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Abstract

Some probabilistic aspects of the number variance statistic are investigated. Infinite systems
of independent Brownian motions and symmetric α-stable processes are used to construct
explicit new examples of processes which exhibit both divergent and saturating number
variance behaviour. We derive a general expression for the number variance for the spa-
tial particle configurations arising from these systems and this enables us to deduce various
limiting distribution results for the fluctuations of the associated counting functions. In par-
ticular, knowledge of the number variance allows us to introduce and characterize a novel
family of centered, long memory Gaussian processes. We obtain fractional Brownian motion
as a weak limit of these constructed processes.
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1 Introduction

Let (X,F , P) be a point process on R, that is, a collection X := {(xi)
∞
i=−∞ : xi ∈

R, ∀i and #(xi : xi ∈ [b, b + L]) < ∞ ∀ b ∈ R, L ∈ R+}, with F the minimal σ-algebra gener-
ated by these point configurations and P some probability measure on (X,F). The associated
counting function is

N [b, b + L] = #(xi : xi ∈ [b, b + L])

The number variance is then defined as

V arP(N [b, b + L])

More generally, in order to deal with non-spatially homogeneous cases, it is more convenient to
work with the averaged number variance which we define as

V [L] := Eb[V ar(N [b, b + L])]

taking an appropriate uniform average of the number variance over different intervals of the same
length. As we increase the length L of the underlying interval the number of points contained
in that interval will also increase. However, in many situations, it is not immediately clear
what will happen to the variance of this number as the interval length grows. One of the main
questions considered in this paper will be the behaviour of V [L] as L → ∞. We shall see that,
somewhat counter-intuitively, in some instances we have

lim
L→∞

V [L] = κ < ∞,

in which case we will say that the number variance saturates to the level κ ∈ R+.

The number variance statistic arises in a wide variety of contexts; effectively in any situation in
which points or occurrences of events are counted. In many of these cases, it is advantageous
to determine the growth behaviour of the statistic. In the fields of random matrix theory (see
e.g. (22; 13)) and quantum theory (e.g (3; 20)) for instance this is used as an indicator of
spectral rigidity. In the study of quantum spectra, the manner in which the number variance (of
eigenvalues) grows with interval length provides an indication of whether the underlying classical
trajectories are integrable, chaotic or mixed. In the large energy limit, the spectral statistics of
a quantum system with strongly chaotic classical dynamics, should, according to the conjecture
of Bohigas, Giannoni and Schmidt (7), agree with the corresponding random matrix statistics
which are independent of the specific system. However, in reality, for many such systems, when
it comes to the long range “global” statistics, this random matrix universality breaks down. In
these cases, the number variance typifies this transition to non-conformity in that following an
initial random matrix consistent logarithmic growth with interval length, the number variance
then saturates.

Attempts to improve the understanding of the deviations from random matrix predictions have
led to convincing explanations for number variance saturation behaviour in terms of periodic
orbit theory, see for example (4; 5; 1). In (4) there is a heuristic derivation of an explicit formula
for the empirical number variance of the zeros of the Riemann zeta function on the critical line
which is consistent with numerical evidence.

Asymptotically bounded and saturating number variances have also been studied in the literature
on point processes where the property is referred to as that of “controlled variability”. See for
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instance (14; 19) and the more recent article (11) which provide interesting examples with
applications to the outputs of certain queues.

In the last few years, number variance has been considered from a slightly different viewpoint in
relation to point processes with determinantal structure (see (27) for background on this topic).
Results on the growth of the number variance for these processes are given in e.g. (27; 28). The
emphasis in these cases is on ascertaining the divergence of the number variance as this, it turns
out, is the key ingredient needed to prove Gaussian fluctuation results for the counting functions
of a large class of determinantal processes, including those arising naturally in the context of
random matrix theory.

Motivated by the Riemann zeta example, Johansson (16) recently introduced an example of a
point process with determinantal structure which demonstrates the same type of number variance
saturation behaviour as conjectured by Berry ((4)) for the Riemann zeroes. This process is
constructed from a system of n non-colliding Brownian particles started from equidistant points
uj = Υ + a(n − j) with Υ ∈ R, a ∈ R+ j = 1, . . . , n. There are a number of approaches
to describing such a system, see (15; 17) for details. In any case, it can be shown that the
configuration of particles in space formed by the process at a fixed time t, is a determinantal

process and as such its correlation functions (or joint intensities) R
(n)
m take the form

R(n)
m (x1, x2, . . . , xm)dx1 . . . dxm = det

(
K

(n)
t (xi, xj)

)m

i,j=1
dx1 . . . dxm. (1.1)

Here and for determinantal processes in general, the above expression may be interpreted as the
probability of finding m of the points in the infinitesimal intervals around x1, x2, . . . , xm. The

exact expression for the correlation kernel K
(n)
t can be found in (16)

As the number of particles n → ∞, Johansson shows that the correlation kernel K
(n)
t converges

uniformly to a limiting kernel which defines, at each time t, a limiting, non-spatially homogeneous
determinantal process. The resulting process may loosely be thought of as the fixed time spatial
particle configuration formed by an infinite system of non-colliding Brownian particles started
from an equispaced initial configuration. When the interval length L is small relative to d := 2πt

a2 ,
the averaged number variance for this process has leading term

1

π2
(log(2πL/a) + γEuler + 1). (1.2)

However, if d is held constant, while L is increased, it is deduced that the number variance
saturates to the level

1

π2
(log(2πd) + γEuler + 1). (1.3)

The “small L” expression (1.2) agrees with the number variance of the determinantal point
process associated with the sine kernel of density a, which is the universal scaling limit obtained
for the eigenvalues of random matrices from e.g. the Gaussian Unitary Ensemble and U(n), as
matrix size tends to infinity (see for example, (22)).

For our purposes it will be convenient to think of the above averaged number variance as the
number variance of the spatial particle configurations arising from an “averaged model” which
we choose to interpret as an infinite system of non-colliding Brownian motions started from the
initial positions

uj = a(j − ǫ), j ∈ Z, a ∈ R+, ǫ ∼ Uniform[0, 1]. (1.4)

865



In this work we consider the number variance statistic in the independent process analogues of
Johansson’s model. Since these independent versions do not fall into the previously considered
frameworks mentioned above, existing number variance results no longer apply.

The paper is organized as follows. We begin by deriving an explicit general formula for the num-
ber variance for the spatial particle configurations arising from infinite systems of independent
Brownian motions and symmetric α-stable processes in R started from the initial configuration
(1.4). This enables us to deduce the asymptotic behaviour of the statistic as the length of the
interval over which it is defined goes to infinity. We give a precise formula for the saturation
level for the cases in which saturation does occur. Once this is achieved we are able to explain
the number variance saturation phenomenon in terms of the tail distribution behaviours of the
underlying processes. We provide two specific illustrative examples as corollaries. We conclude
the first section by demonstrating the close relationship between the number variance and the
rate of convergence of the distribution of the associated counting function to a Poisson law.

In the second section we use the number variance to prove Gaussian fluctuation results for the
counting functions of our particle configurations in two different scalings. In the third and final
section we add some dynamics to the fluctuations of the counting functions to construct a collec-
tion of processes, each of which is shown to converge weakly in C[0,∞) to a centered Gaussian
process with covariance structure similar in form to that of a fractional Brownian motion. Our
earlier results on the behaviour of the number variance allow us to better characterize these lim-
iting processes. In particular, the long-range dependence property exhibited by the covariance of
their increments is directly determined by the rate of growth of the associated number variance.
In the cases corresponding to α ∈ (0, 1), a further rescaling of the limiting Gaussian processes
allow us to recover fractional Brownian motions of Hurst parameters 1−α

2 as weak limits.

