk) (Wtk+1
−Wtk)

+
m(t)−1∑

k=0

b(tk, Ŝtk)(tk+1 − tk) .

This corresponds to the deterministic equation :

ŝt = β +
Jt∑

i=1

c(ui, ai, ŝu−i
) +

m(t)−1∑
k=0

σ(tk, ŝtk) ∆kw +
m(t)−1∑

k=0

b(tk, ŝtk) (tk+1 − tk) , (18)

where we have denoted by ∆kw = wtk+1
− wtk . So on {Jt = k}, one has

Ŝt = ŝt(T1, . . . , Tk,∆1, . . . ,∆k,∆0W, . . . , ∆m(t)−1W ) ,

where ∆kW = Wtk+1
−Wtk . Moreover we have :

∂∆iŜt = ∂ai ŝt(T1, . . . , Tk,∆1, . . . ,∆k,∆0W, . . . , ∆m(t)−1W ) ,

∂2
∆j ,∆i

Ŝt = ∂2
aj ,ai

ŝt(T1, . . . , Tk,∆1, . . . ,∆k,∆0W, . . . , ∆m(t)−1W ) ,

∂βŜt = ∂β ŝt(T1, . . . , Tk,∆1, . . . ,∆k,∆0W, . . . , ∆m(t)−1W ) ,

∂∆kW Ŝt = ∂∆kwŝt(T1, . . . , Tk,∆1, . . . ,∆k,∆0W, . . . , ∆m(t)−1W ) .

286



The first derivatives of ŝt satisfy the following equations :

∂ai ŝt = ∂ac(ui, ai, ŝu−i
) +

Jt∑
k=i+1

∂xc(uk, ak, ŝu−k
) ∂ai ŝu−k

+
m(t)−1∑

k=i

∂xb(tk, ŝtk) ∂ai ŝtk δk +
m(t)−1∑

k=i

∂xσ(tk, ŝtk) ∂ai ŝtk ∆kw , (19)

∂∆iwŝt = σ(ti, ŝti) +
Jt∑

k=1

∂xc(uk, ak, ŝu−k
) ∂∆iwŝu−k

+
m(t)−1∑

k=i

∂xσ(tk, ŝtk) ∂∆iwŝtk ∆kW +
m(t)−1∑

k=i

∂xb(tk, ŝtk) ∂∆iwŝtk δk , (20)

where δk = tk+1 − tk.
For the derivatives of higher order one may derive similar equations. Now we have the choice
of using the integration by parts formula from the section 2, using ∆iW or both ∆i and ∆iW .
And in each case we have different forms for the differential operators. For example on the set
{Jt = k}

σJ,W
t :=

k∑
i=1

|∂ai ŝt|2 +
m(t)−1∑

i=0

|∂∆iwŝt|2 , (21)

σJ
t :=

k∑
i=1

|∂ai ŝt|2 , (22)

σW
t :=

m(t)−1∑
i=0

|∂∆iwŝt|2 . (23)

(24)

The other differential operators will change in a similar way. Note that ∆iW ∼ N (0, ti+1 − ti)
so that the corresponding LW

i is given by

LW
i ŝt = ∂2

∆iwŝt + θW
i ∂∆iwŝt, with θW

i = − ∆iW

ti+1 − ti
.

Then the Ornstein-Uhlenbeck operator will be

LW Ŝt = −
m(t)−1∑

i=0

LW
i ŝt ,

LJ Ŝt = −
Jt∑

i=1

∂2
∆i

ŝt + θJ
i ∂∆i ŝt ,

LJ,W Ŝt = LJ Ŝt + LW Ŝt .
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Notice that if m = m(t)

σJ,W
t ≥ σW

t ≥
∣∣∂∆m−1W ŝt

∣∣2 =
∣∣σ(tm−1, ŝtm−1)

∣∣2 ≥ ε2 > 0 .

This allows us to use the integration by parts formula corresponding to the Brownian motion
only, or to both Brownian motion and jump amplitudes (the first case leads to the same calculus
as in [6] and [13]). It is more delicate to prove the non degeneracy condition (8) if we only use
the jumps.

