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Abstract

In the paper, [1], we provide an expression for the variance of the counting functions associated

with the spatial particle configurations formed by infinite systems of independent symmetric α-

stable processes. The formula (2.3) of the original paper, is in fact the correct expression for the

expected conditional number variance. This is equal to the full variance when L is a positive

integer multiple of the parameter a but, in general, the full variance has an additional bounded

fluctuating term. The main results of the paper still hold for the full variance itself, although

some of the proofs require modification in order to incorporate this change.
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The necessary changes are, referring to the numbering of the original paper, as follows.

Theorem 2.2

The theorem is true as stated for the expected conditional number variance. However, in order to

incorporate the full variance, the statement of Theorem 2.2 should now read as follows

Theorem 2.2. Fix a symmetric α-stable process (Xα,c(t), t ≥ 0) on R. Suppose we start an independent

copy of this process from each of the starting positions

u j := a( j − ε), j ∈ Z, where a ∈ R+ and ε∼ Uniform[0,1]. (1)

The counting function associated with the configuration of particles in space formed by this infinite

system at a fixed time t and given by

N
α,c,a
t [0, L] =

∞
∑

j=−∞

I[X
α,c
j
(t) + u j ∈ [0, L]], (2)

has variance

Var
�

N
α,c,a
t [0, L]
�

= V
α,c,a
t [L] + Fα,c,a[L].

The terms of this decomposition correspond to the expected conditional number variance given by

V
α,c,a
t [L] =

L

a
+

2

π

∫ ∞

0

e−2c t(θ/a)α

θ2

h

cos
� Lθ

a

�

− 1
i

dθ (3)

=
4L

aπ

∫ ∞

0

sin2(u/2)

u2

�

1− e−2c t(u/L)α�du (4)

and an additional fluctuating term satisfying

0≤ Fα,c,a[L] ≤
2

π

∫ ∞

0

e−2c t(θ/a)α

θ2

h

1− cos

�

� L

a
−
j L

a

k�

θ

�

i

dθ (5)

≤
L

a
−
j L

a

k

,

where here and throughout ⌊·⌋ denotes the floor function.

Proof. As the particles move from a uniformly perturbed starting position, the general decomposi-

tion for the number variance is

Var
�

N
α,c,a
t [0, L]
�

= Eε

h

Var
�

N
α,c,a
t [0, L]
�

�ε]
i

+ Varε

h

E
�

N
α,c,a
t [0, L]
�

�ε]
i

.

The computation of the first term, corresponding to the expected conditional number variance is

what we computed originally and remains valid. The derivation of the formula for the variance

given as (2.7) in [1] implicitly assumes that the second part of the decomposition is identically zero.

This is in fact not the case in general. We now remedy this by computing the additional term.
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We have

Fα,c,a[L] := Varε

h

E
�

N
α,c,a
t [0, L]
�

�ε]
i

.

Note that

E
�

N
α,c,a
t [0, L]
�

�ε] =

∞
∑

j=−∞

P
�

X
α,c
j
(t/aα) + ( j − ε) ∈ [0, L/a]|ε

�

=

∞
∑

j=−∞

P
�

X
α,c
j
(t/aα) + ( j − ε) ∈ [0, ⌊L/a⌋]|ε

�

+

∞
∑

j=−∞

P
�

X
α,c
j
(t/aα) + ( j − ε) ∈ [⌊L/a⌋, L/a]|ε

�

=
j L

a

k

+

∞
∑

j=−∞

P
�

X
α,c
j
(t/aα) + ( j − ε) ∈ [⌊L/a⌋, L/a]|ε

�

.

Once this is noted, straightforward manipulations similar to those of the original paper yield

Fα,c,a[L] = Varε

h
∞
∑

j=−∞

P
�

X
α,c
j
(t/aα) + j − ε ∈ [⌊L/a⌋, L/a]|ε

�

i

=
L

a
−
j L

a

k

− V
α,c,a
t

h

a
� L

a
−
j L

a

k�i

−

∞
∑

j=−∞

�

∫ 1

0

∫ L/a−⌊L/a⌋

0

p2t/aα( j − ε, z)dzdε
�2

.

