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1 Introduction

This paper presents a natural extension of the (ASCLT) due to Brosamler [1], [2] and Schatte
[27]. In the last few years the Almost Sure Central Limit Theorem (ASCLT) has emerged as
an area of probability theory in which an intensive research activity has taken place. In this
context we should in particular mention the work of Lacey & Philipp [17], Berkes & Dehling [3],
Csörgö & Horváth [6], Rodzik & Rychlik [26] and Touati [29].

The aim of this paper is to establish the Large Deviations Principle (LDP) for a generalized ver-
sion of the (ASCLT) for Martingale Additive Functionals (MAF’s). This result can be regarded
as an extension of the (ASCLT) for (MAF’s), proved by the second named author (see Maâouia
[21]) as well as an extension of the (LDP) for the (ASCLT) for i.i.d. random variables, proved
by the first named author (see Heck [14]). For a slightly weaker version of the (LDP) for the
(ASCLT) for i.i.d. random variables see also March and Seppäläinen [22].

1.1 Notation, terminology and data

X = {Ω,F , (Px)x∈E , F = (Fk)k∈N , (Xk)k∈N} denotes the canonical version of a homogeneous
Markov process indexed by N (non negative integers) with values in a measurable space (E , E);
F being its natural filtration and Px its law starting from x.

We denote by Π the transition probability of the Markov chain X and by (Rp)p∈]0,1[ its resolvent:

(1-1) Rp(x,A) = Ex

( ∞∑
k=1

pk−1 1{Xk∈A}

)
=

∞∑
k=1

pk−1Πk (x,A) for x ∈E, A ∈ E .

Using Duflo’s [10] and Meyn & Tweedie’s [23] terminology, we call a set C ∈ E a small set for
the Markov chain X, if there exists a probability measure ν on E (with ν(C) = 1), p0 ∈ ]0, 1[
and b ∈ ]0, 1[, such that:

(1-2) ∀ (x,A) ∈E×E , p0 Rp0(x,A) ≥ b 1C(x) ν(A).

From now on, the expression ”X is a positive recurrent Markov chain” means that X has
a small set C, with the following properties (1-3) and (1-4)

(1-3) Ex

(
lim sup

n→∞ (Xn ∈ C)
)

= Ex

( ∞∑
k=0

1{Xk∈C} = +∞
)

= 1, ∀x ∈ E,

(1-4) sup
x∈C

Ex (TC)<∞ with TC = inf {k ≥ 1, Xk ∈ C} .

In this case there is a probability measure µ, invariant under Π, such that X is Harris recurrent:

(1-5) ∀ A ∈ E with µ(A) > 0, Ex

(
lim
k

(Xk ∈ A)
)

= 1.

We shall say that X is Riemannian recurrent of order k, for each k ∈ N, if (1-3) and
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(1-6) sup
x∈C

Ex

(
Tk

C

)
<∞ for each k ∈ N

hold.

Conversely, the existence of an invariant probability measure µ for X satisfying (1-5) implies the
existence of a small set satisfying (1-3) and (1-4), if we assume that the σ-algebra E is countably
generated (cf. Duflo [10], Meyn & Tweedie [23]).

We remind that an additive functional (AF) A = (Ak)k∈N of X is an F-adapted process,
vanishing at 0, such that:

(1-7) Ak+l = Ak+Al ◦ θk (Pν - a.s.) ∀ k, l ∈ N,

for any initial law ν. Here (θk)k∈N are the standard translation operators on (Ω , F).

A martingale additive functional (MAF) , M = (Mk)k∈N of X is an (AF) which is also an
(F, Pν) martingale, for any initial law ν or equivalently

(1-8) Ex(Mk) = 0 , ∀ k ∈ N, ∀x ∈E.

Next, we will use the following notation and terminology.

(1-9) C0([0,1]) is the space of continuous functions from [0,1] to R vanishing in 0.

(1-10) M1(C0([0,1])) is the space of probability measures on the Borel sets of C0([0,1]), en-
dowed with the topology of weak convergence.

(1-11) N = N (0,1) denotes the Gaussian law with mean 0 and variance 1 on R.

For a ∈ ]0, 1] we introduce the function

(1-12) ϑa: C0([0,1]) −→ C0([0,1]) with ϑa(ω)(t) = ω(at)√
a

.

Using these functions ϑa we call a measure Q ∈ M1(C0([0,1])) ϑ-invariant if Q = Q◦ϑ−1
a for all

a ∈ ]0, 1]. Furthermore, for two probability measures η, ρ on a measurable space, we denote by
H(η|ρ) the relative entropy of η relative to ρ, i.e.

(1-13) H(η|ρ) =


∫

ln
(

dη

dρ

)
dρ : if η � ρ, i.e. if η is abs. continuous w.r.t. ρ

∞ : else.

Now we define the rate function H : M1(C0([0, 1])) −→ [0,∞] as follows:

(1-14) H (Q) =

{
lim
a↓0

1
ln (a−1)

H
(
Q ◦ |[a,1]

−1|W ◦ |[a,1]
−1|) : if Q is ϑ-invariant

∞ : else

where W is the Wiener measure on C0([0,1]) and |[a,1] denotes the restriction operator. That H
is well defined has already been shown in Heck [14, 15].
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1.2 ASCLT for MAF of a recurrent Markov process

The second named author proved the following general version of the (ASCLT) (see Maâouia
[21]).

Theorem A Let X = ( Ω,F ,(Px)x∈E , F = (Fk)k∈N ,(Xk)k∈N ) be a positive recurrent Markov
chain. Then every (MAF) M of X satisfying the assumption:

(1-15) Ex(M2
k) < ∞ , ∀k ∈ N,∀x ∈E and E µ(M2

1) = σ2
M ∈ ]0,∞[

satisfies a functional ASCLT (FASCLT) under Px for all initial states x. More precisely, Px-
almost-surely for every x, we have the following properties:

(FASCLT) The random measures (Wn)n∈N∗ :

(1-16) Wn (·) = L(n)−1
n∑

k=1

k−1 δ{Ψk ∈ ·}

converge weakly to W, the Wiener measure on C0([0,1]), where L(n) =
n∑

k=1

k−1 and (Ψn)n∈N∗

is defined by:

(1-17) Ψn(t) = σ−1
M n−1/2

{
M[nt] + (nt − [nt])(M[nt]+1 − M[nt])

}
. ♦

2 Main results

Our results are stated for (MAF), M = (Mk)k∈N of the Markov process X which satisfies the
assumption (2-1) below.

(2-1)


Eµ

(
|M1|β

)
< ∞ , ∀β > 0 ;

Eµ(M2
1) = σ2

M ∈ ]0,∞[ .

For every (MAF) M satisfying the assumptions (2-1) we consider the processes (Ψn)n and the
measures (Wn)n, defined as in Theorem A.

Theorem 2.1 Let X = ( Ω,F , (Px)x∈E , F = (Fk)k∈N , (Xk)k∈N ) be a Riemannian recurrent
Markov chain of order k, for every k ∈N , with a small set C. Then every (MAF) M of X
satisfying the assumption (2-1) satisfies the (LDP) with constants (ln(n))n∈N∗ and rate function
H w.r.t. Px for µ− a.a. initial states x ∈ E; i.e. for every Borel set A ⊂ M1(C0([0,1]):

(2-2) −inf
o
A

H ≤ lim inf
n→∞

1
ln(n) ln (Px {Wn ∈ A})
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≤ lim sup
n→∞

1
ln(n) ln (Px {Wn ∈ A}) ≤ −inf

A
H

for µ− a.a. initial states x ∈ E. ♦
The results we present could easily be generalized to the continuous time parameter case. How-
ever for the proof of the continuous parameter case we would need rather technical oscillation
estimates very similar to those used in Heck [15] in order to reduce the continuous case to the
discrete time case. These lengthy technical estimates would increase the size of the paper con-
siderably without presenting any new ideas. Therefore we decided to restrict ourselves to the
discrete time parameter case.

