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Laboratoire de Mathématiques, Applications et Physique
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45067 Orléans Cedex 2 France

Olivier.Garet@labomath.univ-orleans.fr
http://www.univ-orleans.fr/SCIENCES/MAPMO/membres/garet/

Abstract: We consider a random field (Xn)n∈Zd and investigate when the set
Ah = {k ∈ Zd; |Xk| ≥ h} has infinite clusters. The main problem is to decide
whether the critical level hc = sup{h ∈ R;P (Ah has an infinite cluster) > 0} is nei-
ther 0 nor +∞. Thus, we say that a percolation transition occurs. In a first time,
we show that weakly dependent Gaussian fields satisfy to a well-known criterion
implying the percolation transition. Then, we introduce a concept of percolation
along reasonable paths and therefore prove a phenomenon of percolation transition
for reasonable paths even for strongly dependent Gaussian fields. This allows to
obtain some results of percolation transition for oriented percolation. Finally, we
study some Gibbs states associated to a perturbation of a ferromagnetic quadratic
interaction. At first, we show that a transition percolation occurs for superstable
potentials. Next, we go to the the critical case and show that a transition percola-
tion occurs for directed percolation when d ≥ 4. We also note that the assumption
of ferromagnetism can be relaxed when we deal with Gaussian Gibbs measures, i.e.
when there is no perturbation of the quadratic interaction.
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Introduction

In the last twenty years, percolation processes have taken a major place in the
modeling of disordered spatial systems, e.g. of inhomogeneous media. Of course,
the mathematical study of dependent percolation is not as well advanced as those of
Bernoulli percolation. In spite of this, by the appearance of new powerful tools [13]
and by its deep relationships with some model of statistical mechanic, dependent
percolation became an exciting area of research. We refer the reader to the stim-
ulating book by Georgii, Häggström and Maes [10] for an overview of this large
virgin country.

We will concentrate here about the problem of percolation transition for some
families of dependent fields. The questions are simple to formulate:

• Given a stationary random field (Xn)n∈Zd , for which values of h does the
so-called excursion set

Eh = {k ∈ Zd;Xk ≥ h}
have an infinite connected component with a positive probability ?
• If this happens with positive probability, does it actually happens almost

surely ?

It is also natural to introduce the critical level

hc = sup{h ∈ R;P (the origin belongs to an infinite cluster) > 0}.
We say that there is a percolation transition if hc belongs to the interior of the
support of the distribution of a single site variable. In this paper, we will deal with
a random field which is obtained as the absolute value of an initial random field.
It means that we study

Ah = {k ∈ Zd; |Xk| ≥ h},
not Eh.

The case of a Gaussian field (Xn)n∈Zd is naturally interesting. It is actually
used by physicists as a model of composite media. Excursion sets Eh are denoted
as one-level cut Gaussian Random Models, whereas excursion sets Ah correspond
to two-level cut Gaussian Random Model. We refer the reader to Roberts and
Teubner [19], Roberts and Knackstedt [18], and the references therein for more
information.

The mathematical treatment of the problem was initiated by Molchanov and
Stepanov. At the beginning [14] of a cycle of three papers [14, 15, 16] about de-
pendent percolation, they have formulated a simple criterion to ensure the presence
(or absence) of percolation for a low (or high) level h. The study of Eh for weakly
correlated Gaussian fields was one of their applications. Later, Bricmont, Lebowitz
and Maes [2] provided the first example of a percolation transition for a system
with infinite susceptibility. The aim of this paper is the mathematical study of
Ah for some random fields (Xn)n∈Zd . Of course we will deal with Gaussian fields,
but our study will not be limited to these fields: we will also study some Gibbs
measures associated to a perturbation of a ferromagnetic quadratic interaction.

In section 1, we show how to apply the criterion of Molchanov and Stepanov
to a weakly dependent Gaussian fields and obtain the existence of a percolation
transition for stationary Gaussian fields with finite susceptibility.

In section 2, we show how some restrictions on the geometry of the percolating
cluster allows to replace the Molchanov-Stepanov criterion by a weakened condition.
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Then, we can ensure the absence of percolation along “reasonable” clusters even if
the dependence of the underlying process is strong.

These results are used in section 3 to prove the existence of a percolation tran-
sition for dependent oriented percolation on Zd in cases where the Molchanov-
Stepanov criterion is not satisfied. An example is also given.

The goal of section 4 is to extend the preceding results to show percolation
transition for some Gibbs measures associated to a perturbation of a quadratic
interaction. For superstable and ferromagnetic interactions, we show the existence
of a percolation transition for (unoriented) site percolation. When the assumption
of superstability is not satisfied, we nevertheless obtain the existence of a percolation
transition for directed site percolation when d ≥ 4. Finally, we remark that the
assumption of ferromagnetism can also be relaxed when we consider Gaussian Gibbs
measures, i.e. when there is no perturbation of the quadratic interaction.

For some proofs, we will need some results related to the control of the covari-
ance of stationary Gaussian processes with a spectral density which can have some
singular points. For readability, Fourier analytic results have been relegated to the
final section.

Notations

0.1. Graphs and lattices. A directed graph (or digraph) is a couple G = (V,E)
with E ⊂ V ×V . We say that two vertices x, y ∈ Zd are adjacent in G if (x, y) ∈ E.

The neighborhood of a set A is

VG(A) = ∪
x∈A

{y; (x, y) ∈ E}.

A path from x to y is a sequence of vertices with x as the first element and y as
the last one such that each element of the sequence is adjacent in G with the next
one. The set of points which can be reached from x is denoted by CG(x).

Let Ω = RE and P be a probability measure on (Ω,B(Ω)). As usually, Xk : Ω→
R denotes the canonical projection on the k-th component.

Let h be a positive number. For a given digraph (V,E), we will consider the
random subgraphs (V,EX

h+) and (V,EX
h−) of (E, V ), where EX

h+ and EX
h− are the

subset of V defined by

(1) EX
h+ = {(i, j) ∈ V × V ; |Xi| ≥ h and |Xj | ≥ h}

and

(2) EX
h− = {(i, j) ∈ V × V ; |Xi| < h and |Xj | < h}.

For x ∈ V , we define the random set CX
h+(x) (resp. C

X
h−(x)) to be the set CH(x)

with H = (V,EX
h+)(x). (resp. H = (V,EX

h−)(x)).
We will say that a realization of the field (Xk)k∈E percolates over h (resp. under

h) if (V,EX
h+) (resp. (V,EX

h−)) contains at least one infinite cluster. For x ∈ V , we
say that a realization of the field (Xk)k∈V percolates over h (resp. under h) from
x if |CX

h+(x)| = +∞ (resp. |CX
h−(x)| = +∞).

We will work here with classical graphs built on Zd or Zd+: for x ∈ Zd, let us

define ‖x‖1 =
∑d

i=1 |xi| and ‖x‖∞ = sup{|xi|; 1 ≤ i ≤ d}. We will currently work
with Ld = (Zd,Ed), with

Ed = {(x, y) ∈ Zd × Zd; ‖y − x‖1 = 1}



258

and
−→
L d = (Zd+,

−→
E d), with

−→
E d = {(x, y) ∈ Zd+ × Zd+;

d
∑

i=1

yi >

d
∑

i=1

xi and ‖y − x‖1 = 1}.

We note by µd the d-dimensional connective constant, that is

µd = lim
n→+∞

c(d, n)1/n,

where c(d, n) is the number of injective paths on Ld starting from the origin and
whose length is n.

If A if a subset of Zd, we denote by Mod(A) the smallest subgroup of (Zd,+)
which contains A.

0.2. Gibbs measures. Let us recall the concept of Gibbs measure. Each ω ∈ Ω =

RZ
d

can be considered as a map from Zd to R. We will denote ωΛ its restriction to
Λ. Then, when A and B are two disjoint subsets of Zd and (ω, η) ∈ RA × RB , ωη
denotes the concatenation of ω and η, that is the element z ∈ RA∪B such that

zi =

{

ωi if i ∈ A
ηi if i ∈ B.

For finite subset Λ of Zd, we define σ(Λ) to be the σ-field generated by
{Xi, i ∈ Λ}.

For every finite Λ in Zd, let ΦΛ be a real-valued σ(Λ)-measurable function. The
family (ΦΛ)Λ, when Λ describes the finite subsets of Zd, is called an interaction
potential, or simply a potential. For a finite subset Λ of Zd, the quantity

HΛ =
∑

B: B∩Λ6=∅

ΦB

is called the Hamiltonian on the volume Λ. Usually, HΛ can be defined only on a

subset of RZ
d

. We suppose that there exists a subset Ω̃ of Ω such that

∀ finite Λ ∀ω ∈ Ω̃
∑

B: B∩Λ6=∅

|ΦB(ω)| < +∞.

(HΛ)Λ is called the Hamiltonian.
We now define the so called partition function ZΛ: denoting by λ the Lebesgue’s

measure on the real line, we let

ZΛ(ω) =

∫

RΛ

exp(−HΛ(ηΛωΛc))dλ⊗Λ(ηΛ).

By convention, we set exp(−HΛ(ηΛωΛc)) = 0 when the Hamiltonian is not defined.

We suppose that for each ω in Ω̃, we have 0 < ZΛ(ω) < +∞. Then, we can

define for each bounded measurable function f and for each ω ∈ Ω̃,

ΠΛf(ω) =

∫

RΛ
exp(−HΛ(ηΛωΛc))f(ηΛωΛc)dλ⊗Λ(ηΛ)

ZΛ(ω)
.

For each ω, we will denote by ΠΛ(ω) the measure on Ω which is associated to
map f 7→ ΠΛf(ω).
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If a measure µ on Ω is such that µ(Ω̃) = 1, we say that µ is a Gibbs measure
or a Gibbsian field when for each bounded measurable function f and each finite
subset Λ of Zd, we have

Eµ(f |(Xi)i∈Λc) = ΠΛf µ a.s.

Let J : Zd → R be an even function such that
∑

i∈Zd
|J(i)| < +∞ and V a

continuous function.
Given these parameters, we deal with Gibbsian random fields µ associated to

the potential ΦJ,V defined on Ω by

ΦJ,VΛ (ω) =











1
2 (J(0)ω

2
i + V (ωi)) if Λ = {i}

J(i− j)ωiωj if Λ = {i, j}, i 6= j

0 otherwise.

Then, the corresponding Hamiltonian function is equal to

(3) HJ,V
Λ (ω) =

1

2

∑

i∈Λ

V (ωi) +
1

2

∑

i,j∈Λ

J(i− j)ωiωj +
∑

i∈Λ,j∈Λc

J(i− j)ωiωj .

We can define

Ω̃ = {ω ∈ RZ
d ∀i ∈ Zd

∑

j∈Zd

|J(i− j)ωj | < +∞}.

On Ω̃, HΛ is well defined. It is clear that it could not be possible to take a larger
Ω̃, so this is a canonical choice.

For fixed (J, V ), we denote by GJ,V the set of Gibbs measures on RZ
d

associated
to the Hamiltonian given in (3). If GJ,V contains more than one point, we say that
phase transition occurs. GJ,V is a convex set whose extreme points are called pure
phases. (For general results on Gibbs measures, see [9].)

For z = (z1, ..., zd) ∈ Cd and n = (n1, ..., nd) ∈ Zd, we set

zn =
n
∏

i=1

znii and |n| =
d
∑

i=1

|ni|,

U = {z ∈ Cd, ∀i ∈ {1, . . . , d} |zi| = 1}.

