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1. Introduction

Determinantal representations of eigenvalues are the keys for a deep under-

standing of both the global and local regimes of random matrix and random growth

models by means of orthogonal polynomials. For N ≥ 1, let

dQ(x) = dQN (x) =
1

ZN
∆N (x)2

N∏

j=1

dµ(xj), x ∈ RN , (1)

be the determinantal distribution or so-called Coulomb gas associated to a probability

measure µ on the real line such that

ZN =

∫

RN

∆N (x)2
N∏

j=1

dµ(xj) <∞

where ∆N (x) is the Vandermonde determinant

∆N (x) =
∏

1≤i<j≤N
(xj − xi).

The study of such determinanl distributions is classical investigated by the orthogonal

polynomial method (cf. [Me], [De], [Fo], [Kö]...). Denote by P`, ` ∈ N, the orthogonal

polynomials of µ (provided they exist). We agree to normalize them in L2(µ). Since,

for each `, P` is a polynomial of degree at most `, up to some normalization constant

cN , the Vandermonde determinant ∆N (x) may indeed be represented by

∆N (x) = cN det
(
P`−1(xk)

)
1≤k,`≤N . (2)

This representation allows the complete description of the marginals of Q as deter-

minantal correlation functions in terms of the kernel KN (x, y) =
∑N−1

`=0 P`(x)P`(y).

In particular, the “mean (empirical) spectral measure” E
(

1
N

∑N
i=1 δxi

)
of Q may be

described by the distribution of the Cesaro mean 1
N

∑N−1
`=0 P 2

` dµ of the orthogonal

polynomials P` of µ. Namely, by (2) and orthogonality, for every bounded measurable

function f : R → R,

∫
1

N

N∑

i=1

f(xi)dQ(x) =

∫
f
1

N

N−1∑

`=0

P 2
` dµ. (3)

Orthogonal polynomials therefore provide a strong tool for the understanding of the

associated Coulomb gas. The probability measures Q = QN are called accordingly

orthogonal polynomial ensembles (cf. [Joha1], [Joha2], [De], [Kö]).

For the choice of Gaussian, Gamma and Beta probability measures µ, the

Coulomb gas distribution (1) may be interpreted as the joint distribution of the
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eigenvalues of the Gaussian, Laguerre and Jacobi Unitary random matrix ensembles,

with associated Hermite, Laguerre and Jacobi orthogonal polynomials. This description

allows the investigation of the asymptotic behavior of the eigenvalues in both the global

and local regimes (cf. [Me], [De], [Fo], [Kö]...). In particular, limit theorems for spectral

distributions of eigenvalues may be studied by purely analytical methods with the help

of (3) (cf. [H-T], [Le]).

Recently, discrete orthogonal polynomial ensembles have been deeply investi-

gated by K. Johansson [Joha1], [Joha2] in connection with random growth models and

the Plancherel measure on partitions. In particular, K. Johansson obtained in [Joha1]

(see also [Se1]) large deviations and fluctuation properties for the rightmost charges

of the Meixner orthogonal polynomial ensemble similar to the behavior of the largest

eigenvalues of the random matrix models. In this line of investigation, we will be

interested in this work in the rescaled mean spectral measures

µ̂N = E

(
1

N

N∑

i=1

δxi/N

)
(4)

and their limiting equilibrium distributions, for the discrete Charlier, Meixner,

Krawtchouk and Hahn orthogonal polynomial ensembles. The expectation in (4) is

taken with respect to Q = QN so the the coordinates xi = xNi actually depend on

N . Following the strategy of our paper [Le] for families of orthogonal polynomials of

the continuous variable, we study spectral limits using the simple tools of integration

by parts for the associated Markov generators, differential equations on Laplace trans-

forms and moment identities for the probability densities 1
N

∑N−1
`=0 P 2

` dµ. Moment

equations may be used furthermore towards sharp small deviation inequalities on the

rightmost charges of the orthogonal polynomial ensembles at the Tracy-Widom rate.

