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Abstract

The paper studies the filtering problem for a non-classical framework: we assume that the ob-

servation equation is driven by a signal dependent noise. We show that the support of the

conditional distribution of the signal is on the corresponding level set of the derivative of the

quadratic variation process. Depending on the intrinsic dimension of the noise, we distinguish

two cases: In the first case, the conditional distribution has discrete support and we deduce an

explicit representation for the conditional distribution. In the second case, the filtering problem

is equivalent to a classical one defined on a manifold and we deduce the evolution equation of

the conditional distribution. The results are applied to the filtering problem where the observa-

tion noise is an Ornstein-Uhlenbeck process.
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1 Introduction

Let (Ω,F , P) be a probability space on which we have defined a homogeneous Markov process X .

We can obtain information on X by observing an associated process y which is a function of X plus

random noise n:

yt = h(X t) + nt . (1.1)

In most of the literature nt is modeled by white noise, which does not exist in the ordinary sense,

but rather as a distribution of a generalized derivative of a Brownian motion. That is, the process

W defined formally as

Wt =

∫ t

0

nsds, t ≥ 0,

is a Brownian motion and the (integrated) observation model turns into one of the (classical) form

Yt =

∫ t

0

ysds

=

∫ t

0

h(Xs)ds+Wt ,

where Y is the accumulated observation. In this case, the observation σ-field is F Y
t = σ

Aug{Ys, s ≤

t} and the desired conditional distribution

πt(·)
.
= P(X t ∈ ·|F

Y
t ), t ≥ 0,

satisfies the Kushner-Stratonovich or Fujisaki-Kallianpur-Kunita equation

dπt( f ) = πt(L f )d t + (πt( f hT )−πt( f )πt(h
T ))dν̂t , (1.2)

where L is the generator of X and ν̂ , defined as

ν̂t = Yt −

∫ t

0

πs(h)ds, t ≥ 0,

is a Brownian motion called the innovation process.

Balakrishnan (see Kallianpur and Karandikar [8], p. 3) states that this (integrated) approach is not

suitable for application since the results obtained cannot be instrumented. Kunita [9], Mandal and

Mandrekar [11] and Gawarecki and Mandrekar [4] studied the model (1.1) when n is a general

Gaussian process. The most important example is the case when n is an Ornstein-Uhlenbeck process

given by

dOt =−βOt d t + βdWt , (1.3)

and W is a standard m-dimensional Wiener process. The observation model becomes

yt = h(X t) +Ot , t ≥ 0 (1.4)

or the integral form

Yt =

∫ t

0

h(Xs)ds+

∫ t

0

Osds t ≥ 0.
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To fix the ideas, we let the signal X be a R
d -valued process given by

dX t = b(X t)d t + c(X t)dBt , t ≥ 0

where b, c are R
d , respectively R

d×d -valued functions and B is a standard d-dimensional Wiener

process independent of W . The optimal filter π is given by

πt f = E( f (X t)|F
Y
t ).

In the aforementioned papers, a Kallianpur-Striebel formula is given, the filtering equation for π is

derived and it is proved that π converges to the solution of the (classical) FKK equation as β tends

to infinity. However, the conditions imposed in these papers [9], [11], [4] are very restrictive. Most

notably, the authors assume that the map t 7→ h(X t) is differentiable. To remove this restrictive

condition, Bhatt and Karandikar [1] consider the variant observation model

yt = α

∫ t

(t−α−1)∨0

h(Xs)ds+Ot

for α > 0 and obtain the same results for this modified model.

In this paper, we deal with the original model (1.4) but no longer assume differentiability of the map

t 7→ h(X t). As we will see, this will lead to an observation model with signal dependent observation

noise

dYt = h(X t)d t +σ(X t)dWt .

In turn, the filtering problem with signal dependent observation noise will be converted into a clas-

sical one (with signal independent observation noise) via a suitably chosen stochastic flow mapping.

This article is organized as follows: In Section 2 we set the filtering problem with signal dependent

observation noise and the framework for transforming this singular filtering problem into the classi-

cal one. Then, we discuss this transformation in two cases. In Section 3 we consider the case when

the signal dimension is small so (under mild regularity) level set Mz = {x ∈ R
d : σ(x) = z} is

discrete for each positive definite matrix z. In Section 4 we study the transformation when Mz are

manifolds. In this case, we decompose the vectors in R
d into their tangent and normal components,

and study the signal according to this decomposition. In Section 5, we convert the filtering with

OU-noise to a special case of the general singular filtering model.

The methods and results presented here benefited a lot from the work of Ioannides and LeGland (see

[6] and [7]). In particular, in [7], they study the filtering problem with perfect observations. That

is, in their set-up, the observation process Y is a deterministic function of the signal X. Here we show

that the filtering problem that we are interested in can be reduced to one where the observation

process has two components: one that is perfect (in the language of Ioannides and LeGland ) and

one that is of the classical form (see Lemma 2.3 below).

2 A general singular filtering model

Motivated by the filtering problem with OU-process as noise, we will consider a general filtering

problem with signal and observation given by
¨

dX t = b(X t)d t + c(X t)dWt + c̃(X t)dBt

dYt = h(X t)d t +σ(X t)dWt
(2.1)
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where B and W are two independent Brownian motions in R
d and R

m respectively, b, c, c̃, h, σ

are functions defined on R
d with values in R

d , R
d×m, R

d×d , R
m, R

m×m, respectively. We will assume

that Y0 = 0 and that X0 is independent of B and W . We will denote the law of X0 by π0 and assume

that it is absolutely continuous with respect to the Lebesgue measure on R
d and will denote by π̃0

its density.

We will also assume that σ(x) is a symmetric for each x and positive definite matrix for each x . If

not, we can define the m-dimensional process W̃

dW̃t =
p

σσT (X t)
−1

σ(X t)dWt , t ≥ 0.