We introduce Ĵ , the dual function of J , defined on a subset of Cd by

(4) Ĵ(z) =
∑

n∈Zd

J(n)zn.

whenever the considered series is absolutely convergent. Since J is summable, it is
clear that Ĵ always defines a continuous map on U. We denote by dz the normalized
Haar measure on U. In other words, if f is a measurable function on U, we have

1

(2π)d

∫

[−π,π[d
f(eiθ1 , . . . , eiθd) dθ1 . . . dθd =

∫

U

f(z) dz.

By the way, ∀n ∈ Zd
∫

U
Ĵ(z)z−n = J(n).
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0.3. Miscellaneous. We recall that Jν is the Bessel function of first order with
index ν, that is

Jν(x) =
1

2π

∫ 2π

0

exp(i(x sin θ − νθ))dθ = (x/2)ν

Γ(ν + 1
2 )
√
π

∫ +1

−1

(1− t2)ν− 12 e−itx dt.

If f is a CN -smooth function on Rd and x ∈ Rd, we denote by DN
x f the N th

derivative of f at point x: it is a linear map from (Rd)
⊗N

to R.

1. Weakly Dependent Gaussian Fields

A natural approach to generate some dependent random fields is to use Gaussian
fields. In their pioneering paper [14], Molchanov and Stepanov consider Gaussian
variables with a bounded spectral density as an illustration of their criterion. They
proved that for large h, {k ∈ Zd;Xk ≥ h} does not percolate. By a symmetry
argument, their result also implies the existence of a percolation transition.

In the present paper, we will consider the problem of percolation for {k ∈
Zd; |Xk| ≥ h}.

At first, let us recall the Molchanov-Stepanov criterion. In this proposition, two
vertices i and j are said to be adjacent if ‖i − j‖1 = 1 and to be ∗-adjacent if
‖i− j‖∞ = 1.

Proposition 1 (Molchanov and Stepanov). There exist two finite constants cdisd
and cagrd only depending from the dimension such that for each {0, 1}-valued random
field (Xk)k∈Zd , we have the following results:

• If there exists C > 0 such that for each connected set A, we have

P (∀k ∈ A;Xk = 1) ≤ C exp(−cdisd |A|),
then {k ∈ Zd;Xk = 1} has almost surely only finite clusters.
• If there exists C > 0 such that for each ∗-connected set A, we have

P (∀k ∈ A;Xk = 0) ≤ C exp(−cagrd |A|),
then {k ∈ Zd;Xk = 1} has almost surely at least one infinite cluster.

We well need some lemmas. Note that some of them (that is Lemma 2 and
Lemma 3) were (at least implicitly) used by Molchanov and Stepanov in their
proof of the absence of an infinite cluster in {k;Xk ≥ h} for large h. We recall that
we consider here {k; |Xk| ≥ h}, not {k;Xk ≥ h}.
1.1. A percolation transition result.

Theorem 1. Let (Xn)n∈Z be a centered stationary Gaussian field with finite sus-
ceptibility, i.e. such that

∑

k∈Z
d
|ck| < +∞, with ck = E X0Xk.

Then, let us define

h+ = inf{a ≥ 0;P (|CX
a+(0)| = +∞) = 0}

and
h− = sup{a ≥ 0;P (|CX

a−(0)| = +∞) = 0}.
Then,
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• 0 < h+ < +∞ and 0 < h− < +∞.
• For each a > h+ there is almost surely not percolation over level a, whereas
there is almost surely percolation over level a for a < h+.
• For each a < h− there is almost surely not percolation under level a, whereas
there is almost surely percolation under level a for a > h−.

1.2. Proof of theorem 1. The proof of theorem 1 will need some lemmas. Some
of these will be used again to get further results.

We begin with an elementary but useful lemma:

Lemma 1. Let X be a Rn-valued centered Gaussian vector with covariance matrix
C.

• For each real α with α < ρ(C)−1, one has

E exp(
α

2
‖X‖22) =

∏

i

(1− αλi)−1/2.

where the λi’s are the eigenvalues of C.
• Moreover, if 0 ≤ α < ρ(C)−1, then

(5) E exp(
α

2
‖X‖22) ≤ (1− αρ(C))−n/2,

where ρ(C) is the spectral radius of C.

Lemma 2. Let X be a Rn-valued centered Gaussian vector with covariance matrix
C and a2 > ρ(C). Then

(6) P (‖X‖2 ≥ na2) ≤ e−nh(
a2

ρ(C)
),

where h(x) = 1
2 (x− lnx− 1). h is increasing and positive on (1,+∞), with +∞ as

limit at +∞.

Proof. For each α > 0, we have

P (‖X‖2 ≥ na2) = P (exp(
α

2
‖X‖2) ≥ exp(

α

2
na2))

≤ E exp(α2 ‖X‖2)
exp(α2 na

2)
.

If moreover α < ρ(C)−1, it follows from lemma 1 that

P (‖X‖2 ≥ na2) ≤ (1− αρ(C))−n/2

exp(α2 na
2)

≤ ((1− αρ(C)) exp(αa2))−n/2.

We choose α = 1
ρ(C) − 1

a2 and get

P (‖X‖2 ≥ na2) ≤ (
ρ(C)

a2
exp(

a2

ρ(C)
− 1)−n/2

≤ e−nh(
a2

ρ(C)
).

¤

Note that the proof of Lemma 2 follows the standard of the theory of large
deviations. h naturally appears as the function associated to a χ2 distribution in
Chernof’s theorem.
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Now, we can claim the lemma which contains the half part of our first result
about percolation transition.

Lemma 3. Let (Xn)n∈Z be a centered stationary Gaussian field with bounded spec-
tral density g Then, for each x2 > ‖g‖∞, we have

(7) P ({∀k ∈ A; |Xk| ≥ x}) ≤ exp(−h( x2

‖g‖∞
)|A|).

Proof. Let T = (R/2πZ)d and Mg be the Toeplitz operator: `2(T)→ `2(T) defined
byMg(f) = gf . If A ⊂ Zd and PA is the orthogonal projection from `2(T) into L =

Lin{exp(i〈.|k〉); k ∈ A}, then the matrix of covariance of the vector X̃ = (Xk)k∈A
is also the matrix of the restriction of PAMg to L. Therefore

ρ(C) =
sup

{
x ∈ L
‖x‖2 = 1

‖PAMgx‖2 ≤
sup

{
x ∈ L
‖x‖2 = 1

‖Mgx‖2 ≤ ‖g‖∞

Since {∀k ∈ A; |Xk| ≥ x} ⊂ {‖X̃‖2 ≥ |A|x2}, it just remains to apply lemma 2 ¤

We will now turn to the reverse side of the percolation transition.

Lemma 4. Let X be a n-dimensional Gaussian vector with positive definite covari-
ance matrix C. Let us denote by Υ(C) the spectral gap i.e. the smallest eigenvalue
of C. Then, for each a2 < Υ(C), we have

(8) P (‖X‖2 ≤ na2) ≤ e−nh(
a2

Υ(C)
),

where h(x) = 1
2 (x− lnx−1). h is positive and decreasing on (0, 1), with an infinite

limit at 0.

Proof. For each α > 0, we have

P (‖X‖2 ≤ na2) = P (exp(−α
2
‖X‖2) ≥ exp(

−α
2
na2))

≤ E exp(−α
2 ‖X‖2)

exp(−α
2 na

2)
.

By lemma 1, it follows that

P (‖X‖2 ≤ na2) ≤ (1 + αΥ(C))−n/2exp(
α

2
na2)

≤ ((1 + αΥ(C)) exp(αa2))−n/2.

Then, we choose α = 1
a2 − 1

Υ(C) and get

P (‖X‖2 ≤ na2) ≤ e−nh(
a2

Υ(C)
).

¤

Lemma 5. Let (Xn)n∈Z be a centered stationary Gaussian field with variance σ2 >
0 and with finite susceptibility, i.e. such that

∑

k∈Z
d
|ck| < +∞, with ck = E X0Xk.

Then, there exists f : (0, σ2)→ (0,+∞) such that for each finite set A ⊂ Zd, we
have
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(9) P ({∀k ∈ A; |Xk| ≤ x}) ≤ exp(−f(x)|A|).
f is positive and decreasing on (0, 1), with an infinite limit at 0.

Proof. Let ε ∈ (0, σ2). Since
∑

i∈NεZd\{0}

|ci| ≤
∑

‖i‖≥Nε

|ci|,

we can find Nε ∈ Z+ such that
∑

i∈NεZd\{0}

|ci| ≤ ε.

For each k ∈ {0, Nε − 1}d, we can define Ak = A ∩ (k + NεZd). By the pigeon-

hole principle, there exists k such that |Ak| ≥ |A|
Nd
ε
Let X̃ be the |Ak|-dimensional

Gaussian vector composed by the (Xi)i∈Ak
, it is obvious that

P ({∀k ∈ A; |Xk| ≤ x}) ≤ P (‖X̃‖22 ≤ nx2).

By lemma 4,

∀x ∈ (0,Υ(C)) P (‖X̃‖22 ≤ nx2) ≤ exp(−|Ak|h(
x2

Υ(C)
)),

where C = (ci−j)(i,j)∈Ak×Ak
. But

Υ(C) ≥ σ2 − sup
j∈Ak

∑

i∈Ak;i6=j

|ci−j |

≥ σ2 −
∑

i∈NεZd\{0}

|ci|

≥ σ2 − ε.
It follows that

(10) ∀x ∈ (0, σ2 − ε) P ({∀k ∈ A; |Xk| ≤ x}) ≤ exp(−
h( x2

σ2−ε )

Nd
ε

|A|).

¤

We now dispose from the tools needed to prove Theorem 1 itself.

Proof of Theorem 1. Since (Xn)n∈Zd has a finite susceptibility, it has a spectral
density, and therefore has a spectral measure without atoms. Then, by a result of
Maruyama and Fomin (see for example [22], lecture 13), it follows that the law of
(Xn)n∈Zd is ergodic under the group of translations of Zd. Since the existence of
an infinite cluster is a translation-invariant event, it follows that the existence of a
percolating cluster is a deterministic event. By monotonicity, {a ≥ 0;P (|CX

a+(0)| =
+∞) = 0} and {a ≥ 0;P (|CX

a−(0)| = +∞) = 0} are intervals. It follows that

when a < a+ (resp. when a > a−), we have P (|CX
a+(0)| = +∞) > 0 (resp.

P (|CX
a−(0)| = +∞) > 0). In both cases, the probability of percolating is positive,

and then equal to one. As in the case of independent percolation, the almost sure
absence of percolation from the origin imply the almost sure absence of percolation
from everywhere using the stationarity of (Xn)n∈Zd and the denumerability of Zd.
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By lemma 5, if a is so small enough that f(a) > cdisd , then the Criterion of
Molchavov and Stepanov says that there is no percolation under a. Again by lemma
5, if a is so small enough that f(a) > cagrd , then the Criterion of Molchavov and
Stepanov says that there is percolation over a. Since X has a spectral density, one

can apply lemma 3: if a is so large enough that h( a2

‖g‖∞
) > cdisd , then the Criterion

of Molchavov and Stepanov says that there is no percolation over a. Similarly, if

a is so large enough that h( a2

‖g‖∞
) > cagrd , then the Criterion of Molchavov and

Stepanov says that there is percolation under a.
¤

2. Reasonable percolating sets

2.1. The concept of reasonable sets. We will define some families of subset of
Zd. For s ∈ [1, d], let

(11) Ms,K = {A ⊂ Zd sup
x∈A

sup
r≥1

|A ∩B(x, r)|
(2r + 1)s

≤ K},

where

B(x, r) = {y ∈ Zd; ‖x− y‖∞ ≤ r}.
The elements of Ms,K are said to be (s,K) - reasonable sets. Similarly, we

say that a path in Zd is (s,K) - reasonable if and only if its support is a (s,K) -
reasonable sets.