6 Numerical results

We compute here the Delta of two European and Asian options (call option with payoff φ(x) =
(x−K)+ and digital option with payoff φ(x) = 1x≥K) with underlying (St)t≥0 following a jump
type diffusion model.
Let N be a compound Poisson process with jump intensity λ. For all i ∈ N∗, we denote ∆i the
jump amplitude of N at the jump time Ti. We suppose that ∆i ∼ N (0, 1), i ≥ 1.
We deal with two different jump diffusion models. The first one is motivated by Vasicek’s model
for interest rates (but we consider a jump process instead of a Brownian motion):

St = S0 −
∫ t

0
r (Su − α) du + σ

Jt∑
i=1

∆i . (25)

The second one is of Black-Scholes type:

St = S0 +
∫ t

0
r Su du + σ

Jt∑
i=1

ST−
i

∆i , (26)

We compare the different Monte Carlo estimators of the Delta, obtained by using

• Finite difference method

• Malliavin calculus

• localized Malliavin calculus.

Remark 6.1 Values of the parameters.
The numerical results are given in figures 3, 5, 4, 6, 7 and 8. We denote by σV and σBS the
parameters corresponding to the Vasicek model (25) and the geometric model (26) respectively.We
choose ‘large’ values for σV (σV = 20 in the numerical results) in order to fit the values usually
used by the practiciens in the Vasicek model. On the contrary, we take weak values for σBS

(σBS = 0.2 in the numerical results) in order to fit the usual values of the volatility in the
Black-Scholes model. And all others parameters (S0, K, r, λ . . .) are the same for both models.
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6.1 Localization method

For European and Asian call options, we use the same variance reduction method as the one
introduced in [9]. For European options, sensitivity analysis using Malliavin calculus leads to

terms such as φ(ST ), Hn(ST ,
∂ST

∂β
) (take IT for ST in the case of Asian options), which may

have a large variance. It is possible to avoid this problem by using a localizing function which
vanishes out of an interval [K − δ , K + δ], for some δ > 0. Let us introduce some notations.

Bδ(s) := 0 if s ≤ K − δ

:= s−(K−δ)
2 δ if s ∈ [K − δ , K + δ]

:= 1 if s ≥ K + δ ,

and
Gδ(t) :=

∫ t
−∞Bδ(s)ds

:= 0 if t ≤ K − δ

:= (t−(K−δ))2

4 δ if t ∈ [K − δ , K + δ]
:= t−K if t ≥ K + δ .

Note that Bδ is the derivative of Gδ. We define

Fδ(t) := (t−K)+ −Gδ(t)
:= 0 if t ≤ K − δ

:= − (t−(K−δ))2

4 δ if t ∈ [K − δ , K]

:= t−K − (t−(K−δ))2

4 δ if t ∈ [K, K + δ]
:= 0 if t ≥ K + δ

Since Fδ(ST ) + Gδ(ST ) = (ST −K)+, we have on {JT = n},

∂βE [(ST −K)+] =
∂

∂β
E [Gδ(ST )] +

∂

∂β
E [Fδ(ST )]

= E [Bδ(ST ) ∂βST ] + E [Fδ(ST ) Hn(ST , ∂βST )] .

Since Fδ vanishes out of [K − δ,K + δ], the value of the second expectation does not blow up as
Hn increases.

6.2 Finite Difference method

Arbitrage theory gives an expression for the price u( , ) of an option, with underlying S and
payoff φ, as the following expected value :

u(0, S0) = E [φ(ST )|S0] .

To compute the Delta, the finite difference method makes a differentiation using the Taylor
expansion of the price with respect to S0. Indeed, we shift S0 with ε and compute the new price
u(0, S0 + ε), then the first term of the Taylor expansion of the price around S0 is given by:

∂u(0, S0)
∂S0

' u(0, S0 + ε)− u(0, S0 − ε)
2ε

.

We choose the symmetric estimator and we use the same simulated paths in the two ”shifted
expectation” in order to reduce the variance.
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6.3 Malliavin estimator

We recall that we have computed the Delta estimator using Malliavin integration by parts
formula (see section 2):

E
(

φ′(ST )
∂ST

∂β

)
' 1

M

M∑
i=1

φ(Si
T ) H i

Ji
T
(Si

T , ∂βSi
T ) 1{Ji

T≥1} + φ′(Si
T )∂βSi

T 1{Ji
T =0} .

