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I. Introduction

Since the construction of the Riemannian Brownian motion by Itô and the introduction of
the Malliavin calculus in the Wiener space Ω, a great amount of recent work has been de-
voted to the extension of stochastic calculus to the path space Σ of a Riemannian manifold
[1,2,3,4,7,8,9,10,11,12,13,14,15,25,27,30]. The stochastic development map I introduced by Itô
takes the Wiener measure µ onto an isomorphic measure ν = I(µ) on Σ.

One is guided by the flat case of the Wiener space of Rm where the Girsanov integration by
parts formula plays a dominant part. In the case of the path space of a Riemannian manifold,
this formula is replaced by the Bismut-Driver formula which introduces the Ricci curvature of
M .

These considerations encounter two kinds of difficulties, the first one due to the use of stochastic
calculus, the second due to differential geometry.

Our first goal to show that these two problems can be dealt with separately. We begin by
describing a stochastic framework without involving differential geometry.

On the Wiener space Ω we introduce a pseudo-differential operator F → F ] depending on a
so-called “Ricci process” A which is set a priori.

This pseudo-differential operator F ](ω,$) on Ω×Ω is linear in the second variable, as F ′(ω,$)
which has been introduced for the classical flat case [18,19]. It should be noticed that in the flat
case we have A = 0 and F ] = F ′.

With the help of a damped derivation, that is a modified derivation F → F [, we easily obtain a
pseudo-Clark formula (which is equivalent to an integration by parts formula), a closed Dirichlet
form, a spectral gap inequality and even a logarithmic Sobolev inequality (by using the Maurey-
Ledoux method of the classical Gaussian case).

The closable Dirichlet form gives rise to ]-Sobolev spaces W 1,2,] and, with natural supplementary
hypotheses, to ]-Sobolev spaces W 1,p,].

In fact, it turns out that the i.b.p. (integration by parts formula) for the damped derivation
and the pseudo-Clark formula do not depend on the Ricci process At. This last process is only
involved for the link between ] and [-derivations.

Therefore, in Section IV, we deal with the problem of constructing some “concrete” [-derivation.
For this purpose , we generalize an idea of [16], by using some kind of rotation of µ ⊗ µ instead
of translation as we do usually for the Girsanov formula. It is to be noticed that the problem
to generalize the Cameron-Martin space is avoided by this construction.

In Section V, we apply these results to the path space Σ of a compact Riemannian manifold M
(endowed with a Driver connection): first we choose a [-derivation in the sense of Section IV,
and after that, we choose the convenient At to obtain the true i.b.p. Bismut-Driver formula.

It should be noticed that for simplicity, M is embedded in a finite dimensional space E, but the
Riemannian structure of M is not necessarily induced by an euclidean structure on E. The link
between M and E is explicited by a Weingarten type tensor field on M .

In Section VI, we return to the general situation (without Riemannian manifold), and define
the natural capacity C1,p,] associated on the Wiener space Ω, to the ]-Sobolev spaces. We show
that under a natural hypothesis, these capacities are tight on Hölder compact sets of Ω.
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In the case of a Riemannian manifold, the Itô map transforms the ]-Sobolev space W 1,p,](Ω, µ)
onto a Sobolev space W 1,p,](Σ, ν) for ν = I(µ). The associated capacity is tight on the Hölder
compact sets of Σ (and this improves the results of [10]). We can then specify the Itô map as a
quasi-isomorphism from Ω onto Σ.

In conclusion, we can say that the abstract setting presented here must be considered as an at-
tempt to simplify rather than to generalize the stochastic Riemannian path theory. Nevertheless,
this setting allows us to see that there are many different ways to do a reasonable differential
calculus on the Wiener space, or on the Riemannian path space.

II. Preliminaries and notations

Let µ be the Wiener measure on Ω = C0([0, 1],Rm) with its natural filtration Ft. We denote by
Wt(ω) the canonical Brownian motion. If F is an elementary functional (cylindrical functional)
F = f(Wt1 , . . . ,Wtn), the differential F ′(ω,$) is defined on Ω × Ω by the formula

F ′(ω,$) =
∑

i

∂if(Wt1(ω), . . . ,Wtn(ω))Wti($).