Of course, every subset of Zd belongs toMd,1.
The following remark is fundamental: if A is the support of a path in the oriented

graph
−→
E d, then A ∈M1,d

Roughly speaking, s represents the dimension that the path is allowed to take
and K/s represents an upper bound for the density of the path in a s-dimensional
space.

The next pictures try to give a feeling of what is a reasonable or an improper
path in Z2, with s = 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

     

 

 

 

       

 

 

 

 

 

         

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

     

 

 

 

       

 

 

 

 

 

         

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

     

 

 

 

       

 

 

 

 

 

         

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a reasonable path an improper path
In the left picture, it is not difficult to extract from the big cluster a fine path

joining the center of the picture to its border. It is clear that such a thread is very
far from filling any portion of the plane: it can be designed as a a reasonable path.
The right picture shows a long path, looking like a spiral. It is manifestly the only
path from the center of the picture to its border: if any link is broken, the origin
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become isolated from the border of the picture. In this case, the thread is like a
ball of wool, filling a portion of plane – not at all a reasonable path.

When the decay of the correlation of the Gaussian process is too slow, one is
not able to prove the absence of percolation. Nevertheless, we will see that we can
sometimes prove the absence of an infinite reasonable path.

Before this, we want to motivate the introduction of reasonable sets by a com-
parison with what happens in Bernoulli percolation. Obviously, we are preserved
from the disaster of an empty concept by the possibility of oriented site percolation,
which is always (1, d)-reasonable.

One can also note that Bernoulli supercritical percolation enjoys from a property
which is a bit weaker than (1,K)-reasonable percolation: when p > pc, there exists
K < +∞ such that we almost always have an infinite connected subset A of Zd

with

(12) sup
x∈A

lim
r≥1

|A ∩B1(x, r)|
r

≤ K,

with B1(x, r) = {y ∈ Zd; ‖x− y‖1 ≤ r}.

Proof. By a classical compactness argument, one can build a semi-infinite geodesic
in the infinite cluster, that is a sequence (xn)n≥1 of open sites with ‖xn−xn+1‖1 = 1
for each n, and such that for each 1 ≤ k ≤ n, the sequence (xk, xk+1, . . . , xn)
realizes a minimal path from xk to xn using only open edges. Let us now denote
A = {xn;n ≥ 1} and consider x ∈ A and r ≥ 1: it is easy do see that there
exist a maximal k and a minimal n such that A ∩ B1(x, r) ⊂ {xk, xk+1, . . . , xn}.
It follow that |A ∩ B(x, r)| ≤ D(x, xk) + D(x, xn) + 1. On one hand, we have
D(x, xk) ≤ D(x, x1). On the other hand, by definition of n, we necessarily have
‖x− xn‖∞ = r. We can now use a result of Antal and Pisztora ([1], corollary 1.3),
which gives a bound for the asymptotic ratio between the chemical distance D and
the ‖.‖1 distance on Zd: there exists a constant ρ(p, d) such that

(13) lim
‖y‖1→+∞

D(0, y)

‖y‖1
11{0↔y} ≤ ρ(p, d) a.s.

It follows that

lim
r≥1

|A ∩B1(x, r)|
r

≤ ρ(p, d) a.s. .

Since A is denumerable, it follows that

sup
x∈A

lim
‖y‖1→+∞

D(0, y)

‖y‖1
11{0↔y} ≤ ρ(p, d) a.s.

¤

We conjecture that ρ(p, d) is not the best value for K: if one could prove, for
x ∈ Zd, the existence of a semi-infinite geodesic with asymptotic direction x̂ – that
is, with limn→+∞

xn
‖xn‖1

= x̂ = x
‖x‖ 1

–, it would lead to the existence of a percolating

cluster which satisfy to equation (12) with K = µ(x̂) = 1
‖x‖µ(x), where µ(x) is the

non-random limit:

lim
n→+∞
0↔ny

D(0, ny)

n
= µ(y) a.s.



266

The map x 7→ µ(x) is a norm. It plays the same role than the homonym function
in first-passage percolation. The complete proof of the last assertions can be done
using the asymptotic shape theorem for the chemical distance [8]. Now, if µ is
not proportional to ‖.‖1 – this is at least the case when d = 2 and p 6= −→pc , see
Theorem 6.3 in [8] – one can choose x such that µ(x̂) < ρ(p, d), which proves that
ρ(p, d) is not the smallest convenient value for K.

The existence of semi-infinite geodesics in the asymptotic directions x̂ seems to
be a difficult and reasonable conjecture. There exists an analogue conjecture in
classical first-passage percolation, see for instance Newman [17]. Apart from the
facts that it would imply that ρ(p, d) is not the smallest value forK, the existence of
an infinite family of geodesics can be considered as an heuristic argument to guess
that one the these geodesics allow to replace the supremum limit which appears
in equation (12) by the supremum which appears in equation (11). Clearly, the
fact that in the Bernoulli case percolation would be equivalent to (1,K)-reasonable
percolation would be a decisive argument in favor to the concept of reasonable
percolation.

2.2. Exponential control on reasonable sets.

Theorem 2. Let (Xn)n∈Zd be a centered Gaussian process, σ2 ∈ (0,+∞), s ∈
[1,+∞) and φ : Z+ → R+ such that the following assumptions hold:

• φ is non-increasing.
• ∀i ∈ Zd E X2i ≥ σ2.
• ∀i, j ∈ Zd |E XiXj | ≤ φ(‖i− j‖).
•

+∞
∑

n=1
ns−1φ(n) < +∞.

Then, for each K > 0, one can find two functions f : (φ(0),+∞) → (0,+∞)
and g : (0, σ2)→ (0,+∞) such that

∀A ∈Ms,K P ({∀k ∈ A |Xk| ≥ a}) ≤ e−f(a)|A|

and

∀A ∈Ms,K P ({∀k ∈ A |Xk| ≤ a}) ≤ e−g(a)|A|,

with lim
a→+∞

f(a) = +∞ and lim
a→0+

g(a) = +∞.

f and g only depend from σ2,φ, s and K.

Proof. Let ε be a non-negative number and r be any positive integer. The precise
choices will be done later. Again by the pigeon-hole principle, we can find Ã ⊂ A
with |Ã| ≥ 1

rd
|A| and such that for each distinct points x and y, one always has

‖x− y‖ ≥ r.
The next step consists in bounding from below the spectral gap of the covariance

matrix associated to X̃ = (Xk)x∈Ã. It will be done by a classical Hadamard’s-like

argument: we will bound
∑

x∈Ã\{y}

|E XxXy|.

For this purpose, we will use a discrete integration by parts – sometimes called
a Abel’s transform–: for each y ∈ Ã and k ∈ Z+, we will define sk(y) = |{x ∈
Ã\{y}; ‖x− y‖ = k}| and bk(y) = |{x ∈ Ã\{y}; ‖x− y‖ ≤ k}|.
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Of course, sk = bk − bk−1, s0 = 0 and b0 = 0. Now,

∑

x∈Ã\{y}
|E XxXy| ≤

∑

x∈Ã\{y}
φ(‖x− y‖)

=
+∞
∑

n=1
φ(n)sn(x)

=
+∞
∑

n=1
φ(n)(bn(x)− bn−1(x))

=
+∞
∑

n=1
(φ(n)− φ(n+ 1))bn(x).

By the definition of Ã, bn(x) = 0 for n < r. Then,

∑

x∈Ã\{y}
|E XxXy| ≤

+∞
∑

n=r
(φ(n)− φ(n+ 1))bn(x)

≤
+∞
∑

n=r
(φ(n)− φ(n+ 1))K(2n+ 1)s

= K
(

φ(r)(2r + 1)s +
+∞
∑

n=r+1
φ(n)((2n+ 1)s − (2n− 1)s)

)

≤ K
(

φ(r)(2r + 1)s + 2s
+∞
∑

n=r+1
φ(n)(2n+ 1)s−1

)

.

Since
∑

r/2≤n≤r
ns−1φ(n) ≥ φ(r)

∑

r/2≤n≤r
ns−1 ≥ φ(r) r2 (

r
2 − 1)s−1, it follows that

lim
r→+∞

φ(r)rs = 0. Then, r can be chosen such that

φ(r)(2r + 1)s + 2s
+∞
∑

n=r+1
φ(n)(2n+ 1)s−1 ≤ ε

K
.

We will denote by rε the smallest r which can enjoy this property and Ãε the
relative set.

We can now prove the existence of g. We take ε ∈ (0, σ2). If C is the covariance

matrix associated to X̃ = (Xk)x∈Ã, it is easy to see that σ2 − ε ≤ Υ(C).

Let x2 ∈ (0, σ2 − ε): by lemma 4, we have

P (∀k ∈ A; |Xk| ≤ x) ≤ P (‖X̃‖22 ≤ |Ãε|x2)

≤ exp(−|Ãε|h(
x2

Υ(C)
))

≤ exp(−|A|r−dε h(
x2

σ2 − ε )).

Then, we can define g by

g : (0, σ2) → (0,+∞)

x 7→ sup
ε∈(0,σ2−x2)

r−dε h(
x2

σ2 − ε ).
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Similarly, using the fact that ρ(C) ≤ φ(0) + ε, we can define f by

f : (φ(0),+∞) → (0,+∞)

x 7→ sup
ε∈(0,x2−φ(0))

r−dε h(
x2

φ(0) + ε
).

¤

2.3. Absence of reasonable percolation. Let x ∈ Zd, s ≥ 1 and K ≥ 0.
We will say that a realization of the field (Xk)k∈E exhibits a (s,K)-reasonable

percolation over h (resp. under h) if (V,EX
h+) (resp. (V,EX

h−)) has at least one

infinite connected set which belongs toMs,K . We denote by Rh,+s,K (resp. Rh,−s,K) this

event . For x ∈ E, we say that a realization of the field (Xk)k∈E exhibits a (s,K)-
reasonable percolation over h (resp. under h) from x if (V,EX

h+) (resp. (V,EX
h−))

has at least one infinite connected set which belongs toMs,K and contains x. We

also denote by Rh,+s,K(x) (resp. Rh,−s,K(x)) this event.
We begin by a general lemma.

Lemma 6. Let (Xk)k∈Zd be a {0, 1}-valued random field. We suppose that there
exist q ∈ (0, 1µd ) and C > 0 such that for each finite set A ∈Ms,K , we have

P (∀k ∈ A;Xk = 1) ≤ Cq|A|.

Then, there is almost surely no (s,K) reasonable infinite percolating cluster for
{k ∈ Zd;Xk = 1}.

Proof. Let x ∈ Zd. Let n ∈ Z+. If there is (s,K) reasonable percolation over 1
from x, there exists a self avoiding walk starting from x and whose support S is
such that

• ∀y ∈ S Xy = 1.
• S ∈Ms,K .

