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Abstract

In this paper we deal with second order quadratic variations along general subdivi-

sions for processes with Gaussian increments. These have almost surely a deterministic

limit under conditions on the mesh of the subdivisions. This limit depends on the sin-

gularity function of the process and on the structure of the subdivisions too. Then we

illustrate the results with the example of the time-space deformed fractional Brownian

motion and we present some simulations.
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1 Introduction

In 1940 Paul Lévy (see [17]) proves that if W is the Brownian motion on [0, 1] then:

lim
n→+∞

2n∑

k=1

[
W

(
k

2n

)
−W

(
k − 1

2n

)]2
= 1, a.s..

Then in [2] and in [11] this result is extended to a large class of processes with Gaussian
increments. In these cases the subdivisions are regular and the mesh is fixed (equal to 1/2n).
More general subdivisions are used later in [10] and [15]. The subdivisions can be irregular
and the optimal condition is that the mesh must be at most o(1/ log n).

In the case of the fractional Brownian motion, the quadratic variation is used to construct
some estimators of the Hurst index H. But these estimators are not asymptotically normal
when H > 3/4 (see [12]). To solve this problem in [14], [3], [8] and [9] authors introduce
generalized quadratic variations. The most common variation is the second order quadratic
variation, which will be defined in the next section. But one more time subdivisions are
regular.

In this paper we extend the theorem of [9] to a large class of subdivisions which may be
irregular. We obtain that the limit of the second order quadratic variation depends on the
structure of the sequence of subdivisions, and one more time that the mesh must be at most
o(1/ log n).

In the first section we state our notations. In the second one we prove our theorem. The
third one is a discussion about the assumptions made on the structure of the subdivisions.
In the fourth one we apply the results to the example of the time-space deformed fractional
Brownian motion. In the last one we illustrate the examples with some simulations.

2 Notations

Let (Xt)t∈[0,1] be a square integrable process. We can define its mean function:

∀t ∈ [0, 1], Mt = EXt,

and its covariance function:

∀s, t ∈ [0, 1], R(s, t) = E
(
(Xt −Mt) (Xs −Ms)

)
.

We define the second order increments of R too:

δh1,h2

1 R(s, t) = h1R(s+ h2, t) + h2R(s− h1, t)− (h1 + h2)R(s, t),

δh1,h2

2 R(s, t) = h1R(s, t+ h2) + h2R(s, t− h1)− (h1 + h2)R(s, t).
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Let (πn)n∈N be a sequence of subdivisions of the interval [0, 1]. One denotes by Nn the
number of subintervals of [0, 1] generated by πn. We suppose that πn can be written:

πn =
{
t
(n)
0 = 0 < t

(n)
1 < · · · < t

(n)
Nn

= 1
}
,

One sets the upper mesh of πn:

mn = max{t(n)i+1 − t
(n)
i ; 0 ≤ i ≤ Nn − 1},

and the lower mesh:
pn = min{t(n)i+1 − t

(n)
i ; 0 ≤ i ≤ Nn − 1}.

Note that one has:

∀n ∈ N, pn ≤
1

Nn

≤ mn.

Definition 1. We say that the sequence of subdivisions (πn)n∈N is regular if we have:

∀n ∈ N, mn = pn =
1

Nn

.

Or equivalently:

∀n ∈ N,∀k ∈ {0; . . . ;Nn}, t
(n)
k =

k

Nn

.

For fractional processes the following second order quadratic variation has been used:

Sπn(X) = N 1−γ
n

Nn−1∑

k=1

[
X k+1

Nn

+X k−1
Nn

− 2X k
Nn

]2
, (1)

which is taken along the regular subdivision with mesh 1/Nn. The real number γ is in ]0, 2[
and depends on the regularity of the process, as we will see later.

If f : [0, 1] 7−→ R is of class C2 in a neighborhood of the point t then the Taylor formula
yields:

lim
h→0

f(t+ h) + f(t− h)− 2f(t)

h2
= f ′′(t). (2)

This motivates the term X k+1
Nn

+X k−1
Nn

− 2X k
Nn

in (1). If we want to use irregular subdi-

visions we must generalize (2). One more time the Taylor formula yields:

lim
h1→0
h2→0

h1f(t+ h2) + h2f(t− h1)− (h1 + h2)f(t)

h1h2(h1 + h2)
=

1

2
f ′′(t).

So one defines the second order increments of X:

∆Xk = ∆tk−1Xtk+1
+∆tkXtk−1

− (∆tk−1 +∆tk)Xtk , k = 1, . . . , Nn − 1,
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where (we drop the super-index in t
(n)
k whenever it is possible):

∆tk = tk+1 − tk, k = 0, . . . , Nn − 1.

We will see later that E
[
(∆Xk)

2] is asymptotically of the same order as:

(∆tk−1)
3−γ

2 (∆tk)
3−γ

2 (∆tk−1 +∆tk) .

That is why we define the second order quadratic variation of X along a general subdi-
vision by:

Vπn(X) = 2
Nn−1∑

k=1

(∆tk) (∆Xk)
2

(∆tk−1)
3−γ

2 (∆tk)
3−γ

2 (∆tk−1 +∆tk)
(3)

where γ ∈]0,+∞[.

Note that when the sequence (πn)n∈N is regular, one has:

Vπn(X) = Sπn(X).

Let us recall the Landau notations. Let (un)n∈N and (vn)n∈N be two sequences of real
numbers such that ∀n, vn 6= 0. We will say that:

(i) un
n→+∞
= O(vn) if the sequence (un/vn)n∈N is bounded,

(ii) un
n→+∞
= o(vn) if the sequence (un/vn)n∈N goes to zero when n→ +∞.

To study the almost sure convergence of Vπn(X) we will use the following assumption on
the sequence (πn)n∈N.

Definition 2. Let (lk)1≤k be a sequence of reals in the interval ]0,+∞[. We say that (πn)n∈N
is a sequence of subdivisions with asymptotic ratios (lk)1≤k if it satisfies the following assump-
tions:

1.
mn

n→+∞
= O(pn). (4)

2.

lim
n→+∞

sup
1≤k≤Nn−1

∣∣∣∣∣
∆t

(n)
k−1

∆t
(n)
k

− lk

∣∣∣∣∣ = 0. (5)

The set L = {l1; l2; . . . ; lk; . . . } will be called the range of the asymptotic ratios of the sequence
(πn)n∈N.