2 The independent particle cases

2.1 A Poisson process initial configuration

We begin by illustrating the effect of the initial positions on the number variance of the spatial
particle configurations arising from such infinite systems of processes as those considered in this
paper. The following theorem is the well known result (see for example, (9), Chapter VIII,
section 5) that the Poisson process is invariant for an infinite system of independent particles
with the same evolution.

Theorem 2.1. Consider an infinite collection of independent, identical in law, translation in-
variant real-valued stochastic processes {(Xj(t), t ≥ 0); j ∈ Z}. Suppose that {Xj(0)}∞j=−∞ is a
Poisson process of intensity θ on R. Then {Xj(t)}∞j=−∞ is a Poisson process of intensity θ for
every t.

Consequently, if we begin with a “mixed up” Poisson process initial configuration and allow
each particle to move as (say) a Lévy process, independently of the others then we observe a
non-saturating, linearly growing number variance (V [L] = θL) at the start and for all time.
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2.2 The Brownian and symmetric α-stable cases

This last theorem served to highlight the importance of the regularity or rigidity of the starting
configuration (1.4) in determining the number variance behaviour. However, it is reasonable
to suppose, that in Johansson’s model, the strong restrictions placed on the movement of the
Brownian particles must also contribute significantly to the saturation behaviour that its number
variance demonstrates. This leads us to ask; what would happen if we started with an initial
configuration such as (1.4) but did not place such strong restrictions on the movement of the
particles? We answer this question for the cases in which each particle moves independently as
a one-dimensional Brownian motion or as a symmetric α-stable process on R.

Recall (see e.g. (24)) that a symmetric α-stable process is a Lévy process (Xα,c(t), t ≥ 0) with
characteristic function, for each t ≥ 0, given by

φXα,c(t)(θ) := E
[
eiθXα,c(t)

]

= exp
(
− t c |θ|α

)
, c > 0, α ∈ (0, 2). (2.1)

Some of the properties enjoyed by this class of processes are;

• {Xα,c(t), t ≥ 0} with associated transition density pt(x, y) , x, y ∈ R is temporally and
spatially homogeneous.

• {Xα,c(t)} is symmetric and self-similar in the sense that {Xα,c(t)} dist
= {−Xα,c(t)} and

{λ−1/αXα,c
(
λt
)
} dist

= {Xα,c(t)} for constants λ ∈ R.

The arguments that follow also apply to the α = 2 Gaussian cases. Note that we have standard
Brownian motion when α = 2, c = 1

2 .

Theorem 2.2. Fix a symmetric α-stable process (Xα,c(t), t ≥ 0) on R with properties as de-
scribed above. Suppose we start an independent copy of this process from each of the starting
positions

uj := a(j − ǫ), j ∈ Z, where a ∈ R+ and ǫ ∼ Uniform[0, 1]. (2.2)

The configuration of particles in space formed by this infinite system of independent symmetric
α-stable processes at a fixed time t has number variance

V α,c,a
t [L] =

L

a
+

2

π

∫ ∞

0

e−2ct(θ/a)α

θ2

[
cos
(Lθ

a

)
− 1
]
dθ (2.3)

=
4L

aπ

∫ ∞

0

sin2(u/2)

u2

(
1 − e−2ct(u/L)α)

du. (2.4)

Proof. Let {(Xα,c
j (t), t ≥ 0), j ∈ Z} be the independent copies of the chosen symmetric α-stable

process indexed by j ∈ Z. Denote the law of each Xα,c
j started from x ∈ R by P

x, and write

P := P
0. Now the number of symmetric α-stable particles in an interval [0, L] ⊂ R at time t is

given by the sum of indicator random variables

Nα,c,a
t [0, L] =

∞∑

j=−∞
I[Xα,c

j (t) + uj ∈ [0, L]], (2.5)
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where (uj)
∞
j=−∞ is given by (2.2). Note that by construction, for this “averaged model”, for all

b ∈ R we have Nα,c,a
t [0, L]

dist
= Nα,c,a

t [b, b + L]. Thus the number variance is given by

V α,c,a
t [L] := Var

[
Nα,c,a

t [0, L]
]

=

∞∑

j=−∞
P[Xα,c

j (t) + uj ∈ [0, L]] P[Xα,c
j (t) + uj /∈ [0, L]]. (2.6)

We can use the self-similarity property and the independence of ǫ and the Xj to write the
probabilities under consideration as convolutions which then allows us to deduce

∞∑

j=−∞
P[Xα,c

j (t) + a(j − ǫ) ∈ [0, L]] =

∫ ∞

−∞

∫ L/a

0
pt/aα(x, y) dy dx.

Hence

V α,c,a
t [L] (2.7)

=

∫ ∞

−∞

∫ L/a

0
pt/aα(x, y) dy dx

︸ ︷︷ ︸
T1

−
∫ ∞

−∞

∫ L/a

0

∫ L/a

0
pt/aα(x, y)pt/aα(x, z) dz dy dx

︸ ︷︷ ︸
T2

.

By Fubini’s Theorem and symmetry we have

T1 =

∫ L/a

0

∫ ∞

−∞
pt/aα(y, x) dxdy =

L

a
. (2.8)

For the other term we make use of the Chapman-Kolmogorov identity and the spatial homo-
geneity before performing an integral switch to obtain

T2 =

∫ L/a

0

∫ (L/a)−y

−y
p2t/aα(0, z) dz dy

=
L

a

∫ L/a

−L/a
p2t/aα(0, z) dz +

∫ 0

−L/a
z p2t/aα(0, z) dz −

∫ L/a

0
z p2t/aα(0, z) dz.

From the symmetry property we know that, for each t, pt(0, z) is an even function in z and
g(z) := z pt(0, z) is an odd function in z. These facts allow us to conclude, bringing the two
terms together,

V α,c,a
t [L] =

2L

a

∫ ∞

L/a
p2t/aα(0, z) dz + 2

∫ L/a

0
z p2t/aα(0, z) dz. (2.9)

Applying Fourier inversion to the characteristic function φXα,c(t)(θ) given at (2.1), we deduce
that the transition density can be expressed as

pt(0, z|α, c) =
1

π

∫ ∞

0
cos(zθ)e−ctθα

dθ.

Using this density, the symmetry property and the expression (2.9) we obtain

V α,c,a
t [L] =

L

a
+

2

π

∫ ∞

0

e−2ct(θ/a)α

θ2

[
cos
(Lθ

a

)
− 1
]
dθ.
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Now making the change of variable u = Lθ/a, using
∫∞
0 sin2(u/2)/u2du = π/4 and a double

angle formula yields the given alternative expression for the number variance.

Having found a general expression for the number variance we are able to consider its behaviour
as the interval length L is increased. Note that given positive real valued functions g and h we
let g ∼ h signify that lim g

h = 1.

Theorem 2.3. Consider the number variance V α,c,a
t [L] for the system of symmetric α-stable

processes considered above.