Let ε > 0 be such that (µd + ε)q < 1. There exists kε such that for each
n ∈ Z+ and each x ∈ Zd, the number of self-avoiding walks starting from x is less
kε(µd + ε)n. Then, we have

∀x ∈ Zd ∀n ∈ Z+ P (R1,+s,K(x)) ≤ kε(µd + ε)nCqn,

Since n is arbitrary, it follows that P (R1,+s,K(x)) = 0 holds for each x and then that

P (R1,+s,K) = 0. ¤

Together with the the exponential control on reasonable sets, the previous lemma
allows to prove a result related to the absence of reasonable percolation.

Theorem 3. Let (Xn)n∈Zd be a centered Gaussian process, σ2 ∈ (0,+∞), s ∈
[1,+∞) and φ : Z+ → R+ such that the following assumptions hold:

• φ is non-increasing.
• ∀i ∈ Zd E X2i ≥ σ2.
• ∀i, j ∈ Zd |E XiXj | ≤ φ(‖i− j‖).
•

+∞
∑

n=1
ns−1φ(n) < +∞.
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Then, let us define for K ∈ (0,+∞)

h+(s,K) = inf{a ≥ 0;P (Ra,+s,K) = 0}

and

h−(s,K) = sup{a ≥ 0;P (Ra,−s,K) = 0}.
Then,

• h+(s,K) < +∞ and 0 < h−(s,K).
• For each a > h+(s,K) there is almost surely no (s,K)-reasonable percola-
tion over level a.
• For each a < h−(s,K) there is almost surely no (s,K)-reasonable percola-
tion under level a.

Proof. It follows from lemmas 6 and 2 that h+(s,K) ≤ inf{x; f(x) > lnµd} < +∞
and h−(s,K) ≥ sup{x; g(x) > lnµd} > 0, where f and g have been defined in
Theorem 2. ¤

Remarks

• Be in mind that (d, 1)-reasonable percolation does not differ from percola-
tion. In this case, Theorem 3 is a consequence of Theorem 1.
• We must confess that we are a bit disappointed that the result about the

absence of percolation is limited to reasonable clusters. Roughly speaking,
one exchanged a relaxation of the control of the covariance against an en-
forcement of the “wisdom” of the cluster. Naturally, one can ask whether
it is possible to have percolation without (s,K)-reasonable percolation, es-
pecially for s = 1. The heuristic arguments developed at the beginning of
this section intend to make plausible that it is not possible in the case of
Bernoulli percolation. Nevertheless, we don’t want to be so affirmative in
the case of a strong dependence for the following reason: if one want that
several random variables simultaneously take big (or small) values, it is bet-
ter that they have a large positive correlation. Now, if (X,Y ) is a Gaussian

vector whose law is N
(

0,

(

1 cos θ
cos θ 1

))

, an elementary calculus gives

Cov(X2, Y 2) = 2 cos2 θ = 2(Cov(X,Y ))2. But when the covariance slowly
decreases, it can have a non-monotone behavior, typically a sinx

x - like be-
havior – see the example in the next section and also the Fourier analytic
results of the last section. So, if we consider two paths from a point to
another one, it is not sure that the path which has a maximal probabil-
ity to be open is the shortest one. Then, it is more hazardous than in
the independent case to conjecture that geodesics should look like straight
lines.

3. Oriented site percolation for Gaussian fields

We will consider here the problem of percolation on the oriented lattice
−→
L d.

3.1. A sufficient condition for the existence of oriented percolation. We
begin with a general criterion for the existence of oriented percolation.
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Lemma 7. Let (Xk)k∈Zd be a {0, 1}-valued random field. We suppose that there
exists q ∈ (0, 181 ) and C > 0 such that for each finite set A, we have

P (∀k ∈ A;Xk = 0) ≤ Cq|A|

and that Cw(q) < 1, where w is defined by

w : [0,
1

81
) → R

x 7→ w(x) = x+
9x

1− 9
√
x
.

Then there is a strictly positive probability that {k ∈ Zd;Xk = 1} contains an
infinite oriented cluster.

Proof. We will consider the restriction of X to a two-dimensional quarter plane:
let us denote (Yk,l)k,l∈Z+ = (Xk,l,0,...,0)k,l∈Z+ . We also put Yk,l = 0 when k < 0
or l < 0. Of course, percolation in the quarter plane will imply percolation in the
whole space for the initial process.

Let Z2∗ = Z2 + (1/2, 1/2). For a finite subset A of Z2, let us recall a notion
of Peierls contours associated to A. Let a, b be two neighbors in Z2 and i and j
be two points i, j ∈ Z2∗ such that the quadrangle aibj is a square. We say that
the segment joining a and b is drawn if |A ∩ {a, b}| = 1. Drawn segments form a
finite family of closed, non self-intersecting, piecewise linear curves, that are called
Peierls contours.

If i and j are two neighbors in Z2 separated by a contour γ, say that i ∈ ∂−γ
and j ∈ ∂+γ if j is in the unbounded connected component of R2\γ.

If A is a finite Ld-connected set, then there exists a unique Peierls contour γA
such that A remains in the bounded connected component of R2\γA.

For each contour γ, let us also define

Fγ = {y ∈ ∂+γ;x− (1, 0) ∈ ∂−γ or x− (0, 1) ∈ ∂−γ}.
We can see that if γ is just a simple closed curve with length l(γ), we have

|Fγ | ≥ l(γ)/4.

Proof. On each vertex of the dual lattice Z2∗ which is a piece of the curve γ, let us
draw an arrow in such a way that γ is described with the inside of γ on the left,
and the outside of γ on the right – thus, the arrows indicate how to draw the curve
anti-clockwise. Since γ is a simple closed curve, there is as many ↑ and ← as ↓ and
→. Then, there is exactly l(γ)/2 ↑ and →. Each point at the right of a ↑ or over a
→ belongs to Fγ . Therefore, since every point is surrounded by at most one ↑ and
one →, it follows that |Fγ | ≥ l(γ)/4. ¤

Let us consider the random set D = CY
1+(0). It is easy to see that l(γD) is finite

as soon as CY
1+(0) is.

Since 0 ∈ ∂−D, it follows that

(Y0 = 1) =⇒ (∀k ∈ FD Yk = 0).

Thus,
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P (CY
1+(0) < +∞) ≤ P (l(γD) < +∞)

≤ P (Y0 = 0) +
∑

γ
P ({∀k ∈ Fγ ;Yk = 0})

≤ P (Y0 = 0) +
∑

γ
Cq|Fγ |

≤ P (Y0 = 0) +
∑

γ
Cql(γ)/4

≤ Cq +
+∞
∑

n=2
32n−2Cq(2n)/4

≤ Cw(q).

Then, P (CY
1+(0) = +∞) > 0 as soon as Cw(q) < 1.

¤

3.2. A percolation transition result.

Theorem 4. Let (Xn)n∈Zd be a centered stationary Gaussian field with bounded
spectral density g. Then, the covariance function is

cn =
1

(2π)d

∫ ∫

[−π,+π[d
g(x1, . . . , xn)e

i〈x,n〉 dx1 . . . dxn.

We suppose moreover that

+∞
∑

n=1
sup{|ck|; ‖k‖ ≥ n} < +∞.

Then, let us define

h− = sup{a ≥ 0;P ({directed percolation happens under a}) = 0}.
Then,

• 0 < h− < +∞.
• For each a < h− there is almost surely no directed percolation under level a,
whereas there is almost surely directed percolation under level a for a > h−.

Proof. The fact that 0 < h−(1, d) has already be proved in Theorem 3. Since every
directed cluster is (1, d)- reasonable, it follows that h− ≥ h−(1, d) > 0. Putting
together lemma 7 and lemma 3, we get that P (CY

a−(0) < +∞) < 1 as soon as (w ◦
exp(−h))( a2

|g|∞
) < 1. Then, it follows from a straightforward computation that that

h− ≤ 3.57‖g‖1/2∞ . The existence of a percolating oriented cluster is a translation-
invariant event for (Xn)n∈Zd . As seen in the proof of theorem 1 (Xn)n∈Zd is ergodic.
Then, the probability of the existence of oriented percolation is full as soon as it is
not null. ¤

3.3. An example. Let A be a symmetric positive definite matrix with spectral
gap Υ(A) ≥ 1

π and consider the ellipsoid

E = {x ∈ Rd; ‖Ax‖2 ≤ 1}.
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Let (Xn)n∈Zd be a stationary Gaussian process with the indicatrix of E as spec-
tral density.

We claim that the assumptions of theorem 4 are fulfilled by the process (Xn)n∈Zd

and that, moreover we have

• E XiXj = c(‖A−1(i− j)‖), with

c(x) =
1

detA
(2π)−

d
2
1

xd

∫ x

0

J d−2
2
(t)td/2 dt.

• For d = 2

c(x) =
1

detA

2

(2π)3/2
1

x
3
2

cos(‖A−1n‖ − 3π

4
) +O(

1

x2
).

• For d ≥ 3

c(x) =
1

detA

2

(2π)
d+1
2

1

x
d+1
2

cos(‖A−1x‖ − (d+ 1)π

4
) +O(

1

x
d+3
2

).
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Proof. Since X is a stationary process, we only computes E X0Xn.

E X0Xn =
1

(2π)d

∫

[−π,π]d
ei〈n,x〉11‖Ax‖≤1 dx1 . . . dxn

=
1

detA

1

(2π)d

∫

B(0,1)

ei〈A
−1n,y〉 dy1 . . . dyd

=
1

detA
C(A−1n),
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with

C(n) =
1

(2π)d

∫

B(0,1)

ei〈n,x〉 dx1 . . . dxd.

The result follows of lemmas 12 and 13 of section 5 with d0 = 0.
¤

4. Oriented and unoriented percolation for Gibbs measures

We will now prove some results of percolation transition for some Gibbs measures

on RZ
d

corresponding to a potential associated to a function V and a sequence J
which satisfy to the assumptions described in section 0. Various results will be
proved considering that some of the following assumptions hold:

(H1) V is even.

(H2) Ĵ ≥ 0 and 1
Ĵ
is integrable with respect to the Haar measure on U.

(H3) V is non-decreasing on [0,+∞).
(H4) There exists A,B ≥ 0 such that ∀x ∈ R V (x) ≤ Ax2 +B.
(H5) Ferromagnetism ∀k ∈ Zd\{0}; J(k) ≤ 0.

(H6) Superstability γ = inf{Ĵ(z); z ∈ U} > 0.

(H7)
+∞
∑

n=1
sup{|ck|; ‖k‖ ≥ n} < +∞, with ck =

∫

U

z−k

Ĵ(z)
dz.

The main idea of this section is to compare non-Gaussian Gibbs measures to
Gaussian Gibbs measures for which the results of the preceding sections apply.

To understand the signification of the preceding assumptions, one must note that
when the state space is not compact, there does not always exist a Gibbs measure
for a given Hamiltonian. Fortunately, the optimal conditions for the existence of a
Gibbs measure associated to a quadratic Hamiltonian is well known thanks to the
independent works by Dobrushin [5] and Künsch [12, 11]. In the case of a stationary
Hamiltonian, these conditions are summarized by assumption (H2).