3 The identification of an autoregressive process

In this section we shall apply our result Theorem 2.1 to autoregressive models. The latter
models have a great interest in mathematical finance (for example: risk management, derivative
securities like options, stochastic volatility,..., see e.g. Hull [16], section 19.6 ) .

On a probability space (Ω,F ,P) we consider a sequence β = (βn)n∈N∗ of i.i.d. real random
variables with mean 0 and variance σ2 > 0; called white noise. To this sequence β and a given
random variable X0 we associate the first order autoregressive process (AR1):

(3-1) Xn+1 = θ Xn + βn+1

or

(3-2) Xn+1 = α + θ Xn + βn+1

where α and θ are unknown real parameters. These parameters α and β are to be estimated.

In the following we shall assume that the random variables β satisfies the moment condition

(3-3) E

(
|β1|2δ

)
< ∞

for some δ > 1.

For the (AR1), defined by (3-1), the least squares estimator of θ:

(3-4 a) θ̂n =
(

n∑
k=1

X2
k−1

)−1( n∑
k=1

Xk−1 Xk

)
for each n ∈ N

∗

satisfies
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(3-4 b) θ̂n − θ =
(

n∑
k=1

X2
k−1

)−1( n∑
k=1

Xk−1 βk

)
.

Under the hypothesis E
(
β2

1

)
< ∞,

(
θ̂n

)
has the following asymptotic properties (see [10] for

more details).

(3-5)
(
θ̂n

)
n∈N∗

is a strongly consistent estimator of the arbitrary unknown real parameter θ.

In the stable case (|θ| < 1),
(
θ̂n

)
satisfies:

(3-6)
√

n
(
θ̂n − θ

)
=⇒
n→∞ N (

0 , 1 − θ2
)

(3-7) lim sup
n→∞

√
n

lnn

∣∣∣θ̂n − θ
∣∣∣ = √

1 − θ2 a.s. .

Under the hypothesis (3-3) and in the stable case, the following result hold under Px for all
starting state x :

(3-8) Wθ
n = L(n)−1

n∑
k=1

k−1 δ Ψθ
k

=⇒
n→∞ W

where Ψθ
n ∈ C0([0 , 1]) is linear on

[
k
n , k+1

n

]
and

(3-9) Ψθ
n

(
k
n

)
=
√

n (1 − θ2)− 1 k
n

(
θ̂k − θ

)
for each k ∈ {1, ..., n}

and ”=⇒” denotes weak convergence.

The property (3.8) is a consequence of the FASCLT for the martingales obtained by Chaâbane
[5]. It is also consequence of Theorem A above, if we assume that the noise β satisfy (3.3) and
the distribution of β1 has a non vanishing density part. In fact, under these hypotheses, we
prove the existence of a small set for the AR(1) Markov chain X (see Lemma 4.8).

The next Proposition gives the LDP associated with the property (3-8).

Proposition 3.1 Let X = (Xn)n∈N be the first order stable autoregressive process (AR1) satisfy-
ing (3-1) constructed from a white noise β = (βn)n∈N∗ with variance σ2 satisfying the hypothesis
(3-3) for all δ > 1, such that the distribution of β1 has a non vanishing density part and an
unknown real parameter θ ∈] − 1, 1[. Then for all X0 ≡ x 6= 0 the following result holds for the
least squares estimator.

(3-10)
(
Wθ

n

)
n

satisfies the (PLD) with constants (ln n)n and rate function H w.r.t. Px ; i.e.
for every Borel set A⊂ M1(C0([0 , 1])):
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−inf
o
A

H ≤ lim inf
n→∞

1
ln n ln

(
Px

{
Wθ

n ∈ A
})

≤ lim sup
n→∞

1
ln n ln

(
Px

{
Wθ

n ∈ A
}) ≤ −inf

A
H. ♦

For the (AR1) model, defined by (3-2), we can estimate α and θ by:

(3-11)


θ̂n = D−1

n

{(
1
n

n∑
k=1

Xk−1 Xk

)
−
(

1
n

n∑
k=1

Xk

)(
1
n

n∑
k=1

Xk−1

)}
,

α̂n = D−1
n

{(
1
n

n∑
k=1

Xk

)(
1
n

n∑
k=1

X2
k−1

)
−
(

1
n

n∑
k=1

Xk−1

)(
1
n

n∑
k=1

Xk−1 Xk

)}
;

for each n ∈ N
∗ , with Dn =

(
1
n

n∑
k=1

X2
k−1

)
−
(

1
n

n∑
k=1

Xk−1

)2

.

These estimators satisfy

(3-12)



Dn

(
θ̂n − θ

)
=
(

1
n

n∑
k=1

Xk−1

)(
1
n

n∑
k=1

βk

)
−
(

1
n

n∑
k=1

Xk−1βk

)
,

Dn (α̂n − α) =
(

1
n

n∑
k=1

X2
k−1

)(
1
n

n∑
k=1

βk

)
−
(

1
n

n∑
k=1

Xk−1

)(
1
n

n∑
k=1

Xk−1 βk

)
,

(α̂n − α) =
(

1
n

n∑
k=1

Xk−1

)(
θ̂n − θ

)
+
(

1
n

n∑
k=1

βk

)
;

and they have the following asymptotic properties:

(3-13)
(
θ̂n

)
n≥1

and (α̂n)n≥1 are strongly consistent estimators of the arbitrary unknown pa-

rameters θ and α.

In the stable case (|θ| < 1),
(
θ̂n

)
n≥1

and (α̂n)n≥1 satisfy:

(3-14)


√

n
(
θ̂n − θ

)
=⇒
n→∞ N (

0 , 1 − θ2
)
,

√
n (α̂n − α) =⇒

n→∞ N
(

0 , (1 − θ2)
(

σ2

1−θ2 + α2

(1−θ)2

))
;

(3-15)


lim sup

n→∞
√

n
ln ln n

∣∣∣θ̂n − θ
∣∣∣ = √

1 − θ2 a.s.,

lim sup
n→∞

√
n

ln ln n |α̂n − α| =
√

(1 − θ2)
(

σ2

1−θ2 + α2

(1−θ)2

)
a.s.;

(3-16)


Wθ

n = L(n)−1
n∑

k=1

k−1 δ Ψθ
k

=⇒
n→∞ W,

Wα
n = L(n)−1

n∑
k=1

k−1 δ Ψα
k

=⇒
n→∞ W;
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where Ψθ
n, Ψα

n ∈ C0([0 , 1]) are linear on
[

k
n , k+1

n

]
and

(3-17)


Ψθ

n

(
k
n

)
=
√

n
(1−θ2)

k
n

(
θ̂k − θ

)
,

Ψα
n

(
k
n

)
=
√

n

(1−θ2)
(

σ2

1−θ2 + α2

(1−θ)2

) k
n (α̂k − α) ;∀k ∈ {1, ..., n} .