V α,c,a
t [L] ∼





kα
2ct
a L1−α + κsat(α, c, a, t), for α ∈ (0, 1) ∪ (1, 2),

kα
2ct
a log(L) + κsat(α, c, a, t), for α = 1,

a√
2cπt

e−L2/8ct + κsat(α, c, a, t), for α = 2,

(2.10)

as L → ∞, with kα =
( ∫∞

0 x−α sin xdx
)−1

and

κsat(α, c, a, t) =
2

aπ
(2tc)1/αΓ

(
1 − 1

α

)
, (2.11)

where Γ(x) :=
∫∞
0 sx−1 e−s ds is the usual Gamma function.

Proof. From (2.9) note that we may re-write the expression for the number variance as

V α,c,a
t [L] =

L

a
P

[∣∣∣Xα,c
( 2t

aα

)∣∣∣>L/a
]
+EP

[∣∣∣Xα,c
( 2t

aα

)∣∣∣ ;
∣∣∣Xα,c

( 2t

aα

)∣∣∣<L/a
]
, (2.12)

Now the behaviour of the first term in this expression is well known (see (23), page 16). For
α ∈ (0, 2) we have

L

a
P

[∣∣∣Xα,c
( 2t

aα

)∣∣∣ > L/a
]
∼ kα

2ct

a
L1−α as L → ∞,

where kα is as above. When α = 1, the L1−α in the expression is replaced by log(L). In the
Gaussian case (α = 2) we have instead

L

a
P

[∣∣∣X
( 2t

a2

)∣∣∣ > L/a
]
∼ a√

2cπt
e−L2/8ct as L → ∞.

To deal with the second term of (2.12) observe that we have

EP

[∣∣∣Xα,c(2t/aα)
∣∣∣ ;
∣∣∣Xα,c(2t/aα)

∣∣∣ < L/a
]

L→∞→ EP

[∣∣∣Xα,c(2t/aα)
∣∣∣
]

=

∫ ∞

0
P

[∣∣∣Xα,c(2t/aα)
∣∣∣ > λ

]
dλ.

Thus it is clear that the rate of divergence or saturation of the number variance is determined by
the upper tail of the distribution of the underlying symmetric α-stable process. Consequently,
for α ∈ (1, 2] (the saturating cases)

lim
L→∞

V α,c,a
t [L] = EP

[∣∣∣∣∣X
α,c
( 2t

aα

)∣∣∣∣∣

]
=: κsat(α, c, a, t) < ∞.
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The exact expression for κsat is obtained from the moments. By (25), if X is a symmetric
α-stable random variable with 0 < α ≤ 2 and scale σ, then for −1 < δ < α we have

E

[∣∣X
∣∣δ
]

=
σδ/α 2δ Γ

(
1+δ
2

)
Γ
(
1 − δ/α

)

Γ(1/2) Γ(1 − δ/2)
.

Applying this theorem with δ = 1, σ = 2ct
aα gives (2.11). To see how this fits in with the integral

expression for V α,c,a
t [L], it may be verified that for α ∈ (1, 2]

κsat(α, c, a, t) = − 2

π

∫ ∞

0

e−2ct(θ/a)α

θ2
dθ.

The saturation result is now a consequence of Theorem 2.3.

Corollary 2.4. 1. If α ∈ (0, 1], at each time t > 0, V α,c,a
t [L] diverges as L → ∞.

2. If α ∈ (1, 2], at each time t < ∞, V α,c,a
t [L] saturates to the level κsat(α, c, a, t) as L → ∞.

Remark 2.5. Even from the simplest equation (2.6) it is clear that the largest contributions
to the number variance come from the activity at the edges of the interval under consideration.
Thus intuitively, the fatter the tails of the distributions concerned the greater the number of
particles that may be in the vicinity of these edges making these substantial contributions and
consequently the slower the decay in the growth of the number variance.

We now apply Theorems 2.2 and 2.3 to two well known examples.

Corollary 2.6 (Brownian case). Consider an infinite system of Brownian particles started from
the initial configuration (uj)

∞
j=−∞ as given at (2.2). The number variance for this process is

V
2, 1

2
,a

t [L] =
2

a

[
LΦ
(−L√

2t

)
+

√
t

π

(
1 − e−L2/4t

)]
,

where

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2 dy.

As L → ∞ this number variance saturates exponentially quickly to the level

2

a

√
t

π
.

Corollary 2.7 (Symmetric Cauchy case). Consider an infinite system of symmetric Cauchy
processes started from the initial configuration (uj)

∞
j=−∞ as given at (2.2). The number variance

for this process is

V 1,1,a
t [L] =

L

a

[
1 − 2

π
arctan

[L

2t

]]
+

2t

aπ

[
log
(
1 +

(L

2t

)2)]
. (2.13)

For “large” (relative to 2t) L, we have

V 1,1,a
t [L] ≈ 4t

aπ
log
(L

2t

)

and so the number variance diverges at a logarithmic rate as L → ∞.
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Remark 2.8. Coincidentally, in the symmetric Cauchy case, if we set a = 1, t = 1
4π we have

V 1,1,1
1
4π

[L] ≈ 1

π2
log(2πL)

and so we see similar number variance behaviour to that in the sine kernel case (1.2).

Remark 2.9. The Cauchy (α = 1) case has the slowest growing non-saturating number vari-
ance amongst all those considered here. Analogously, the sine kernel determinantal process has
the slowest growing number variance amongst all translation invariant determinantal processes
whose kernels correspond to projections (i.e. the Fourier transform of the kernel is an indicator)
see (27).

Remark 2.10. At the other extreme note that as α → 0 we recover Poisson behaviour in that

lim
α→0

V α,c,a
t [L] =

L

a
(1 − e−2ct).

2.3 A Poisson approximation for the counting function

At the beginning of this section we recalled that a system of independent processes (satisfying
fairly general conditions) started from a Poisson process on R remains in a Poisson process
configuration and hence demonstrates a number variance linear in L, for all time. Now from
(2.7) and (2.8) we deduce that

V α,c,a
t [L] ≤ L/a, ∀ α, c, a, t. (2.14)

From the integral expression for the number variance (2.4), we see that for fixed L

V α,c,a
t [L] → L/a as t → ∞,

and for each t, as L is decreased

V α,c,a
t [L]

L→0∼ L/a.

So in both these limiting cases (as well as in the α → 0 case c.f. Remark 2.10) the maximal linear
number variance is attained. The balance of the parameters L, a, α and t, encapsulated by the
number variance, determines how “far away” from being Poisson the distribution of Nα,c,a

t [0, L]
actually is. Below we make this observation precise.

Recall that given a measurable space (Ω,F) we define the total variation distance dTV (·, ·)
between two probability measures µ1, µ2 on Ω by

dTV (µ1, µ2) := sup
F∈F

|µ1(F ) − µ2(F )|.

Propostition 2.11. Let L(Nα,c,a
t [0, L]) denote the law of the random variable Nα,c,a

t [0, L] de-
fined at (2.5). Let Po(L/a) denote the law of a Poisson random variable with mean L/a. Then,
for L ≥ 1,

L − V α,c,a
t [L]a

32L
≤dTV

(
L(Nα,c,a

t [0, L]),Po(L/a)
)
≤(1 − e−

L
a )

L − V α,c,a
t [L]a

L
.
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Proof. The result is an application of a theorem of Barbour and Hall (2). Their theorem states
that if A :=

∑
j Ij is the sum of independent indicator random variables indexed by j and

qj(L) = E[Ij ], λ =
∑

j qj(L) then if we denote the law of A by L(A) we have

1

32
min(1, 1/λ)

∑

j

qj(L)2 ≤ dTV

(
L(A),Po(L/a)

)
≤ 1 − e−λ

λ

∑

j

qj(L)2.