The strongest assumption (H7), named here superstability, is equivalent to the
uniqueness of the Gibbs measure in the class of measures whose support is contained
in the set of slowly increasing sequences – for details, see Dobrushin [5] and Garet [7].
As it is usually observed for Gibbs measures with finite state space (e.g. in the
Ising model), the uniqueness of the Gibbs measures frequently occurs together with
a rapid (sometimes exponential) decreasing of the covariance, whereas a phase
transition frequently occurs together with a slow decreasing of the covariance

As the non-Gaussian Gibbs measures that we want to study are obtained as
perturbations of Gaussian Gibbs measure, it is clear that we can’t hope better
results than those that are allowed by the speed of decreasing of the covariance of
the Gaussian Gibbs measure.

When assumption (H7) is not fulfilled, the control of the decay of the covariance

– that is, the control of the Fourier coefficients ck =
∫

U

z−k

Ĵ(z)
dz is rather tedious.

The proofs of those estimates is relegated to the final section.
The goal of the assumptions (H1), (H3), (H4), (H5) is to allow the comparison

between the Gaussian Gibbs measure and its perturbation. The Assumption (H5),
called ferromagnetism, has the same meaning than in a discrete context, i.e. the
tendency of the spins to align together. Having in mind the classical domination
techniques of comparison for Gibbs measures – e.g. Holley’s lemma – , the intro-
duction of such an assumption should not be surprising.
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We will use a lemma which in the spirit of a lemma due to van Beijeren and
Sylvester [24] related to stochastic domination for finite Gibbs measures with the
same ferromagnetic interaction and different reference measures.

Let us first recall the concept of domination for finite measures on a partially
ordered set E . We say that a measure µ dominates a measure ν, if

∫

f dν

ν(E)
≤
∫

f dµ

µ(E)

holds as soon as f in an increasing function. We also write ν ≺ µ.

4.1. First results.

Lemma 8. Let J = (J(i, j))i,j∈Λ be a symmetric positive definite matrix satisfying
to

• ∃c > 0 ∀i ∈ Λ J(i, i) = c.
• ∀(i, j) ∈ Λ2 i 6= j =⇒ J(i, j) ≤ 0.

Let also be ν1 and ν2 two even measures which have a bounded density with
respect to Lebesgue’s measure

Then, we can define for each bounded function f : RΛ → R:

〈f〉νi =
∫

RΛ
f(ω) exp(−〈Jω, ω〉) dν⊗Λi (ω)
∫

RΛ
exp(−〈Jω, ω〉) dν⊗Λi (ω)

.

Let us also suppose that

ν̃1 ≺ ν̃2,

where ν̃ is the measure on (0,+∞) defined by dν̃(x) = exp(− c
2x
2)dν(x).

Then, it follows that for all even bounded functions Fi : R → R, nonnegative,
and monotone increasing on [0,+∞), we have

〈 ∏
i∈Λ

Fi(ωi)〉ν1 ≤ 〈
∏

i∈Λ
Fi(ωi)〉ν2 .

Since the reader can found in [24] the proof of an analogous lemma in a more
general context, we will omit these one.

Please note that the conclusion of lemma 8 is not the domination of ν ′1 by ν′2,
where ν′i is the image of 〈.〉νi by (ωi)i∈Λ 7→ (|ωi|)i∈Λ. To see this, define ν ′i to be
the measure on {0, 1} such that for each (k, l) ν ′i({(k, l)}) =M i

k,l, with

M1 =

(

3
10

3
10

2
10

2
10

)

and M2 =

(

4
10

2
10

1
10

3
10

)

.

Let us define F on {0, 1}2 by F (x, y) = max(x, y). F is clearly non-decreasing.
Since

∫

Fdν′1 = 7
10 and

∫

Fdν′2 = 6
10 , it follows that ν ′1 is not dominated by ν ′2.

However,
∫

Fdν′1 ≤
∫

Fdν′2 holds for each function F which is a product of non-
negative and non-decreasing functions, because such a function is a non-negative
combination of the functions (Fk,l)(k,l)∈{0,1}2 , where Fk,l(x, y) = 11{x≥k}11{y≥l}.

Theorem 5. We suppose here that (H1), (H2), (H3), (H5) are fulfilled. Let Λn =
{−n, . . . , n}d. Under the previous assumptions, the sequence ΠΛcn(0) is tight. Then
each limit point µ belongs to GJ,V , which is therefore not empty.
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When moreover (H6) holds, the Hamiltonian is superstable in the sense used
by Doss and Royer [6] or Cassandro et al. [3]. Then, the existence of a Gibbs
measure can be derived from their works. Note that our assumption (H6) named
“superstability” does not imply what they call superstability if no more assumption
is done.

However, we will see that in our case, lemma 8 and the assumptions of ferro-
magnetism will be sufficient and will allow some comparisons which give both the
existence of a Gibbs measure and the results of percolation.

Since we will have to compare some measures associated to the same two-body

interaction J but with different self-interactions, we will denote by ΠJ,V
Λ (ω) the

Gibbs measure on Λ associated to the Hamiltonian defined in (3) and with boundary
condition ω.

Proof. Let µVn = ΠJ,V
Λn

(0), where Λn = {−n, . . . , n}d. It is not difficult to see that

µVn is a measure such that those that are considered in lemma 8, with J(i, j) =
J(i− j)11Λ(i)11Λ(j) and dν1 = e−V dλ. We also set ν2 = λ.

It is easy easy to see that the matrix JΛ = (J(i, j))i,j∈Λ is positive definite.
Let us also prove that ν̃1 ≺ ν̃2. It is equivalent to proof (see for example [24])

that

f : x 7→ ν̃1([x,+∞])

ν̃2([x,+∞])

is non-increasing.

Since f(u) =
∫+∞
u

e−
cx2

2
−V (x) dx

∫+∞
u

e−
cx2
2 dx

, it follows that

f ′(u) =
e−

cx2

2

(
∫ +∞

u
e−

cx2

2 dx)2

∫ +∞

x

(

e−V (x) − e−V (u)
)

e−
cx2

2 dx.

which is non-positive because V is non-decreasing on [0,+∞).
It is known (see for example [5], chapter 13 or [11, 12]) that the sequence (µ0n)n≥1

converges to the stationary centered Gaussian measure with spectral density 1
Ĵ
. It

follows that this sequence is tight. Let K be a compact subset of RZ
d

such that

∀n ≥ 1 µ0n(K
c) ≤ ε.

We can assume without loss of generality thatK writesK =
∏

n∈Zd
[−an, an]. Then

it follows from lemma 8 that

∀n ≥ 1 µVn (K
c) ≤ µ0n(K

c) ≤ ε.

It means that (µVn )n≥1 is tight. Then, it follows from the general theory of Gibbs
measure – see for example Georgii [9] – that every limit point of this sequence is

an extremal Gibbs measure for the Hamiltonian HJ,V
Λ with Lebesgue’s as reference

measure. ¤

Lemma 9. We suppose here that (H1), (H3), (H5), (H6) are fulfilled. Let µ
V be an

extremal Gibbs measure which is obtained as a limit point of the sequence considered
in theorem 5. Then, for each finite set Λ, we have

Then, for each x2 ≥ 1
γ , we have

(14) µV ({∀k ∈ Λ; |Xk| ≥ x}) ≤ exp(−h(γx2)|Λ|).
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Proof. By lemma 8, we have

∀n ≥ 1 µVn ({∀k ∈ Λ; |Xk| ≥ x}) ≤ µ0n({∀k ∈ Λ; |Xk| ≥ x}).
It follows that

µV ({∀k ∈ Λ; |Xk| ≥ x}) ≤ µ0({∀k ∈ Λ; |Xk| ≥ x})
where µ0 is the stationary centered Gaussian measure with spectral density 1

Ĵ
.

Now, the result follow from lemma 3. ¤

The goal of the next lemma is to compare (when a is small) the random field
11{|Xk|≤a} with a product of Bernoulli measures. It is a classical method in the study
of dependent percolation.

For p ∈ (0, 1) we note Ber(p) the Bernoulli measure Ber(p) = pδ1 + (1− p)δ0.
Lemma 10. We suppose here that (H1), (H2), (H3), (H4) are fulfilled. Let µ be a
Gibbs measure for the considered Hamiltonian and (Xn)n∈Zd be a random field with
PX = µ.

We define χ =
√

2
π (J(0) +A) exp(B−V (0)2 ). Then, for fixed a ∈ (0, 1χ ), let us

define Yk = 11{|Xk|≤a}.
Then,

PY ≺ Ber(aχ)⊗Z
d

.

Proof. Let k ∈ Zd, ω ∈ RZ
d

and define η = − ∑

i6=k
J(i− k)ωi. We have

E [Yk|σ({k}c)](ω) =

∫

[−a,a] exp(−
J(0)x2+V (x)

2 )eηx dx
∫

R
exp(−J(0)x2+V (x)

2 )eηx dx

=

∫

[0,a]
exp(−J(0)x2+V (x)

2 ) cosh ηx dx
∫

R+
exp(−J(0)x2+V (x)

2 ) cosh ηx dx

= 1−
∫

R+
11(a,+∞)(x) exp(−J(0)x2+V (x)

2 ) cosh ηx dx
∫

R+
exp(−J(0)x2+V (x)

2 ) cosh ηx dx

≤ 1−
∫

R+
11(a,+∞)(x) exp(−J(0)x2+V (x)

2 ) dx
∫

R+
exp(−J(0)x2+V (x)

2 ) dx
,

where the last inequality follows from the stochastic domination of

exp(−J(0)x2+V (x)
2 ) dλ(x) by exp(−J(0)x2+V (x)

2 ) cosh ηx dλ(x) – the same arguments
than in theorem 5 apply.

Then

E [Yk|σ({k}c)](ω) ≤
∫

[−a,a] exp(−
J(0)x2+V (x)

2 ) dx
∫

R
exp(−J(0)x2+V (x)

2 ) dx

≤
∫

[−a,a] exp(−
V (0)
2 ) dx

∫

R
exp(−J(0)x2+Ax2+B

2 ) dx

≤ 2a
√

J(0) +A√
2π

exp(
B − V (0)

2
).
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Since E [Yk|(Yi)i∈Zd\{k}] = E [E [Yk|σ({k}c)]|(Yi)i∈Zd\{k}], it follows that

(15) ∀k ∈ Zd E[Yk|(Yi)i∈Zd\{k}] ≤ χa.

By an usual coupling technique (see, for example, Russo [21], lemma 1), (15)
implies that

PY ≺ Ber(aχ)⊗Z
d

.

Note that some important results about the domination by a product measure have
been obtained by Liggett, Schonmann and Stacey [13].

¤

4.2. Percolation transition for superstable Hamiltonians.

Theorem 6. We suppose here that (H1), (H3), (H4), (H5), (H6) are fulfilled. Let
P = µV be an extremal Gibbs measure which is obtained as a limit point of the
sequence considered in theorem 5. Then, let us define

h+ = inf{a ≥ 0;P ( percolation happens over a) = 0}
and

h− = sup{a ≥ 0;P ( percolation happens under a) = 0}.
Then,

• 0 < h+ < +∞ and 0 < h− < +∞.
• For each a > h+ there is almost surely not percolation over level a, whereas
there is almost surely percolation over level a for a < h−.
• For each a < h− there is almost surely not percolation under level a, whereas
there is almost surely percolation under level a for a > h−.

Proof. Since the existence of percolation is a tail event, the 0− 1 behavior follows
from the fact that the tail σ-field is trivial under extremal Gibbs measures. If pc
denotes the critical probability for independent Bernoulli site percolation, it follows
from lemma 10 that h− ≥ pc

χ > 0 and h+ ≥ 1−pc
χ > 0.