694



It is clear that if the sequence (πn)n∈N is regular, then it is a sequence with asymptotic
ratios (lk)1≤k where: ∀k ≥ 1, lk = 1.

Note that assumption (4) implies:

∃K > 0,∀n ∈ N, pn ≤
1

Nn

≤ mn ≤ Kpn, (6)

therefore (lk)1≤k ⊂ [1/K,K], and the closure of L in ]0,+∞[ is compact.

In the sequel we only consider process with Gaussian increments.

Definition 3. A process (Xt)t∈[0,1] has Gaussian increments if, for any subdivision {t0 =
0 < t1 < · · · < tN = 1} of [0, 1], the random vector (Xti+1

−Xti)0≤i≤N−1 is Gaussian.

In the proof of the next section we use the following notations:

djk = E(∆Xj∆Xk), j, k = 1, . . . , Nn − 1. (7)

And:
µk = (∆tk−1)

3−γ
2 (∆tk)

3−γ
2 (∆tk−1 +∆tk) , k = 1, . . . , Nn − 1 (8)

We remark that:

∀1 ≤ k ≤ Nn − 1,
2p4n
mγ

n
≤ µk ≤

2m4
n

pγn
. (9)

3 The results

We prove the almost sure convergence of Vπn(X) to a deterministic limit under some
conditions on the covariance function of the process X and on the mesh of the subdivisions
πn.

For a function g :]0,+∞[×]0, 1[→ R we need the following assumption of continuity:

∀ε > 0,∃δ > 0; ∀l ∈ L,∀t, t∗ ∈]0, 1[, |t− t∗| < δ =⇒ |g(l, t)− g(l, t∗)| < ε. (10)

Theorem 4. Let (πn)n∈N be a sequence of subdivisions with asymptotic ratios (lk)1≤k and
range of the asymptotic ratios L. Let (Xt)t∈[0,1] be a square integrable process, with Gaussian
increments, verifying:

1. t 7−→Mt = EXt has a bounded first derivative on [0, 1],

2. the covariance function R(s, t) has the following properties:

(a) R is continuous on [0, 1]2,
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(b) the derivative ∂4R
∂s2∂t2

exists and is continuous on ]0, 1]2\{s = t}, and there exists
one constant C > 0 and one real γ ∈]0, 2[ such that :

∀s, t ∈]0, 1]2\{s = t},
∣∣∣∣
∂4R

∂s2∂t2
(s, t)

∣∣∣∣ ≤
C

|s− t|2+γ , (11)

(c) We assume that there exists a function g :]0,+∞[×]0, 1[→ R satisfying assump-
tion (10) and such that:

∀ε > 0,∃δ > 0, sup
Eδ

∣∣∣∣∣∣

(
δh1,h2

1 ◦ δh1,h2

2 R
)
(t, t)

h
3−γ

2
1 h

3−γ
2

2 (h1 + h2)
− g(l, t)

∣∣∣∣∣∣
< ε, (12)

where:

Eδ =

{
(h1, h2, l, t) ∈]0,+∞[2×L×]0, 1[;h1 + h2 < δ, h1 ≤ t ≤ 1− h2,

∣∣∣∣l −
h2
h1

∣∣∣∣ < δ

}
,

and such that the following limit exists and is finite:

lim
n→+∞

∫ 1

0

g(ln(t), t) dt, (13)

where ln(t) =
∑Nn−1

k=1 lk1]t(n)
k ,t

(n)
k+1[

(t).

3. The lower mesh of the subdivisions πn satisfy:

pn
n→+∞
= o

(
1

log n

)
. (14)

Then one has almost surely:

lim
n→+∞

Vπn(X) = 2 lim
n→+∞

∫ 1

0

g(ln(t), t) dt. (15)

Remarks.

(i) If assumptions (11), (12) is satisfied for γ0 then they are satisfied for all γ > γ0 too,
but the corresponding function gγ is equal to zero. When γ0 is chosen as the infimum of real
satisfying (11) and (12), gγ0 can be viewed as a generalization of the singularity function of
X (see [2]).

(ii) As we will see later, in most cases one is able to compute explicitly the limit

limn→+∞

∫ 1
0
g(ln(t), t) dt.

(iii) We assume that the covariance function has a singularity on the set {s = 0}∪{t = 0}
which is the case of the FBM. If the singularity is at another point than 0, we can use a new
parameterization in order to have a the singularity at point 0.
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Proof of theorem 4. Along the proof K denotes a generic positive constant, whose
value does not matter.

First we assume that the theorem is true in the case of X centered.

Because of assumption 1., one has when n→ +∞:

Vπn(M) = 2
Nn−1∑

k=1

∆tk(∆Mk)
2

µk
= O

(
Nn

mγ
n

p3n
m4

n

)
= O (mγ

n) = o(1), (16)

which comes from (6),(9) and assumption 1.

If X is not centered, one sets X̃t = Xt−Mt. Using Baxter’s arguments (see [2]) and (16)
one has:

lim
n→+∞

Vπn(X) = lim
n→+∞

Vπn(X̃) a.s..

However the theorem is true in the case of X not centered too. So one can assume that
the process X is centered without loss of generality.

First we study the asymptotic properties of EVπn(X). One remarks that:

djk =
(
δ
∆tj−1,∆tj
1 ◦ δ∆tk−1,∆tk

2 R
)
(tj, tk) , (17)

and:

EVπn(X) = 2
Nn−1∑

k=1

∆tkdkk
µk

. (18)

Moreover assumptions (12) and (5) yield:

lim
n→+∞

sup
1≤k≤Nn−1

∣∣∣∣
dkk
µk
− g(lk, tk)

∣∣∣∣ = 0. (19)

Therefore:

lim sup
n→+∞

∣∣∣∣∣EVπn(X)− 2
Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

g(lk, t) dt

∣∣∣∣∣

≤ 2 lim sup
n→+∞

Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

∣∣∣∣
dkk
µk
− g(lk, t)

∣∣∣∣ dt

≤ 2 lim sup
n→+∞

(
(Nn − 1)mn sup

1≤k≤Nn−1

∣∣∣∣
dkk
µk
− g(lk, t

(n)
k )

∣∣∣∣
)

+2 lim sup
n→+∞

Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

∣∣∣g(lk, t(n)k )− g(lk, t)
∣∣∣ dt.
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Assumption (10) implies:

lim
n→+∞

Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

∣∣∣g(lk, t(n)k )− g(lk, t)
∣∣∣ dt = 0.