Then the pair process (W̃ , B) is a standard m+d-dimensional Brownian motion and the system (2.1)

is equivalent to the following

¨

dX t = b(X t)d t + c(X t)dW̃t + c̃(X t)dBt

dYt = h(X t)d t +
p

σσT (X t)dW̃t .

The analysis can be easily extended to cover the case when all terms in (2.1) depend on both X and

Y . We make the following assumptions throughout the rest of the paper.

Condition (BC): The functions b, c, c̃ are Lipschitz continuous and h is bounded and measurable.

Condition (ND): For any x ∈ R, the m×m-matrix σ(x) in invertible.

Condition (S): The partial derivatives of the function σ up to order 2 are continuous.

Condition (X0): The law of X0 has a continuous density π̃0 with respect to the Lebesgue measure on R
d .

Let 〈Y 〉 be the quadratic covariation process of the m-dimensional semimartingale Y . From (2.1) it

follows that

〈Y 〉t =

∫ t

0

σ2
�

X t

�

ds.

Hence, the process σ2(X t) =
d

d t
〈Y 〉t is F Y

t -measurable for any t > 0.

Remark 2.1. σ2(X0) may not be F Y
0 -measurable, but is F Y

0+-measurable.

We decompose the observation σ-field F Y
t into two parts: One is generated by σ(X t) and another

by an observation process of the classical form.

Denote by S +m the set of symmetric positive definite m× m-matrices. Then for x ∈ R
d , we have

σ(x) and σ2(x) ∈ S +m . Next, we define the mapping a from S +m to R
m̃ with m̃ =

m(m+1)

2
as

the list of the diagonal entries and those above the diagonal in lexicographical order, i.e., for any

r ∈ S +m , a (r) is defined as

a (r)1 = r11, a (r)2 = r12, ..., a (r)m = r1m,

a (r)m+1 = r22, ..., a (r)2m−1 = r2m,

a (r)2m = r33, ..., a (r)m̃ = rmm.

It is clear that a is one-to-one from S +m onto a(S +m )⊂ R
m̃. Further, a and a−1 are continuous.
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Lemma 2.2. a(S +m ) is open in R
m̃.

Proof: Suppose σ ∈ R
m×m is symmetric. Then, σ ∈ S +m if and only if det(σk) > 0, k = 1,2, · · · , m,

where σk is the k × k sub-matrix obtained from σ by removing the last m − k rows and m − k

columns. Note that det(σk) is a polynomial of the entries in σ. Thus the image a(S +m ) consists of

points in R
m̃ such that these polynomials of its coordinates are positive. This implies that a(S +m ) is

open.

Now let s be the square root mapping s : S +m → S
+

m such that for any r ∈ S +m , s (r) is the unique

matrix belonging to S +m such that s (r)2 = r. It is easy to see that s is a continuous and, in particular,

a Borel measurable mapping. Hence, since σ2(X t) is F Y
t -measurable for any t > 0, then

Zt = σ(X t) = s(σ2(X t)), t > 0

is F Y
t -measurable for any t > 0, too. We have the following

Lemma 2.3. Let Ŷ be the stochastic process defined by

dŶt = σ
−1(X t)dYt = h̃(X t)d t + dWt ,

where h̃= σ−1h. Then,

F Y
t =F

Ŷ
t ∨F

Z
t , t > 0.

Proof: From the above F Z
t ⊂F

Y
t . Also σ−1(X t) isF Z

t -measurable, hence Ŷt is F Y
t -measurable, i.e.,

F Ŷ
t ⊂F

Y
t . So

F Ŷ
t ∨F

Z
t ⊂F

Y
t .

On the other hand, as dYt = Zt dŶt , we have indeed,

F Y
t ⊂F

Ŷ
t ∨F

Z
t .

By Lemma 2.3, Z can be considered as part of the observations and the signal-observation pair can

be written as






dX t = b(X t)d t + c(X t)dWt + c̃(X t)dBt

dYt = h(X t)d t + Zt dWt

Zt = σ(X t)

. (2.2)

We see now that the framework is truly non-classical as part of the observation process is noiseless. It

follows that, given the observation, X t takes values in the level set MZt
as defined in the introduction.

Hence, πt has support on MZt
. Therefore, πt will not have total support (unless σ is constant) and

will be singular with respect to the Lebesgue measure on R
d .

As was seen, only the diagonal entries and those above the diagonal of the process Zt (in other

words, a
�

Zt

�

) are required to generateF Z
t . Hence, we only need to take into account the properties

of the mapping aσ
aσ : R

d −→ R
m̃,
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defined as aσ (x) = a (σ (x)) for all x ∈ R
d . Then, defining the usual gradient operator for R

m̃-

vectors f by
�

∇ f
�

(x)i j = ∂ j f i(x); i = 1, ..., m̃; j = 1, ..., d; x ∈ R
d ;

q(x) =∇aσ (x) is a linear mapping from R
d to R

m̃, i.e., an m̃× d matrix.

Definition 2.4. The vector x ∈ R
d is a regular point for aσ if and only if the matrix q(x) has full rank

min (d, m̃). We shall denote the collection of all regular points by R .

We will study the optimal filter πt in the next two sections according to the type of the level set Mz .

3 The case d ≤ m̃

In this section, we consider the case when d ≤ m̃. We will assume that Mz consists of countably

many points and that its connected components do not branch or coalesce. Namely, we assume

Condition (R1): There exists a countable set I such that for any z ∈ R
m̃,

Mz = {x
i(z) : i ∈ I},

where x i : R
m̃→ R

d , i ∈ I are continuous functions such that x i(z) 6= x j(z), for any i, j ∈ I , i 6= j.

This condition holds true if aσ satisfies the following assumption

Condition (R): Every point in R
d is regular for aσ, in other words, R = R

d .