The facts that h− < +∞ and h+ < +∞ follows from lemma 9 together with the
criterion of Molchanov and Stepanov.

¤

4.3. Transition of directed percolation in the critical case. We will consider

here the problem of percolation transition on the oriented lattice
−→
L d.

The first theorem is related to Gaussian and non-Gaussian Gibbs measures as-
sociated to ferromagnetic Hamiltonians.

Theorem 7. We suppose here that (H1), (H2), (H3), (H4), (H5), (H7) are fulfilled.
Then, there exists at least one extremal Gibbs measure which is obtained as a

limit point of the sequence considered in theorem 5. Let P = µV be such a measure
and define

h+ = inf{a ≥ 0;P ( directed percolation happens over a) = 0}.
Then,

• 0 < h+ < +∞.
• For each a > h+ there is almost surely no directed percolation over level a,
whereas there is almost surely directed percolation over level a for a < h+.
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Under the assumption of ferromagnetism (H5), each of the following sets of as-
sumption implies (H2) and (H7).

(I1) :







Ĵ > 0 on U (Superstability).

∃α > 1
∑

n∈Z
d
‖n‖α|J(n)| < +∞. or (I2) :























d ≥ 4.

Ĵ ≥ 0 on U.
∑

n∈Z
d
‖n‖3|J(n)| < +∞.

Mod({n, J(n) 6= 0}) = Zd.

Proof. Since the existence of percolation is a tail event, the 0− 1 behavior follows
from the fact that the tail σ-field is trivial under extremal Gibbs measures. If pc
denotes the critical probability for independent Bernoulli directed site percolation,
it follows from lemma 10 that h+ ≥ 1−pc

χ > 0.

Let us define

cn =

∫

U

z−n

Ĵ(z)
dz.

Since (H2) and (H7) hold, it follows from theorem 2 that there exists a function
f : (c0,+∞)→ (0,+∞) having an infinite limit at +∞ and such that

∀A ∈M1,d µ0({∀k ∈ A |Xk| ≥ a}) ≤ e−f(a)|A|.

By lemma 8, it follows that

∀A ∈M1,d µV ({∀k ∈ A |Xk| ≥ a}) ≤ µ0({∀k ∈ A |Xk| ≥ a}) ≤ e−f(a)|A|.

Now, it follows from lemma 6 that there is no (1, d) reasonable percolation over a
for large (but finite) a. Then, there is also no oriented percolation over a for large
(but finite) a. Precisely, h+ ≤ inf{x; f(x) > lnµd}.

Now, it suffices to prove that (H2) and (H7) hold under each of the two systems
of assumptions to complete the proof.

• If Ĵ does not vanish on U, it is clear that (H2) holds. Moreover, it follows
that J is an invertible element in the Banach Algebra

Aα = {x ∈ CZ
d

;
∑

n∈Zd

(1 + ‖n‖)α|xn| < +∞}

– for a proof, see [7]. It follows that the Fourier coefficients of 1
Ĵ

form a

sequence which belongs to Aα we have
∑

n∈Zd

(1 + ‖n‖)α|cn| < +∞.

• For the proof of the second case, we state a lemma which will be useful
later.

Lemma 11. Let (J(n))n∈Zd be a real sequence. We suppose that






















J(0) =
∑

n∈Z
d\{0}

|J(n)|
∑

n∈Z
d
‖n‖3|J(n)| < +∞.

Mod(A) = Zd

We define f(θ1, . . . , θd) = Ĵ(eiθ1 , . . . , eiθd).
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Then
– ∀z ∈ U Ĵ(z) ≥ 0.

– Z = {z ∈ U; Ĵ(z) = 0} ⊂ {−1,+1}d. If, moreover, J is ferromagnetic
(that is, if J(n) ≤ 0 holds for each n 6= 0), then Z = {(1, . . . , 1)}.

– If θ ∈ Rd is such that z = (eiθ1 , . . . , eiθd) ∈ Z, then D2θf(h⊗h) = Q(h),
where

Q(h) =
∑

n∈Z
d
|J(n)|〈n, h〉2,

which is a definite positive quadratic form.

Proof of lemma 11. –

Ĵ(z) = J(0) +
∑

n∈Zd\{0}

J(n)zn

= J(0) +
∑

n∈Zd\{0}

|J(n)| J(n)|J(n)|z
n

≥ J(0)−
∑

n∈Zd\{0}

|J(n)||zn|

≥ J(0)−
∑

n∈Zd\{0}

|J(n)|

≥ 0.

– Let z be a root of Ĵ . For the triangular inequality being an equality, it

requires that − J(n)
|J(n)|z

n ∈ R+ as soon as J(n) 6= 0. In facts, it means

that

∀n ∈ Zd (J(n) 6= 0) =⇒ (zn = −|J(n)|
J(n)

).

Since J(n) is a real number, |J(n)|J(n) ∈ {−1,+1}. Then

∀n ∈ Zd (J(n) 6= 0) =⇒ (zn ∈ {−1,+1}).
Let t = (z21 , . . . , z

2
d). For each n ∈ A tn = (zn)2 = 1. It follows that

A = {n ∈ Zd; J(n) 6= 0} ⊂ Mz = {n ∈ Zd; tn = 1}. Clearly, Mz is a
subgroup of Zd. Since we have supposed that Mod(A) = Zd, we get
Mz = Zd. For each i ∈ {1, . . . d}, t1 = tei = 1: we have t = (1, . . . , 1).
It follows that z ⊂ {−1,+1}d
When J is non-positive, we have

∀n ∈ Zd (J(n) 6= 0) =⇒ (zn = 1).

In this case, we work directly with z: let Mz = {n ∈ Zd; zn = 1}.
A ⊂Mz and Mz is always a subgroup of Zd. Since Mod(A) ⊂Mz and
Mod(A) = Zd, we get Mz = Zd. For each i ∈ {1, . . . d}, z1 = zei = 1:
we have z = (1, . . . , 1).

– For each k ≤ 3, we have

Dk
θf(h

⊗k) =
∑

n∈Zd

J(n)ei〈n,θ〉(i〈n, h〉)k.
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Particularly, if z = (eiθ1 , . . . , eiθd) is a root of Ĵ ,

D2θf(h⊗ h) = −
∑

n∈Zd

J(n)ei〈n,θ〉〈n, h〉2

= −
∑

n∈Zd

J(n)zn〈n, h〉2

=
∑

n∈Zd

|J(n)|〈n, h〉2 = Q(h).

Clearly, Q is a non-negative quadratic form. If h is such that Q(h) = 0,
then 〈n, h〉 = 0 as soon as J(n) 6= 0. It means that h is orthogonal to
A. Since Mod(A) = Zd, h is orthogonal to Zd; it follows that h = 0
and Q is positive definite.

¤

Now we go back to the study of the second set of assumptions. We can
suppose that Ĵ vanishes on U, because if it is not the case, the first family
of assumptions is fulfilled. Then, it follows from lemma 11 that (1, . . . , 1)

is the only root of Ĵ on U.
Let us define f(θ1, . . . , θd) = Ĵ(eiθ1 , . . . , eiθd) and the positive definite

quadratic form Q as in lemma 11.
Since (0, . . . , 0) is a minimum for f , it follows that D10f = 0. We have

f(θ) =
1

2
Q(θ) +R(θ),

with Dk
0R = 0 for k ∈ {0, 1, 2}.

The polar form associated to Q is

q(x, y) =
∑

n∈Zd

|J(n)|〈n, x〉〈n, y〉.

Then, the matrix B = (bi,j)1≤i,j≤d of Q in the canonical basis of Rd is
defined by bi,j = q(ei, ej) =

∑

n∈Zd
|J(n)|ninj . Since Q is positive definite,

B is a symmetric positive definite matrix. If we denote by A a square root
of B, A is a symmetric positive definite matrix which is such that

‖Aθ‖2 = 〈Aθ,Aθ〉 = 〈A∗Aθ, θ〉 = 〈Bθ, θ〉 = q(θ, θ) = Q(θ).

Since (1, . . . 1), is the only root of Ĵ on U, it follows that f only vanishes
on (2πZ)d. Since A is positive definite, it is invertible. Then, we can apply
Theorem 9 with d0 = 2 and N = 3. When d = 4, equation (17) applies,
whence equation (18) applies for d ≥ 5. In both cases, the biggest part of

the equation is O( 1
‖n‖β ). It follows that cn = O( 1

‖n‖β ), with β = 3(d−1)
d+3 ≥ 9

7 ,

which ensures that (H7) holds.

¤

Remark: The assumption Mod({n, J(n) 6= 0}) = Zd can seem to be mysterious,
but it is actually natural. Indeed, if M = Mod({n, J(n) 6= 0}) is a proper sub-
module of Zd, the expression of the Hamiltonian can be splitted into [Zd :M ] parts
so that it appears that sites which are inside different classes of Zd/M do not inter-
act. Hence, the particle system can be decomposed into [Zd : M ] non-interacting
sub-systems. It is now convenient to study one of these sub-systems using another
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parameterization – which is always possible, since every sub-module of Zd is free.

Example: Let m ≥ 0 and define J by

J(i) =











1 +m if i = 0

− 1
2d if |i| = 1

0 else.

In this case, the Hamiltonian formally writes:

H =
∑

i

V (Xi) +
1 +m

2

∑

i

X2i −
1

2d

∑

‖i−j‖1=1

XiXj ,

or also with the more intuitive form:

H =
∑

i

V (Xi) +
m

2

∑

i

X2i +
1

2d

∑

‖i−j‖1=1

(Xi −Xj)
2.

When V = 0, these models are called harmonic models. For m > 0 and V = 0,
it is the so-called harmonic model with mass, whereas for m = 0 and V = 0 , it is
the so-called massless harmonic model.

By a direct computation, we see that Ĵ ≥ m on U. Then, the assumptions of
Theorems 6 and 7 – by the way of set of assumptions (I1) – are fulfilled as soon as
m > 0.

If m = 0, the assumptions of Theorems 6 are not fulfilled. Nevertheless, for
m = 0 and d ≥ 4, the set of assumptions (I2) is fulfilled, so Theorem 7 apply.

As an example of an allowed perturbation V , we can take V (x) = ln(cosh x): it

is clearly even, increasing on [0,+∞), and satisfy to V (x) ≤ x2

2 .
Remarks:

• Hidden superstability
Consider the Hamiltonian formally written as

H =
∑

i

V (Xi) +
1

2d

∑

‖i−j‖1=1

(Xi −Xj)
2,

with V (x) = (1+ |x|) ln(cosh x). At first sight, one could think that we are,
as in the preceding example, in the critical case, and that the superstability
assumption is not fulfilled. In fact, there is superstability, but it is hidden
in the perturbating term. Indeed, we can rewrite the Hamiltonian as

H =
∑

i

W (Xi) +
1

2

∑

i

X2i +
1

2d

∑

‖i−j‖1=1

(Xi −Xj)
2,

with W (x) = V (x)− x2

2 . Now, for each x ≥ 0, we have

W ′(x) = ln(cosh x) +
(cosh x− 1) + (1− (1 + x)e−x)

x cosh x
≥ 0.