This with (19) and (6) yield:

lim sup
n→+∞

∣∣∣∣∣EVπn(X)− 2
Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

g(lk, t) dt

∣∣∣∣∣ = 0. (20)

Moreover:
Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

g(lk, t) dt =

∫ 1

0

g(ln(t), t) dt.

So (13) and (20) imply:

lim
n→+∞

EVπn(X) = 2 lim
n→+∞

∫ 1

0

g(ln(t), t) dt. (21)

Hence the proof is reduced to verify:

a.s. lim
n→+∞

(Vπn(X)− EVπn(X)) = 0.

From Borel-Cantelli lemma, it is enough to find one sequence of positive real (εn)n∈N
satisfying:

lim
n→+∞

εn = 0 and
+∞∑

n=0

P(|Vπn(X)− EVπn(X)| ≥ εn) < +∞. (22)

For that, we will proceed like in [15] and use Hanson and Wright’s bound (see [13]).

One remarks that Vπn(X) is the square of the Euclidean norm of one (Nn−1)-dimensional
Gaussian vector which components are:

√
2∆tk
µk

∆Xk, 1 ≤ k ≤ Nn − 1.

So by the classical Cochran theorem, one can find an nonnegative real numbers
(λ1,n, . . . , λan,n) and one an-dimensional Gaussian vector Yn, such that its components are
independent Gaussian variables N (0, 1) and:

Vπn(X) =
an∑

j=1

λj,n(Y
(j)
n )2. (23)

Then the Hanson and Wright’s inequality yields:

∀ε > 0, P(|Vπn(X)− EVπn(X)| ≥ ε) ≤ 2 exp

[
−min

(
A1ε

λ∗n
,

A2ε
2

∑an
j=1 λ

2
j,n

)]
, (24)
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where A1, A2 are nonnegative constants, λ∗n is defined by λ∗n = sup1≤j≤an λj,n.

Since
∑an

j=1 λj,n = EVπn(X), and EVπn(X) is a convergent sequence, the sums
∑an

j=1 λj,n
are bounded.

Moreover, one has:
an∑

j=1

λ2j,n ≤ λ∗n

an∑

j=1

λj,n.

Therefore, the inequality (24) becomes :

∀1 ≥ ε > 0, P(|Vn − EVn| ≥ ε) ≤ 2 exp

(−Kε2

λ∗n

)
. (25)

We use the following elementary result of linear algebra. Let S = (sij)1≤i,j≤n be a n× n
symmetric matrix. We note λmax its higher eigenvalue. Then one has:

λmax ≤ max
1≤j≤n

n∑

i=1

|sij|.

This with inequality (9) yield:

λ∗n ≤ 2 max
1≤k≤Nn−1

Nn−1∑

j=1

√
∆tj∆tk
µjµk

|E(∆Xj∆Xk)|

≤ K
mγ

n

p3n
max

1≤k≤Nn−1

Nn−1∑

j=1

|djk|. (26)

So one must study the asymptotic properties of the djk. For that we proceed in three
steps, according to the value of k − j.

• If j = k then (19), (6) and inequality (9) yield:

sup
1≤k≤Nn−1

|dkk| n→+∞= O
(
mn

m3
n

pγn

)
n→+∞
= O

(
p4−γn

)
. (27)

• If 1 ≤ k − j ≤ 2, the Cauchy-Schwarz inequality implies: |djk| ≤
√
djjdkk. Thus:

sup
2≤k≤Nn−1

sup
1≤k−j≤2

|djk| n→+∞= O
(
p4−γn

)
. (28)

• If |j−k| ≥ 3 one uses assumption (11). By symmetry of the djk one can take j−k ≥ 3.

One has (17):

djk =
(
δ
∆tj−1,∆tj
1 ◦ δ∆tk−1,∆tk

2

)
R (tj, tk) .
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If f :]0, 1] 7−→ R is a two times differentiable function one has for 0 < h1 < t and
0 < h2 ≤ 1− t:

h1f(t+ h2) + h2f(t− h1)− (h1 + h2)f(t) =

∫ t+h2

t

dx

∫ t

t−h1

dy

∫ x

y

f
′′

(z) dz.

Hence if j 6= 1 and k 6= 1:

djk =

∫ tj+1

tj

du

∫ tj

tj−1

dv

∫ u

v

dw

∫ tk+1

tk

dx

∫ tk

tk−1

dy

∫ x

y

∂4R

∂s2∂t2
(w, z) dz.

Here one uses assumption (11) which yields:

∣∣∣∣
∂4R

∂s2∂t2
(w, z)

∣∣∣∣ ≤
C

|w − z|2+γ .

And on the integration set one has:

|w − z| ≥ tj−1 − tk+1 =

j−2∑

l=k+1

∆tl ≥ (j − k − 2)pn.

Hence one gets:

|djk| ≤
Cm4

n(2mn)
2

(j − k − 2)γ+2pγ+2n

=
4Cm6

n

(j − k − 2)γ+2pγ+2n

. (29)

If j = 1 or k = 1 one has by continuity of R:

djk = lim
ε→0+

d
(ε)
jk ,

where for 0 < ε < 1:

d
(ε)
jk =

∫ tεj+1

tj

du

∫ tj

tεj−1

dv

∫ u

v

dw

∫ tεk+1

tk

dx

∫ tk

tεk−1

dy

∫ x

y

∂4R

∂s2∂t2
(w, z) dz,

and:

tεj+1 = tj + (1− ε)∆tj,

tεj−1 = tj − (1− ε)∆tj−1,

tεk+1 = tk + (1− ε)∆tk,

tεk−1 = tk − (1− ε)∆tk−1.

Using the same techniques as above one gets for ε near 0+:

|d(ε)jk | ≤
4Cm6

n(1− ε)2

((j − k − 2)pn − 2εmn))γ+2
.
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One makes ε tends to 0+ in this inequality. It yields that (29) is still true when j = 1 or
k = 1.

Therefore one has:

max
1≤k≤Nn−1

∑

j−k≥3

djk ≤ K
m6

n

p2+γn

max
1≤k≤Nn−1

∑

j−k≥3

1

(j − k − 2)γ+2

≤ K
m6

n

p2+γn

+∞∑

t=1

1

tγ+2
≤ K

m6
n

p2+γn

.

Thanks to (6) one gets the following estimate:

max
1≤k≤Nn−1

∑

j−k≥3

djk
n→+∞
= O

(
m6

n

pγ+2n

)
n→+∞
= O

(
p−γ+4n

)
.