Proposition 3.2 Let X = (Xn)n∈N be the (AR1) model satisfying (3-2) constructed from a white
noise β = (βn)n∈N∗ with variance σ2 satisfying the hypothesis (3-3) for all δ > 1, such that the
distribution of β1 has a non vanishing density part and an unknown real parameters θ ∈]− 1, 1[
and α. Then for all X0 ≡ x 6= 0 the following result holds for the least squares estimator:

(3-18)
(
Wθ

n

)
n

and (Wα
n)n satisfy the (LDP) with constants (ln n)n and rate function H w.r.t.

Px . ♦

4 Proofs

4.1 An ASCLT for i.i.d. random variables

The proof of Theorem 2.1 is essentially based on a reduction to a version of the (ASCLT) for
i.i.d. random variables. In order to formulate this version we introduce some notations.

For random variables (ξn, τn)n∈N∗ as in Proposition 4.1 below we denote by Sn and Tn the

corresponding partial sums, i.e. Sn =
n∑

k=1

ξk and Tn =
n∑

k=1

τk and let for t ≥ 0 Nt = inf{k ≥ 0 :

Tk+1 > t}. Further let S∗
n = SNn .

As in the introduction we define random functions Ψ̃n ∈ C0([0, 1]) by

Ψ̃n(t) =
√

m
σ
√

n

{
S∗

[nt] + (nt − [nt])
(
S∗

[nt]+1 − S∗
[nt]

)}
∀ t ∈ [0, 1].

Finally we define random measures W̃n ∈ M1 (C0([0, 1])) by W̃n = 1
L(n)

n∑
k=1

1
k δΨ̃k

.

Proposition 4.1 Let (ξn, τn)n∈N∗ be independent random variables on a probability space
(Ω,F ,P), such that for some n0 ∈ N

∗

(4-1 a) E (ξn) = 0 for all n ≥ 1, sup
n≥1

E

(
|ξn|β

)
< ∞ for all β > 0, and E

(
ξ2
n

)
= σ2 > 0 for

all n ≥ n0.

(4-1 b) τn ≥ 0 for all n ≥ 1 , sup
n≥1

E

(
τβ
n

)
< ∞ for all β > 0 and E (τn) = m > 0 for all

n ≥ n0.

Then
(
W̃n

)
n≥1

satisfies the (LDP) with constants (ln n)n≥1 and rate function H. ♦
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Remark 4.2 We shall remark that in the special case (ξk)k∈N∗ i.i.d. and τk ≡ 1, i.e. Nn ≡ n,
the above proposition states the (LDP) for the (ASCLT) for i.i.d. random variables. This result
is exactly the contents of Theorem 1.2 in Heck [14].

In order to prove Proposition 4.1 we shall recall for the readers convenience some simple facts:

Lemma 4.3 Let Yn, Zn, n ∈ N
∗ be random variables with values in a separable metric space

(E, d) such that for all ε > 0

(4-2) lim
n→∞

1
lnn ln (P {d(Yn,Zn) > ε}) = −∞ .

Then
(

1
L(n)

n∑
k=1

1
k δYk

)
n∈N∗

and
(

1
L(n)

n∑
k=1

1
k δZk

)
n∈N∗

are equivalent w.r.t. the (LDP)

i.e.
(

1
L(n)

n∑
k=1

1
k δYk

)
n∈N∗

satisfies the (LDP) with constants (ln n)n∈N∗ if and only if(
1

L(n)

n∑
k=1

1
k δZk

)
n∈N∗

satisfies the (LDP) with constants (lnn)n∈N∗ and the same rate function

H. ♦

Lemma 4.3 is a minor modification of Lemma 2.7 in Heck [14]. Details shall be omitted.

Lemma 4.4 Let (Mn)n∈N be random variables with M0 ≡ 0 and let η be a random variable with
values in N.

a) For all β ≥ 1 and all p , q > 1 with 1
p + 1

q = 1 ( βq > 1) there exists C1 > 0 such that

E

(
|Mη|β

)
≤C1 sup

k≥1

{
E

(
|Mk − Mk−1|qβ

)1/q
}
E
(
ηp(β +2)

)1/p
.

b) If in addition (Mn)n∈N is a martingale then there exists C2 > 0 such that for all β ≥ 2

E

(
|Mη|β

)
≤C2 sup

k≥1

{
E

(
|Mk − Mk−1|qβ

)1/q
}
E
(
ηp(β/2 +2)

)1/p
. ♦

Proof. Let p , q > 1 such that 1
p + 1

q = 1. By Hölder’s inequality and Chebychev’s inequality

(4-3) E

(
|Mη|β

)
=

∞∑
k=1

E

(
|Mk|β 1{η=k}

)
≤

∞∑
k=1

E

(
|Mk|βq

) 1
q
P ({η = k}) 1

p

≤
∞∑

k=1

E

(
|Mk|βq

) 1
q
E
(
ηp(rβ +2)

) 1
p k−(rβ +2)

9



In order to prove Part a) we shall use the following inequalities and r = 1 in eq. (4-3),

E

(
|Mk|βq

)
≤ kβq sup

k≥1
E

(
|Mn − Mn−1|βq

)
.

In order to prove part b) we shall take r = 1
2 in eq. (4-3), proceed as in a) and use Burkholder-

Davis-Gundy inequality to estimate E

(
|Mk|βq

)
for βq > 1 ,

E

(
|Mk|βq

)
≤ E

(
sup
j≤k

|Mj |βq

)
≤ const. E

{ k∑
j=1

(Mj − Mj−1)
2

}βq
2


≤ const. k

βq
2 sup

n≥1
E

(
|Mn − Mn−1|βq

)
. �

We shall remark that one can in particular choose for (Mn)n∈N the partial sums of independent
random variables with expectation 0.

Lemma 4.5 Let (τn)n∈N∗ be independent random variables satisfying (4-1 b).

a) For every β ≥ 1 there exists C4 > 0 such that for all n ∈ N
∗ , E (|Nn |β) ≤ C4 nβ+1.

b) For all α ∈ ]12 , 1[ and γ > 0 there exists C5 > 0 such that for all sufficiently large n ∈ N
∗ ,

P{|Nn − n
m | > nα} ≤ C5 n−γ. ♦

Proof. In order to prove part a) we observe that by Lemma 4.4 and Chebychev’s inequality for
k ∈ N

∗ with k > 2
mn + 2n0

P {Nn = k} ≤ P {Tk ≤ n} ≤ P
{|Tk − E (Tk)| ≥ m

2 k
}

≤ ( 2
m

)2β+8
k−2β−8

E

{
|Tk − E (Tk)|2β+8

}
≤ ( 2

m

)2β+8C6 kβ+6k−2β−8 = C7 k−β−2.

This inequality implies E (Nβ
n) ≤ ∑

k≤ 2
m

n+2n0

kβ +
∑

k> 2
m

n+2n0

C7 k−2, which in turn implies part

a).

For the proof of part b) we note that again Lemma 4.4 and Chebychev’s inequality imply for
sufficiently large n
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P
{∣∣Nn − n

m

∣∣ > nα
}

=
∑

|k− n
m |>nα

P {Tk ≤ n < Tk+1}

≤
[ n
m
−nα]∑

k=0

P {Tk+1 ≥ n}+
∞∑

k=[ n
m

+nα]+1

P {Tk ≤ n}

≤
[ n
m
−nα]∑

k=0

P
{|Tk+1 − E (Tk+1)| ≥ m

2 nα
}

+
∞∑

k=[ n
m

+nα]+1

P {|Tk − E (Tk)| ≥ E (Tk) − n}

≤
[ n
m
−nα]∑

k=0

C8 nβ+2n−2αβ +
∞∑

k=[ n
m

+nα]+1

C9 kβ+2(mk − mn0 − n)−2β ≤C10 n(1−2α)β+3

where we used that for n ∈ N
∗ sufficiently large and k ≤ [ n

m − nα]

n − E (Tk+1) ≥ n − E

(
T[ n

m
−nα]+1

)
≥ n − m

(
n
m − nα − n0 + 1

)− E (Tn0) ≥ m
2 nα.