The inequalities for the fluctuating term stated in the Theorem now follow directly from the expres-

sion for V
α,c,a
t .

Theorem 2.3, Corollaries 2.4, 2.5 and 2.7.

The statements of the proceeding results on the growth, saturation and divergence of the number

variance (Theorem 2.3, Corollaries 2.4, 2.6 and 2.7) remain valid on replacing “number variance”

with “expected conditional number variance”. If we were to consider the full variance, since the

additional fluctuation term is bounded by one, there is only a small change though clearly the full

variance does not converge.

Our original motivation for this work was a paper of Kurt Johansson’s [2] on the saturation be-

haviour of the expected number variance of some point processes constructed from systems of non-

colliding Brownian motions. Our results, as stated, are therefore directly comparable.

Consequent Modifications

As the particles of our model are only conditionally independent given the initial displacement ε, the

proofs that assumed full independence of particles and the statements that make use of the original

expression for the variance therefore need to be modified.
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Proposition 2.11 is incorrect as stated but as it is not very important for the overall development of

the paper we shall not remedy this here.

Proposition 3.1 holds true though the proof needs to modified slightly as we shall elaborate below.

The Proposition can also be restated in terms of the full variance. In order to do this we first recall

some notation. Let N
α,c,a
t [0, L], Var
�

N
α,c,a
t [0, L]
�

and V
α,c,a
t [L] denote the counting function, its

variance and expected conditional number variance.

Proposition 3.1. For α ∈ (0,1] we have that

N
α,c,a
t [0, L]− L/a
p

Var
�

N
α,c,a
t [0, L]
�

(6)

converges in distribution to a standard normal random variable as L→∞.

Proof. In the original paper we in fact consider the generating function

JNε(θ ) := logEP[exp(iθN
α,c,a
t [0, L])|ε]

of the conditional cumulants cε
k

of N
α,c,a
t [0, L] given ε. Note that the generating function JN (θ ) for

the cumulants ck of N
α,c,a
t [0, L] can be expressed in terms of JNε(θ ) by

JN (θ ) = log
�

∫ 1

0

exp
�

JNε(θ )
�

dε
�

.

In particular, it may be verified that

JN (θ )−

∫ 1

0

JNε(θ )dε

is bounded. This in turn implies that the cumulants are of the form

ck =

∫ 1

0

cεkdε+ bounded term . (7)

It is easily checked that

c1 =
d

dθ
JN (θ )

�

�

�

θ=0
=

∫ 1

0

cε1dε= L/a

c2 =
d2

dθ2
JN (θ )

�

�

�

θ=0
=

∫ 1

0

cε2dε+

∫ 1

0

�

cε1
�2

dε−
�

∫ 1

0

cε1dε
�2

= Var
�

N
α,c,a
t [0, L]
�

.

To prove the Proposition as stated here it is sufficient to show that in the limit as L → ∞, the

cumulants of the rescaled random variable

N
α,c,a
t [0, L]− L/a
p

Var
�

N
α,c,a
t [0, L]
�
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correspond to those of a standard Gaussian random variable. Following the same approach as in the

original proof we therefore need to show that

ck = o
��

Var
�

N
α,c,a
t [0, L]
��k/2�

= o(c
k/2
2 ) as L→∞, for k ≥ 3.

In the original paper we show that

cεk = o((cε2)
k/2) as L→∞, for k ≥ 3.

Since cε2 ≤
∫ 1

0
cε2dε ≤ c2 this implies both that

cεk = o((V
α,c,a
t [L])k/2) as L→∞, for k ≥ 3,

and

cεk = o((c2)
k/2) as L→∞, for k ≥ 3.