So the preceding three steps and (26) yield:

λ∗n
n→+∞
= O (pn) . (30)

Hence (25) and the preceding estimates yield for 0 < ε ≤ 1:

P(|Vn − EVn| ≥ ε) ≤ 2 exp

(
−Kε2

pn

)
. (31)

Now one sets:

ε2n =
2

K
pn log n.

Then (31) becomes:

P(|Vn − EVn| ≥ εn) ≤ 2 exp (−2 log n) = 1

n2
.

So conditions (22) are satisfied.

2

Now we give briefly two cases where the limit (13) exists and can be easily computed.

(C1) If g is invariant on L, i.e. ∀t ∈ [0, 1],∀l, l∗ ∈ L, g(l, t) = g(l∗, t). Then it is clear that
(13) is satisfied. Indeed:

Nn−1∑

k=1

∫ t
(n)
k+1

t
(n)
k

g(lk, t) dt =

∫ 1

0

g(l, t) dt,

for all l ∈ L.
(C2) If the sequence of functions (ln(t))n∈N converges uniformly to l(t) on the interval [0, 1],

then:

lim
n→+∞

∫ 1

0

g(ln(t), t) dt =

∫ 1

0

g(l(t), t) dt,

thanks to the Riemann theorem. So assumption (13) is fulfilled.

In the next section we give a method to construct irregular subdivisions of which range
of asymptotic ratios can be chosen infinite.
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4 Construction of irregular sequences of subdivisions

We give a necessary and sufficient condition to find a sequence of subdivisions (πn)n∈N
which has a given sequence of asymptotic ratios (lk)k≥1 ⊂]0,+∞[ .

Proposition 5. Let (lk)k≥1 be a sequence of real numbers in ]0,+∞[ and (Nn)n∈N be an
increasing sequence of positive integer numbers such that:

∃D > 1,∀L ∈ N∗,
1

D
<

L∏

j=1

lj < D, (32)

lim
n→+∞

Nn−2∑

j=1

Nn−1∏

i=j+1

li = +∞. (33)

Then (lk)k≥1 is the sequence of asymptotic ratios of a sequence of subdivisions(
πn =

{
t
(n)
0 = 0 < t

(n)
1 < · · · < t

(n)
Nn

= 1
})

n∈N
. This sequence is unique under the condition:

∀1 ≤ k ≤ Nn − 1, lk =
∆t

(n)
k−1

∆t
(n)
k

. (34)

The converse is true: if (πn)n∈N is a sequence of subdivisions, (Nn)n∈N is the associated
sequence of number of subintervals and (lk)k≥1 is the sequence of the asymptotic ratios of
(πn)n∈N, then the sequences (lk)k≥1 and (Nn)n∈N satisfy the conditions (32) and (33).

Proof of proposition 5. We begin with the proof of the converse. We take (πn)n∈N,
(lk)k≥1 and (Nn)n∈N as in the second part of the proposition.

One has: mn
n→+∞
= O(pn). Therefore there exists a constant K > 0 such that:

1

K
≤ pn
mn

≤ mn

pn
≤ K.

Moreover, for all L ∈ N∗:
L∏

j=1

lj = lim
p→+∞

L∏

j=1

∆t
(p)
j−1

∆t
(p)
j

= lim
p→+∞

∆t
(p)
0

∆t
(p)
L

.

And:
pn
mn

≤ lim
p→+∞

∆t
(p)
0

∆t
(p)
L

≤ mn

pn
,

which shows that condition (32) is satisfied with D = K.

Likewise one has:
Nn−1∏

i=j+1

li = lim
p→+∞

∆t
(p)
j

∆t
(p)
Nn−1

≥ pn
mn

≥ 1

K
.
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Therefore:
Nn−2∑

j=1

Nn−1∏

i=j+1

li ≥
Nn−2∑

j=1

1

K
=
Nn − 2

K
,

which implies (33).

Now we prove the first part of the proposition. We take two sequences (lk)k≥1 and (Nn)n∈N
satisfying conditions (32) and (33).

For n ∈ N, we define the subdivision πn =
{
t
(n)
0 = 0 < t

(n)
1 < · · · < t

(n)
Nn

= 1
}

in a

recursive way: 



t
(n)
Nn

= 1,

t
(n)
Nn−1

=
∑Nn−2

j=1

∏Nn−1
i=j+1 li

1+
∑Nn−2

j=1

∏Nn−1
i=j+1 li

t
(n)
k = t

(n)
k+1 −

∏Nn−1
i=k+1 li

1+
∑Nn−2

j=1

∏Nn−1
i=j+1 li

,∀1 ≤ k ≤ Nn − 2,

t
(n)
0 = 0.

One gets a sequence of subdivisions with asymptotic ratios (lk)k≥1. Indeed:

∀1 ≤ k ≤ Nn − 1,
∆t

(n)
k−1

∆t
(n)
k

= lk,

so the sequence satisfies (5).

We note kn and jn the integer such that:

mn = ∆t
(n)
kn

and pn = ∆t
(n)
jn
.

We envisage three cases. First case: kn ≥ jn. Then:

mn

pn
=

∆t
(n)
kn

∆t
(n)
jn

=
∆t

(n)
jn+1

∆t
(n)
jn

∆t
(n)
jn+2

∆t
(n)
jn+1

. . .
∆t

(n)
kn

∆t
(n)
kn−1

=
1

∏kn
i=jn+1

li
.

One sets ∀L ∈ N∗, PL =
∏L

i=1 li and P0 = 1. One has:

mn

pn
=

Pjn
Pkn

,

and because of (32):

∀L ∈ N∗,
1

D
≤ PL ≤ D.

Therefore:
mn

pn
≤ D2.
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Second case: kn < jn. We use the same arguments. One has:

mn

pn
=

jn−1∏

i=kn

li =
Pjn−1
Pkn−1

≤ D2.

Third case: kn = jn. Then:
mn

pn
= 1 ≤ D2.

Hence in all cases:
mn

pn
≤ D2,

so the sequence (πn)n∈N satisfies (4) too.

Now we must show the unicity of (πn)n∈N under the assumptions of the proposition.

Necessarily one has
∑Nn−1

k=0 ∆t
(n)
k = 1 which yields:

(
1 +

Nn−2∑

j=1

Nn−1∏

i=j+1

∆t
(n)
i−1

∆t
(n)
i

)
∆t

(n)
Nn−1

= 1.