Hence we conclude the proof of part b) by choosing β sufficiently large. �

Proof of Proposition 4.1 For the special case τ ≡ 1 Proposition 4.1 has already been proved in
Heck [14] (see Remark 4.2). Therefore, by Lemma 4.3 the proof of Proposition 4.1 is complete if
we show that there exists a probability space (Ω,F ,P) with random variables X = (Xi , xi)i∈N∗
and Y = (Yi , yi)i∈N∗ such that X has the same distribution as (ξi, τi)i∈N∗ , Yi, i ∈ N

∗ are
independent, N (0,1)-distributed, yi ≡ 1 and

(4-4)
(
W̃

X
n

)
n∈N∗

and
(
W̃

Y
n

)
n∈N∗

are equivalent w.r.t. the LDP.

Here W̃
X
n denotes the random measure W̃n constructed from the sequence X . Similar we shall

use the notations S∗X
n and Ψ̃X

n , to indicate that the functions are constructed from the sequence
X .

By Skorokhod’s representation theorem there exits a probability space
(
Ω̃, F̃ , P̃

)
, a random

variable B̃: Ω̃ → C0 ([0,∞[) and P̃ -a.s. finite stopping times 0 = R̃0 ≤ R̃1 ≤ R̃2 ≤... such that

(4-5 a) B̃ is a Brownian motion

(4-5 b)
(
B̃

R̃i
− B̃

R̃i−1

)
i∈N∗

have the same distribution as (ξi) i∈N∗

(4-5 c) R̃i− R̃i−1 are independent with sup
n≥1

E

((
R̃n − R̃n−1

)β
)

< ∞ for all β > 0 and

E

(
R̃n − R̃n−1

)
= σ2 for n ≥ n0.
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(See e.g. Chapter 1, Theorem 117 in Freedman [11] and Brosamler [1], p. 570 regarding the
moments for the stopping times.)

Now let Ω = Ω̃ × R
N∗

, F the corresponding product-σ-field and

P (A × A1 × ... × An × R × ...) =
∫

A

n∏
i=1

ηi

(
B̃

R̃i
− B̃

R̃i−1
,Ai

)
d P̃.

Here ηi denotes the conditional distribution ηi (t, ·) = P (τi ∈ · | ξi = t) .

If we let B(ω̃, (tn)n∈N∗ ) = B̃(ω̃), R(ω̃, (tn)n∈N∗ ) = R̃(ω̃), then (4.5) still hold for B̃ and R̃i

replaced by B and Ri.

Hence by scaling properties of Brownian motion , if we let Xn = BR n− BRn−1 ,

xn (ω̃, (tk)k∈IN∗) = tn, Yn =
√

m
σ

(
Bnσ2

m

− B (n−1)σ2

m

)
and finally yn ≡ 1 then obviously it remains

to prove (4-4) for this special choice for X and Y.

By Lemma 4.3 part b) the proof of (4-4) is complete if we show that for all ε > 0

(4-6) lim
n→∞

1
lnn ln

(
P

{∥∥∥Ψ̃X
n − Ψ̃Y

n

∥∥∥
∞

> ε
})

= −∞.

Note that Ψ̃X
n

(
k
n

)
=

√
m

σ
√

n
BRNk

and Ψ̃Y
n

(
k
n

)
=

√
m

σ
√

n
Bnσ2

m

. Hence the definition of Ψ̃n via inter-

polation implies for k ∈ {0, 1, ...n − 1} and t ∈ [ k
n , k+1

n ]

(4-7)
∣∣∣Ψ̃X

n (t) − Ψ̃Y
n (t)

∣∣∣ ≤ √
m

σ
√

n
max

{∣∣∣∣BRNk
− B kσ2

m

∣∣∣∣ , ∣∣∣∣BRN k+1
− B (k+1)σ2

m

∣∣∣∣} .

Hence the proof of (4-6) is complete if we show that for all ε > 0

(4-8) lim
n→∞

1
ln(n) ln

(
P

{
max

k=1,...,n

{∣∣∣∣BRNk
− Bkσ2

m

∣∣∣∣} > ε
√

n

})
= −∞.

Let ε, γ > 0. Fix p > 1, β > 0 such that β > 9+4γ. By Lemma 4.4 part b), (4-5 b) and Lemma
4.5 part a) we conclude that for sufficiently large n ∈ N and k ∈ {1, ..., [n3/4]

}
(4-9) P

{∣∣∣BRNk

∣∣∣ ≥ ε
2

√
n
}
≤ (2

ε

)2β C12 n−β
E

(
Np(β+2)

k

) 1
p
≤ (2

ε

)2β C13 n−β k
β+2+ 1

p

(4-10) ≤ (2
ε

)2β C13 n− 1
4
β+ 9

4 ≤ (2
ε

)2β C13 n−γ .

Using Lemma 4.4 part b) we conclude that for sufficiently large n ∈ N
∗ and k ∈ {1, ..., [n3/4]

}
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(4-11) P

{∣∣∣∣Bkσ2

m

∣∣∣∣ > ε
2

√
n

}
≤ C14 ε−2βn−γ .

For the following we assume that n ∈ N
∗ is sufficiently large and k ∈ {[n1/4], ..., n

}
. Observing

that

(4-12) P
{∣∣∣∣BRNk

− Bkσ2

m

∣∣∣∣ > ε
√

n

}
≤ P

{∣∣∣∣BRNk
− Bkσ2

m

∣∣∣∣ > ε
√

n,
∣∣∣RNk

− kσ2

m

∣∣∣ ≤ σ2k
4
5

}

+P

{∣∣∣RNk
− kσ2

m

∣∣∣ > σ2k
4
5 ,
∣∣Nk − k

m

∣∣ ≤ k
3
4

}
+ P

{ ∣∣Nk − k
m

∣∣ > k
3
4

}
.

Obviously Lemma 4.5 part b) implies that

(4-13) P

{ ∣∣Nk − k
m

∣∣ > k
3
4

}
≤ C15 k− 16

3
γ ≤C15 n−γ.

Keeping in mind that B is a Brownian motion, the symmetry properties of Brownian motion
and

(4-14) P

{
sup

t∈[a,b]
{|Bt − Ba|} > c

}
≤ 2 exp

{
− c2

2(b−a)

}
for c > 0, 0 ≤ a < b show that

(4-15 a) P

{∣∣∣∣BRNk
− B kσ2

m

∣∣∣∣ > ε
√

n,
∣∣∣RNk

− kσ2

m

∣∣∣ ≤ σ2k
4
5

}

(4-15 b) ≤ P

 sup
t∈
[

kσ2

m
−σ2k

4
5 , kσ2

m
+σ2k

4
5

]
∣∣∣∣Bt − B kσ2

m

∣∣∣∣ > ε
√

n


(4-15 c) ≤ 2 P

 sup
t∈
[
0, σ2k

4
5

] |Bt| > ε
√

n


(4-15 d) ≤ 4 exp

{
− ε2

2σ2 n k− 4
5

}
≤ 4 exp

{
− ε2

2σ2 n
1
5

}
.