The norm of the Gaussian Sobolev space W 1,2 is defined by

‖F‖2
1,2 = E (F 2 ) + E (F ′2),

where the second expectation is taken with respect to µ ⊗ µ.

For F ∈ W 1,2 one has

F ′(ω,$) =
∫ 1

0
DtF (ω)dWt($),

where DtF is the square integrable rough Borel process with values in Rmwhich is worth

DtF (ω) =
d

dt
E (F ′(ω,$)Wt($)),

where E stands for the partial expectation w.r. to $.

Note that we have two independent Brownian motions Wt(ω) and Wt($), in short we shall
denote them respectively Wt and W t. We can easily get the Clark–Ocone–Haussmann formula

F − E (F ) =
∫ 1

0
FtDtF (ω)dWt(ω),

where Ft is the conditional expectation operator w.r. to Ft. It is enough to check the formula
for F (ω) = exp f(ω) where f is a continuous linear functional on Ω (cf. [20]). Let

G(ω) =
∫ 1

0
gt(ω)dWt(ω),

a zero mean value random variable, where gt is a predictable process. Define

G(ω,$) =
∫ 1

0
gt(ω)dWt($),
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and the Girsanov derivative of F in the direction of G

DGF (ω) = E (F ′G) = E
(

F ′(ω,$)
∫ 1

0
gt(ω)dWt($)

)
.

From the Clark formula we can deduce the Cameron-Martin-Girsanov integration by parts for-
mula

E (FG) = E (F ′G) = E (DGF ) =
∫ 1

0
E (gtDtF )dt.

III. Generalizations

Let us now be given an arbitrary predictable process At with values in the linear operators of
Rm . For some reasons which will be clarified later on (Section V), it will be called the Ricci
process.

With every g ∈ Lp(µ ⊗ dt,Rm) is associated g̃ which is the solution of the ordinary differential
equation

g̃t = gt − At

2

∫ t

0
g̃sds.

One has
∫ t

0
g̃sds =

∫ t

0
CtC

−1
s gsds and g̃t = gt − AtCt

2

∫ t

0
C−1

s gsds,

where Ct is the resolvant, that is the solution of

Ct = I − 1
2

∫ t

0
AsCsds.

1 Lemma: Let Np be the norm in the space Lp(µ ⊗ dt,Rm), it holds

Np(g) ≤ eK/2 Np(g̃) and Np(g̃) ≤ eK/2 Np(g),

where K is the uniform norm of the process At. Then g → g̃ is an automorphism of Lp(µ ⊗
dt,Rm), which preserves the predictable subspace.

Proof: It is easy to get
Np(g) ≤ [1 + K/2]Np(g̃) ≤ eK/2 Np(g̃).

On the other hand

|g̃t| ≤ |gt| + K

2

∫ t

0
|g̃s|ds,

and next by Gronwall lemma

|g̃t| ≤ |gt| + K

2

∫ t

0

eK(t−s)/2 |gs|ds.

The right hand-side is a convolution, so that

Np(g̃) ≤ Np(g)
[
1 +

K

2

∫ 1

0

eKs/2 ds

]
= eK/2 Np(g). �
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Now, let L2
0 be the zero mean value subspace of L2, and let G ∈ L2

0

G =
∫ 1

0
gt(ω)dWt(ω)

we associate it with

G̃(ω,$) =
∫ 1

0
g̃t(ω)dWt($)

2 Corollary: G → G̃ is an isomorphism of L2
0(µ) onto the closed subspace of L2(µ ⊗ µ) which

consists in all the Wiener functionals on Ω × Ω which are linear in the second variable.

3 Definition: The pseudo-gradient or pseudo-differential is any operator F → F ](ω,$) ∈
L2(µ ⊗ µ) which satisfies the following conditions:

a) The domain D is dense in L2(µ),

b) F ](ω,$) is linear in the second variable $,

c) The integration by parts formula holds: E (FG) = E (F ]G̃).

d) F → F ] is a derivation, that is γ(F )] = γ′(F )F ], for every F ∈ D and every C1-Lipschitz
function γ.

As above, we define the rough process D]
tF ∈ Rm such that

F ](ω,$) =
∫ 1

0
D]

tF (ω)dWt($),

and the Girsanov pseudo-gradient of F in the direction of G by the formula

D]
GF (ω) = E [F ](ω,$)G̃(ω,$)].