In our specific case we have Nα,c,a
t [0, L] as the sum of independent indicator random variables

given by (2.5), λ = L/a and
∑

j qj(L)2 = L
a − V α,c,a

t [L].

Remark 2.12. For a fixed t, the Poisson approximation becomes less accurate as L → ∞. The
greater the value of α the faster the quality of the approximation deteriorates. For α > 1, due
to the fact that the number variance saturates, the approximation of the law of Nα,c,a

t [0, L] by
a Poisson distribution of mean L/a becomes very poor with the total variation distance clearly
bounded away from zero.

3 Gaussian fluctuations of the counting function

Thus far we have been concerned with the variance of the counting function Nα,c,a
t [0, L] (2.5).

Of course this variance is, by definition, a description of the fluctuation of Nα,c,a
t [0, L] around

its mean L
a . In this section we will further characterize these fluctuations.

Propostition 3.1. Let Nα,c,a
t [0, L], V α,c,a

t [L] denote, as usual, the counting function and number
variance. For the cases with α ∈ (0, 1] we have that

Nα,c,a
t [0, L] − L/a√

V α,c,a
t [L]

(3.1)

converges in distribution to a standard normal random variable as L → ∞.

Proof. Recall that the cumulants ck, k ∈ N of a real valued random variable Y are defined by

log E[exp(iθY )] =

∞∑

k=1

ck
(iθ)k

k !
.

Using the independence of the individual symmetric α-stable processes and then applying the
Taylor expansion of log(1 + x) about zero, we have

log EP[exp(iθNα,c,a
t [0, L])] =

∞∑

j=−∞
log
[(

eiθ − 1
)
qj(L) + 1

]

=

∞∑

m=1

(eiθ − 1)m

m
(−1)m+1

( ∞∑

j=−∞
qj(L)m

)
,

where qj(L) := P[Xα,c
j (t) + uj ∈ [0, L]] and Xα,c

j (t) denotes as usual the underlying symmetric
α-stable process labelled by j with uj the corresponding starting position. Hence, the cumulants
of Nα,c,a

t [0, L] are given by

ck =
dk

dθk

∞∑

m=1

(eiθ − 1)m

m
(−1)m+1

( ∞∑

j=−∞
qj(L)m

)∣∣∣
θ=0

. (3.2)
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It is straightforward to see that

c1 = L/a, c2 =
∞∑

j=−∞
qj(L) − qj(L)2 = V α,c,a

t [L]

give the mean and number variance respectively. More generally from the equation (3.2) it is
possible to deduce the following recursive relation

ck =

k−1∑

m=2

βk,mcm + (−1)k(k − 1)!

∞∑

j=−∞
qj(L) − qj(L)k, (3.3)

where βk,m are constant, finite, combinatorial coefficients which will not be needed here. Now
let

Y α,c,a
t :=

Nα,c,a
t [0, L] − L/a√

V α,c,a
t [L]

.

It is easily deduced that the cumulants c̃k, k ∈ N of Y α,c,a
t are given by

c̃1 = 0,

c̃k =
ck

(V α,c,a
t [L])k/2

, for k ≥ 2.

To prove the Proposition it is sufficient to show that in the limit as L → ∞, the cumulants
correspond to those of a Gaussian random variable. That is, we have c̃3 = c̃4 = c̃5 = · · · = 0.
Equivalently, we need to show

ck = o((V α,c,a
t [L])k/2) = o(c

k/2
2 ) as L → ∞, for k ≥ 3.

We use an induction argument.

Suppose that cm = o(c
m/2
2 ) for m = 3, . . . , k − 1. Assume, without loss of generality, that k is

even. We use the inequality

qj(L) − qj(L)k =
k−1∑

l=1

qj(L)l − qj(L)l+1

≤ (k − 1) (qj(L) − qj(L)2), (3.4)

in conjunction with the recursive relation for ck given by (3.3) to deduce

k−1∑

m=2

βk,mcm ≤ ck ≤ (k − 1)!(k − 1)c2 +
k−1∑

m=2

βk,mcm.

From our induction supposition this implies that

o(c
k/2
2 ) ≤ ck ≤ o(c

k/2
2 ) + (k − 1)!(k − 1) c2. (3.5)

However, from the results of the previous section, we know that, for these cases with α ∈ (0, 1],

for k ≥ 3, c
k−2
2

2 = V α,c,a
t [L]

k−2
2 → ∞ as L → ∞. Thus from (3.5) ck = o(c

k/2
2 ) also. Now using

the same arguments as for the inequality (3.4) we find

− 1√
c2

≤ c3

c
3/2

2

≤ 1√
c2

.
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Thus we have c3 = o(c
3/2
2 ). By the induction argument we can deduce that ck

(c2)k/2 → 0 as

L → ∞ for all k ≥ 3 which concludes the proof.

Remark 3.2. The divergence of the number variance is relied upon in a similar way to prove
the analogous Gaussian fluctuation results for a large class of determinantal processes, see (8; 28;
27). Here we have adapted the “Costin-Lebowitz-Soshnikov” method to this non-determinantal
setting. We note that the Proposition could also have been proved by applying the Lindberg-
Feller Central Limit Theorem (see e.g. (10)).

Proposition 3.1 applies to the cases with α ∈ (0, 1]. The following convergence in distribution
result applies to all cases with α ∈ (0, 2] and is obtained by allowing both interval length and
time t tend to infinity together in an appropriate way.

Propostition 3.3. For any fixed s ∈ [0,∞) we have that

Nα,c,a
t [0, st1/α] − st1/α/a

t1/2α
(3.6)

converges in distribution as t → ∞, to a normal random variable with zero mean and variance
fα,c,a(s), where

fα,c,a(s) := V α,c,a
1 [s]

=
4s

aπ

∫ ∞

0

sin2(u/2)

u2

(
1 − e−2c(u/s)α)

du. (3.7)

Proof. Since V α,c,a
t [st1/α] → ∞ as t → ∞, a similar argument as for the proof of Proposition

3.1 allows us to conclude that

Nα,c,a
t [0, st1/α] − st1/α/a√

V α,c,a
t [st1/α]

(3.8)

converges in distribution as t → ∞ to a standard normal random variable. From the integral
expression for the number variance (2.4) we have

V α,c,a
t [st1/α]

t1/α
=

4s

aπ

∫ ∞

0

sin2(u/2)

u2

(
1 − e−2c(u/s)α)

du =: fα,c,a(s).

Note that from (2.14) we know fα,c,a(s) < ∞ for all s < ∞ and so the result follows from the
scaling property of the Gaussian distribution.

4 The fluctuation process

We proceed by adding some dynamics to the fluctuations of the counting function and define,
for each α ∈ (0, 2], c > 0, a ∈ R+, the process

Zα,c,a
t (s) :=

Nα,c,a
t [0, st1/α] − st1/α/a

t1/2α
, s ∈ [0,∞).

Our aim is to consider the limit process obtained as t → ∞.
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4.1 The covariance structure

We begin to characterize these processes by identifying their covariance structure.