Applying Lemma 4.4 part b) we obtain for β sufficiently large

(4-16 a) P

{∣∣∣RNk
− kσ2

m

∣∣∣ > σ2k
4
5 ,
∣∣Nk − k

m

∣∣ ≤ k
3
4

}
(4-16 b) ≤

[k3/4]+2∑
l=−[k3/4]−1

P

{∣∣∣Rl+[ k
m

] − kσ2

m

∣∣∣ > σ2k
4
5

}

(4-16 c) ≤
[k3/4]+2∑

l=−[k3/4]−1

P

{∣∣∣Rl+[ k
m

] − IE
(
Rl+[ k

m
]

)∣∣∣ > 1
2σ2k

4
5

}
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(4-16 d) ≤
[k3/4]+2∑

l=−[k3/4]−1

C16
(l+[ k

m
])β+2

k
8
5 β

(4-16 e) ≤
[k3/4]+2∑

l=−[k3/4]−1

C′
16 k− 3

5
β+2 ≤ C17 k− 3

5
β+3 ≤ C17 n−γ .

Now we conclude by the inequalities (4-9) to (4-16) that

(4-17) lim sup
n→∞

1
lnn ln

(
P

{
max

k=1,...,n

{∣∣∣∣BRN k
− B kσ2

m

∣∣∣∣} > ε
√

n

})
≤ − γ + 1

and hence (4-8) by letting γ → ∞ in (4-17). �

4.2 Proof of Theorem 2.1

The proof of Theorem 2.1 is divided into three steps. First we shall consider the case where
the small set is also an atom for the Markov chain, second we shall prove the theorem under
the additional assumption that (1-2) already holds for the transition function Π it self instead
of pRp. And finally in the third and last step we shall prove the general case.

We shall remark that this technique has been already used by several authors (see e.g. Duflo
[10], Touati [28]). In connection with (ASCLT’s) this technique was introduced by Maâouia
[19-21].

First of all we shall prove

Lemma 4-6 Let X = ( Ω,F , (Px)x∈E , F = (Fk)k∈N , (Xk)k∈N)be a Riemannian recurrent Markov
chain of order k, for each k ∈ N with invariant measure µ. We have:

a) Each measurable function g: E−→ [0,∞[ such that µ(g) < ∞ satisfies

sup
n

Ex (g(Xn)) < ∞, µ − a.e.

b) Each positive random variable Y on (Ω,F) such that Eµ (Y) < ∞ satisfies

sup
n

Ex (Y ◦ θn)) < ∞, µ − a.e.. ♦

Proof. To prove this lemma we shall use Theorem 2 of [24]. Indeed in order to apply Theorem
2 we have to verify that under our assumptions X is a positive Harris recurrent chain with an
irreducible kernel Π, a maximal irreducible measure µ and convergence parameter 1 (see e.g.
[24]). By Theorem 2.1 of [25] we know that there exist an integer m0 ≥ 1, a positive function
s (called small function) satisfying µ(s) ∈]0,∞[ and a bounded positive measure η on (Ω,F)
(called small measure) such that the following minoration condition holds
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Πm0
(x,A) ≥ s(x)η(A), ∀x ∈ E, ∀ A ∈ E .

Then by the Theorem 2 of [25] we can see that

sup
1≤h≤g

|Ex (h(Xn)) − µ(h)| −→
n→∞ 0 , µ − a.e. ,

letting h = g and using the fact that µ(g) < ∞ and µ is Π-invariant, we have

Ex (g(Xn)) < ∞ µ − a.e., Ex (g(Xn)) ≤ |Ex (g(Xn)) − µ(g)| + µ(g)

and then

sup
n

Ex (g(Xn)) < ∞, µ − a.e. .

So the first part of the Lemma is proved.

In order to prove the second part we simply apply part a) to the function

g : x ∈E 7−→ Ex (Y) . �

4.2.1 Case I: Atomic chains

For the following we shall assume that X not only has a small set A but also that A is an
atom for the Markov chain X.

Let TA denote the first entry time into A, i.e. TA = inf {k > 0, Xk ∈ A} and let T0 ≡ 0, and
Tk+1 = TA ◦ θTk

+ Tk. Further for k ∈ N
∗ let ξk = MTk

−MTk−1
and τk = Tk−Tk−1. Since the

chain is positive recurrent, it is well known that the invariant distribution is given by

(4-18) µ(·) = 1
Ea (TA)Ea

(
TA−1∑
k=0

1{Xk∈·}

)
where a ∈ A is arbitrary.

Further, since A is an atom, the Markov property implies that Ξ = (ξk, τk)k∈N∗ is a sequence of
independent random variables and (ξk, τk)k≥2 are identically distributed w.r.t. Px for all x ∈ E.

Keeping in mind that the chain is Riemannian recurrent of order k for all k ∈ N
∗ the Markov

property shows that for x ∈ E and β > 0

Ex

(
|T2 − T1|β

)
= Ea

(
|TA|β

)
< ∞.

By Proposition 8.3.23 in Duflo [10] we conclude that Eµ

(
Tβ

1

)
< ∞ and hence Ex

(
Tβ

1

)
< ∞

for µ − a.a. x ∈ E. This together with the identical distribution for k ≥ 2 implies

(4-19) sup
n∈N∗ Ex

(
τβ
n

)
< ∞ for µ − a.a. x ∈ E.
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Since TA ≥ 1,

(4-20) Ex (τk) = m > 0.

Using Lemma 4.4 part a) we conclude for µ − a.a. x ∈ E,

Ex

(
|ξ1|β

)
= Ex

(
|MT1|β

)
< ∞ and

Ex

(
|ξ2|β

)
= Ex

(
|MT2 − MT1 |β

)
≤ 2β

{
Ex

(
|MT2 |β

)
+ Ex

(
|MT1 |β

)}
< ∞.

This together with the identical distribution of the ξi, i ≥ 2 implies for µ − a.a. x ∈ E

(4-21) sup
n∈N∗ Ex

(
|ξn|β

)
< ∞.

We have that for µ − a.a. x ∈ E

(4-22) Ex (ξ1) = Ex (MT1) = 0 and IEx (ξ2) = Ea (MTA
) = 0.

Moreover by the Martingale property of Mn, the Markov property of X and (4-18)

(4-23) Ex

(
ξ2
2

)
= Ea

(
M2

TA

)
= Ea

(
TA−1∑
k=0

EXk

(
(M1 − M0)2

))
= Eµ

(
M2

1

)
Ea (TA) = σ2

M m > 0.

(4-19) to (4-23) imply that Ξ = (ξn, τn)n∈N satisfies the assumptions of Proposition 4.1. Hence

Proposition 4.1 implies that
(
W̃

Ξ

n

)
n∈N∗

satisfies the (LDP) with the constants (ln n)n∈N∗ and

rate function H. Therefore the proof of Theorem 2.1 is in this case complete if we show that(
W̃

Ξ

n

)
n∈N∗

and
(
W̃n

)
n∈N∗

are equivalent w.r.t. Px for µ − a.a. x ∈ E.

Following the same steps as in the proof of Proposition 4.1 we see that in order to verify this
equivalence it suffices to prove that for µ − a.a. x ∈ E

(4-24) lim
n→∞

1
ln n ln

(
P

{
max

k=1,...,n

{∣∣Mk − S∗Ξ
k

∣∣} > ε
√

n

})
= −∞.