Similarly, we prove that W (x) ≤ x2

2 . Now, it follows that Theorems 6 and
7 apply.
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• The massless harmonic model
It is interesting to compare the results for the massless harmonic model
with those that were obtained by Bricmont, Lebowitz and Maes in [2].
Using some results of potential theory, they have shown the existence of a
(unoriented) percolation transition for {k ∈ Zd;Xk ≥ h} for the harmonic
model with mass in each dimension and for the massless harmonic model
when d = 3.
• Gaussian Gibbs measure and random walks

In the ferromagnetic case, cn is proportional to the Green function associ-
ated to the random walk associated to the measure µ defined by µ(0) = 0

and µ(n) = −J(n)
J(0) for n 6= 0. If we know that this random walk is aperiodic

and that µ∗k(n) = o(‖n‖2−d) holds for each k ≥ 1, then it follows from a
result by Spitzer [23] that for d ≥ 3, we have cn ∼ 〈n,Q−1n〉1−d/2 for a
suitable definite matrix Q. Then,

+∞
∑

k=1

sup{|cn|; ‖n‖ ≥ k} < +∞

holds for d ≥ 4 and not for d = 3. Note that the estimate of Spitzer is
more precise that ours, but it requires an assumption of aperiodicity that
sometimes fails, for example for one-range interactions.

The last theorem shows that for Gaussian Gibbsian fields, the assumption of
ferromagnetism can be relaxed.

Theorem 8. We suppose here that (H2) and (H7) are fulfilled. Let P = µ0 be the
extremal Gibbs measure which is obtained as a limit point of the sequence considered
in theorem 5, i.e. the centered Gaussian measure with spectral density 1

Ĵ
.

Then, let us define

h+ = inf{a ≥ 0;P ( directed percolation happens over a) = 0}.

Then,

• 0 < h+ < +∞.
• For each a > h+ there is almost surely not percolation over level a, whereas
there is almost surely percolation over level a for a < h+.

Moreover each the following assumptions implies that (H2) and (H7) hold:

(I1) :







Ĵ > 0 on U (Superstability).

∃α > 1
∑

n∈Z
d
‖n‖α|J(n)| < +∞. or (I3) :



















































d ≥ 4

Ĵ ≥ 0 on U.
∑

n∈Z
d
‖n‖3|J(n)| < +∞.

Z = {z ∈ U; Ĵ(z) = 0} is finite
∀z ∈ Z h 7→ −

∑

n∈Z
d
J(n)zn〈n, h〉2

is a definite positive quadratic form.
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or (I4) :































d ≥ 4
∑

n∈Z
d
‖n‖3|J(n)| < +∞.

J(0) =
∑

n∈Z
d\{0}

|J(n)|
Mod(A) = Zd.

Proof. Since the skeleton of this proof is essentially the same as those of the previous
theorem, we will only sketch it, employing the same notations. Of course, since we
directly deal with a Gaussian field, there is no need of stochastic comparison and
the proof of the first assumption is more simple than those of Theorem 9. Indeed,
we have essentially to prove that (H2) and (H7) hold.

• The fact that the first family of assumptions implies (H2) and (H7) has
already be proved in Theorem 9.
• Let us study the second family of assumptions. Since the first family of

assumptions is fulfilled when Z = ∅, we can assume without loss that
Z 6= ∅. Since Z is a finite set, there exists r > 0 such that ‖x−y‖ > r holds
if x and y are two distinct roots of f . Let R be the finite subset of [0, 2π)d

such that Z = {(eiθ1 , . . . , eiθd); θ ∈ R} and let F = (2πZ)d+B(0, r/2). For
each θ ∈ R, define

Oθ = Rd\(F + (R\{θ})).

Since (Oθ)θ∈R is a covering of Rd by periodic open sets, one can build
infinitely smooth non-negative periodic functions (fθ)θ∈Rsuch that
– For each θ ∈ R, the support of fθ holds in Oθ.

– 1 =
∑

θ∈R
fθ. (partition of the unity)

Then,

1

f
=
∑

θ∈R

fθ
f
.

The set of poles of fθ
f is θ + (2πZ)d and fθ is identically equal to 1 on

B(θ, r/2). Let us write

fθ
f

= (
fθ
f

+ (1− fθ))− (1− fθ)

Since fθ is infinitely smooth, the Fourier coefficients of 1−fθ form a rapidly
decreasing sequence. By construction, fθf + (1− fθ) does not vanish; let us
define gθ = ( fθf + (1 − fθ))−1. g(θ) only vanishes on θ + (2πZ)d and gθ is

C3 in the neighborhood of θ. We can write

gθ(θ + x) = Q(x) +Rθ(x),

with Rθ(0) = 0 , D0Rθ(0) = 0 and D20Rθ(0) = 0. Now, as in the proof of
Theorem 7, we apply Theorem 9 to gθ(θ + .) with d0 = 2, N = 3 and get

the desired decay for (cn): cn = O( 1
‖n‖β

), with β = 3(d−1)
d+3 ≥ 9

7 .

• It is an immediate consequence of lemma 11 that (I4) =⇒ (I3).

¤



284

An example of an antiferromagnetic model.
Let us define J by

J(i) =











1 if i = 0
1
2d if |i| = 1

0 else.

In this case, the Hamiltonian formally writes:

H =
1

2

∑

i

X2i +
1

2d

∑

‖i−j‖1=1

XiXj ,

or also with the more intuitive form:

H =
1

2d

∑

‖i−j‖1=1

(Xi +Xj)
2.

It is not difficult to see that the set of assumptions (I4) is fulfilled as soon as
d ≥ 4. Then, Theorem 8 applies, but not Theorem 6.

5. Some Fourier asymptotics

In this section, we will prove a theorem to estimate the asymptotic behavior of
the Fourier coefficients of some quite smooth functions which only have a singularity
in a single point.

Lemma 12. Let d ≥ 2 and d0 ∈ (−∞, d). Let

C(n) =
1

(2π)d

∫

B(0,1)

1

‖x‖d0 e
i〈n,x〉 dx1 . . . dxd.

Then,

C(n) = (2π)−
d
2

1

‖n‖α
∫ ‖n‖

0

J d−2
2
(t)tγ dt,

with α = d− d0 and γ = d
2 − d0.

Proof. By invariance under the group of isometries, it is easy to see that C(n) only
depends on ‖n‖2.

Using some methods of integration such as those which are described in Rudin
[20], it is not so hard to proof that if g ◦ ‖.‖ is integrable, we have

∫

Rd

eiλx1 g(‖x‖) dx = Gd

∫ +∞

0

rd−1g(r)

∫ +1

−1

(1− t2) d−12 −1eirλt dt dr,

where Gd, which only depends from the dimension, can be computed with the

choice λ = 0 and g(r) = exp(− r2

2 ).

Now, if we take g(r) = r−d011[0,1](x), the desired formula follows from a last
change of variable.

¤

Now, we have to estimate C(‖x‖) for large x.
Lemma 13. Let

Id,d0(x) =

∫ x

0

J d−2
2
(t)tγ dt,

with γ = d− d0. Then,
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• if γ < 1
2 , then lim

x→+∞
Id,d0(x) =

Γ(
d−d0
2 )

2
d
2
−d0

.

• if γ ≥ 1
2 , then

Id,d0(x) =

√

2

π
xγ−

1
2 cos (x− (d+ 1)π

4
) +O(xmax(γ−

3
2 ,0)).

Proof. When γ < 1
2 , the integral

(16)

∫ +∞

0

J d−2
2
(t)tγ dt

is semi-convergent an can be computed. More generally, if ν and µ are complex
numbers such that

0 < Re µ < Re ν +
3

2
,

we have
∫ +∞

0

Jν(t)

tν−µ+1
dt =

Γ(µ2 )

2ν−µ+1Γ(ν − 1
2µ+ 1)

.

This integral is sometimes called Weber’s integral, who computed its values when
ν is an integer. For a proof or an historic, see [25], § 13.24, page 391.

Here, we have ν = d−2
2 and µ = d− d0 = α, then

∫ +∞

0

J d−2
2
(t)tγ dt =

Γ(d−d02 )

2
d
2−d0

.

Let us consider the case γ ≥ 1
2 . In this case, (16) diverges, but Iα(x) can be

estimated using some asymptotics for Bessel’s functions. Bessel’s functions are
related to Hankel’s functions H1

ν and H2ν by the formula

Jν =
1

2
(H1ν +H2ν ).

We have on C\R− the following asymptotics (see for example [4], chap. XV.).







H1ν (z) =
√

2
π z
− 12 ei(z−

π
4−

νπ
2 )(1 + a1

z + · · ·+ an
zn +O( 1

|z|n+1
))

H2ν (z) =
√

2
π z
− 12 e−i(z−

π
4−

νπ
2 )(1 + b1

z + · · ·+ bn
zn +O( 1

|z|n+1
))

Let γ satisfy to γ ≥ 1
2 . Then,

∫ x

0

H1d−2
2

(t)tγ dt =

∫ 1

0

H1d−2
2

(t)tγ dt

+

√

2

π

∫ x

1

tγ−
1
2 ei(t−(d−1)

π
4 ) dt

+

√

2

π
a1

∫ x

1

tγ−
3
2 ei(t−(d−1)

π
4 ) dt

+

∫ x

1

tγ−
1
2 ei(t−(d−1)

π
4 )φ(t) dt,
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with φ(t) = O( 1t2 ). It immediately comes that
∫ x

0

H1d−2
2

(t)tγ dt =

√

2

π

∫ x

1

tγ−
1
2 ei(t−(d−1)

π
4 ) dt

+

√

2

π
a1

∫ x

1

tγ−
3
2 ei(t−(d−1)

π
4 ) dt

+ O(xmax(γ−
3
2 ,0)).

A partial integration gives
∫ x

1

tγ−
3
2 ei(t−(d−1)

π
4 ) dt = [tγ−

3
2 ei(t−

(d+1)π
4 )]x1

∫ x

1

(γ − 3

2
)tγ−

5
2 ei(t−(d−1)

π
4 ) dt,

Hence
∫ x

1

tγ−
3
2 ei(t−(d−1)

π
4 ) dt = O(xmax(γ−

3
2 ,0)).

Similarly
∫ x

1

tγ−
1
2 ei(t−(d−1)

π
4 ) dt = [tγ−

1
2 ei(t−

(d+1)π
4 )]x1 −

∫ x

1

(γ − 1

2
)tγ−

3
2 ei(t−(d−1)

π
4 ) dt,

The norm of the integral appearing in the last part of the preceding identity can
be bounded as previously, and we finally get

∫ x

0

H1d−2
2

(t)tγ =

√

2

π
xγ−

1
2 ei(x−

(d+1)π
4 ) +O(xmax(γ−

3
2 ,0)).

Similarly
∫ x

0

H2d−2
2

(t)tγ =

√

2

π
xγ−

1
2 e−i(x−

(d+1)π
4 ) +O(xmax(γ−

3
2 ,0)).

Hence
∫ x

0

J d−2
2
(t)tγ =

√

2

π
xγ−

1
2 cos (x− (d+ 1)π

4
) +O(xmax(γ−

3
2 ,0)).

¤

Theorem 9. Let d ≥ 2 and f : Rd → R+ with (2πZ)d as period and such that the
following holds:

• f only vanishes on (2πZ)d.
• There exists N ∈ Z+, d0 ∈ R such that 0 < d0 < min(d,N), a matrix
A ∈ Gld(R) and a CN -smooth function R such that

f(x) = ‖Ax‖d0 +R(x),

with for each k ∈ {0, . . . , N − 1}:
Dk
0R = 0.