With (34) one gets: (
1 +

Nn−2∑

j=1

Nn−1∏

i=j+1

li

)
∆t

(n)
Nn−1

= 1. (35)

And with (35) and (34), one gets the recursive procedure used to define (πn)n∈N. Since
this procedure defines a unique sequence, (πn)n∈N is the unique solution of our problem.

2

Example. One sets Nn = n and lk = 1 + 1
k2 . Note that the sequence (PL) is increasing

and lower bounded by 1. So condition (32) is satisfied with D =
∏+∞

j=1

(
1 + 1

j2

)
.

Moreover:
Nn−1∏

i=j

li ≥ lj = 1 +
1

j2
≥ 1,

so condition (33) is satisfied too.

In next section we illustrate the conclusion of theorem 4 with one example: the time-space
deformed fractional Brownian motion.
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5 Example: time-space deformed fractional Brownian

motion

5.1 The fractional Brownian motion

The fractional Brownian motion (FBM) with Hurst’s index H ∈]0, 1[ is the centered
Gaussian process

(
BH
t

)
t∈R, vanishing at the origin, with covariance function given by:

∀s, t ∈ R, R(s, t) = Cov
(
BH
s , B

H
t

)
=

1

2

(
|s|2H + |t|2H − |s− t|2H

)
.

For H = 1/2,
(
BH
t

)
t∈R is the Brownian motion.

The process BH is self-similar with index H:

∀ε > 0,
{
BH(εt); t ∈ R

} (L)
=
{
εHBH(t); t ∈ R

}
,

and its increments are stationary.

Moreover the Hölder critical exponent of its sample paths is equal to H (see [1] th.8.3.2
and th.2.2.2 ), in the following sense:

Definition 6. Let β ∈]0, 1[. A process (Xt)t∈R is said to have Hölder critical exponent β
whenever it satisfies the two following properties:

• for any β∗ ∈]0, β[, the sample paths of X satisfy a.s. a uniform Hölder condition of
order β∗ on any compact set, i.e; for any compact set K of R, there exists a positive
r.v. A such that a.s.:

∀s, t ∈ K, |Xs −Xt| ≤ A|s− t|β∗ ;

• for any β∗ ∈]β, 1[, a.s. the sample paths of X fails to satisfy any uniform Hölder
condition of order β∗.

In [9] authors proved that almost surely:

lim
n→+∞

n2H−1
n−1∑

k=1

[
BH

k+1
n

+BH
k−1
n

− 2BH
k
n

]2
= 4− 22H . (36)

We are able now to sharpen this result. Let (πn)n∈N be a sequence of subdivisions with
asymptotic ratios (lk)k≥1.

On the one hand we compute the derivative ∂4R
∂s2∂t2

. One has:

∀s, t ∈]0, 1]2\{s = t}, ∂4R

∂s2∂t2
(s, t) =

2H(2H − 1)(2H − 2)(2H − 3)

|s− t|2+γ ,
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where γ = 2− 2H.

So (11) is satisfied with C = 2H(2H − 1)(2H − 2)(2H − 3).

On the other hand we must compute the singularity function of BH . We use the notations
of the theorem 4. One has:

(
δh1,h2

1 ◦ δh1,h2

2 R
)
(t, t)

h
3−γ

2
1 h

3−γ
2

2 (h1 + h2)
=

1 + λ2H−1 − (1 + λ)2H−1

λH−
1
2

, (37)

where λ = h2/h1.

To check (12) one sets g(l, t) = 1+l2H−1−(1+l)2H−1

lH− 1
2

and one remarks:

sup
Eδ

∣∣∣∣∣∣

(
δh1,h2

1 ◦ δh1,h2

2 R
)
(t, t)

h
3−γ

2
1 h

3−γ
2

2 (h1 + h2)
− g(l, t)

∣∣∣∣∣∣
= sup
|λ−l|<δ

|φ(λ)− φ(l)| ,

where φ(λ) = 1+λ2H−1−(1+λ)2H−1

λH− 1
2

.

The function φ is continuous on ]0,+∞[, so it is uniformly continuous on compact subsets
of ]0,+∞[. This property proves the limit (12). Moreover it is obvious that g satisfies
assumption (10). Therefore theorem 4 can be applied to BH .

By example, for a regular sequence of subdivisions one has a.s.:

lim
n→+∞

Vπn(BH) = lim
n→+∞

N2H−1
n

Nn−1∑

k=1

[
BH

k+1
Nn

+BH
k−1
Nn

− 2BH
k
Nn

]2
= 4− 22H , (38)

with Nn such that 1
Nn

= o
(

1
log n

)
.

We give as well an example of non regular subdivision. We set:

Nn = 2n,

and:

∀0 ≤ k ≤ n, t
(n)
2k =

3k

3n
,

∀0 ≤ k ≤ n− 1, t
(n)
2k+1 =

3k + 1

3n
.

This is a sequence of subdivisions with asymptotic ratios (lk)1≤k where:

∀k ≥ 1, l2k = 2,

∀k ≥ 0, l2k+1 =
1

2
.
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Its range of asymptotic ratios is L = {1/2; 2} and g(l, t) is invariant in l on this set (which
is condition (C1)), so one is able to compute the limit (13). Therefore theorem 4 yields:

lim
n→+∞

Vπn(BH) =
1 + 22H−1 − 32H−1

2H−3/2
. (39)

Note that when H 6= 1/2, the value of this limit is different from (38). Indeed its
depends not only on the singularity function of the process but on the asymptotic ratios of
the subdivisions too.

For H = 1/2 the singularity function g does not more depend on l. Indeed:

∀t ∈]0, 1[,∀l ∈]0,+∞[, g(l, t) = 2.

It is classical that the standard quadratic variation of the Brownian motion does not
depend on the sequence of subdivisions; we obtain the same result for the second order
quadratic variation.

5.2 Time-space deformed fractional Brownian motion

Let σ and ω be two functions from R to R. We define the (σ, ω)-time-space deformed
fractional Brownian motion (ZH

t )t∈R by the formula:

∀t ∈ R, ZH
t = σ(t)BH(ω(t)). (40)

This is a centered Gaussian process with covariance function:

∀s, t ∈ R,E(ZH
s Z

H
t ) =

σ(s)σ(t)

2

(
|ω(s)|2H + |ω(t)|2H − |ω(s)− ω(t)|2H

)
.