In the first part of this work, we describe a general abstract setting to develop

integration by parts in the study of the asymptotic properties of mean spectral mea-

sures of discrete orthogonal polynomial ensembles through the representation (3). We

actually study first, by differential equations on Laplace transforms, affine transforma-

tions of distributions of the type P 2
Ndµ where PN is the N -th orthogonal polynomial

associated to µ, for the Charlier, Meixner, Krawtchouk and Hahn polynomials (with

varying coefficients). As in the continuous case, the arcsine distribution appears as a

universal limit law (cf. [M-N-T], [Le]). (Although we deal here with non-compact, dis-

crete orthogonal polynomials with varying coefficients, the approach of [M-N–T] could

still be of interest.) We furthermore investigate another regime leading, as limiting

law, to some distribution related to the Plancherel measure.

On the basis of the asymptotics of eigenfunction measures P 2
Ndµ, limiting dis-

tributions of Cesaro means 1
N

∑N−1
`=0 P 2

` dµ and the associated mean spectral measures

µ̂N may be described as mixtures of the arcsine law with an independent uniform distri-

bution. This approach provides an alternate description of the limiting mean spectral

measures of the Charlier, Meixner, Krawtchouk and Hahn ensembles, usually identified
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as equilibrium measures of weighted logarithmic potentials of orthogonal polynomials

(cf. [Joha1], [Joha3], [S-T]). These equilibrium measures have been also investigated

as asymptotic zero distributions of orthogonal polynomials (with varying coefficients)

in [D-S] and [K-VA] (cf. also the references therein). For example, the scaled mean

spectral measure µ̂N (4) of the Coulomb gas (1) with respect to the Poisson law with

parameter θ = θN ∼ hN , N → ∞, h ≥ 0, converges weakly to the law of the random

variable

2
√
hU ξ + h+ U

where ξ has the arcsine law on (−1,+1) and U is uniform on [0, 1] and independent

from ξ.

The second part of this paper is concerned with small deviation inequalities

on righmost charges. The fluctuations of rightmost charges (“largest eigenvalues”) of

discrete orthogonal polynomial ensembles may be shown to be governed, as in the

continuous case, by the Tracy-Widom distribution of the largest eigenvalue of the

Gaussian Unitary random matrix Ensemble [T-W]. As remarkably investigated by K.

Johansson [Joha1], the rightmost charge of the Meixner ensemble may actually be

interpreted in terms of shape functions. Let indeed w(i, j), i, j ∈ N, be independent

geometric random variables with parameter q, 0 < q < 1. For M ≥ N ≥ 1, set

W =W (M,N) = max
∑

(i,j)∈π
w(i, j) (5)

where the maximum runs over all up/right paths π in N2 from (1, 1) to (M,N). By

combinatorial arguments, K. Johansson [Joha1] proved that W = W (M,N) has a

Coulomb gas representation (1) with respect to the negative binomial distribution

µ
(
{x}
)
=

(γ)x
x!

qx(1− q)γ , x ∈ N,

with parameters 0 < q < 1 and γ = M −N + 1 (with associated Meixner orthogonal

polynomials) in the sense that W = W (M,N) is the rightmost charge (“largest

eigenvalue”) of Q in such a way that, for every t ≥ 0,

P
(
{W ≤ t}

)
= Q

({
max

1≤i≤N
xi ≤ t+N − 1

})
. (6)

As presented in [Joha1], this model is closely related to the one-dimensional totally

asymmetric exclusion process. It may also be interpreted as a randomly growing Young

diagram, a zero-temperature directed polymer in a random environment or a kind of

first-passage site percolation model (see also [Kö]). Provided with this representation,

asymptotics of Meixner polynomials enabled K. Johansson [Joha1] to show that, for

c ≥ 1, (some multiple of) the random variable

W
(
[cN ], N

)
− ωN

N1/3
,
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where

ω =
(1 +

√
qc )2

1− q − 1,

converges to the Tracy-Widom distribution F given by

F (s) = exp

(
−
∫ ∞

s

(x− s)u(x)2dx
)
, s ∈ R, (7)

where u(x) is the unique solution of the Painlevé equation u′′ = 2u3 + xu with the

asymptotics u(x) ∼ Ai (x) as x → ∞. In the limit as q → 1, the model covers

the fluctuation of the largest eigenvalue of the Laguerre Unitary Ensemble, studied

independently by I. Johnstone [John]. These fluctutation results are established using

the common, at this regime, Airy asymptotics of orthogonal polynomials, as used first

by C. Tracy and H. Widom themselves for the largest eigenvalue of a Gaussian unitary

random matrix [T-W]. It is a challenging question to establish the same fluctutation

result, with the same (mean)1/3 rate, for large families of distributions of the w(i, j)’s.