Lemma 4.1. {Zα,c,a
t (s); s ∈ [0,∞)} has covariance structure

Cov
(
Zα,c,a

t (r), Zα,c,a
t (s)

)
=

1

2

(
fα,c,a(s) + fα,c,a(r) − fα,c,a(|r − s|)

)
.

Proof. By construction

Nα,c,a
t [0, (r ∨ s)t1/α] − Nα,c,a

t [0, (r ∧ s)t1/α]
dist
= Nα,c,a

t [0, |r − s|t1/α].

Hence, from the definition of Zα,c,a
t

Zα,c,a
t (|r − s|) dist

= Zα,c,a
t (r ∨ s) − Zα,c,a

t (r ∧ s),

which implies that

Var
(
Zα,c,a

t (|r − s|)
)

=Var
(
Zα,c,a

t (r ∧ s)
)

+ Var
(
Zα,c,a

t (r ∨ s)
)

− 2Cov
(
Zα,c,a

t (r ∧ s), Zα,c,a
t (r ∨ s)

)
.

Rearranging gives

Cov
(
Zα,c,a

t (s), Zα,c,a
t (r)

)

=
1

2

(
Var
(
Zα,c,a

t (r ∧ s)
)

+ Var
(
Zα,c,a

t (r ∨ s)
)
− Var

(
Zα,c,a

t (|r − s|)
))

=
1

2 t1/α

(
V α,c,a

t [st1/α] + V α,c,a
t [rt1/α] − V α,c,a

t [|r − s|t1/α]
)
.

On referring back to the definition of fα,c,a(·) we see that this last statement is equivalent to
the result of the Lemma.

Note that the covariance does not depend on t.

4.2 Convergence of finite dimensional distributions

Given the covariance structure of Zα,c,a
t and the identification of its Gaussian one dimensional

marginal distributions the natural next step is to consider the finite dimensional distributions.

Propostition 4.2. Let {Gα,c,a(s) : s ∈ [0,∞)} be a centered Gaussian process with covariance
structure

Cov
(
Gα,c,a(si), G

α,c,a(sj)
)

=
1

2

(
fα,c,a(si) + fα,c,a(sj) − fα,c,a(|si − sj|)

)
. (4.1)

For any 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn < ∞ we have

(Zα,c,a
t (s1), Z

α,c,a
t (s2), . . . , Z

α,c,a
t (sn)) ⇒ (Gα,c,a(s1), G

α,c,a(s2), . . . , G
α,c,a(sn))

as t → ∞.
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Proof. As previously noted, the mean and covariance structure of Zα,c,a
t (s) are not dependent

on t. Therefore, all that remains is to show that, in the limit as t → ∞, the joint distributions
are Gaussian. We again make use of the cumulants.

Recall that given a random vector Y := (Y1, Y2, . . . , Yn) ∈ R
n, the joint cumulants of Y denoted

Cm1,m2,...,mn(Y) are defined via the mj’th partial derivatives of the logarithm of the characteristic
function of Y. That is,

Cm1,m2,...,mn(Y) :=

(
∂

∂
(
iθ1

)
)m1
(

∂

∂
(
iθ2

)
)m2

· · ·
(

∂

∂
(
iθn

)
)mn

log E

[
exp

( n∑

j=1

iθjYj

)]∣∣∣
θ=0

.

If

C0,0,..., 1︸︷︷︸
i’th

,...,0(Y) = E[Yi] = 0

C0,0,..., 2︸︷︷︸
i’th

,...,0(Y) = Var[Yi] = Σii

C0,..., 1︸︷︷︸
i’th

,...,0,..., 1︸︷︷︸
j’th

,...,0(Y) = Cov[Yi, Yj ] = Σij

and in particular

Cm1,m2,...,mn(Y) = 0, whenever
n∑

i=1

mi ≥ 3,

then Y has a multivariate normal(0,Σ) distribution. To prove the Proposition it is enough to
show that

(Zα,c,a
t (s1), Z

α,c,a
t (s2)) → MultivariateNormal(0,Σα,c,a) (4.2)

in distribution as t → ∞, where Σα,c,a is the 2 × 2 covariance matrix

(
fα,c,a(s1)

1
2

(
fα,c,a(s1)+fα,c,a(s2)−fα,c,a(|s1 − s2|)

)
1
2

(
fα,c,a(s1)+fα,c,a(s2)−fα,c,a(|s1 − s2|)

)
fα,c,a(s2)

)
.

We begin by computing the characteristic function of

(
Nα,c,a

t [0, s1t
1/α],Nα,c,a

t [0, s2t
1/α]

)
.

Using the independence of the individual particles we have

EP

[
exp(iθ1N

α,c,a
t [0, s1t

1/α] + iθ2N
α,c,a
t [0, s2t

1/α])
]

= EP

[
exp i

(
(θ1 + θ2)N

α,c,a
t [0, s1t

1/α] + θ2N
α,c,a
t [s1t

1/α, s2t
1/α]

)]

=

∞∏

j=−∞

(
ei(θ1+θ2)P

[
Xα,c

j (t)+uj ∈ [0, s1t
1/α]
]

+ eiθ2P
[
Xα,c

j (t) + uj ∈ [s1t
1/α, s2t

1/α]
]
+ P

[
Xα,c

j (t)+uj /∈ [0, s2t
1/α]

])
.
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For ease of notation we will henceforth let

qj(sl, sr) := P[Xα,c
j (t) + uj ∈ [slt

1/α, srt
1/α]], 0 ≤ sl ≤ sr < ∞.

The joint cumulants are given by

Cm1,m2

(
Nα,c,a

t [0, s1t
1/α], Nα,c,a

t [0, s2t
1/α]

)

=
∞∑

j=∞

( ∂

∂(iθ1)

)m1
( ∂

∂(iθ2)

)m2

log
(
ei(θ1+θ2)qj(0, s1)+eiθ2qj(s1, s2)+1 − qj(0, s2)

)∣∣∣
θ=0

.

Now using the fact that

( ∂

∂(iθ1)

)m1
( ∂

∂(iθ2)

)m2

ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1 − qj(0, s2)

= ei(θ1+θ2)qj(0, s1) ∀ m1,m2 s.t. m1 ≥ 1

and
( ∂

∂(iθ2)

)m2

ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1 − qj(0, s2)

= ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) ∀ m2,

along with
(
ei(θ1+θ2)qj(0, s1) + eiθ2qj(s1, s2) + 1 − qj(0, s2)

)∣∣∣
θ=0

= 1,

we deduce the following generalization of the recursive relation (3.3), with obvious short-hand
notation for the joint cumulants

Cm1,m2
=

∑

k,l:
2≤k+l≤m1+m2−1

βk,l,m1,m2
Ck,l

+ (−1)m1+m2(m1 + m2 − 1)!

∞∑

j=−∞
qj(0, s1)−qj(0, s1)

m1qj(0, s2)
m2 .