We compute here the Malliavin weights H i
JT

(Si
T , ∂βSi

T ).

• We first study the diffusion process defined by (25). We have an explicit expression of ST on
{JT = n}:

ST = S0 e−r T + α (1− e−r T ) + σ

n∑
j=1

∆j e−r (T−Tj) . (27)

In order to compute the Malliavin derivatives of ST involved in the weight HJT
, we differentiate

with respect to the jump amplitudes in (27). Thus, for all 1 ≤ i ≤ n, one has

DiST = σe−r (T−Ti)

D2
iiST = 0

YT :=
∂ST

∂S0
= e−r T

DiYT = 0 ,

and the covariance matrix is defined by :

σT =
n∑

j=1

|DjST |2 = σ2
n∑

j=1

e−2 r (T−Tj) .

Then γT =
1

σT
⇒ DiγT = 0, for all 1 ≤ i ≤ n.

Since
∂ ln ρ(∆)

∂∆
= −∆, one has

LST = −
n∑

j=1

DjST
∂ ln ρ(∆j)

∂∆j
=

n∑
j=1

σ e−r (T−Tj) ∆j .

Finally, using equation (10), on {JT = n}

Hn(ST , YT ) =

n∑
j=1

er Tj ∆j

σ
n∑

j=1
e2 r Tj

. (28)

290



• We study the jump diffusion process defined by (26).
On {JT = n}, we have

ST = S0 er T
n∏

j=1

(1 + σ ∆j) ,

so, for all 1 ≤ i ≤ n,

DiST =
σ ST

1 + σ ∆i
= σ

n∏
j=1, j 6=i

(1 + σ ∆j) .

Notice that if (1 + σ ∆i) = 0, then ST = 0. So we employ the convention
0
0

= 0. This is just a
matter of notation. Let us define

Aσ =
n∑

j=1

1
(1 + σ ∆j)2

(29)

Bσ =
n∑

j=1

∆j

(1 + σ ∆j)
(30)

Cσ =
n∑

j=1

1
(1 + σ ∆j)4

, (31)

then we get, for all 1 ≤ i ≤ n

D2
iiST = 0

YT =
ST

S0

DiYT =
σ ST

S0 (1 + σ ∆i)

σT = σ2 S2
T

n∑
j=1

1
(1 + σ ∆j)2

= σ2 S2
T Aσ (32)

DiσT = (
2 σ3 S2

T

1 + σ ∆i
)
(

Aσ −
1

(1 + σ ∆i)2

)
DiγT = −DiσT

σ2
T

.

Hence, for European options

HE
n (ST , YT ) =

Bσ

σ S0 Aσ
+

1
S0

− 2 Cσ

S0 A2
σ

. (33)

For Asian options, on {JT = n} we have

IT :=
1
T

∫ T

0
Su du =

n∑
j=0

1
T

∫ Tj+1

Tj

Su du ,
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with the convention T0 = 0 and Tn+1 = T . For all t ∈ [Tj , Tj+1[,

St = STj +
∫ t

Tj

r Su du, so St = STj er (t−Tj) and we obtain

IT =
1

r T

n∑
j=0

STj

(
er (Tj+1−Tj) − 1

)
.

Then IT = iT (T1, . . . , Tn,∆1, . . . ,∆n), where for all t ∈ [0, T ], on {Jt = m},

it(u1, . . . , um, a1, . . . , am) =
1
r t

m∑
j=0

st(u1, . . . , uj , a1, . . . , aj)
(
er (uj+1−uj) − 1

)
.

So for all 1 ≤ i ≤ n, we have

DiIT =
σ

T
Ki,T , where Ki,T :=

1
1 + σ ∆i

∫ T

Ti

Su du .