It was proved by T. Seppäläinen [Se1] in the simple exclusion process inter-

pretation and by K. Johansson [Joha1] in the Coulomb gas description that the shape

function W = W ([cN ], N) satisfies a large deviation principle above the mean ω.

Namely, for each c ≥ 1 and ε > 0,

lim
N→∞

1

N
logP

({
W
(
[cN ], N

)
≥ ωN(1 + ε)

})
= −J(ε) (8)

for some explicit rate function J(ε) > 0 relying on the equilibrium measure of the

Meixner orthogonal polynomial ensemble. Together with a superadditivity argument,

K. Johansson ([Joha1], Corollary 2.4) observed that the limit (8) actually yields a large

deviation estimate for every N fixed. Namely, for any N ≥ 1, c ≥ 1 and ε > 0,

P
({
W
(
[cN ], N

)
≥ ωN(1 + ε)

})
≤ e−NJ(ε). (9)

It may be checked on the explicit (but somewhat intricate) expression of the rate

function J that J(ε) ≥ C−1 min(ε3/2, ε) for some constant C > 0 depending upon

c and q. In particular, the bound (9) thus reflects the typical tail behavior of the

Tracy-Widom distribution F

C ′ e−s
3/2/C′ ≤ 1− F (s) ≤ C e−s

3/2/C

for s large.

The universality of the Meixner model shows, by appropriate scalings and the

explicit expression of the rate function J , that the deviation inequality (9) actually

covers a number of further cases of interest. For example, as q → 1, it yields a similar

deviation inequality for the largest eigenvalue of the Laguerre Unitary Ensemble. As

q = ρ
N2 , N → ∞, ρ > 0, the Meixner orthogonal ensemble has been shown in
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[Joha2] to converge to the ρ-Poissonization of the Plancherel measure on partitions.

Since the Plancherel measure is the push-forward of the uniform distribution on the

symmetric group Sn by the Robinson-Schensted-Knuth RSK-correspondence which

maps a permutation σ ∈ Sn to a pair of standard Young tableaux of the same shape, the

length of the first row is equal to the length Ln(σ) of the longest increasing subsequence

in σ. As a consequence, in this regime, for every t ≥ 0,

lim
N→∞

P
({
W (N,N) ≤ t

})
= P

(
{LN ≤ t}

)

where N is an independent Poisson random variable with parameter ρ > 0. The

orthogonal polynomial approach may then be used to produce a new proof of the

important Baik-Deift-Johansson theorem [B-D-J] on the fluctuations of Ln as

lim
n→∞

P
({
Ln ≤ 2

√
n+ n1/6s

})
= F (s), s ∈ R,

where F is the Tracy-Widom distribution (7) (cf. [Joha2]). See [A-D] for a general

presentation on the length of the longest increasing subsequence in a random permu-

tation. As a further application of this observation together with the explicit form of

the rate function J , the deviation inequality (9) also implies that, for every n ≥ 1 and

every ε > 0,

P
({
Ln ≥ 2

√
n (1 + ε)

})
≤ C exp

(
− 1

C

√
n min

(
ε3/2, ε

))
(10)

where C > 0 is numerical in accordance with the Baik-Deift-Johansson theorem. The

emphasis of inequalities (9) and (10) lies in their validity for every fixed N or n. They

also match the upper tail moderate deviation theorems of [L-M] and [B-D-ML-M-Z].

In the last section of this work, we provide a simplified approach to the

preceding non-asymptotic deviation inequalities relying on moment identities, avoiding

both the delicate large deviation asymptotics and the random growth representations

leading to the crucial superadditivity argument. With respect to the continuous setting

developed in the companion paper [Le] where recurrence equations are used to this

task, we work out here (factorial) moment identities for the Charlier, Meixner and

Krawtchouk ensembles by the integration by parts formula. These moment equations

may then be used towards small deviation inequalities at fixed size on the rightmost

charges max1≤i≤N xi of the Coulomb gas Q associated to these families of orthogonal

polynomials, covering thus, by elementary means, the above tail inequalities (9) and

(10).