In this case, for x ∈ R
d , by the inverse function theorem (see, for example, Rudin [12]) there

is a continuous bijection between an open neighborhood of w(aσ(x)) and an open neighborhood

of x , where w : R
m̃ → R

d is the projection of R
m̃ onto R

d corresponding to those coordinates

which give a minor of maximal rank for the matrix q(x). The composition between this continuous

bijection and the projection w is, in effect, one of the continuous functions x i appearing in Condition

(R1). In particular, if x ∈ Mz , then there is no other element of Mz within the corresponding open

neighborhood. In other words, Mz contains only isolated points. Thus, Condition (R) implies that all

the level sets of σ (respectively, aσ) are discrete and must be finite on any compact set and therefore

countable overall. Hence there is a countable set of continuous functions describing the level sets.

These continuous functions do not coalesce or branch as that would contradict the existence of the

bijection at the point of coalescence/branching (in topological language, the number of connected

components of the level sets is locally constant). Hence condition (R) implies Condition (R1).

By Condition (R1) and the continuity of the process X t , we see that if X0 is non-random and

X0 = x i(Z0) for some i ∈ I , then X t = x i(Zt) for the same value of i ∈ I (the process does not

‘jump’ between connected components. In other words, the noiseless component of the observation

uniquely identifies the conditional distribution of the signal given the observation:

πt = δX t
, t > 0.
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Next, we consider the case that X0 is not constant. We need to take into account the additional

information that may arise from observing the quadratic variation of the process a
�

Zt

�

and the

covariation process between a(Zt) and Yt . This will not influence the trajectory of π: From above

we already know that it is deterministic given its initial value π0 and the process a
�

Zt

�

. However,

this additional information may restrict π0.

Applying Itô’s formula to aσ(X t) for X t being given by (2.1), we get

da
�

Zt

�

= Laσ(X t)d t + q
�

X t

��

c(X t)dWt + c̃(X t)dBt

�

, (3.1)

where L is the second order differential operator given by

L f =
1

2

d
∑

i, j=1

ãi j∂
2
i j f +

d
∑

i=1

bi∂i f

with ã = ccT + c̃ c̃T . Thus, the quadratic covariation process of a
�

Zt

�

is

∫ t

0

q(Xs)
�

ccT (Xs) + c̃ c̃T
�

Xs

�
�

qT
�

Xs

�

ds.

It follows from (3.1) and (2.1) that the quadratic covariation process between a(Zt) and Yt is

∫ t

0

qc(Xs)Z
T
s ds.

Therefore,

Z̃0 ≡
�

q
�

ccT + c̃ c̃T
�

qT
�

X0

�

,qc(X0)Z
T
0

�

(3.2)

is F Y
0+ measurable.

The analysis that follows hinges upon an explicit characterization of the information contained in

F Y
0+. Such a characterization may not be available in general. However, we present two cases where

it is possible and note that other cases may be deduced in an inductive manner. From Remark 2.1

we know that σ2(X0), which is the derivative of the quadratic variation of the process Y at 0, is

F Y
0+-measurable. Moreover, from the discussion following Lemma 2.2 σ(X0) and aσ(X0) are also

F Y
0+-measurable. In Case 1, no more additional information is available from Z̃0. This means that

the F Y
0+-measurable random variables obtained by differentiating at zero the quadratic variation

of aσ(X ) and the quadratic covariation process between aσ(X ) and Y are functions of aσ(X0). In

Case 2, these two new processes offer new information (they are not functions of aσ(X0)), but their

corresponding quadratic variations and quadratic covariation processes do not have informative

derivatives. In subsequent cases, which can be treated in a similar manner as the first two cases,

more and more of the processes constructed by computing quadratic variations and quadratic covari-

ations and differentiating at zero offer information (they are not functions of the already computed

F Y
0+-measurable random variables).

Case 1: The matrices q
�

ccT + c̃ c̃T
�

qT and qc are functions of aσ, in other words there exist two

Borel measurable functions H1 and H2 from a(S +m ) to R
m̃×m̃ and R

m̃×m respectively such that

q
�

ccT + c̃ c̃T
�

qT = H1

�

aσ
�

and qc = H2(aσ). (3.3)
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Let us note that x ∈ R
d is a regular point if and only if

J (x) =
p

det qT q(x)> 0.

Theorem 3.1. Suppose that the conditions (R1, S, BC, X0) and (3.3) are satisfied and x i(Z0) ∈ R for

each i ∈ I . If
∑

x∈MZ0

π̃0(x)

J(x)
<∞, then

πt =
∑

x∈MZ0

pxδX̂ x
t
, t > 0 and π0 = π̃0,

where X̂ x
t = x i(Zt) with i ∈ I is such that x = x i(Z0), and

px =

π̃0(x)

J(x)
∑

x∈MZ0

π̃0(x)

J(x)

.

Proof: We consider the filter π̂t = P

�

X t ∈ ·

�

�

�F Ŷ
t ∨F

Z
t

�

. Note that π0 = π̃0, the law of X0, and

πt = π̂t for t > 0 by Lemma 2.3.

From (3.2,3.3), we get that Z̃0 =
�

H1

�

a
�

Z0

��

, H2

�

a
�

Z0

���

brings no new knowledge, hence we

can ignore it. Following the proof of Theorem 2.8 in [6], we let µz be the conditional probability

distribution of X0 given Z0 = z, i.e.,

µz (d x) = P
�

X0 ∈ d x |Z0 = z
�

.

For any B ∈B(Rm̃) and φ ∈ L1(Rd , π̃0(x)d x), let

g(x) = φ(x)1aσ(x)∈B

π̃0(x)

J(x)
.