Now suppose that Ck,l = o(t
k+l
2α ) for all k, l such that k+ l ∈ {3, 4, . . . ,m1 +m2−1} and without

loss of generality assume that m1 + m2 is even. Since

0 ≤ qj(0, s1) − qj(0, s1)
m1qj(0, s2)

m2 ≤ qj(0, s1),

if we assume that the above induction hypothesis holds, then we have

o(t
m1+m2−1

2α ) ≤ Cm1,m2
≤ o(t

m1+m2−1

2α ) + (m1 + m2 − 1)!
s1t

1/α

a
, (4.3)

which implies that Cm1,m2
= o(t

m1+m2
2α ) also. We check the third order joint cumulants directly

and deduce that

o(t
3
2α ) ≤ Ck,l ≤ o(t

3
2α ) + 2

(s2t
1/α

a

)
when k + l = 3,
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since the variances and covariance of (Nα,c,a
t [0, s1t

1/α],Nα,c,a
t [0, s2t

1/α]) (i.e. C2,0, C0,2, C1,1)
grow at most like t1/α as t → ∞. Therefore, by induction, whenever m1 + m2 ≥ 3 we have

Cm1,m2
(Nα,c,a

t [0, s1t
1/α],Nα,c,a

t [0, s2t
1/α])

t(m1+m2)/2α
→ 0 as t → ∞.

In terms of the joint cumulants of Zα,c,a
t this implies

Cm1,m2
(Zα,c,a

t (s1), Z
α,c,a
t (s2)) → 0 as t → ∞ whenever m1 + m2 ≥ 3,

from which the claim (4.2) and the Proposition follow.

4.3 A functional limit for the fluctuation process

In order to give a functional limit result we consider a continuous approximation {Ẑα,c,a
t (s) : s ∈

[0,∞)} to the process {Zα,c,a
t (s) : s ∈ [0,∞)}. Let

Ẑα,c,a
t (s) :=

N̂α,c,a
t [0, st1/α] − st1/α/a

t1/2α
, (4.4)

where N̂α,c,a
t [0, st1/α] is defined to be equal to Nα,c,a

t [0, st1/α] except at the points of discontinuity
where we linearly interpolate. Let C[0, 1] be the space of continuous real valued functions on
[0, 1] equipped with the uniform topology. We shall denote the measure induced by {Ẑα,c,a

t (s) :
s ∈ [0, 1]} on the space (C[0, 1],B(C[0, 1])) by Qα,c,a

t . To simplify notation we restrict attention
to the interval [0, 1] but note that the ensuing functional limit theorem extends trivially to any
finite real indexing set. The remainder of this section is devoted to establishing the following
weak convergence result.

Theorem 4.3. Let Qα,c,a be the law of the centered Gaussian process {Gα,c,a(s) : s ∈ [0, 1]}
introduced in the statement of Proposition 4.2. Then

Qα,c,a
t ⇒ Qα,c,a

as t → ∞.

Proof. Note that by definition

|Ẑα,c,a
t (s) − Zα,c,a

t (s)| ≤ 1

t1/2α
. (4.5)

Thus, as t → ∞, the finite dimensional distributions of Ẑα,c,a
t (s) must converge to the finite

dimensional distributions of the limiting process Gα,c,a(s) to which those of Zα,c,a
t converge.

Hence, immediately from Proposition 4.2 we have that for any 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn < ∞,

(Ẑα,c,a
t (s1), Ẑ

α,c,a
t (s2), . . . , Ẑ

α,c,a
t (sn)) ⇒ (Gα,c,a(s1), G

α,c,a(s2), . . . , G
α,c,a(sn))

as t → ∞. Therefore, by a well known result of Prohorov’s (see e.g. (6)), the proposed func-
tional limit theorem holds if the sequence of measures {Qα,c,a

t } is tight. Indeed this tightness
requirement follows from Proposition 4.4 given below.
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The sufficient conditions for tightness verified below are stated in terms of the distributions

P(Ẑα,c,a
t ∈ A) = Qα,c,a

t (A) A ∈ B(C[0, 1]),

and the modulus of continuity, which in this case is defined by

w(Ẑα,c,a
t , δ) := sup

|s−r|≤δ
|Ẑα,c,a

t (s) − Ẑα,c,a
t (r)|, δ ∈ (0, 1].

Propostition 4.4. Given ǫ, λ > 0 ∃δ > 0, t0 ∈ N such that

P[w(Ẑα,c,a
t , δ) ≥ λ] ≤ ǫ, for t ≥ t0.

Proposition 4.4 is proven via the following series of Lemmas.

Lemma 4.5. Suppose 0 ≤ u ≤ r ≤ s ≤ v ≤ 1, then

|Ẑα,c,a
t (s) − Ẑα,c,a

t (r)| ≤ |Ẑα,c,a
t (v) − Ẑα,c,a

t (u)| + (v − u)t1/2α.

Proof. Clearly, by construction

0 ≤ N̂α,c,a
t [0, st1/α] − N̂α,c,a

t [0, rt1/α] ≤ N̂α,c,a
t [0, vt1/α] − N̂α,c,a

t [0, ut1/α].

Therefore, using the definition of Ẑα,c,a
t , we have

0 ≤ Ẑα,c,a
t (s) − Ẑα,c,a

t (r) +
(s − r)

a
t1/2α ≤ Ẑα,c,a

t (v) − Ẑα,c,a
t (u) +

(v − u)

a
t1/2α.

The result follows by rearranging, using the facts a ∈ R+, (v − u) ≥ (s − r) ≥ 0 and then
considering separately each case

Ẑα,c,a
t (s) − Ẑα,c,a

t (r) ≥ 0 or Ẑα,c,a
t (s) − Ẑα,c,a

t (r) < 0.

Lemma 4.6.

|Ẑα,c,a
t (s) − Ẑα,c,a

t (r)| ≤ 2

t1/2α
+ |Zα,c,a

t (s) − Zα,c,a
t (r)|. (4.6)

Proof. Follows from (4.5) and an application of the triangle inequality.

To obtain results on the distribution of the modulus of continuity for our sequence of processes
{Ẑα,c,a

t } we divide the interval [0, 1] into m disjoint subintervals of length approximately δ as
follows. Let

0 = r0 < rk1
< · · · < rkm−1

< rkm = 1, (4.7)

where we define

ri :=
i

t1/α
, i ∈ N

kj := j⌈δt1/α⌉, j ∈ {0, 1, 2, . . . ,m − 1}
and ⌈·⌉ denotes the ceiling function. We have

δ ≤ rkj
− rkj−1

≤ δ +
1

t1/α
j ∈ {1, 2, . . . ,m − 1},

with the subintervals [ri−1, ri], i ∈ N typically being shorter in length.
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Lemma 4.7.

P

[
w(Ẑα,c,a

t , δ) ≥ λ
]
≤

m−1∑

j=0

P

[
max

kj≤i≤kj+1

|Zα,c,a
t (ri) − Zα,c,a

t (rkj
)| ≥ λ

9
− 7

3 t1/2α

]
.