If we let Yn = sup
Tn ≤ t < Tn+1

|Mt − MTn |, and as in the prior section Nn =

inf {k ≥ 0, Tk+1 > n}, then it is easy to see that

(4-25)
∣∣Mn − S∗Ξ

n

∣∣ ≤ YNn .

By Doob’s inequality and (4-21) for µ − a.a. x ∈ E and β > 1
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(4-26) sup
k≥0

Ex

(
Yβ

k

)
≤ C18 sup

k≥0
Ex

(∣∣MTk+1
− MTk

∣∣β) = C18 sup
k≥1

Ex

(
|ξk|β

)
.

So by Lemma 4.5 part a)

(4-27 a) Ex

(
Yβ

Nk

)
=

∞∑
l=0

Ex

(
Yβ

l 1{Nk=l}
)
≤

∞∑
l=0

Ex

(
Y2β

l

)1/2
Px (Nk = l)1/2

(4-27 b) ≤ C19

∞∑
l=0

IEx(N4
k)

1/2

l2
≤ C20 k3 .

This together with Chebychev’s inequality and (4-25) implies

(4-28) P

{
max

k=1,...,n

{∣∣Mk-S∗Ξ
k

∣∣} > ε
√

n

}

≤
n∑

k=0

Px (|YNk
| > ε

√
n) ≤

n∑
k=0

C21
k3

nβ+6 ≤C22n
−β.

This concludes the proof of Theorem2.1 for the special case of atoms. �

4.2.2 Case II: Chains with minoration property

We shall proof in this section Theorem 2.1 under the additional assumption, that there exist
a set C ∈ E , b∈]0, 1[ and a probability measure ν ∈ M1(E) with ν(C) = 1 such that

(4-29) Π(x, ·) ≥ b 1C(x) ν(·).

We shall remark that in particular C is a small set (see e.g. Duflo [10] p. 286). Using this small
set we construct (as in [21] for example) a new chain called split chain, i.e. a canonical version
of a homogeneous Markov process

X =
(
Ω, F , (Px)x∈E, F = (Fk)k∈N , (Xk)k∈N

)
with values in E = E×{0, 1} and transition probability

(4-30) Π((x, i),A × B) =
{

ν(A) {(1 − b1C(x) )δ1(B) + b1C(x) δ0(B)} if i = 0,
Q(x,A) {(1 − b1C(x)) δ1(B) + b1C(x) δ0(B)} if i = 1;

where Q(x,A) = (1−b1C(x))−1 (Π(x,A) − b1C(x)ν(A) ) . It is well known that

Remarks 4.7

a) E×{0} is an atom for X and
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(4-31) sup
x∈E×{0}

sup
x∈E×{0}

E x

(
Tk

E×{0}
)
≤ C22 sup

x∈C
Ex

(
Tk

C

)
< ∞ for all k ≥ 1.

b) If we denote the invariant distribution (which obviously exists by part a) of this remark)
by µ, then µ is related to the invariant distribution µ of the original Markov chain through
µ (A × {0}) =bµ(A ∩ C) and µ (A × {1) = (1−b)µ(A ∩ C)+ µ(A ∩ Cc).

c) Part b) of the remark implies easily that for all Z ∈ L1(µ), E µ

(
Z
)

= Eµ (Z) and Ex (Z) = b
1{x∈C}E (x,0)

(
Z
)

+ (1−b1{x∈C})E (x,1)

(
Z
)

for all x ∈E. Here Z denotes the natural lift of Z from
Ω to Ω = Ω × {0, 1}N , i.e. Z (ω, (xn)n≥0) = Z(ω).

For details on the above construction and the remark we refer to Duflo [10], section 8.2.4.

By Remark 4.3 b) we conclude

(4-32) E µ

(
M2

1

)
= Eµ

(
M2

1

)
= σ2

M
and E µ

(∣∣M1

∣∣β) = Eµ

(
|M1|β

)
< ∞.

Since Theorem 2.1 has already been proved for chains with atoms, we conclude by (4-31) and

(4-32) that
(

WM
n

)
n>0

satisfies the (LDP) with constants (ln n)n>0 and rate function H w.r.t.

Px for µ − a.a. x ∈ E.

Here WM
n denote the empirical measure defined as in (1-16) with (Mk)k>0 replaced by

(
Mk

)
k>0

.

It is not hard to see that WM
n is the lift of Wn. We therefore conclude by Remark 4.7 part c)

for x ∈ E \C Px {Wn ∈ ·} = P(x,1)

{
WM

n ∈ ·
}

and for x ∈ C Px {Wn ∈ ·} =bP(x,0)

{
WM

n ∈ ·
}

+

(1−b)P(x,1)

{
WM

n ∈ ·
}

and hence (Wn)n>0 satisfies the (LDP) with constants (ln n)n>0 and rate

function H w.r.t. Px for µ − a.a. x ∈E.�

4.2.3 Case III: General case

In this section will shall finish the proof of Theorem 2.1.

By enlarging the space if necessary, we may assume without loss of generality that there exits
a sequence of i.i.d. random variables (ρk)k>0 with Px (ρ1 = 0) = p0 and Px (ρ1 = k) = (1 − p0)

2

pk−1
0 for k ∈ N

∗ and x ∈E which in addition are independent of the Markov chain. Then

Ex (ρ1) = 1. Now let R0 ≡0, Rn=
n∑

k=1

ρk and X̂n= XRn .

Then X̂=
(
Ω̂, F̂ , (P̂x)x∈E, F̂=(F̂k)k∈N , (X̂k)k∈N

)
is a Markov chain with transition probability

Π̂ (x, dy) = p0δx(dy)+ (1 − p0)
2 Rp0

(x, dy) .
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Hence, since C is a small set for X (i.e.(1-2) holds) C is a small set for X̂ which satisfies in
addition (4-29). Further µ is also the invariant distribution for X̂ .

Moreover, if we let M̂n = MRn then M̂ =
(
M̂n, σ

(
X̂k, k ≤ n

))
n

is a Martingale additive
functional.

We shall show now that X̂ and M̂ satisfy the assumption of Theorem 2.1. By Lemma 4.4 part
a) and the fact that Eµ

(
|M1|β

)
= Eµ

(
|Mn − Mn−1|β

)
< ∞ we obtain

Eµ

(∣∣∣M̂1

∣∣∣β) = Eµ

(
|MR1 |β

)
< ∞, Eµ

(
M̂

2

1

)
= Eµ

(
M2

1

)
E (R1) = σ2

M .

Furthermore if we let T̂C = inf
{
k ≥ 1, X̂k ∈ C

}
then

(4-33) sup
x∈C

Ex

(
T̂

β

C

)
≤ C23sup

x∈C
Ex

(
T β

C

)
.

For β = 1 this is exactly part 4) of Proposition 8.2.13 in Duflo [10]. The general case is proved by
a straight forward modification of the proof for β = 1 given in Duflo. Details shall be omitted.

We therefore obtain from the previous part of the proof of Theorem 2.1 (case II) that
(
WM̂

n

)
n≥1

satisfies the (LPD) with constants (ln(n))n≥1 and rate function H w.r.t. P̂x for µ − a.a. x ∈ E.

Therefore the proof of Theorem 2.1 is complete, if we show that
(
WM̂

n

)
n≥1

and
(
WM

n

)
n≥1

are equivalent w.r.t. the (LDP). The proof of the equivalence however is a straight forward
modification of the proof of (4-4). For the readers convenience we shall sketch the proof below.