4 Definition: Let F be in the domain of the pseudo-gradient, we define the damped pseudo-
gradient F [ by the formulae

F [(ω,$) =
∫ 1

0
D[

tF (ω)dWt($),

where D[
tF = D]

tF − 1
2

∫ 1

t
C−1∗

t C∗
s A∗

sD
]
sF ds.

It turns out that it is the solution of the ODE

D[
tF = D]

tF − 1
2

∫ 1

t
A∗

sD
[
sF ds,

where A∗
s is the adjoint operator of As. Indeed, consider the adjoint J∗ of the operator J of

L2(µ ⊗ dt) defined by J(g) = g̃. It is easily seen that D[·F = J∗(D]·F ). Moreover we get the
estimates

N2(F [) ≤ eK/2 N2(F ]) and N2(F ]) ≤ eK/2 N2(F [).
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Now the integration by parts formula writes

E(FG) = E(F ]G̃) = E (F [G) = E (D[
GF ),

where D[
GF is the damped pseudo-gradient of F in the direction of G. Finally, F ] and F [ have

equivalent norms and are defined on the same domain.

Note that the damped pseudo-gradient F [ is easily seen to be also a derivation.

5 Theorem: (Pseudo-Clark’s formula) We have

F (ω) − EF =
∫ 1

0
FtD

[
tF (ω)dWt(ω).

Proof: It is straightforward, thanks to the integration by parts formula for F [. �

6 Corollary: (spectral gap) One has

E (F 2 ) − E (F )2 =
∫ 1

0
E [(FtD

[
tF )2]dt ≤ E(F [2) ≤ eK E (F ]2).

Proof: Obvious. �

7 Theorem: F ] and F [ are closable in L2.

Proof: Assume that Fn and F [
n respectively converge to 0 and H. One gets

0 = E(HG),

for every G ∈ L2
0. Let γ be a C1 bounded Lipschitz function vanishing at 0 and such that

γ′(0) = 1. Replace Fn with Φγ(Fn) where Φ is a bounded element of the domain. The damped
pseudo-gradient F [

n = Φ[γ(Fn) + Φγ′(Fn)F [
n converges to ΦH in L2. So we get E (HΦG) = 0,

for every G. Take G as the Wiener integral

G(ω) =
∫ 1

0
gtdWt(ω),

where gt do not depend on ω. Now H writes

H(ω,$) =
∫ 1

0
ht(ω)dWt($),

so that we get

0 = E(HΦG) =
∫ 1

0
gsE (Φhs)ds =

∫∫
Φ(ω)gshs(ω)dsdµ(ω).

As Φ ⊗ g runs through a total set in L2(µ ⊗ dt), we get H = 0. �
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8 Corollary: The two Dirichlet forms

E](F,F ) = E (F ]2) and E[(F,F ) = E (F [2)

are local. More precisely, we have

|F |](ω,$) = [1{F>0}(ω) − 1{F≤0}(ω)]F ](ω,$),

|F |[(ω,$) = [1{F>0}(ω) − 1{F≤0}(ω)]F [(ω,$).

The proof is the same as the one in the classical case ([5]).

9 Theorem: (Logarithmic Sobolev inequality) We have

E(F 2 Log F 2) − E(F 2) Log E(F 2) ≤ 2E (F [2) ≤ 2 eK E (F ]2).

Proof: We follow the idea of [3]. There is a simplification thanks to the use of the damped
pseudo-gradient F [. It is sufficient to consider the case F ≥ ε > 0, denote Mt the martingale
FtF , then dMt = FtD

[
tF dWt according to the pseudo-Clark formula. The Itô formula gives

E(M1 Log M1) − E(M0 Log M0) =
1
2
E

∫ 1

0

1
Mt

[FtD
[
tF ]2dt.

Replace F by F 2, so that D[
tF is replaced by 2FD[

tF . Applying the Cauchy-Schwarz inequality
to the conditional expectation, we get

[FtD
[
tF

2]2 = 4[Ft(FD[
tF )]2 ≤ 4Ft(F 2)Ft(D[

tF )2.