Proof. Given the partition (4.7), standard methods (see Theorem 7.4 of (6)) yield

P

[
w(Ẑα,c,a

t , δ) ≥ λ
]
≤

m−1∑

j=0

P

[
sup

rkj
≤s≤rkj+1

|Ẑα,c,a
t (s) − Ẑα,c,a

t (rkj
)| ≥ λ

3

]
. (4.8)

By the triangle inequality we have

|Ẑα,c,a
t (s) − Ẑα,c,a

t (rkj
)| ≤ |Ẑα,c,a

t (s) − Ẑα,c,a
t (ri)| + |Ẑα,c,a

t (ri) − Ẑα,c,a
t (rkj

)|. (4.9)

Now if s ∈ [rkj
, rkj+1

], then either

Ẑα,c,a
t (s) = Ẑα,c,a

t (ri) for some i ∈ N

immediately simplifying (4.9), or ∃i ∈ N such that

rkj
≤ ri−1 < s < ri ≤ rkj+1

in which case from Lemma 4.5 we have

|Ẑα,c,a
t (s) − Ẑα,c,a

t (ri)|
≤ |Ẑα,c,a

t (ri) − Ẑα,c,a
t (ri−1)| + (ri − ri−1)t

1/2α

= |Ẑα,c,a
t (ri) − Ẑα,c,a

t (ri−1)| +
1

t1/2α

≤ |Ẑα,c,a
t (ri) − Ẑα,c,a

t (rkj
)| + |Ẑα,c,a

t (ri−1) − Ẑα,c,a
t (rkj

)| + 1

t1/2α
. (4.10)

Therefore, using the inequality (4.9) in conjunction with (4.10) and Lemma 4.6, we have that
for s, ri ∈ [rkj

, rkj+1
]
∣∣∣Ẑα,c,a

t (s) − Ẑα,c,a
t (rkj

)
∣∣∣

≤
∣∣∣Ẑα,c,a

t (ri) − Ẑα,c,a
t (rkj

)
∣∣∣+
∣∣∣Ẑα,c,a

t (ri−1) − Ẑα,c,a
t (rkj

)
∣∣∣+

1

t1/2α

+
∣∣∣Ẑα,c,a

t (ri) − Ẑα,c,a
t (rkj

)
∣∣∣

≤ 3 max
kj≤i≤kj+1

∣∣∣Ẑα,c,a
t (ri) − Ẑα,c,a

t (rkj
)
∣∣∣+

1

t1/2α

≤ 3
[

max
kj≤i≤kj+1

∣∣∣Zα,c,a
t (ri) − Zα,c,a

t (rkj
)
∣∣∣+

7

3t1/2α

]
.

Thus

P

[
sup

rkj
≤s≤rkj+1

∣∣∣Ẑα,c,a
t (s) − Ẑα,c,a

t (rkj
)
∣∣∣ ≥ λ

3

]

≤ P

[
max

kj≤i≤kj+1

∣∣∣Zα,c,a
t (ri) − Zα,c,a

t (rkj
)
∣∣∣+

7

3t1/2α
≥ λ

9

]
.

Substituting this last inequality into (4.8) gives the statement of the Lemma.
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Now that we have reduced the study of the distribution of the modulus of continuity to that
of the maximum fluctuation over our constructed subintervals we can progress by introducing a
maximal inequality. In order to do this we use the following known result taken from (6) and
paraphrased for use here.

Theorem 4.8. Consider a sequence of random variables {ξq}q≥1 and the associated partial sums

Su :=

u∑

q=1

ξq S0 := 0.

Let
Mn := max

1≤u≤n
|Su|.

If

P
[
|Sv − Su| ≥ γ

]
≤ 1

γ2

( ∑

u<l≤v

bl

)2
0 ≤ u ≤ v ≤ n

for γ > 0 and some b1, b2, . . . , bn ∈ R+, then

P[Mn ≥ γ] ≤ κ

γ2

( ∑

0<l≤n

bl

)2
,

where κ is a constant.

Proof. See (6), Theorem 10.2

Lemma 4.9.

P
[

max
1≤u≤n

|Zα,c,a
t (rkj+u) − Zα,c,a

t (rkj
)| ≥ γ] ≤ κ

aγ2

(
nt−1/2α

)2
,

where κ is constant and γ > 0.

Proof. Let
ξq := Zα,c,a

t (rkj+q) − Zα,c,a
t (rkj+q−1).

Then

Su :=
u∑

q=1

ξq = Zα,c,a
t (rkj+u) − Zα,c,a

t (rkj
) S0 := 0.

In this case, for v, u ∈ N, applying Chebyshev’s inequality and using the definition of fα,c,a(·)
and the upper bound given at (2.14), we have

P
[
|Sv − Su| ≥ γ

]
= P

[
|Zα,c,a

t (rkj+v) − Zα,c,a
t (rkj+u)| ≥ γ

]

≤
fα,c,a(|rkj+v − rkj+u|)

γ2

≤ (v − u)t−1/α

aγ2

≤
[
(v − u)t−1/2α

]2

aγ2
.

Thus we can take bl = t−1/2α

a for l = 1, 2, . . . , n and apply Theorem 4.8 which gives the maximal
inequality of the Lemma.
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Concluding the proof of Proposition 4.4 is now straightforward.

Proof of Proposition 4.4. Taking n = kj+1 − kj in the statement of Lemma 4.9 gives

P
[

max
kj≤i≤kj+1

|Zt(ri) − Zt(rkj
)| ≥ γ

]
≤ κ

aγ2

(
rkj+1

− rkj

)2

≤ κ

aγ2

(
δ + t−1/α

)2
.

Substituting this last inequality with γ =
(

λ
9 − 7

3t1/2α

)
(which is strictly positive for sufficiently

large t) into the inequality given by Lemma 4.7 gives

P
[
w(Zα,c,a

t , δ) ≥ λ
]
≤ 81mκ

a

(
δt1/2α + t−1/2α

)2
(
λt1/2α − 21

)2 .

On solving the appropriate quadratic equation we find that we can make this upper bound less
than ǫ by choosing δ from

(
− t−1/2α − cǫ

(
λ − 21t−1/2α

)
, −t−1/2α + cǫ

(
λ − 21t−1/2α

))⋂(
0, 1
)
,

where cǫ =
√

aǫ
81mκ . Since this interval is non-empty for sufficiently large t this completes the

proof. �

4.4 Properties of the limiting process Gα,c,a(s)

We have constructed a family {(Gα,c,a(s), s ∈ [0,∞)), α ∈ (0, 2], c > 0, a ∈ R+} of centered,
continuous, real-valued Gaussian processes with the inherited covariance structure

Cov(Gα,c,a(s), Gα,c,a(r)) =
1

2

(
fα,c,a(s) + fα,c,a(r) − fα,c,a(|s − r|)

)
. (4.11)

It is clear that the processes are recurrent for 1 < α ≤ 2 as the number variance saturates and
the stationary distribution is normal with mean zero and variance κsat(α, c, a, 1). We are able
to deduce further properties of these limit processes by using our earlier results on the number
variance for the systems of symmetric α-stable processes from which they are constructed.

Propostition 4.10. Gα,c,a(s) is non-Markovian.

Proof. Recall (see e.g. (18), Chapter 13) that a Gaussian process with indexing set T ⊂ R and
covariance function ρ : T 7→ R is Markov if and only if

ρ(s, u) =
ρ(s, r)ρ(r, u)

ρ(r, r)
∀ s, u, r ∈ T.

It is clear that this relationship does not hold in general for the covariance function (4.11).

From the results of previous sections, since fα,c,a(s) = V α,c,a
1 [s], we know that

fα,c,a(s) → (1 − e−2c)
s

a
as α → 0
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and

fα,c,a(s)
s→0∼ kα,c,a s.

Therefore, Gα,c,a appears to start out, for small “time” as a scaled Brownian motion and as
α → 0 this initial Brownian character prevails for longer. We capture this more precisely in the
following easily verified proposition.

Propostition 4.11. 1. {Gα,c,a(s) : s ∈ [0, 1]} converges weakly to a Brownian motion

{B(1−e−2c

a s) : s ∈ [0, 1]} as α → 0.