As for (4-4) the proof can be reduced to

(4-34) lim
n→∞

1
ln n ln

(
Px

{
max

k=1,...,n

∣∣∣M̂k − Mk

∣∣∣ > ε
√

n

})
= −∞

for µ − a.a. x ∈ E (compare (4-8)). Observe that for µ − a.a. x ∈ E

(4-35) C24 = sup
n

Ex

(
|Mn − Mn−1|β

)
< ∞

and hence by Lemma 4.4

(4-36) sup
n

Ex

(∣∣∣M̂n − M̂n−1

∣∣∣β) = sup
n

Ex

(∣∣MRn − MRn−1

∣∣β) < ∞.

Fix such an x ∈ E and γ > 0, Using (4-35) we obtain as in (4-11) and (4-12) for sufficiently
large n ≥ 1 and k ∈ {1, ..., [n3/4]

}
(4-37) Px {|Mk| > ε

√
n} ≤ C25 n−γ and Px

{∣∣∣M̂k

∣∣∣ > ε
√

n
}
≤ C26 n−γ .
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By Lemma 4.4 and Chebychev’s inequality we conclude for k ∈ {[n3/4], ..., n
}

(4-38) Px

{|Rk − k| > k3/4
} ≤ C27 k− 4

3
γ ≤ C28 n−γ .

Now by Doob’s maximal inequality, the Burkholder-Davis-Gundy inequality and Lemma 4.4 for
sufficiently large n ∈ N

∗

(4-39 a) Px

{∣∣∣M̂k − Mk

∣∣∣ > ε
√

n, |Rk − k| ≤ k3/4
}

(4-39 b) ≤ Px

{
max

l∈{1,...,2[k3/4]+1}
∣∣∣Mk−[k3/4] − Ml+k−[k3/4]

∣∣∣ > ε
2

√
n

}

(4-39 c) ≤C29 Ex

(∣∣∣Mk+[k3/4] − Mk−[k3/4]

∣∣∣2β
)

n−β

(4-39 d) ≤ C30 k
3
4
(β+2) n−β ≤ C30 n−γ .

Using these estimates we conclude the proof of (4-34) in the same way as the proof of (4-8).

This completes the proof of Theorem 2.1. �

4.3 Proof of Proposition 3.1 and Proposition 3.2

We shall prove only Proposition 3.1 because the proof of Proposition 3.2 is a straight forward
modification of the proof of Proposition 3.1 and contains no new ideas.

We shall denote by Xx = (Xx
k)k∈N the (AR1) given through (3-1) with X0 ≡ x.

We observe first that if X = ( Ω,F , ( Px )x∈E , F = (Fk)k∈N , (Xk)k∈N ) is a standard Markov
chain on R with transition probability Π(x, ·)= P(θx + β1 ∈ ·), then:

(4-40) The distribution of Xx under P is equal to that of X under Px.

It is well known that in the stable case the Markov chain has an invariant measure µ, which is

equal to the distribution of
∞∑

k=1

θk−1βk.

We shall prove next

Lemma 4.8

a) For every x ∈ R and δ > 0, sup
n∈N∗ Ex

(
|Xn|δ

)
< ∞.

b) Let C = ]a, b[ with a < b , µ(C) > 0 and ε > 0. Then sup
x∈Cε

Ex

(
(TCε)

δ
)

< ∞ for every

δ > 0, where Cε = ]a − ε, b + ε[. ♦

20



Proof. For the proof of part a) we may assume without loss of generality that δ ∈ 2N∗ . Using
Hölder’s inequality and the identical distribution of the random variables (βn)n∈IN∗ and letting
β0 = x we obtain

Ex

(
|Xn|δ

)
≤

n∑
l1,...,lδ=0

|θ|l1 ...|θ|lδEx (|βl1 | ... |βlδ |) ≤ (1 − |θ|)−δ
Ex

(
(|β0| + ... + |βδ|)δ

)
.

In order to prove part b) it obviously suffices to show that there exist m ∈ N
∗ , q ∈ ]0, 1[ and

C31 > 0 such that for all n ∈ N
∗

(4-41) sup
x∈Cε

Px (TCε > m n) ≤ C31 qn.

Using (3-1) we obtain inductively for k, n ∈ N
∗ with k < n

(4-42) Xn = θn−k Xk +
n−k∑
l=1

θn−k−lβl+k = θn−k Xk+ Zk,n

For m ∈ N
∗ with 4|θ|m (|a| + |b| + 1) < ε we conclude for x ∈Cε

Px (TCε > m n) ≤ P x

(
n⋂

k=1

{Xk m /∈ Cε}
)

= Px

(
n⋂

k=1

{
θk mx + Z0,km /∈ Cε

})
≤ Px

(
n⋂

k=1

{
Z0,k m /∈ C ε

2

})
= αn(0).

We dropped the parameter x in αn(0), since the distribution of Z0,i m , i ∈ N
∗ under Px is

independent of x. In the following we fix x ∈ R. Analogously to (4-42) we obtain

(4-43) Z0,im = θm Z0,(i−1) m+ Z(i−1)m,i m.

We observe next that Z(i−1)m,i m, i ∈ N
∗ are i.i.d. and that the distribution of Z0,m con-

verges (for m → ∞) weakly to the invariant measure µ. Hence by the Portmanteau Lemma
lim sup
m→∞

Px (Z0,m /∈ C) ≤ µ (R\C) ≤ 1 − µ (C) < 1.

For the following fix r ∈ ]µ (R\C) , 1[ and m ∈ N
∗ such that Px (Z0,m /∈ C) ≤ r,

4|θ|m (|a| + |b| + 1) < ε and q = r + 2|θ|m < 1.

Letting αn(i) = Px

(
n⋂

k=1

{
Z0,k m /∈

[
−
( |θ|−m

2

)i
ε,
( |θ|−m

2

)i
ε

]})
for i ∈ N

∗ . We shall see that

for i ∈ N and n ≥ 2

(4-44) αn(i) ≤ r αn−1(i) + αn−1(i + 1)

Indeed, using (4-43) and the independence of the Z(i−1) m,i m, i ∈ N
∗ , we conclude
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αn(0) = Px

(
n⋂

k=1

{
Z0,k m /∈ C ε

2

})

≤ Px


n−1⋂
k=1

{
Z0,k m /∈ C ε

2

}
∩ {Z0,(n−1) m ∈ [−(2|θ|m)− 1ε, (2|θ|m)− 1ε]

}
∩
{
|θ|m Z0,(n−1) m + Z(n−1) m , n m /∈ C ε

2

}


+Px

(
n−1⋂
k=1

{
Z0,km /∈ C ε

2

}
∩ {Z0,(n−1) m /∈ [−(2|θ|m)− 1ε, (2|θ|m)−1ε]

})

≤ Px

(
n−1⋂
k=1

{
Z0,km /∈ C ε

2

}
∩ {Z(n−1) m,nm /∈ C

})
+ αn−1(1)

≤ αn−1(0)Px

(
Z(n−1) m, n m /∈ C

)
+ αn−1(1) = r αn−1(0) + αn−1(1).

We used also the fact that (by the choice of m) C ε
2
⊆ [−(2|θ|m)− 1ε, (2|θ|m)− 1ε].

The case i ≥ 1 is proved analogously.