Hence,

E(F 2 Log F 2) − E(F 2) Log E(F 2) ≤ 2E
(∫ 1

0
[D[

tF ]2dt

)
. �

Extension to Lp

10 Proposition: Assume that W ]
t belongs to Lp for every t ∈ [0, 1]. If F is an elementary

function F = f(Wt1, . . . ,Wtn), put for (ω,$) ∈ Ω × Ω

F ](ω,$) =
∑

i

∂if(Wt1(ω), . . . ,Wtn(ω))W ]
ti
(ω,$).

So the pseudo-gradient extends to Lp by this formula. The same property holds for the damped
pseudo-gradient F [.

Proof: The Lp-domain contains elementary functions, so it is dense in Lp. Closability is ob-
tained, via Burkholder’s inequality, in the same way as in the L2 case. The Lp norm equivalence
for the two pseudo-gradients comes from the fact that J is also an automorphism of Lp(µ⊗dt). �
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11 Definition: The ]-Sobolev space W 1,p,] with respect to the ] derivative is the completion of
the elementary functions under the norm

‖F‖p
1,p,] = E(|F |p) + E (|F ] |p).

Notice that W 1,p,] is a subspace of Lp for the norm is closable. The damped norm ‖F‖1,p,[ which
is equivalent to the previous one is defined in the same way, so the [-Sobolev space is the the
same as the ] one.

12 Remarks:

1) It follows that it may happen many different Ricci processes generating the same ]-Sobolev
space, since the ]-Sobolev space only depends on the [-derivation.

2) It follows from a result of [8] an example of a concrete Ricci process (defined by a Riemannian
manifold,cf. Section V) generating a ]-Sobolev space different from the Gaussian Sobolev
space. Nevertheless the difference DtF −D[

tF is singular to the predictable σ-algebra when
F belongs to the two domains.

3) The choice of the J operator may seem to be quite arbitrary (consider for example the same
formula but with the Ricci process under the integration sign). The same properties as
above would hold. In fact the formula that we have taken was motivated by the example
of the path space of a Riemannian manifold.

IV. Some concrete derivations

Choosing F [

Let βt(ω,$) and γt(ω,$) two predictable processes which are square integrable on Ω×Ω× [0, 1],
with values in skew-symmetric operators of Rm . We assume that β is linear in the second variable
(first Wiener chaos in the second variable). Generalizing an idea of [16], we put for ε ∈ R,

ωε(t) = W ε
t (ω,$) =

∫ t

0

eεβs(ω,$) dWs(ω cos ε + $ sin ε),

$ε(t) = W
ε
t (ω,$) =

∫ t

0

eεγs(ω,$) dWs(−ω sin ε + $ cos ε).

It is easily seen that the couple (W ε
t ,Wt

ε) is an Rm×Rm -Brownian motion under µ⊗µ, so that
its distribution does not depend on ε. For a regular F (ω), define

Ḟ (ω,$) =
d

dε
F (ωε)

∣∣∣∣
ε=0

.

Note that properties a), b), d) of definition 2 are satisfied. It remains to prove an integration
by parts formula to see that in fact F → Ḟ is a damped pseudo-gradient, that is

E(FG) = E (Ḟ G),
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for every G(ω) =
∫ 1

0
gs(ω)dWs(ω).

Put

H(ω,$) = F (ω)G(ω,$) = F (ω)
∫ 1

0
gs(ω)dWs($).

We have,

Hε(ω,$) = F (ωε)
∫ 1

0
gs(ωε)dWs($ε),

and for every ε
E (Hε) = E (H),

so that for a bounded regular g

E

[
dHε

dε

]
= 0,

dHε

dε

∣∣∣
ε=0

= Ḟ (ω,$)
∫ 1

0
gs(ω)dWs($) − F (ω)

∫ 1

0
gs(ω)dWs(ω) + · · ·

· · · + F (ω)
∫ 1

0
ġs(ω,$)dWs($) + F (ω)

∫ 1

0
gs(ω)γs(ω,$)dWs($).

The last two terms have zero expectation since they are ends of martingales w.r. to $. Hence,
by density of regular g, we are done.

13 Remarks:

1) In fact, Ḟ depends on β but not on γ as it is seen below, so that we can take γ = 0.