2. Let Gα,c,a
ǫ (s) = ǫ−1/2Gα,c,a(ǫs). Then {Gα,c,a

ǫ (s) : s ∈ [0, 1]} converges weakly to a Brownian
motion {B( s

a) : s ∈ [0, 1]} as ǫ → 0.

Remark 4.12. The covariance structure of Gα,c,a is similar to that of a Brownian bridge. Recall
that the standard Brownian bridge (Bbr(s), s ∈ [0, a]) of length a, is a centered Gaussian process
with covariance structure

Cov(Bbr(s), Bbr(r)) = s ∧ r − sr

a

and arises as a weak limit of many empirical processes. In particular, it may be obtained from
the appropriately scaled counting functions of a Poisson process on R (see e.g. (18)). We can
re-write the covariance (4.1) in the alternative form

Cov(Gα,c,a(s), Gα,c,a(r)) =
s ∧ r

a
−
∫ r

a

0

∫ s
a

0
p2/aα(y, z) dy dz,

but we see that a precise match would require p2/aα(y, z) = 1.

Propostition 4.13. The process Gα,c,a has stationary increments which are negatively corre-
lated.

Proof. It is straightforward to see that the increments have zero mean and that for any s, r ∈
[0,∞)

Var(Gα,c,a(s) − Gα,c,a(r)) = fα,c,a(|s − r|).

In addition, for u ≥ 0 we have

Cov(Gα,c,a(s) − Gα,c,a(0), Gα,c,a(r + s + u) − Gα,c,a(s + u))

=
1

2

(
fα,c,a(s + r + u) − fα,c,a(r + u) −

[
fα,c,a(s + u) − fα,c,a(u)

])
. (4.12)

Since fα,c,a is a concave function

fα,c,a(s + r + u) − fα,c,a(r + u) ≤ fα,c,a(s + u) − fα,c,a(u),

for all s, r, u ∈ [0,∞) so it follows that this covariance is non-positive.

Propostition 4.14. Gα,c,a is not in general self-similar. For any constant b ∈ R we have the
relationship

Gα,c,a(bs)
dist
= b1/2 Gα, c

bα ,a(s).
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Proof. Both sides of the proposed equation have zero mean and a Gaussian distribution. It is
clear from the expression given for fα,c,a at (3.7) that the variances/covariances also agree.

Propostition 4.15. Gα,c,a is a long memory (or long range dependent) process in the sense
that the covariance between increments decays as a power law as the separation between them is
increased. More precisely, for α ∈ (0, 2) we have

Cov
(
Gα,c,a(s) − Gα,c,a(0), Gα,c,a(r + s + u) − Gα,c,a(s + u)

) u→∞∼ k u−(α+1),

where k is a constant depending on α, c, a, s and r.

Proof. The covariance in question is expressed in terms of the function fα,c,a at (4.12). Note
from (2.10) that we already know the asymptotic behaviour of the individual components of this
expression. Applying l’Hopital’s rule twice in succession yields the given power law.

We have already mentioned a similarity between the covariance structure of Gα,c,a and that
of Brownian motion. More generally we can draw parallels between our limiting process and
fractional Brownian motion. Recall (see for example (21)) that a fractional Brownian motion
(WH(s), s ≥ 0) with Hurst parameter H ∈ (0, 1) is a centered, self-similar Gaussian process with
covariance function

Cov(WH(s),WH(r)) =
1

2

(
s2H + r2H − |s − r|2H

)
, (4.13)

The case H = 1
2 corresponds to a standard Brownian motion.

Note the resemblance between the form of the covariance functions (4.11) and (4.13). Heuristi-
cally, we can deduce that fα,c,a(s) may be approximated by a function of the form κα,c,as

2Hα,c,a(s)

where Hα,c,a : [0,∞) 7→ [0, 1
2 ] is a monotonically decreasing function with initial value

Hα,c,a(0) = 1
2 . Thus loosely speaking Gα,c,a can be viewed as a type of fractional Brownian

motion with time varying Hurst parameter. In particular, the long range dependence property
of Proposition 4.15 may be compared to the analogous statement for fractional Brownian motion:

Cov
(
WH(s) − WH(0),WH(r + s + u) − WH(s + u)

) u→∞∼ ku2H−2,

where k is a constant depending on H, s and r. We make the link between the process Gα,c,a

and fractional Brownian motion precise with the following statement.

Propostition 4.16. For α ∈ (0, 1) let

G̃α,c,a
b (s) :=

Gα,c,a(bs)√
b1−α

, s, b ∈ [0,∞).

Then

{G̃α,c,a
b (s) : s ∈ [0,∞)} ⇒ {k1/2

α,c,a W 1−α
2

(s) : s ∈ [0,∞)} as b → ∞

where kα,c,a = 4c
aπΓ(α − 1) sin

(
− απ/2

)
.
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Proof. From (3.7), by applying a Taylor expansion we deduce that

fα,c,a(bs)

b1−α
= s1−α 8c

aπ

∫ ∞

0

sin2(u/2)

u2−α
du

+
4

aπ

∫ ∞

0
sin2(u/2)

∞∑

j=2

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α
du.

Now by the Dominated Convergence Theorem,

lim
b→∞

4

aπ

∫ ∞

0
sin2(u/2)

∞∑

j=2

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α

︸ ︷︷ ︸
hb(u)

du

=
4

aπ

∫ ∞

0
sin2(u/2)

∞∑

j=2

lim
b→∞

(−1)j+1

j !
(2c)js1−2jα ujα−2

bjα−α
du,

= 0

since, setting M(u) = sin2(u/2)(1 − exp(−2c(u/s)α))/u2 + sin2(u/2)/u2−α, we have a positive
integrable function such that |hb(u)| ≤ M(u) for all b ∈ R. This implies that

lim
b→∞

fα,c,a(bs)

b1−α
= kα,c,a s1−α

which allows us to conclude

Cov
(
G̃α,c,a

b (r), G̃α,c,a
b (s)

)
= bα−1Cov

(
Gα,c,a(br), Gα,c,a(bs)

)

b→∞→ kα,c,a

2

(
s1−α + r1−α + |s − r|1−α

)

= Cov
(
k1/2

α,c,a W 1−α
2

(s), k1/2
α,c,a W 1−α

2
(r)
)
.

The processes are Gaussian therefore the convergence of finite dimensional distributions is im-
plied by the convergence of the covariance functions and tightness follows easily from, for exam-
ple, (18) Corollary 16.9 and well known expressions for the even moments.

Remark 4.17. We mention that various other long-range dependent Gaussian processes have
recently been found to arise from the fluctuations of spatially distributed particle systems, see
(12) and references within. Notably, in this context, the spatial particle configurations of infinite
systems of symmetric α-stable processes started from a Poisson process on R have been consid-
ered. In these cases, fractional Brownian motion with Hurst parameter H = 1 − 1

2α , α ∈ (1, 2]
was obtained as a scaling limit of the occupation time process (essentially scaling the counting
function in time rather than in time and space as in this paper).

Remark 4.18. It seems natural to ask whether, in the same fashion as we created Gα,c,a, similar
limiting processes could be constructed from Johansson’s systems of non-colliding Brownian
motions. Unfortunately, the formula for the averaged number variance given for these processes
in (16) does not scale in time and space in the same convenient way as V α,c,a

t [L] in this case.
However, as noted by Johansson, letting t → ∞ in his model, one obtains the sine kernel
determinantal process, from which a limiting Gaussian process (parameterized and scaled in a
completely different way) was constructed in (26).
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