We want to study this process in the following way: does it have the same properties as
the FBM? It is clear that it has no more stationary increments. In the sequel, we study its
properties of self-similarity and Hölder regularity, and we apply theorem 4 to this process.

The following lemma will be useful:

Lemma 7. Let I, J,K be three subintervals of R and α, β two real numbers in [0,1]. We
will say that a function f : I −→ J is α-Hölderian on I if:

∃K > 0,∀x, y ∈ I, |f(x)− f(y)| ≤ K|x− y|α.

1. Let f : I −→ J and g : I −→ K be two functions. Assume that f is α-Hölderian and
bounded on I, and g is β-Hölderian and bounded on I. Then the function fg : I −→ R
is min(α, β)-Hölderian.

2. Let f : I −→ J and g : J −→ K be two functions. Assume that f is α-Hölderian an g
is β-Hölderian. Then the function f ◦ g : I −→ K is αβ-Hölderian.
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¿From this lemma we can deduce immediately the regularity of the sample paths of ZH .

Proposition 8. We assume that σ is Σ-Hölderian and ω is Ω-Hölderian on a compact
interval I of R with Σ,Ω ∈ [0, 1]. Then for all H ′ < H the sample paths of ZH are a.s.
min(Σ,ΩH ′)-Hölderian on I.

Proof of proposition 8. It is a straightforward consequence of lemma 7.

2

Now we show a property of self-similarity of the process ZH . We begin with the definition
of this property (see [4]) in the case of a Gaussian field.

Definition 9. Let d ∈ N∗ and β > 0. A process (X(t))t∈Rd is locally asymptotically self-
similar (l.a.s.s.) of order β at point t0 ∈ Rd if the finite dimensional distributions of the
field {

X(t0 + εt)−X(t0)

εβ
; t ∈ Rd

}

converge to the finite dimensional distributions of a non trivial Gaussian field when ε→ 0+.
The limit field is called the tangent field at point t0.

We give assumptions on the functions σ, ω so that the process ZH is l.a.s.s..

Proposition 10. Let t0 ∈ R and Σ ∈]H, 1]. Assume that:

1. ω is differentiable at point t0 and ω′(t0) 6= 0,

2. σ is Σ-Hölderian on a neighborhood of t0 and σ(t0) 6= 0.

Then the process ZH is l.a.s.s. at point t0 of order H and the tangent process is:
(
T
(t0)
t

)
t∈R

= σ(t0)|ω′(t0)|H
(
BH
t

)
t∈R .

Remark.
Under these assumptions proposition 8 yields that for all H ′ < H the sample paths of ZH are
a.s. H ′-Hölderian. Proposition 10 yields that they are not H ′-Hölderian in the neighborhood
of t0 for all H ′ > H. Therefore the Hölder critical exponent of ZH is equal to H.

Proof of proposition 10. Along the proof K will denote a generic positive constant,
whose value does not matter.

Let t0 ∈ R. We denote by R (resp. ρ) the covariance function of the process ZH (resp.
BH). Since we work with centered Gaussian process it is enough to show that:

∀s, t ∈ R, lim
ε→0+

1

ε2H
Cov

(
ZH(t0 + εs))− ZH(t0), Z

H(t0 + εt)− ZH(t0)
)

= σ(t0)
2|ω′(t0)|2Hρ(s, t). (41)
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One sets for h1, h2 > 0:

Λh1,h2R(t0) = R(t0 + h1, t0 + h2)−R(t0 + h1, t0)−R(t0, t0 + h2) +R(t0, t0).

Equality (41) is equivalent to:

∀s, t ∈ R, lim
ε→0+

Λεs,εtR(t0)

ε2H
= σ(t0)

2|ω′(t0)|2Hρ(s, t). (42)

One takes s, t ∈ R. One has:

R(s, t) =
σ(s)σ(t)

2

(
|ω(s)|2H + |ω(t)|2H − |ω(s)− ω(t)|2H

)
.

Therefore:

Λεs,εtR(t0) =
σ(t0 + εs)σ(t0 + εt)

2

(
|ω(t0 + εs)|2H + |ω(t0 + εt)|2H − |ω(t0 + εs)

−ω(t0 + εt)|2H
)

−σ(t0 + εs)σ(t0)

2

(
|ω(t0 + εs)|2H + |ω(t0)|2H − |ω(t0 + εs)− ω(t0)|2H

)

−σ(t0 + εt)σ(t0)

2

(
|ω(t0 + εt)|2H + |ω(t0)|2H − |ω(t0 + εt)− ω(t0)|2H

)

+σ(t0)
2|ω(t0)|2H .

One sets:
Λεs,εtR(t0) = Φ1(ε) + Φ2(ε),

where:

Φ1(ε) =
σ(t0 + εt)− σ(t0)

2

(
|ω(t0 + εs)|2Hσ(t0 + εs)− |ω(t0)|2Hσ(t0)

)

+
σ(t0 + εs)− σ(t0)

2

(
|ω(t0 + εt)|2Hσ(t0 + εt)− |ω(t0)|2Hσ(t0)

)
,

and:

Φ2(ε) =
σ(t0 + εs)σ(t0)

2
|ω(t0 + εs)− ω(t0)|2H

+
σ(t0 + εt)σ(t0)

2
|ω(t0 + εt)− ω(t0)|2H

−σ(t0 + εt)σ(t0 + εs)

2
|ω(t0 + εt)− ω(t0 + εs)|2H .

First we show that:

lim
ε→0+

Φ1(ε)

ε2H
= 0. (43)

By assumption σ is Σ-Hölderian on a neighborhood of t0 and ω is differentiable at t0, so
it is clear that ω is 1-Hölderian on a neighborhood of t0. Moreover the function x 7→ |x|2H
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is min(1, 2H)-Hölderian on a neighborhood of t0. Therefore lemma 7 allows us to conclude
that the function x 7→ |ω(x)|2Hσ(x) is min(Σ, 2H)-Hölderian on a neighborhood of t0.

Hence there exists K > 0 such that for ε enough small:

|Φ1(ε)| ≤ KεΣ+min(Σ,2H).

Moreover one has assumed that Σ > H, so Σ + min(Σ, 2H) > 2H. This shows (43).