2) In the case β = 0, one has Ḟ = F ′, so that we exactly get the Cameron-Martin-Girsanov
integration by parts formula.

3) If F = f(Wt1 , . . . ,Wtn) is an elementary function, we have

Ḟ = F ′ +
∑

i

∂if(Wt1 , . . . ,Wtn)
∫ ti

0
βs(ω,$)dWs(ω).

Hence, for every G,

∑
i

E

[
∂if(Wt1 , . . . ,Wtn)

∫ ti

0
βG

s (ω)dWs(ω)
]

= E (Ḟ G − F ′G) = 0,

where βG is defined by

βG
t (ω) = E

[
βt(ω,$)

∫ 1

0
gs(ω)dWs($)

]
.
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Choosing F ]

Now, take an arbitrary Ricci process At in order to define F ] in such a way that F [ = Ḟ . So,
put

Ḟ (ω,$) =
∫ 1

0
D[

tF (ω)dWt($),

and

D]
tF (ω) = D[

tF (ω) +
1
2

∫ 1

t
A∗

sD
[
sF (ω)ds.

It is easy to verify that F ] is a pseudo-gradient in the sense of Definition 2, and that F [ = Ḟ .

V. The Riemannian manifold paths

Let M be an m-dimensional compact submanifold of a finite dimensional vector space E. First
we assume that M is endowed with a Riemannian structure G. Second we assume that we are
given a Driver connection ∇, that is [7] a) ∇ is G-compatible, i.e. ∇G = 0

b) For every tangent vectors ξ and η we have

〈T (ξ, η), η〉 = 0

where T is the torsion tensor of ∇. It is known [7,9] that this implies ∇ = ∇ +
1
2
T where ∇ is

the Levi-Civita connection.

Consider the natural connection D on the vector space E. We define a Weingarten type tensor
by writing

V (ξ, η) = Dξη −∇ξη

This is an E-valued tensor field which is not symmetric as we have V (ξ, η)−V (η, ξ) = −T (ξ, η).
Let Σ be the space of continuous paths starting at a point o ∈ M , and let Wt be the canonical
Brownian motion of Rm . According to Itô and Driver, we get an M -Brownian motion Xt starting
at o by solving the Itô–Stratonovich SDE

I(0)


dXt = Ht ◦ dWt

dHt = V (◦dXt,Ht)
,

where X0 = o, and H0 a fixed isometry of Rm onto To(M). These initial conditions are in force
all over the section. It is known that Xt is M -valued and is an M -Brownian motion. Moreover
Ht is an isometry of Rm onto TXt(M). The second equation means that Ht is a stochastic
parallel field over Xt.

This system has a unique solution (Xt,Ht) for t ∈ [0, 1], and Xt is an M -Brownian motion.
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The Bismut-Driver formula

14 Theorem: There exists a process β in the sense of Section IV such that

X]
t = HtW t,

for the Ricci process At = H−1
t [Ric + Θ]Ht, where Ric is the Ricci tensor field of ∇, and

Θ = Trace(∇T ) =
∑

i ∇iT (ei, ·).
Proof: First we search for the damped pseudo-gradient (i.e. F [) in the form of Section IV. So,
take βt and γt as in Section IV. We have Xε

t (ω,$) = Xt(ωε), and we get the new Itô–Stratonovich
system

I(ε)


dXε

t = Hε
t ◦ dW ε

t

dHε
t = V (◦dXε

t ,Hε
t )

,

with the same initial conditions as I(0). Taking the derivative with respect to ε at 0, we get

İ(0)


dẊt(ω,$) = Ḣt(ω,$) ◦ dWt(ω) + Ht(ω) ◦ dWt($) + Ht ◦ (βtdWt)

dḢt = V (◦ḋXt,Ht) + V (◦dXt, Ḣt) + V ′(Ẋt, ◦dXt,Ht)
,

where V ′ is a suitable tensor field. Obviously the vector Ẋt belongs to TXt(M), so that it writes

Ẋt(ω,$) = Ht(ω)ξt(ω,$).

Hence,

dẊt(ω,$) = dHt(ω) ◦ ξt(ω,$) + Ht(ω) ◦ dξt(ω,$) = V (◦dXt,Htξt) + Ht ◦ dξt.