By the area formula (cf. Evans and Gariepy [2], p. 99, Theorem 2), we have

E[φ(X0)1aσ(X0)∈B] =

∫

R
d

φ(x)1aσ(x)∈Bπ̃0(x)d x

=

∫

R
d

g(x)J(x)d x

=

∫

R
m̃

∑

x∈M
a−1(u)

g(x)H d(du)

=

∫

B

∑

x∈M
a−1(u)

φ(x)
π̃0(x)

J(x)
H d(du), (3.4)

where H d is the d-dimensional Haussdorff measure (cf. Evans and Gariepy [2], p60). Taking

φ = 1, we get

P(aσ(X0) ∈ B) =

∫

B

∑

x∈M
a−1(u)

π̃0(x)

J(x)
H d(du).
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Thus

E[φ(X0)1aσ(X0)∈B] = E[1aσ(X0)∈B

∫

φ(x)µZ0
(d x)]

=

∫

B

∫

φ(x)µa−1(u)(d x)
∑

x ′∈M
a−1(u)

π̃0(x
′)

J(x ′)
H d(du).

Comparing with (3.4), we get

∫

B

∫

φ(x)µa−1(u)(d x)
∑

x ′∈M
a−1(u)

π̃0(x
′)

J(x ′)
H d(du) =

∫

B

∑

x∈M
a−1(u)

π̃0(x)

J(x)
φ(x)H d(du).

Therefore,
∫

φ(x)µz(d x)
∑

x ′∈Mz

π̃0(x
′)

J(x ′)
=
∑

x∈Mz

π̃0(x)

J(x)
φ(x).

Hence µz has the support on the set Mz and

µz =
∑

x∈Mz

pxδx .

Following the case with constant X0, we then have

πt

�

f
�

= EµZ0
( f (X t)|F

Y
t ) =

∑

x∈Mz

px f (X x
t ), ∀t ≥ 0.

Before we consider the second case, we give an example for which the conditions of Theorem 3.1

are satisfied.

Example 3.2. Let d = 1 and m= 2. The coefficients of the system are b(x) = x, c(x) = 0, c̃ = 1, h(x)

bounded, and

σ(x) =

�

σ11(x) σ12(x)

σ21(x) σ22(x)

�

=

�

2+ sin x 0

0 2+ cos x

�

.

Then,

Mz = {x
i(z) : i ∈ Z},

where Z denotes the collection of integers and the continuous functions x i : R
3→ R are defined as

x i(z) = x i(z1, z2, z3) =

¨

2πi + arcsin(z1− 2) z3 ≥ 2

2πi +π+ arcsin(2− z1) z3 < 2
.

This proves Condition (R1). Condition (3.3) is also satisfied as

q(x) =







cos x

0

− sin x






=







σ22(x)− 2

0

2−σ11(x)






.

The other conditions are easy to verify.
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Now we consider the other case.

Case 2: If q
�

ccT + c̃ c̃T
�

qT and qc are not functions of aσ, then Z̃0 as defined in (3.2) offers new

information, that is F Y
0+ is larger than the σ-field generated by Z0. Hence the support of the

distribution of X0 given F Y
0+ may be smaller than given σ(Z0). To handle the new information, we

need to impose additional constraints. Let σ0 = σ, q0 = q and σk be the following matrix valued

function

σk(x) =

�

σk−1(x) cT qT
k−1
(x)

qk−1c(x) qk−1

�

ccT + c̃ c̃T
�

qT
k−1
(x)

�

, x ∈ R
d , k = 1,2,3..., (3.5)

m̃k be the dimension of the image of the mapping aσk
and qk = ∇aσk

. We replace Conditions (S),

(R1) and (3.3) with the following:

Condition (S̃): The partial derivatives of σ1 up to order 2 are continuous.

Condition (R̃1): There exists a countable set Ĩ such that for any z ∈ R
m̃1 ,

Mz ≡ {x ∈ R
d : σ1(x) = z} = {x i(z) : i ∈ Ĩ},

where x i : R
m̃1 → R

d , i ∈ Ĩ are continuous functions such that x i(z) 6= x j(z), for any i, j ∈ Ĩ , i 6= j.

Condition (INk): qkc and qk

�

ccT + c̃ c̃T
�

qT
k

are functions of aσk
.

Then, the following analogue of Theorem 3.1 holds true.

Theorem 3.3. Suppose that the conditions (R̃1, S̃, BC, X0, IN1) are satisfied. If
∑

x∈MZ̃0

π̃0(x)

J(x)
< ∞,

then

πt =
∑

x∈MZ̃0

pxδX̂ x
t
, t > 0,

where X̂ x
t = x i(Zt) with i ∈ Ĩ is such that x = x i(Z0), and

px =

π̃0(x)

J(x)
∑

x∈MZ̃0

π̃0(x)

J(x)

.

We now give an example for which the conditions of Theorem 3.3 are satisfied.

Example 3.4. Let d = m = 1. The coefficients of the system are b(x) = x, c(x) = 1, c̃ = 1, h(x)

bounded, and σ(x) = 2+ sin x. Then, q(x) = cos x is not a function of σ. However, q′ is a function of

σ as

q′(x) =− sin x = 2−σ(x).

In this case m̃1 = 3,

σ1(x) =

�

2+ sin x cos x

cos x 2(cos x)2

�

, x ∈ R,
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q1(x) =







cos x

− sin x

4 cos x sin x






, x ∈ R

is a function of aσ1
so (IN1) holds and the level sets Mz are described by

Mz = {x
i(z) : i ∈ Z},

where Z denotes the collection of integers and the continuous functions x i : R
3→ R are defined as

x i(z) = x i(z1, z2, z3) =

¨

2πi + arcsin(z1− 2) z2 ≥ 0

2πi +π+ arcsin(2− z1) z2 < 0
.

This proves Condition (R̃1). The other conditions are easy to verify.