Now we show that:

lim
ε→0+

Φ2(ε)

ε2H
= σ(t0)

2|ω′(t0)|2Hρ(s, t). (44)

If s = 0 or t = 0 equality (44) is obvious. So one can assume that s 6= 0 and t 6= 0. Since
ω is differentiable at point t0 one has:

lim
ε→0+

|ω(t0 + εs)− ω(t0)|2H
ε2H

= s2H |ω′(t0)|2H ,

lim
ε→0+

|ω(t0 + εt)− ω(t0)|2H
ε2H

= t2H |ω′(t0)|2H ,

lim
ε→0+

|ω(t0 + εs)− ω(t0 + εt)|2H
ε2H

= |s− t|2H |ω′(t0)|2H .

This shows equality (44). Since (43) and (44) are sufficient conditions for (42) the propo-
sition is proved.

2

Now we apply theorem 4 in order to generalize previous results about the FBM. We make
additional assumptions on σ and ω.

Proposition 11. Assume that:

1. σ is of class C3 and ω of class C2 on [0, 1],

2. ω(0) ≥ 0,

3. inft∈[0,1] ω
′(t) = β > 0.

Let (πn)n∈N be a sequence of subdivisions with asymptotic ratios (lk)k≥1. Assume too that:

pn
n→+∞
= o

(
1

log n

)
.

Then theorem 4 can be applied to ZH with γ = 2− 2H and:

g(l, t) = σ(t)2|ω′(t)|2H 1 + l2H−1 − (1 + l)2H−1

lH−1/2
. (45)
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Proof of proposition 11. Along the proof K denotes a generic positive constant, whose
value does not matter.

We denote by R the covariance function of ZH . One has:

R(s, t) =
σ(s)σ(t)

2

(
|ω(s)|2H + |ω(t)|2H − |ω(s)− ω(t)|2H

)
.

We must show that the assumptions of theorem 4 are satisfied. For 1 and 2.(a) it is
obvious.

For assumption 2.(b): since ∀t > 0, ω(t) > ω(0) = 0 and ∀s 6= t, ω(s) 6= ω(t) it is clear
that ∂4R

∂s2∂t2
exists and is continuous on ]0, 1]2\{s = t}.

Moreover the functions σ, ω and their first and second derivatives are bounded on [0, 1].
The computation of ∂4R

∂s2∂t2
shows that there exists K > 0 such that:

∀s, t ∈]0, 1]2\{s = t},
∣∣∣∣
∂4R

∂s2∂t2
(s, t)

∣∣∣∣ ≤ K
∑

i∈I

(
|ω(s)|2H−i1 + |ω(t)|2H−i2 − |ω(s)− ω(t)|2H−i3

)
,

where i = (i1, i2, i3) and I is a subset of {0; 1; 2; 3; 4}3.

The functions (s, t) 7→ |s− t|2+γ|ω(s)|2H−i1 and (s, t) 7→ |s− t|2+γ|ω(t)|2H−i2 are bounded
on ]0, 1]2\{s = t} since they are continuous on [0, 1]2.

Likewise (s, t) 7→ |s−t|2+γ|ω(s)−ω(t)|2H−i3 is bounded on ]0, 1]2\{s = t} when 2H−i3 ≥
0.

If 2H − i3 < 0 one uses the assumption on ω′. One gets:

∀s, t ∈ [0, 1], |ω(s)− ω(t)| ≥ β|s− t|,

and consequently:

∀s, t ∈]0, 1]2\{s = t}, |ω(s)− ω(t)|2H−k ≤ β2H−k|s− t|2H−k.

Moreover there exists K > 0 such that:

∀s, t ∈]0, 1]2\{s = t}, |s− t|2H−k ≤ K

|s− t|2+γ .

Therefore assumption 2.(b) is fulfilled.

Now we verify assumption 2.(c). For f : [0, 1] −→ R one sets:

∆h1,h2f(t) = h1f(t+ h2) + h2f(t− h1)− (h1 + h2)f(t),

where h1 ≤ t ≤ 1− h2.
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One has:

δh1,h2

2 R(s, t) =
σ(s)

2
|ω(s)|2H∆h1,h2σ(t) +

σ(s)

2
∆h1,h2(σ|ω|2H)(t)

− σ(s)

2
∆h1,h2(σ|ω(·)− ω(s)|2H)(t).

Consequently:

δh1,h2

1 ◦ δh1,h2

2 R(s, t) =
1

2
∆h1,h2(σ|ω|2H)(s)∆h1,h2σ(t) +

1

2
∆h1,h2(σ|ω|2H)(t)∆h1,h2σ(s)

−h1
2
∆h1,h2

(
σ(·)σ(t+ h2)|ω(t+ h2)− ω(·)|2H

)
(s)

−h2
2
∆h1,h2

(
σ(·)σ(t− h1)|ω(t− h1)− ω(·)|2H

)
(s)

+
h1 + h2

2
∆h1,h2

(
σ(·)σ(t)|ω(t)− ω(·)|2H

)
(s).

Therefore:

δh1,h2

1 ◦ δh1,h2

2 R(t, t) = ∆h1,h2(σ|ω|2H)(t)∆h1,h2σ(t)

+h1(h1 + h2)σ(t)σ(t+ h2)|ω(t+ h2)− ω(t)|2H
+h2(h1 + h2)σ(t)σ(t− h1)|ω(t− h1)− ω(t)|2H
−h1h2σ(t− h1)σ(t+ h2)|ω(t+ h2)− ω(t− h1)|2H .

One sets:

Ψ∗(h1, h2, t) =

(
δh1,h2

1 ◦ δh1,h2

2 R
)
(t, t)

h1h2(h1 + h2)h
2H−1
1

= λH−1/2

(
δh1,h2

1 ◦ δh1,h2

2 R
)
(t, t)

h
3−γ

2
1 h

3−γ
2

2 (h1 + h2)
,

with λ = h2

h1
.