In the same way, we have

Ḣt(ω,$) = Ht(ω)αt(ω,$) + V (Ẋt(ω,$),Ht(ω)),

where αt is a skew-symmetric operator of Rm since Ht is an isometry. By identification with
the first line of İ(0), we get

dξt = αt ◦ dWt + dW t + τt(◦dWt, ξt) + βtdWt,

where τt = H−1
t THt is the stochastic parallel transport of T , and where W t stands for Wt($).

On the other hand, Htαt is the stochastic covariant derivative of Ht w.r. to ε, so that we have

d(Htαt) = Riem(◦dXt, Ẋt)Ht + V (◦dXt,Htαt),

where Riem is the curvature tensor of the connection ∇ at Xt. By comparison with the second
line of I(0) we get

dαt = rt(◦dWt, ξt),
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where rt = H−1
t Riem Ht is the stochastic parallel transport of Riem. Then we obtain the

Itô–Stratonovich system

II


dξt = αt ◦ dWt + dW t + τt(◦dWt, ξt) + βtdWt

dαt = rt(◦dWt, ξt)
.

By stochastic contraction, we get

dαtdWt = −rictξtdt,

where rict = H−1
t Ric Ht is the stochastic parallel transport of the Ricci tensor at Xt. In the

same way we get

τt(◦dWt, ξt) = τt(dWt, ξt) +
1
2
dτt(dWt, ξt) +

1
2
τt(dWt, dξt).

So we obtain the new Itô–Stratonovich systemdξt = (αt + βt)dWt +dW t +τt(dWt, ξt) − 1
2
rictξtdt − 1

2
θtξtdt +

1
2
τt(dWt, dξt)

dαt = rt(◦dWt, ξt)
,

where θt = dτt(dWt, ·) = H−1
t ΘHt is the stochastic parallel transport of Θ = Trace(∇T ).

Observe that the coefficient τt(·, ξt) of dWt is skew-symmetric valued, thanks to the Driver
condition; and that ξ(ω,$) is linear in $.

At this time, we already obtained a [-derivation and even a family of [-derivation (one for each
process β), with the good i.b.p. formula. In addition, if we take an arbitrary bounded Ricci
process, we get also a ]-derivation with a good i.b.p.

Nevertheless, we want to have X]
t = HtW t. In order to obtain such a ]-derivation, put At =

rict + θt, we get

dξt = [α̃t + βt]dWt + dW t − 1
2
Atξtdt +

1
2
τt(dWt, dξt),

where α̃t = αt + τt(·, ξt) and where At = rict + θt.

Introduce a priori the solution ηt of

dηt = dW t − 1
2
Atηtdt, which is ηt(ω,$) =

∫ t

0
CtC

−1
s dW s.

Observe that ηt is linear in $, and now choose the particular β process by putting

βt(ω,$) = −
∫ t

0
rs(◦dWs, ηs) − τt(·, ηt),

which is skew-symmetric valued (∇ is a Driver connection), and which is also linear in $. It
turns out that the couple (ξt, αt) = (ηt,

∫ t
0 rs(◦dWs, ηs)) is the solution of the last system. The

proof of Theorem 14 is completed. �
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15 Corollary: If F = f(Xt1 , . . . ,Xtn) is an M -elementary function, we have

E(FG) = E

[∑
i

∂if(Xt1 , . . . ,Xtn)Hti

∫ ti

0
g̃sds

]
.

Proof: We have

Ḟ (ω,$) =
∑

i ∂if(Xt1 , . . . ,Xtn)Ẋti =
∑

i ∂if(Xt1 , . . . ,Xtn)Htiηti ,

E (FG) = E (Ḟ G) = E
[∑

i ∂if(Xt1 , . . . ,Xtn)Hti

∫ ti

0
g̃sds

]
= E (F ]G̃)

,

as it can be easily seen from the obvious relation

E

[
ηt

∫ 1

0
gsdW s

]
=

∫ t

0
g̃sds = E

[
W t

∫ 1

0
g̃sdW s

]
.