From (7) note that this is enough to conclude the required result when scaling by the full variance.

In the case where we scale by the expected conditional number variance (as originally) this gives us

convergence to a Gaussian random variable with mean zero and variance

lim
L→∞

Var
�

N
α,c,a
t [0, L]
�

V
α,c,a
t [L]

= 1

since the fluctuation term is bounded.

Proposition 3.3 remains true as stated. The proof may be adapted in the same vein as above. We

note that

Var
�

N
α,c,a
t [0, st1/α]
�

t1/α
=

V
α,c,a
t [st1/α]

t1/α
+

Fα,c,a(st1/α)

t1/α

=
4s

aπ

∫ ∞

0

sin2(u/2)

u2

�

1− e−2c(u/s)α�du+
Fα,c,a(st1/α)

t1/α
.

and observe that since 0 ≤
Fα,c,a(st1/α)

t1/α ≤ 1

t1/α the additional term disappears on taking the limit

t →∞.

The expression describing the covariance structure of the fluctuation process needs to be corrected

to incorporate the additional fluctuation terms. Note in particular that the covariance structure does

now in fact depend on t. Proposition 4.1 should now read

Proposition 4.1. {Z
α,c,a
t (s); s ∈ [0,∞)} has covariance structure

Cov
�

Z
α,c,a
t (r), Z

α,c,a
t (s)
�

=
f α,c,a(s) + f α,c,a(r)− f α,c,a(|r − s|)

2

+
Fα,c,a(st1/α) + Fα,c,a(r t1/α)− Fα,c,a(|r − s|t1/α)

2t1/α
.

Proof. The method of the proof is exactly the same but the variance terms are replaced with the new

expression and this leads to the additional terms.
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Proposition 4.2 remains true as stated with a suitable modification of the proof. Since
�

Fα,c,a(st1/α) + Fα,c,a(r t1/α)− Fα,c,a(|r − s|t1/α)
�

2t1/α
→ 0

as t → ∞ the covariance structure of Z
α,c,a
t and {Gα,c,a(s) : s ∈ [0,∞)} coincide in the limit. Due

to the incorrect assumption of full independence of particles, the proof needs to be adapted. By an

analogous argument to the above, proving that the cumulants of the conditional two dimensional

joint distribution of (Z
α,c,a
t (s1), Z

α,c,a
t (s2)) given ε converge to the cumulants of a two-dimensional

Gaussian distribution is sufficient to deduce that in fact the cumulants of the two dimensional joint

distribution of (Z
α,c,a
t (s1), Z

α,c,a
t (s2)) also converge to Gaussian cumulants. Hence

(Z
α,c,a
t (s1), Z

α,c,a
t (s2))→MultivariateNormal(0,Σα,c,a) (8)

in distribution as t →∞, where Σα,c,a is the 2× 2 covariance matrix
�

f α,c,a(s1)
1

2

�

f α,c,a(s1)+ f α,c,a(s2)− f α,c,a(|s1− s2|)
�

1

2

�

f α,c,a(s1)+ f α,c,a(s2)− f α,c,a(|s1− s2|)
�

f α,c,a(s2)

�

.

as before.

Lemma 4.9 remains true as stated for t ≥ 1, with only a small modification of the proof. The

application of Chebyshev’s inequality to obtain the first upper bound of the proof needs to be edited

to incorporate the true variance. The inequality should in fact read

P
�

|Z
α,c,a
t (rk j+v)− Z

α,c,a
t (rk j+u)| ≥ γ

�

≤
f α,c,a(|rk j+v − rk j+u|)

γ2

+
Fα,c,a[|rk j+v − rk j+u|]

t1/α

≤ 2
(v − u)t−1/α

aγ2

for t ≥ 1. The additional factor of two is absorbed by the constant κ in the statement of the Lemma.

As far as we are aware other statements and proofs are unaffected by the error.
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