The analysis can continue in this manner: if (IN1) is not satisfied by q1, we can define σ2 in a

similar manner with σ, q in (3.5) replaced by σ1 and q1 respectively; and the above procedure is

then continued until Condition (INk) is satisfied.

4 The case d > m̃

In this section, we consider the case when d > m̃. We will show that Mz is no longer a discrete set

but rather a surface (manifold) and the optimal filter πt is a probability measure on the manifold

Mz and is absolutely continuous with respect to the surface measure. For this, we follow closely the

analysis in [7].

Note that, if d > m̃, then x ∈ R
d is a regular point if and only if

J (x) =
p

det qqT (x)> 0.

We shall use Tx Mz to denote the space consisting of all the tangent vectors to the manifold (surface)

Mz at point x ∈ Mz . Tx Mz is called the tangent space of Mz at x . We will use Nx Mz to denote the

orthogonal complement of Tx Mz in R
d . We call Nx Mz the normal space of Mz at x . We list in the

following lemma some well-known facts about the transformation aσ without giving their proofs:

Lemma 4.1. i) For any u ∈ R
m̃, Ma−1(u) is a d̃-dimensional manifold where d̃ = d− m̃. The Haussdorff

measureH d̃ on Ma−1(u) is the surface measure.

ii) For any x ∈ Mz , the rows of the matrix q generate the normal space Nx Mz to the manifold Mz at

point x.

iii) Let

ρ(x) = qT (qqT )−1(x) and p(x) = ρ(x)q(x).

Then p(x) is the orthogonal projection matrix from R
m̃ to the subspace Nx Mz .

For simplicity of the presentation, we make an assumption which is slightly stronger than (3.3).

Condition (IN): There exist two Borel measurable functions H1 and H2 from a(S+m) to R
m̃×m and R

m̃×d

respectively such that

qc = H1

�

aσ
�

and qc̃ = H2(aσ). (4.1)

To demonstrate this condition and the lemma above, we give an example.
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Example 4.2. Let d = 2 and m = 1. Define the coefficients by b(x) = x, c(x) = 0, c̃(x) = I and

σ(x) = ex1 . Then J(x) = ex1 > 0 for all x ∈ R
2 and hence, Condition (R) is satisfied. Further,

Mz = {(x1, x2) : ex1 = z}

is a (line) manifold of dimension d̃ = 2−1= 1. It is clear that the row vector of q generates the normal

space

Nx Mz = {λ(1,0) : λ ∈ R}.

In this example, p(x) =

�

1 0

0 0

�

is the orthogonal projection matrix from R
2 to Nx Mz . To verify

(IN), we note that qc = 0 and

qc̃ = (ex1 , 0)I = (σ(x), 0) .

We also assume:

Condition (C): Both c and c̃ are continuously differentiable.

Throughout the rest of this section, the assumptions (R, S, BC, X0, IN, ND, C) will be in force. The

following theorem gives us the conditional distribution of X0 given Z0. Since, in this case, F Y
0+

coincides with the σ-field generated by Z0, it gives, in effect, π0+ in the case of d > m̃.

We introduce λu to be the surface measure on the level set Ma−1(u) for u ∈ R
m̃ and µz to be the

conditional probability distribution of X0 given Z0 = z, i.e.,

µz (d x) = P
�

X0 ∈ d x |Z0 = z
�

.

The following theorem shows that µz is absolutely continuous with respect to λu.

Theorem 4.3. Suppose that the density π̃0 is not identically zero on Ma−1(u) and satisfies the following

integrability condition:
∫

M
a−1(u)

π̃0(x)

J(x)
λu(d x)<∞.

Then

µz(d x) = p(x)λa(z)(d x),

where

p(x) =
π̃0(x)/J(x)

∫

Mz
π̃0(y)/J(y)λu(d y)

.

Proof: For any test function φ defined on R
d , and any Borel set D in R

m×m, define

g(x) = φ(x)1σ(x)∈D

π̃0(x)

J(x)
.
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Then, by the co-area formula (cf. Evans and Gariepy [2], chapter 3), we have

E

�

φ(X0)1σ(X0)∈D

�

=

∫

R
d

g(x)J(x)d x

=

∫

R
m̃

∫

M
a−1(u)

g(x)H d−m̃(d x)du

=

∫

D

∫

M
a−1(u)

φ(x)
π̃0(x)

J(x)
H d−m̃(d x)du

=

∫

D

∫

M
a−1(u)

φ(x)
π̃0(x)

J(x)
λu(d x)du.

By taking φ(x)≡ 1, we get

P(σ(X0) ∈ D) =

∫

D

∫

M
a−1(u)

π̃0(x)

J(x)
λu(d x)du.

The result follows from the definition of the conditional expectation.

We now decompose the vector fields in the SDE satisfied by the signal according to their components

in the spaces Tx Mz and Nx Mz . It is more convenient to use Stratonovich form for the signal process.

That is, the signal X satisfies the following SDE in Stratonovich form:

dX t = b̃(X t)d t + c(X t) ◦ dWt + c̃(X t) ◦ dBt , (4.2)

where for i = 1,2, · · · , d, the ith component of b̃ is

b̃i = bi −
1

2

d
∑

k=1

m
∑

j=1

(∂kci j)ck j −
1

2

k
∑

k, j=1

(∂k c̃i j)c̃k j .