Then we get

D2
iiIT =

1
r T

n∑
j=0

D2
iiSTj

(
er (Tj+1−Tj) − 1

)
= 0

ZT :=
∂IT

∂S0
=

1
T

∫ T

0
Yu du =

IT

S0

DiZT =
σ

T S0
Ki,T

σIT
=

n∑
j=1

|DjIT |2 =
σ2

T 2

n∑
j=1

K2
j,T (34)

DiγIT
= −2 γ2

IT

n∑
j=1

DjIT D2
ijIT ,

with

D2
ijIT =


0 if i = j

σ2

T (1+σ ∆j)
Ki,T if i > j

D2
jiIT if i < j (by symmetry) .

Hence, for Asian options

HA
n (IT , ZT ) = − 1

S0
+

K0,T

σ S0 K

 n∑
j=1

∆j Kj,T +
4 σ

K

n∑
i,j=1
i6=j

K2
j,T

Ki,T

1 + σ ∆i

 , (35)

where K =
n∑

j=1

K2
j,T and Kj,T =

1
1 + σ ∆j

∫ T

Tj

Su du.

After simulating trajectories of the specified diffusion, we can compute the Malliavin weights by
(28), (33) and (35). Note that we only need to know the amplitudes and the times of the jumps
to state a Monte-Carlo estimator of the Delta.
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Remark 6.2 For this model, ∂ac(t, a, x) = σ x so hypothesis 4.3 is not satisfied. But, using the
localization method (that is ST ∈ [K − δ,K + δ] and so IT ∈ [K − δ,K + δ]), the non degeneracy
condition (8) still holds true: (32) and (34) give

σ4
T ≥ σ8 S8

T

1
(1 + σ ∆1)

8 ≥ (σ (K − δ))8
1

(1 + σ ∆1)
8 ,

σ4
IT
≥ σ8 K8

1,T

1
T 8

≥ σ8 I8
T

1
(1 + σ ∆1)

8 ≥ (σ (K − δ))8
1

(1 + σ ∆1)
8 .

Since E|∆1|8 < ∞, E(γ4
T ) < ∞ and E(γ4

IT
) < ∞.

6.4 Merton Process

Here we focus on the Merton model (2):

St = S0 +
∫ t

0
r Su du +

∫ t

0
σ Su dWu + µ

Jt∑
i=1

ST−
i

∆i , (36)

where W is a Brownian motion independent on the compound Poisson process N . We suppose
that the jump amplitudes ∆i are independent, identically and Gaussian distributed. We have
the explicit solution:

ST = S0 exp
(

(r − σ2

2
) T + σ WT

) JT∏
j=1

(1 + µ∆j) , (37)

so we do not need to use Euler’s scheme.
On {JT = n}, n ∈ N∗, the source of randomness is H = (∆1, . . . ,∆n,WT ). For all i ∈ {1, . . . , n},

DN
i (ST ) :=

∂ST

∂∆i
=

µST

1 + µ∆i
(38)

DW (ST ) :=
∂ST

∂WT
= σ ST . (39)

Then we can compute all the terms involved in the Malliavin weight.

DN
i (DN

i ST ) = 0
DW (DW ST ) = σ2 ST

YT =
ST

S0

DN
i (YT ) =

µST

S0 (1 + µ∆i)

DW (YT ) = σ YT .

The covariance matrix is

σT = |DW (ST )|2 +
n∑

i=1

|DN
i (ST )|2 = µ2 S2

T

n∑
j=1

1
(1 + µ∆j)2

+ σ2 S2
T .
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Straightforward computations give

DN
i (σT ) =

2 µ3 S2
T

(1 + µ∆i)
(Aµ −

1
(1 + µ∆i)2

) +
2 σ2 µST 2
1 + µ∆i

DW (σT ) = 2 σ µ2 S2
T Aµ + 2 σ3 S2

T

DN
i (γT ) = −DN

i (σT )
σT 2

DW (γT ) = −DW
i (σT )
σT 2

,

where Aµ is given by (29).
We put these terms together to get the Malliavin weight:

H =
µBµ + σ WT

T − σ2

S0 (µ2 Aµ + σ2)
+

1
S0

− 2 µ4 Cµ

S0 (µ2 Aµ + σ2)2
, (40)

where Bµ and Cµ are defined by (30) and (31) respectively.