One has:

Ψ∗(h1, h2, t) = Ψ1(h1, h2, t) + Ψ2(h1, h2, t) + Ψ3(h1, h2, t)−Ψ4(h1, h2, t),

where:

Ψ1(h1, h2, t) =
∆h1,λh1(σ|ω|2H)(t)

h
H−1/2
1

∆h1,λh1σ(t)

λ(1 + λ)h31
,

Ψ2(h1, h2, t) = σ(t)σ(t+ λh1)

∣∣∣∣
ω(t+ λh1)− ω(t)

λh1

∣∣∣∣
2H

λ2H−1,

Ψ3(h1, h2, t) = σ(t)σ(t− h1)

∣∣∣∣
ω(t− h1)− ω(t)

h1

∣∣∣∣
2H

,

Ψ4(h1, h2, t) = σ(t− h1)σ(t+ λh1)

∣∣∣∣
ω(t+ λh1)− ω(t− h1)

(1 + λ)h1

∣∣∣∣
2H

(1 + λ)2H−1.
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Let ε > 0. We take Eδ for a δ > 0 as in theorem 4. One sets for (l, t) ∈]0,+∞[×]0, 1[:

g1(l, t) = 0,

g2(l, t) = σ(t)2|ω′(t)|2H l2H−1,
g3(l, t) = σ(t)2|ω′(t)|2H ,
g4(l, t) = σ(t)2|ω′(t)|2H(1 + l)2H−1

Firstly we show that:

∃δ1 > 0, sup
Eδ1

|Ψ1(h1, h2, t)− g1(l, t)| ≤ ε. (46)

Applying Taylor formula it is easy to see that the term ∆h1,λh1σ(t)

λ(1+λ)h3
1

is uniformly bounded

on Eδ for all δ > 0 (thanks to the facts that σ is C3 and L has a compact closure in ]0,+∞[).
Moreover, since L has a compact closure and σ|ω|2H is continuous, there exists K > 0 such
that ∀0 < δ < 1:

∆h1,λh1(σ|ω|2H)(t)
h
H−1/2
1

≤ Kh
3/2−H
1 on Eδ.

This proves (46).

Secondly we prove:

∃δ2 > 0, sup
Eδ2

|Ψ2(h1, h2, t)− g2(l, t)|+ sup
Eδ3

|Ψ3(h1, h2, t)− g3(l, t)|

+ sup
Eδ4

|Ψ4(h1, h2, t)− g4(l, t)| ≤ ε. (47)

Likewise Taylor formula and compacity of the closure of L imply that the terms
ω(t+λh1)−ω(t)

λh1
, ω(t−h1)−ω(t)

h1
and ω(t+h2)−ω(t−λh2)

(1+λ)h2
have for limit ω′(t) on Eδ. Then use the fact

that σ and x 7→ |x|2H are uniformly continuous on compact sets and ω is of class C2. One
gets (47).

Then (46) and (47) imply that assumption (12) is fulfilled with g(l, t) = 1
lH−1/2 (g1(l, t)

+g2(l, t) + g3(l, t) + g4(l, t)). This function satisfies (10) thanks to the compacity of L and
the uniform continuity of σ|ω|2H .

Therefore assumption 2.(c) is fulfilled.

2

Example: the fractional Ornstein-Uhlenbeck process. We consider the Lamperti
transform (see [16]) of the FBM: we take σ(t) = e−λt and ω(t) = αe

λt
H where λ, α > 0. This

new process is stationary. If H = 1/2 it is the Ornstein-Uhlenbeck process with parameters√
2αλ and λ. So for H ∈]0, 1[ it is called the fractional Ornstein-Uhlenbeck process (see [6])

denoted by OH . All the results given above can be applied.
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If one uses proposition 11 one gets that the singularity function of the process OH is

equal to g(l, t) =
(
αλ
H

)2H 1+l2H−1−(1+l)2H−1

lH−1/2 . If one takes a regular sequence of subdivisions
such that 1/Nn = o(1/ log n) one gets a.s.:

lim
n→+∞

Vπn(OH) = lim
n→+∞

N2H−1
n

Nn−1∑

k=1

[
OH

k+1
Nn

+OH
k−1
Nn

− 2OH
k
Nn

]2
= (4− 22H)

(
αλ

H

)2H
.

Like in the case of the FBM it yields a strongly consistent estimator of the parameter H
given by:

Ĥn =
1

2
−

log

(
∑Nn−1

k=1

[
OH

k+1
Nn

+OH
k−1
Nn

− 2OH
k
Nn

]2)

2 logNn

.

In the last section we illustrate the result obtained about the FBM with some simulations.

6 Simulations

We illustrate the results with some simulations in the case of the FBM. To simulate the
FBM we use the method of the circulant matrix (see [5] and [7]) and Matlab c©. We use
two sequences of subdivisions: the first one is regular and the second one is not (we use the
irregular sequence defined in section 5.1). If one uses the method of the circulant matrix
to simulate the FBM one obtains a discretized path along a regular subdivision. Therefore
for simulations we use the fact that the irregular sequence of section 5.1 can be refined in a
regular sequence of subdivisions.

On figure 1 we have represented the values of Vπn(BH) against the values of n, when
grows up to 1500, in the case of a regular sequence of subdivisions. We have made this for
three values of H: 0.3, 0.5 and 0.8. On the figure we can see the convergence of Vπn(BH)
claimed by (38). The value of the limit is respectively equal to 2.4843, 2 and 0.9686.

On figure 2 we have replaced the sequence of regular subdivisions with the irregular
sequence constructed in section 5.1. Its range of asymptotic ratios is L = {1/2; 2}. On the
figure we can see the convergence of Vπn(BH) claimed by (39). The value of the limit is
respectively equal to 2.5581, 2 and 0.9463.

Figure 3 represents the histograms of the value of Vπn(BH) for 1500 simulations with
n = 1500 and H = 0.3, 0.5 and 0.8, in the case of a regular sequence of subdivisions. In each
case the mean is respectively equal to 2.4821, 1.9986 and 0.9659, and the standard deviation
is equal to 0.1192, 0.0912 and 0.0393.

On figure 4 we do the same but we replace the regular sequence of subdivisions with the
irregular sequence constructed in section 5.1. In each case the mean is respectively equal to
2.5535, 1.9966 and 0.9455, and the standard deviation is equal to 0.0880, 0.0650 and 0.0300.
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Figure 1: Convergence of Vπn(BH) for H = 0.3, 0.5 and 0.8 when n grows up to 1500 and
the subdivisions are regular.
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Figure 2: Convergence of Vπn(BH) for H = 0.3, 0.5 and 0.8 when n grows up to 1500 and
the subdivisions are irregular with range of asymptotic ratios equal to L = {1/2; 2}.
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Figure 3: Histograms of 1500 simulations of Vπn(BH) for H = 0.3, 0.5 and 0.8 when n = 1500
and the subdivisions are regular.
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Figure 4: Histograms of 1500 simulations of Vπn(BH) for H = 0.3, 0.5 and 0.8 when n = 1500
and the subdivisions are irregular with range of asymptotic ratios equal to L = {1/2; 2}.
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We can see on all the histograms that Vπn(BH) seems to be asymptotically normal. We know
it for the case of the FBM and regular subdivisions. We will try to show it in the general
case in a future paper.
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