Recall from (3.1) that the F Y
t -measurable process a(Zt) satisfies

da(Zt) = Laσ(X t)d t + dVt , (4.3)

where Vt is the m̃-dimensional continuous martingale

Vt =

∫ t

0

qc(Xs)dWs + qc̃(Xs)dBs, t ≥ 0

with quadratic covariation process

〈V 〉t =

∫ t

0

H(a(Zs))ds,

and H = H1HT
1 + H2HT

2 , where H1 = qc and H2 = qc̃.
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Lemma 4.4. The second observation process of (2.2) a(Zt) satisfies

da(Zt) = qc(X t) ◦ dWt + qc̃(X t) ◦ dBt + qb̃(X t)d t. (4.4)

Proof: We have

dVt = qc(X t) ◦ dWt + qc̃(X t) ◦ dBt −
1

2

d
∑

k, j=1

m
∑

ℓ=1

∂k(q· jc jℓ)ckℓ(X t)d t

−
1

2

d
∑

k, j,ℓ=1

∂k(q· j c̃ jℓ)c̃kℓ(X t)d t

= qc(X t) ◦ dWt + qc̃(X t) ◦ dBt −
1

2

d
∑

k, j=1

(ccT ) jk∂
2
k jaσd t −

1

2

d
∑

k=1

q∂kccT
·kd t

−
1

2

d
∑

k, j=1

(c̃ c̃T ) jk∂
2
k jaσd t −

1

2

d
∑

k=1

q∂k c̃ c̃T
·kd t

= qc(X t) ◦ dWt + qc̃(X t) ◦ dBt − Laσ(X t)d t + qb̃(X t)d t.

Combining with (4.3), we see that (4.4) holds.

Finally, we arrive at the main decomposition result.

Theorem 4.5. Under Condition (BC, S, R, X0, C), the filtering model (2.1) is rewritten as

dX t = (I − p)
�

b̃(X t)d t + c(X t) ◦ dWt + c̃(X t) ◦ dBt

�

+ρ(X t) ◦ da(Zt), (4.5)

with observations

da(Zt) = Laσ(X t)d t + dVt , (4.6)

and

dYt = h(X t)d t + Zt dWt . (4.7)

Proof: From equation (4.2) we have

dX t = b̃(X t)d t + c(X t) ◦ dWt + c̃(X t) ◦ dBt

= (I − p) b̃(X t)d t + (I − p)c(X t) ◦ dWt + (I − p)c̃(X t) ◦ dBt

+pb̃(X t)d t + pc(X t) ◦ dWt + pc̃(X t) ◦ dBt . (4.8)

By (4.4), we get

ρ(X t) ◦ da(Zt) = pb̃(X t)d t + pc(X t) ◦ dWt + pc̃(X t) ◦ dBt .

Plugging back into (4.8), we see that (4.5) holds. The equality (4.6) is a rewriting of (4.3). The

equation (4.7) is just the original observation model (2.1).

Let {ξt,s : 0≤ s ≤ t} be the stochastic flow associated with the SDE:

dξt = ρ(ξt) ◦ da(Zt). (4.9)
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Lemma 4.6. The flow ξt,s maps MZs
to MZt

. Further, the process ξt is F Z
t -adapted.

Proof: Applying the Stratonovich form of Itô’s formula, we get

daσ(ξt) =∇
T aσ(ξt)ρ(ξt) ◦ da(Zt) = da(Zt).

Thus for σ(ξs) = Zs, we get σ(ξt) = Zt . The second conclusion follows from the uniqueness of the

solution to the SDE (4.9).

Denote the column vectors of (I − p)c and (I − p)c̃ by g1, · · · , gm and g̃1, · · · , g̃d respectively. Let

b0 = (I − p) b̃. Then for each x ∈ Mz , the vectors g1(x), · · · , gm(x); g̃1(x), · · · , g̃d(x); b0(x) are

all in Tx Mz . The signal process X t satisfies

dX t = ρ(X t) ◦ da(Zt) +

m
∑

i=1

gi(X t) ◦ dW i
t +

d
∑

j=1

g̃ j(X t) ◦ dB
j
t + b0(X t)d t. (4.10)

It is well-known that the Jacobian matrix ξ′t,s of the stochastic flow ξt,s is invertible (cf. Ikeda and

Watanabe [5]). The operator (ξ−1
t,s )∗ defined below pulls a vector at ξt,s(x) back to a vector at x .

Definition 4.7. Let g be a vector field in R
d . The random vector field (ξ−1

t,s )∗g is defined as

(ξ−1
t,s )∗g(x)≡ (ξ

′
t,s)
−1 g(ξt,s(x))

for any aσ regular point x ∈ R
d .

We consider the following SDE on R
d :

dκt = (ξ
−1
t,0)∗b0(κt)d t +

m
∑

i=1

(ξ−1
t,0)∗gi(κt) ◦ dW i

t +

d
∑

j=1

(ξ−1
t,0)∗ g̃ j(κt) ◦ dB

j
t . (4.11)

Lemma 4.8. The SDE (4.11) has a unique strong solution. Further, if Z0 = z, then κt ∈ Mz for all

t ≥ 0 a.s.

Proof: Note that (ξ′t,0)
−1 satisfies a diffusion SDE with bounded coefficients (cf. Ikeda and Watanabe

[5]). By Gronwall’s inequality, it is easy to show that

E sup
0≤t≤T

‖(ξ′t,0)
−1‖p <∞, ∀p > 1.

Therefore, we can prove that there is a constant K such that

E

�

�

�(ξ−1
t,0)∗b0(κ1)− (ξ

−1
t,0)∗b0(κ2)

�

�

�

2

≤ K |κ1− κ2|
2, ∀ κ1, κ2 ∈ R

d .

Similarly, the above inequality holds with b0 replaced by gi , 1≤ i ≤ m or g̃ j , 1≤ j ≤ d. By standard

arguments, we see that (4.11) has a unique strong solution.
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Applying Itô’s formula to (4.11), we get

daσ(κt) = q(κt)(ξ
−1
t,0)∗b0(κt)d t +

m
∑

i=1

q(κt)(ξ
−1
t,0)∗gi(κt) ◦ dW i

t

+

d
∑

j=1

q(κt)(ξ
−1
t,0)∗ g̃ j(κt) ◦ dB

j
t .