Using (4-44) an easy induction argument shows that

αn(0) ≤ C32

n−1∑
i=0

(
n−1

i

)
rn−1−i α1(i)

Observing that by part a) and Chebychev’s inequality α1(i) ≤ C32 (2|θ|m)i for some C32 > 0,
we conclude

αn(0) ≤ C32

n−1∑
i=0

(
n−1

i

)
rn−1−i (2|θ|m)i = C32 (r + 2|θ|m)n−1 = C32

q qn. �

Next we shall show that

Lemma 4.9 There exists a small set C such that the Markov chain is Riemannian of any order
k. ♦

Proof. Since the distribution of βi has a non vanishing density part, the distribution of βi+θβi−1

has a non vanishing density part with a continuous density say h. Hence the exists a < b such
that inf

]a,b[
h > 0.

A simple application of Borel-Cantelli Lemma shows that there exists a n0 ∈ N
∗ such that for

all n ≥ n0 and x ∈ R

(4-45) Px

(
∞∑

k=n+1

∣∣βk θk
∣∣ < ε

)
≥ 1

2 .
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Let ε ∈ ]0,1[ such that a
2(1−θ2)

+2ε < b
2(1−θ2)

−2ε and let n ≥ n0 such that |θ|n
(
2 − |a|+|b|

1−θ2

)
< ε.

Now observe that for n ∈ N
∗

(4-46) X2n = θ2n X0 +
n∑

i=1
θ2n−2i (β2i + θβ2i−1) = θ2n X0+Z0,2n

and hence the distribution of X2n w.r.t. Px has a non vanishing density part with a continuous
density, say f x

2n, such that

(4-47) inf
x∈] a

1−θ2 , b
1−θ2 [

inf
]a 1−θ2n

1−θ2 + ε, b 1−θ2n

1−θ2 − ε[
f x
2n > 0.

Moreover since the invariant measure µ is equal to the distribution of Z0,2n +
∞∑

k=2n+1

θk−1 βk,

it is easy to see that by (4-45) and (4-47) µ has a non vanishing density part say g with
inf

]a 1−θ2n

1−θ2 + 2ε, b 1−θ2n

1−θ2 − 2ε[
g > 0 .

By (4-47) we see that [a 1−θ2n

1−θ2 + 2ε, b 1−θ2n

1−θ2 − 2ε] is a small set, and by Lemma 4.8 the Markov
chain is Riemannian recurrent of any order k. �

Lemma 4.10 For every x ∈ R and δ > 0 there exists C33 > 0 such that

(4-48) Ex

(∣∣∣∣ n∑
k=1

X2
k−1 − n σ2

1−θ2

∣∣∣∣δ
)

≤C33 nδ/2. ♦

Proof. We remark that

(4-49)
n∑

k=1

X2
k−1 − n σ2

1−θ2 = 1
1−θ2

(
n∑

k=1

{
X2

k − Ex

(
X2

k / Fk−1

)}− X2
n + X2

0

)

hence we conclude the proof by applying the Burkholder-Davis-Gundy inequality to the martin-

gale
(

n∑
k=1

{
X2

k − Ex

(
X2

k / Fk−1

)})
n

and the part a) of Lemma 4.8. �

Proof of Proposition 3.1. We observe first that Mn =
n∑

k=1

Xk−1βk, n ∈ N
∗ is a (MFA) with

σ2
M = Eµ

(
M2

1

)
= σ4

1−θ2 . Hence, by Lemma 4.9 we can apply Theorem 2.1 to M and the Markov
chain X.

Letting Mx
n =

n∑
k=1

Xx
k−1βk we conclude by Theorem 2.1 and (4-40) that

(
ΨMx

n

)
n∈N∗ satisfies the

(LDP) with constants (ln(n))n∈N∗ and rate function H w.r.t. Px for µ − a.a. x ∈ R.
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Furthermore by (4-42) Mx
n−My

n = (x − y)
n∑

k=1

θk−1βk. Since with Mx
n and My

n also Mx
n−My

n is

a martingale, Chebychev’s inequality and Doob’s maximal inequality imply easily for γ ∈ N
∗

P

{
max

k=1,...,n
|Mx

n − My
n| > ε

√
n

}
≤ C34 ε−2γ n−γ |x − y|2γ

Ex

(∣∣∣∣ n∑
k=1

θk−1βk

∣∣∣∣2γ
)

≤C35 n−γ .

This in turn implies that
(
WMx

n

)
n∈N∗ and

(
WMy

n

)
n∈N∗ are equivalent w.r.t. the (LDP) (see the

proof of (4-4) and in particular (4-6) and (4-8)).

Therefore it remains to prove that for all initial states x 6= 0
(
Wθ

n

)
n∈N∗ and

(
WMx

n

)
n∈N∗ are

equivalent w.r.t. (LDP).

The proof of the equivalence is again very similar to that of (4-42), so that it suffices to give
only a sketch of the proof.

Fix x 6= 0. A simple calculation show that

∣∣Ψθ
n( k

n) − ΨMx

n ( k
n)
∣∣ =

∣∣∣∣∣√ n
1−θ2

(
k
n

)( k∑
k=1

X2
k−1

)−1

Mx
k −

√
1−θ2

nσ4 Mx
k

∣∣∣∣∣
=
√

1−θ2

nσ4 |Vx
k | |Mx

k | |Ux
k|−1

where Ux
n =

n∑
k=1

(
Xx

k−1

)2 and Vx
n = n σ2

1−θ2− Ux
n.

Using again the same arguments as in the proof of (4-4) it remains to verify

(4-50) lim sup
n→∞ P

{
max

k=1,...,n
|Vx

k| |Mx
k| |Ux

k|−1 > ε
√

n

}
= −∞

Observing that Ux
n ≥ (Xx

0)2 = x2 > 0 we obtain by Chebychev’s inequality, Hölder’s inequality
and Lemma 4.10 and Lemma 4.4 analogously to (4-9) that for γ > 0, n sufficiently large and
k ≤ n1/8

(4-51) P
{ |Vx

k| |Mx
k| |Ux

k|−1 > ε
√

n
} ≤C36

(
x2ε
)−2γ

n
γ
4 n− γ

2 ≤C37 n− γ
4

and for k ∈ {[n1/8], ..., n
}

(4-52) P

{
|Vk| > k

3
4

}
≤C38 n− γ

4 .

Finally again by Chebychev’s inequality and Lemma 4.4 we conclude for n sufficiently large and
k ∈ {[n1/8], ..., n

}
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(4-53 a) P

{
|Vx

k| |Mx
k| |Ux

k|−1 > ε
√

n, |Vx
k| ≤ k

3
4

}
(4-53 b) ≤ P

{
k

3
4 |Mx

k| 2
(
σ2(1 − θ2)−1k

)−1
> ε

√
n
}

(4-53 c) ≤ P

{
|Mx

k| > εn
17
32

}
≤C39 n−γ .

Now (4-50) is immediate consequence of (4-51) to (4-53), since γ > 0 was arbitrary. This
concludes the proof of Proposition 3.1. �

5 Remarks

We shall conclude this paper with some remarks.

a) Theorem 2.1 implies (LDP) for further a.s. limit theorems, like the (ASCLT) on the real line,
a.s. versions of arcsine law (Compare Corollary 2.10 and Examples 2.11 in Heck [14]).

b) The (LDP) for (ASCLT) implies in particular easily the (ASCLT) itself. Therefore, for
random variables satisfying the assumption of Theorem 2.1, Theorem 2.1 can be regarded as an
generalization of Theorem A (see Corollary 2.12 in Heck [14]).

c) The moment assumptions like (1-6) or (2-1) are necessary compare to the corresponding
assumptions in Heck [14] and March and Seppäläinen [22]. Lifshits & Stankevich [18] prove the
necessity of these hypotheses.
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