Let

cn =
1

(2π)d

∫

[−π,π]d
ei〈n,x〉

1

f(x)
dx1 . . . dxn.

We also define α = d− d0,γ = d
2 − d0, β = N(N+d−2d0)

N+d = N − 2d0 +
2d0d
N+d .

The following asymptotics holds:

cn =
1

detA

1

(2π)d/2
1

‖A−1n‖d−d0 Id,d0(‖A
−1n‖) +O(‖n‖−β),
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where Id,d0 has been defined in lemma 13. It can be specified as follows:

• If d0 >
d−1
2 , we have, when ‖n‖ goes to +∞:

(17) cn =
1

detA

2d0Γ(d−d02 )

(4π)d/2
1

‖A−1n‖d−d0 +O(‖n‖−β).

• If d0 ≤ d−1
2 , we have

(18)

cn =
1

detA

1

(2π)d/2

√

2

π

1

‖A−1n‖ d+12
cos(‖A−1n‖− (d+ 1)π

4
)+O(‖n‖−min(α,β, d+32 )).

Proof. By the separation theorem, there exists an infinitely smooth function h
which is identically 0 on {x ∈ [−π, π]d , ‖Ax‖ ≥ 1} and identically 1 on {x ∈
[−π, π]d , ‖Ax‖ ≤ 1

2}. Then 1
f = h

f + 1−h
f , it follows that

cn =
1

(2π)d

∫

[−π,π]d
ei〈n,x〉

h(x)

f(x)
dx1 . . . dxn

+
1

(2π)d

∫

[−π,π]d
ei〈n,x〉

1− h(x)
f(x)

dx1 . . . dxn.

(19)

The function
1− h
f

can be periodized into a CN -smooth function, because it coincides with the periodic
function 1

f on the boundary of [−π, π]d. Its Fourier coefficients, which represent

the second part of the sum in (19) are O(‖n‖−N ).
Let us now study the first term of the sum. Since the support of h resides inside

A−1B(0, 1), this integral can be written as

1

(2π)d
1

detA

∫

B(0,1)

ei〈A
−1n,y〉h1(y)

f1(y)
dy1 . . . dyn,

when we put h1(y) = h(A−1y) et f1(y) = f(A−1y). Then h1 is C∞-smooth, is
identically 1 on B(0, 12 ), whereas f1 only vanishes at 0 and satisfies to

(20) f1(x) = ‖x‖d0 +R1(x),

where R1 follows the same assumptions as R.
We put

s(x) =
h1(x)

f1(x)
− 1

‖x‖d0
and also

C(u) =
1

(2π)d

∫

B(0,1)

ei〈u,x〉
1

‖x‖d0 dx1 . . . dxn,

in such a way that

1

(2π)d
1

detA

∫

B(0,1)

ei〈A
−1n,y〉h1(y)

f1(y)
dy1 . . . dyn =

1

detA
C(A−1n)

+
1

(2π)d
1

detA

∫

B(0,1)

ei〈A
−1n,x〉s(x) dx1 . . . dxn.
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The control of the first part is done by using lemmas 12 and 13. It remains to
control

∫

B(0,1)

ei〈A
−1n,x〉dx.

We will use Green’s formula, which will be used here as a multidimensional inte-
gration by parts.

If we suppose that V is a volume with an infinitely smooth orientable boundary,
and that u is C2-smooth and φ C1-smooth from V into R, we have

∫

V

φ∆u dx =

∫

∂V

φ〈grad u, ~N(x)〉 dσ(x)−
∫

V

〈grad u, grad φ〉dx.

~N(x) denotes the unitary vector which is normal to ∂V and is oriented to the
outside of V and σ is the surface measure on ∂V .

Taking u(x) = − 1
‖n‖2 e

i〈n,x〉, we get grad u = − in
‖n‖2 e

i〈n,x〉 and ∆u = ei〈n,x〉,

hence
(21)
∫

V

φei〈n,x〉 dx = − i

‖n‖

∫

∂V

φ〈v, ~N(x)〉ei〈n,x〉 dσ(x) + i

‖n‖

∫

V

D1xφ(v)e
i〈n,x〉 dx,

with v = n
‖n‖ . Iterating this process, we get for a CN -smooth φ:

∫

V

φei〈n,x〉 dx =

N−1
∑

k=0

ik−1

‖n‖k+1
∫

∂V

Dk
xφ(v

⊗k)〈v, ~N(x)〉ei〈n,x〉 dσ(x)

+
iN

‖n‖N
∫

V

DN
x φ(v

⊗N )〈v, ~N(x)〉ei〈n,x〉 dx.

We will take here φ = s, V = Vrn = {x ∈ Rd rn ≤ ‖x‖ ≤ 1}, where rn is a
sequence which is to determinate and will have a null limit.

To control the partial derivatives, we will need the following lemma:

Lemma 14. The exist a constant K such that

(22) 0 < ‖x‖ < 1

2
⇒ ∀k ≤ N sup

‖h‖=1
|Dk

xs(h
⊗k)| ≤ K‖x‖N−2d0−k.

For readability, we will prove it later and admit it for a short time.
Then,

|
∫

Vrn

s(x)ei〈n,x〉 dx | ≤ K Sd r
d−1
n

rN−2d0n

‖n‖
N−1
∑

k=0

(‖n‖rn)−k

+
K Bd
‖n‖N r−2d0n .

where Sd is the area of the d-dimensional unit sphere and Bd the volume of the
d-dimensional unit ball.

Also, integrating the inequality (14) with k = 0, we get
∫

B(0,rn)

|s(x) dx| ≤ K

d+N − 2d0
rd+N−2d0n .
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Thus, combining these two inequalities, we have

|
∫

B(0,1)

s(x)ei〈n,x〉 dx | ≤ K Sdr
d−1
n

rN−2d0n

‖n‖
N−1
∑

k=0

(‖n‖rn)−k

+
K Bd
‖n‖N r−2d0n

+
K

d+N − 2d0
rd+N−2d0n .

Then, we choose rn in such a way that the two last terms – which we suppose to
be the biggest – have save order, that is

rn =
1

‖n‖ N
N+d

.

Finally, we get

(23) |
∫

B(0,1)

s(x)ei〈n,x〉 dx| = O(
1

‖n‖
N(N+d−2d0)

N+d

).

¤

It is now time to prove lemma 14.

Proof of lemma 14. In order to compute and control the successive derivatives at
x, we will make a development of d in the neighborhood x. We know that

s(x+ h) =

N
∑

k=0

1

k!
Dk
xs(h

⊗k) + o(‖h‖N ).

Since h1 = 1 on B(0, 12 ), it comes that

s(x+ h) = F‖x‖d0 ,R1(x)(ux(h), vx(h)),

where










FA,B(h1, h2) = (A+B + h1 + h2)
−1 − (A+ h1)

−1,

ux(h) = ‖x+ h‖d0 − ‖x‖d0 ,
vx(h) = R1(x+ h)−R1(x).

We have

FA,B(h1, h2) = (B + h2)(A+ h1)
−1((A+B) + (h1 + h2))

−1.

The following identities holds in the ring of formal series R[[h1, h2]]:

1

A+ h1
=
∑

k≥0

1

Ak+1
(−1)khk1 .

1

A+B + h1 + h2
=

∑

k≥0

1

(A+B)k+1
(−1)k(h1 + h2)

k

=
∑

k≥0

1

(A+B)k+1
(−1)k

∑

a+b=k

(

a+ b

a

)

ha1h
b
2

=
∑

a,b≥0

(

a+ b

a

)

1

(A+B)a+b+1
(−1)a+bha1hb2.
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Making the product, we get

FA,B(h1, h2) =
∑

a,b,k≥0

(

a+ b

a

)

(−1)a+b+k+1 ×

(
B

Ak+1(A+B)a+b+1
ha+k1 hb2 +

1

Ak+1(A+B)a+b+1
ha+k1 hb+12 ).

Let us now expand ux(h): we have

‖x+ h‖d0 = ‖x‖d0(1 + 2
〈x, h〉
‖x‖2 +

〈h, h〉
‖x‖2 )

d0
2 .

In R[[x]] holds

(1 + x)
d0
2 =

∑

i≥0

(d0
2

i

)

xi.

We have also

(2
〈x, h〉
‖x‖2 +

〈h, h〉
‖x‖2 )

i =

i
∑

l=0

(

i

l

)

1

‖x‖2i (2〈x, h〉)
i−l〈h, h〉l.

We can also deduce that for each n ≥ 1

Dn
0 ux(h

⊗n)

n!
=
∑

i≤n
2

(d0
2

i

)(

i

n− i

)

1

‖x‖2i (2〈x, h〉)
2i−n〈h, h〉n−i‖x‖d0 .

Then, by the inequality of Cauchy-Schwarz, we have

|D
n
0 ux(h

⊗n)

n!
| ≤

∑

i≤n
2

|
(d0
2

i

)

|
(

i

n− i

)

22i−n‖x‖d0−n‖h‖n.

It follows that we can find Ku in order to have for each k ≤ N

(24) |D
n
0 ux(h

⊗n)

n!
| ≤ Ku‖x‖d0−n‖h‖n.

In another way, since R1(0) = D10R1 = . . . DN−1
0 R1 = 0, Taylor’s formula gives

∀k ≤ N ‖Dk
xR1‖ = O(‖x‖N−k),

or, equivalently, there exists a constant K such that

(25) ∀x ‖x‖ < 1

2
∀k ≤ N |D

k
0vx
k!

(h⊗k)| ≤ Kv‖x‖N−k‖h‖k.

The homogeneous component whose degree related to h is n writes ux(h)
a+kvx(h)

b

is

Φna,b,k(h) =
∑

a+k
∏

p=1

D
ip
0 ux(h

⊗ip)

ip!

b
∏

p=1

D
jp
0 vx(h

⊗jp)

jp!
,

where the sum runs over the positive integers satisfying to

a+k
∑

p=1

ip +

b
∑

p=1

jp = n.
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n ≥ a+ k + b is a necessary condition for the sum not to be zero. If it holds , the
inequalities (24) and (25) show that we can find K such that for |x| < 1

2 , we can
write:

(26) |Φna,b,k(h)| ≤ K‖x‖(a+k)d0+bN−n‖h‖n.
Composing these two developments, we get

Dn
x (h

⊗n)

n!
=

∑

a,b,k≥0
a+b+k=n

(

a+ b

a

)

(−1)a+b+k+1
R1(x)Φ

n
a,b,k(h)

‖x‖(k+1)d0(‖x‖d0 +R1(x))a+b+1

+
∑

a,b,k≥0
a+b+k+1=n

(

a+ b

a

)

(−1)a+b+k+1
Φna,b+1,k(h)

‖x‖(k+1)d0(‖x‖d0 +R1(x))a+b+1
.

Applying the bounds found in (26) and the fact that R1(x) is o(‖x‖d0), we can see
that each term of the sum if bounded by

K ′‖x‖N−2d0+b(N−d0)−n ≤ K ′′‖x‖N−2d0−n,
which is manifestly what we wanted to prove. ¤
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[12] H.-R. Künsch. Reellwertige Zufallsfelder auf einem Gitter: Interpolationsprobleme, Varia-

tionsprinzip und statistische Analyse. PhD thesis, Zürich, 1980.
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