Since b0(ξt,0(κt)) ∈ Tξt,0(κt )
MZt

, we have (ξ−1
t,0)∗b0(κt) ∈ Tκt

Mσ(κt )
. As the row vectors of q(κt) are

in Nκt
Mσ(κt )

, we see that

q(κt)(ξ
−1
t,0)∗b0(κt) = 0.

Also the above equality holds with b0 replaced by gi , 1≤ i ≤ m or g̃ j , 1≤ j ≤ d. Thus, daσ(κt) = 0,

and hence, aσ(κt) = aσ(κ0), ∀ t ≥ 0. This proves that σ(κt) = z, and hence κt ∈ Mz , ∀ t ≥ 0, a.s.

The next theorem gives the decomposition of the signal process.

Theorem 4.9. For almost all ω ∈ Ω, we have

X t(ω) = ξt,0(κt(ω),ω), ∀t ≥ 0. (4.12)

Proof: Denote the right hand side of (4.12) by X̃ t(ω). Applying Itô’s formula, we get

dX̃ t =

d
∑

j=1

∂ jξt,0(κt) ◦ dκ
j
t +ρt(ξt,0(κt)) ◦ da(Zt)

= ξ′t,0(κt)(ξ
′
t,0(κt))

−1 b0(ξt,0(κt))d t +

m
∑

i=1

ξ′t,0(κt)(ξ
′
t,0(κt))

−1 gi(ξt,0(κt)) ◦ dW i
t

+

d
∑

j=1

ξ′t,0(κt)(ξ
′
t,0(κt))

−1 g̃ j(ξt,0(κt)) ◦ dB
j
t +ρt(X̃ t) ◦ da(Zt)

= ρ(X̃ t) ◦ da(Zt) +

m
∑

i=1

gi(X̃ t) ◦ dW i
t +

d
∑

j=1

g̃ j(X̃ t) ◦ dB
j
t + b0(X̃ t)d t.

By the uniqueness of the solution to (4.10), we see that the representation (4.12) holds.

The optimal filter then satisfies

πt f = E( f (ξt,0(κt))|F
Ŷ
t ∨F

Z
t ), t > 0.

Note that ξt,0 is F Z
t -measurable. Thus, we may regard ξt,0 as known and the singular filtering

problem can be transformed to a classical one as follows: For f ∈ Cb(Mz), let

Ut f ≡ E[ f (κt)|F
Ŷ
t ∨F

Z
t ].

Then Ut is the optimal filter with the signal process κt being given by (4.11) and the observation

(Ŷt , a(Zt)) being given by

dŶt = Z−1
t h(ξt,0(κt))d t + dWt (4.13)
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and

da(Zt) = Laσ(ξt,0(κt))d t + H1(a(Zt))dWt + H2(a(Zt))dBt . (4.14)

Note that the filtering problem with signal (4.11) and observations (4.13) and (4.14) is classical.

We sketch below the derivation of the Zakai equation for the unnormalized version Ũt of the process

Ut , and leave the details to the reader. Once this is done, we note that

πt f = Ut

�

f ◦ ξt,0

�

, t > 0.

Without loss of generality, we may and will assume that H2(a(Zt)) is of full rank a.s. Let

H̃2(a(Zt)) be a (d − m̃) × d-matrix-valued process such that

�

H2(a(Zt))

H̃2(a(Zt))

�

is invertible and

H̃2(a(Zt))H2(a(Zt))
T = 0 a.s. Define independent Brownian motions B̃t and B̂t of dimensions

m̃ and d − m̃ respectively by

dB̃t =
�

H2(a(Zt))H2(a(Zt))
T
�− 1

2 H2(a(Zt))dBt

and

dB̂t =
�

H̃2(a(Zt))H̃2(a(Zt))
T
�− 1

2 H̃2(a(Zt))dBt .

Denote
�

H2(a(Zt))

H̃2(a(Zt))

�−1

=
�

h2(a(Zt)), h̃2(a(Zt))
�

.

Then

dBt = h2(a(Zt))
�

H2(a(Zt))H2(a(Zt))
T
�

1

2 dB̃t

+h̃2(a(Zt))
�

H̃2(a(Zt))H̃2(a(Zt))
T
�

1

2 dB̂t .

Define process Z̃t by

d Z̃t =

 

I 0

H1(a(Zt))
�

H2(a(Zt))H2(a(Zt))
T
�

1

2

!−1

d

�

Ŷt

a(Zt)

�

(4.15)

and function h̃ by

h̃(t, Y,κt) =

 

I 0

H1(a(Zt))
�

H2(a(Zt))H2(a(Zt))
T
�

1

2

!−1�

Z−1
t h(ξt,0(κt))

Laσ(ξt,0(κt))

�

. (4.16)

Then, Z̃t is observable and

d Z̃t = h̃(t, Y,κt)d t + d

�

Wt

B̃t

�

.

Note that (4.11) can be written in the Itô form

dκt = b̃(t, Y,κt)d t + σ̃1(t, Y,κt)dWt + σ̃2(t, Y,κt)dBt

= b̃(t, Y,κt)d t + σ̃1(t, Y,κt)dWt

+σ̃2(t, Y,κt)h2(a(Zt))
�

H2(a(Zt))H2(a(Zt))
T
�

1

2 dB̃t

+σ̃2(t, Y,κt)h̃2(a(Zt))
�

H̃2(a(Zt))H̃2(a(Zt))
T
�

1

2 dB̂t
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for suitably defined coefficients b̃, σ̃1 and σ̃2. Denote

σ̂(t, Y,κt) =

�

σ̃1(t, Y,κt), σ̃2(t, Y,κt)h2(a(Zt))
�

H2(a(Zt))H2(a(Zt))
T
�

1

2

�

and

Lt,Y f (κ) =
1

2

∑

i j

ãi j(t, Y,κ)∂i j f (κ) + b̃(t, Y,κ)T∇ f (κ), (4.17)

where ã(t, Y,κ) =
∑2

i=1 σ̃i(t, Y,κ)σ̃i(t, Y,κ)T . Then, by Kallianpur-Striebel formula, we have

Ut =
�

Ũt1
�−1

Ũt , (4.18)

while the unnormalized filter Ũt satisfies the following Zakai equation:

dŨt f = Ũt(Lt,Y f )d t + Ũt

�

∇T f σ̂(t, Y ) + h̃(t, Y )T f
�

d Z̃t . (4.19)

A filtering equation for Ut can be derived by applying Itô’s formula to (4.18) and (4.19).