16 Remarks:

a) As we have X]
t = HtW t and X[

t = Htηt, we can verify that with the notations of definition
4, we have for τ ∈ [0, 1] two lines of vectors

D]
tXτ = 1{t<τ}H∗

τ , D[
tXτ = 1{t<τ}C−1

t
∗C∗

τ H∗
τ ,

or in terms of columns of covectors ∈ (Rm)∗, which is better

^
D]

tXτ = 1{t<τ}Hτ , D̂[
tXτ = 1{t<τ}HτCτC

−1
t .

b) Notice that the solution ξt of the above system is an affine function of β. For the choice of
Bismut we get the i.b.p. of Bismut-Driver (modulo the good Ricci process), for β = 0 we
get F [ = F ′ that is the ordinary flat derivation on the Wiener space. For an arbitrary β,
we get

Dβ
GF = D]

GF + Htζt,

where ζ is the solution of

ζt =
∫ t

0
βs(ω)dWs(ω) − 1

2

∫ t

0
Asζsds,

with a suitable skew-symmetric valued predictable process β depending on G. Hence we
have again the i.b.p. and ∑

i

E (∂if(Xt1 , . . . ,Xtn)Htiζti) = 0.

c) More generally, if ζ satisfies the preceding SDE with an arbitrary β, one can prove in the
same way that this last expectation vanishes.
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VI. Capacities

In the first part of this section we return to the general case (without manifold). We assume
that every Wt belongs to the space W 1,p,] = W 1,p,[. It is equivalent to say that every W ]

t or W [
t

belongs to Lp(µ ⊗ µ).

A functional capacity is defined on the Wiener space. Put

C]
1,p(g) = Inf{ ‖f‖1,p,] / f ≥ g almost everywhere },

for every l.s.c. function g ≥ 0 on Ω; and put for every numerical function h,

C]
1,p(h) = Inf{ C]

1,p(g) / g l.s.c. , g ≥ |h|}.

In the same way we define the functional capacity C[
1,p. Clearly these two capacities are equiv-

alent.

17 Theorem: Suppose that the process Wt satisfies the inequality

Np(W [
t − W [

s ) ≤ k.|t − s|α,

with p > 2, 1/p < α < 1/2 for a given constant k. Then for 0 < γ < α− 1/p, the capacities C]
1,p

and C[
1,p are tight on γ-Hölder compact sets of Ω.

Proof: The hypothesis means that t → Wt is a W 1,p,[ valued α-Hölder function. Let β such that
γ < β < α − 1/p, consider the Hölder norm

q(ω) = Sup
s 6=t

|Wt − Ws|
|t − s|β .

Denote Hα the space of α-Hölder continuous functions with its natural norm. We have the
inclusions Hα(Lp) ⊂ Lp(Hβ) ([22], proof of Theorem 5), hence the function q belongs to Lp.

Now the space W 1,p,[ is of local type, so that we have the estimate

|q[(ω,$)| ≤ Sup
s 6=t

|W [
t − W [

s |
|t − s|β ,

which belongs to Lp for the same reason. Finally q belongs to W [
1,p.

The q-balls {q ≤ λ} are compact into Hγ and then into Ω, so that the complementary sets Uλ

are open, and their capacities are worth

C[
1,p(Uλ) ≤ 1

λ
‖q‖1,p,[,

which vanish as λ tends to infinity.

Now suppose that W [
t is given by a concrete derivation as in Section IV. We have

18 Proposition: Let p > 4. If β satisfies the inequality∫ 1

0
E (|βs|p) ds < +∞,

14



then W [
t satisfies the hypotheses of Theorem 17 for 1/2 − 1/p > α > 1/p.

Proof: Put Mt =
∫ t
0 βsdWs. By Burkholder’s inequality we have

E(|Mt − Ms|p) ≤ Kp(t − s)
p−2
2

∫ t

s
E |βu |pdu ≤ k|t − s|pα,

for 1/2 − 1/p > α > 1/p, and the result since W [
t = W t + Mt. �

Application of capacities to the Riemannian case

First observe that X and H are solutions of the system I(0), so by [21] they belong to Hα(Lp)
for 1/2 > α > 1/p. Now we have

βt(ω,$) = −
∫ t

0
rs(◦dWs, ηs) − τt(·, ηt),

and

ηt =
∫ t

0
CtC

−1
s dW s.

So for various constants K
E |ηt |p ≤ K, E |βt |p ≤ K.