Recently in [6] and [13], the Delta of an European option is computed by using the Malliavin
calculus with respect to the Brownian motion only. Notice that if we use our integration by parts
formula, but we just take into account the derivatives with respect to the Brownian motion, we

find H =
WT

S0 σ T
, which is exactly the weight obtained in [13] (as well as in Black-Scholes). So

the difference between our algorithm and the one of [13] comes from the supplementary part
(corresponding to the derivatives with respect to the jump amplitudes) which appears in our
Malliavin weight H. In figure 2, we compare the two algorithms. Moreover, in table [1], we
give the quotient between the empirical variances of the two algorithms. It turns out that the
variance of the Brownian-jump algorithm (presented here) is smaller than the variance of the
pure Brownian algorithm (presented in [13]). Moreover, the difference becomes more important
as the number of jumps up to T increases: this happens when the maturity T is larger or when
the intensity λ of the Poisson measure is larger. We conclude that more noise one uses in the
integration by parts formula, better the algorithm works (there is no theoretical result in this
sense, but only numerical evidence).

T \λ 1 4 8 12
1 2,15 7,27 19,88 16,43
2 1,72 12,17 22,12 36,44
3 2,94 7,15 24,30 35,58

Table 1: variance Brownian
variance Brownian−Jump for Digital delta with different maturity and jump intensity
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Figure 1: Delta of Digital option for a Merton Process
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Figure 2: Zoom of figure 1
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6.5 figures and comments
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Figure 3: Delta of an European digital option using Malliavin calculus and finite Difference
Method. Vasicek model.
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Figure 4: Delta of an European call option using Malliavin calculus and finite Difference Method.
Vasicek model.
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Figure 5: Delta of an European digital option using Malliavin calculus and finite Difference
Method. Geometrical model.
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Figure 6: Delta of an European call option using Malliavin calculus and finite Difference Method.
Geometrical model.
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Figure 7: Delta of an Asian call option using localized Malliavin calculus and finite Difference
Method. Geometrical model.
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Figure 8: Delta of an Asian digital option using localized Malliavin calculus and finite Difference
Method. Geometrical model.

These figures confirm that we can numerically compute the Greeks for European options with a
pure jump underlying process. We obtain numerical results similar to those in the Wiener case
([9] and [8]).
On the one hand, for European and Asian Call options, the Malliavin estimator has more variance
than the finite difference one (see figures 4, 6 and 7): the finite difference method approximates
the first derivative of the payoff, whereas the Malliavin estimator contains a weight independent
on the payoff, which may increase the variance. Using a localization technique permits to reduce
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the variance of the Malliavin estimator and to make it closer to the finite difference one.
On the other hand, the Malliavin estimator of a Digital option has less variance than the finite
difference one (see figures 3 and 5) and so does not need to be localized: in this case, the first
derivative of the payoff is a Dirac and, contrary to the finite difference method, the Malliavin
calculus permits to avoid this strong discontinuity.
Finally, notice that for both call and digital options, the finite difference method requires to
simulate twice more samples of the asset than the Malliavin method does : the finite difference
method uses the samples starting from S0 and those starting from S0 + ε. So the Malliavin
method is less time consuming.

Conclusion

In order to develop a Malliavin calculus for jump processes, we worked here on a space of simple
functionals of a finite set of random variables representing the source of randomness. First, we
applied the Malliavin calculus to pure jump processes, by differentiating with respect to the
jump amplitudes. Second, in the case of Merton process, we used the total randomness coming
from the jump amplitudes and the Brownian increments. Then, for the sensitivity analysis, we
have set up (under some non degeneracy conditions) an integration by parts formula, which
permits to replace the derivative of the payoff by a Malliavin weight.

The Numerical experiments show that using Malliavin approach becomes extremely efficient
for a discontinuous payoff. Some specific techniques can be used to reduce the variance of the
Malliavin estimator.
For the Merton process, we compare our Delta estimator with the one where one omits the
presence of the jump process (that is we do not differentiate with respect to the jump amplitudes).
The results show that it is better to use the two sources of randomness especially when we have
more jumps.
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