Now we summarize the discussion above to a theorem.

Theorem 4.10. Suppose that the assumptions (R, S, BC, X0, IN, ND) are satisfied. Let Z̃ be the

observation process given by (4.15). Let h̃ and Lt,Y be given by (4.16) and (4.17) respectively. Let

ξt,s be the stochastic flow given by (4.9). Let Ũt be the uniqueMF (MZ0
)-valued solution to the Zakai

equation (4.19) and Ut = (Ũt1)
−1Ũt . Then, the optimal filter πt is given by

πt( f ) = Ut( f ◦ ξt,0), ∀ f ∈ Cb(R
d).

Finally, we indicate that an analogue of the Kalman filter for the singular filtering setup is a part of

a work in progress by Liu [10]. We indicate the model and the result anticipated. For simplicity, we

take m= 1.

Let the signal be given by the linear equation:

dX t = bX t d t + dBt ,

and the observation is

dYt = hT X t d t + |QT X t |dWt ,

where (B,W ) is the d + 1-dimensional Brownian motion, b is a d × d-matrix and h, Q ∈ R
d . It is

anticipated that πt will be a linear combination of two normal measures on planes {x ∈ R
d : QT x =

±Zt}, where Zt = |Q
T X t | is observable. Equations for the condition means and variances, as well as

the weight process in the linear combination, will be derived.

5 The filtering model with Ornstein-Uhlenbeck noise

In this section, we consider the filtering problem with OU-process as the observation noise. As we

indicated in the introduction, the OU-process is an approximation of the white noise which exists in

the sense of generalized function only. We transform this filtering problem with OU-process noise
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to a singular filtering problem of the form studied in the previous sections. To be more general, we

assume that the OU process is given by

dOt = a1Ot d t + b1dWt

and y is as in (1.4). Let

Yt =

∫ t

0

e−a1sd(ea1s ys).

Then F Y
t =F

y
t and, by Itô’s formula,

dYt = (Lh(X t) + a1h(X t))d t + b1dWt +∇hc(X t)dBt .

Define the pair process

dVt = (b2
1 I +∇hc(∇hc)T )−1/2(X t)

�

b1dWt +∇hc(X t)dBt

�

,

dṼt = (b2
1 I + (∇hc)T∇hc)−1/2(X t)

�

(∇hc)T (X t)dWt − b1dBt

�

.

Then the pair process (V, Ṽ ) is an (m+ d)-dimensional Brownian motion and

dBt = (b2
1 I +∇hc(∇hc)T )−1(∇hc)T (b2

1 I +∇hc(∇hc)T )−1/2(X t)dVt

−(b2
1 I + (∇hc)T∇hc)−1/2(X t)dṼt .

Hence, if we define the following functions:

σ = (b2
1 I +∇hc(∇hc)T )1/2

c1 = c(b2
1 I + (∇hc)T∇hc)−1(∇hc)T (b2

1 I +∇hc(∇hc)T )1/2

c̃1 = −c(b2
1 I + (∇hc)T∇hc)−1/2,

then the pair signal/observation process is written as

¨

dX t = b(X t)d t + c1(X t)dVt + c̃1

�

X t

�

dṼt

dYt =
�

Lh+ a1h
�

(X t)d t +σ(X t)dVt
. (5.1)

Hence the filtering model (5.1) is of the form (2.1).

Next, we give an example to demonstrate that for filtering problem with OU observation noise, both

discrete and continuous singularity can occur. This example is a special case of those considered by

Liu [10], so we omit the details here.

Example 5.1. Let the signal X i
t , i = 1,2, be governed by SDEs

dX i
t = σi

Æ

X i
t dBi

t ,

where σ1 and σ2 are two constants, and B1
t and B2

t are two independent one-dimensional Brownian

motions. Suppose that the observation model is

yt = X 1
t + X 2

t +Ot ,

where Ot is a real-valued OU process with a1 = b1 = 1.
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Applying the quadratic variation procedure indicated above, we see that Zt ≡ σ
2
1X 1

t + σ
2
2X 2

t is

observable. It can be proved that when σ1 = σ2, the singular filter is of continuous type. In this

case, the additional condition (IN) in Section 4 is satisfied after transforming the filtering problem

with OU noise to a singular filtering problem.

When σ1 6= σ2, the condition (IN) is not satisfied. In this case,

Z
p
t ≡ σ

2p

1 X 1
t +σ

2p

2 X 2
t , p = 1,2, · · ·

are all observable and hence the level sets are countable and the conditional distribution is of dis-

crete type.

Finally, we would like to point out that the linear filtering with OU process as the observation noise

has been studied by Liu [10]. The model is given by
¨

dX t = (b1X t + b0)d t + CdBt ,

yt = HX t +Ot ,

where Ot is the m-dimensional OU-process independent of Bt , H, b1, b0, C are matrices of dimen-

sions m× d, d × d, d × 1, d × d, respectively. It is classified to three classes (classical, continuous

singular, discrete singular) according to the ranks of some matrices determined by the coefficients

H, b1, b0, C . We refer the interested reader to the working paper [10] for detail.
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