19 Corollary: C1,p,] and C1,p,[ are tight on Hölder compact sets of Ω.

The Itô map ω → σ defined by σ(t) = Xt(ω) exchanges the measurable function classes on
Ω (resp. Σ). It also exchanges the ]-Sobolev spaces W 1,p,](Ω, µ) constructed on Ω with the
]-Sobolev spaces W 1,p,](Σ, ν) constructed on Σ. More precisely, we have

20 Theorem: Let p > 1. We can refine the Itô map into a C]
1,p-quasi-continuous map with

values in a separable subset of Σ ∩ Hα for 1/2 > α > 0. The image capacity Γ]
1,p is associated

with W 1,p,](Σ, ν) and is tight on Hölder compact sets of Σ and then the Itô map is a quasi-
isomorphism.

Proof: As both capacities C]
1,p and Γ]

1,p are increasing with p, we can suppose p as great as we
want, and take α > 1/p. The Itô map I is an isomorphism of the Wiener measure µ onto its
image ν which is carried by Σ, so that f → f ◦ I is an isomorphism of Lp(ν) on Lp(µ), and
also of W 1,p,](Σ, ν) onto W 1,p,](Ω, µ). Let us show first that Γ]

1,p is tight on compact sets of Σ.
Consider, as above, for α − 1/p > β,

Q(σ) = Sup
s 6=t

|σ(t) − σ(s)|
|t − s|β .

Then,

Q ◦ I(ω) = Sup
s 6=t

|Xt − Xs|
|t − s|β ,

15



and

|(Q ◦ I)](ω,$)| ≤ Sup
s 6=t

|X]
t − X]

s|
|t − s|β = Sup

s 6=t

|Ht(ω)Wt($) − Hs(ω)Ws($)|
|t − s|β .

By the previous lemma, t → Ht is Hölder continuous with values in Lp. As Wt($) shares the
same property, we get from the Kolmogorov lemma [21,22] that (Q ◦ I)] is majorized by an
element of Lp(µ).

It follows as above that Q ◦ I belongs to W 1,p,](Ω, µ) hence Q belongs to W 1,p,](Σ, ν).

The same argument as in Theorem 17 applies and shows that Γ]
1,p is tight on compact sets of

Hγ(M) ⊂ Σ for α− 1/p > β > γ. Note that β can take any arbitrary value between 0 and 1/2.

It results from [19] that, as for the flat Gaussian Sobolev space W 1,p(Ω, µ), every linear increasing
functional on W 1,p,](Ω, µ) (resp. W 1,p,](Σ, ν)) is representable by a non-negative measure on Ω
(resp. Σ), vanishing on sets which are C]

1,p-polar (resp. Γ]
1,p-polar).

If ϕ is an elementary function on Σ, ϕ ◦ I belongs to L1(C]
1,p), so that ϕ → ϕ ◦ I is a quasi-

isomorphism for the two quasi-topologies. One knows that µ is carried by a separable subspace
Ωα ⊂ Ω ∩Hα(T0(M)). In the same way ν is carried by a separable subspace Σα ⊂ Σ ∩Hα(M).
Both are polish spaces, so that they have metrizable compactifications with polish boundaries
of null capacity since both capacities are tight on compact sets. We can then apply Theorem
14 of [17]: there exists a quasi-continuous representative I : Ω → Σ, and there exists ρ : Σ → Ω
quasi-continuous, unique up to polar sets, and such that f̃ = f ◦ ρ where f̃ is the image of f by
the isomorphism L1(C]

1,p) → L1(Γ]
1,p). It easily follows that ρ is a quasi-continuous represen-

tative of I−1, that is ρ◦I = IdΩ quasi-everywhere on Ω, and I◦ρ = IdΣ quasi-everywhere on Σ.�

21 Corollary: For any ε > 0, there exist compact sets K1 ⊂ Ω, K2 ⊂ Σ, whose complementary
sets are of capacities ≤ ε, and such that ρ = I−1 is a homeomorphism of K1 onto K2.

22 Remark: It is to be noticed that in all of these results, the compact sets of Ω (resp. of Σ)
which are involved can always be taken in a given space Hα−1/p for any 1/2 > α > 1/p > 0.
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