2. Abstract Markov operator framework

In this section, we describe a convenient setting to develop integration by parts

methods for Markov operators to reach differential equations on Laplace transforms for
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the discrete orthogonal polynomial ensembles described in the introduction. Asymp-

totic distributions are then obtained by identifying the limiting differential equations.

If f is a function on N, set, for x ∈ N, ∆f(x) = f(x+1)−f(x). By convention,

we agree that f(−1) = 0.

Given a probability measure µ on N, assume that it satisfies for all, say, finitely

supported functions f on N, the integration by parts formula

∫
Afdµ =

∫
Bf(x+ 1)dµ =

∫
B(f +∆f)dµ (11)

for some functions A and B on N.

Assume furthermore that µ admits a finite or countable family (PN ) of

(normalized in L2(µ)) orthogonal polynomials satisfying, for each N and x, the

difference equations

BPN (x+ 1) = (A+B + CN )PN (x)−APN (x− 1) (12)

for some constants CN .

This setting conveniently includes the basic examples we have in mind. We

refer throughout this work to the general references [Sz], [Ch]..., and to [K-S], for the

basic formulas and identities on orthogonal polynomials used below.

a) The Poisson-Charlier polynomials. Let µ = µθ be the Poisson measure on

N with parameter θ > 0, that is

µθ
(
{x}
)
= e−θ

θx

x!
, x ∈ N.

Then A = x, B = θ and CN = −N .

b) The Meixner polynomials. Let µ = µγq be the so-called negative binomial

distribution on N with parameters 0 < q < 1 and γ > 0, that is

µγq
(
{x}
)
=

(γ)x
x!

qx(1− q)γ , x ∈ N,

where (γ)x = γ(γ +1) · · · (γ + x− 1), x ≥ 1, (γ)0 = 1. If γ = 1, µ is just the geometric

distribution with parameter q. Then A = x, B = q(x+ γ) and CN = −(1− q)N .

c) The Krawtchouk polynomials. Let µ = µKp be the binomial distribution on

{0, 1, . . . ,K} with parameter of success 0 < p < 1 given by

µKp
(
{x}
)
=

(
K

x

)
px(1− p)K−x, x = 0, 1 . . . ,K.

Then A = (1− p)x, B = p(K − x) and CN = −N .
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d) The Hahn polynomials. Let µ = µKα,β , α, β > −1 or α, β < −K, be the

probability measure on {0, 1, . . . ,K} defined by

µKα,β
(
{x}
)
=

(
α+ x

x

)(
β +K − x
K − x

)
K!

(α+ β + 2)K
, x = 0, 1 . . . ,K. (13)

Then A = x(K − x+ β + 1), B = (K − x)(x+ α+ 1) and CN = −N(α+ β + 1 +N).

The preceding examples turn out to be in complete analogy with the contin-

uous examples of the Hermite, Laguerre and Jacobi ensembles, leading to analogous

integration by parts formulas (cf. [Le]). In particular, it is classical (cf. [Ch], [K-S]...)

that the Poisson-Charlier and Laguerre models may be obtained in the limit from the

Meixner one, and the Hermite ensemble is a limit of the Laguerre ensemble. The

Meixner model is in turn a limit of the Hahn model, which also includes the Jacobi

polynomials. All the results presented in the next sections will be consistent with these

limits.

3. Differential equations

We use in this section the preceding general framework to derive differential

equations on Laplace transforms for the classical discrete orthogonal polynomials. The

next statement is the corresponding discrete version of the differential equations for

Laplace transforms presented in [Le], and inspired from [H-T].

In the preceding general setting, let N be fixed and consider the Laplace

transform of the measure P 2
Ndµ defined by

ϕ(λ) = ϕN (λ) =

∫
eλxP 2

Ndµ (14)

assumed to be well-defined on some open domain of the complex variable λ. For a

given polynomial

R(x) = anx
n + · · ·+ a1x+ a0

of the integer variable x, denote by

R(φ) = anφ
(n) + · · ·+ a1φ

′ + a0φ

the corresponding differential operator acting on smooth functions φ. With some abuse,

we write ∆R for the differential operator associated to ∆R.

In the next statement, we assume for simplicity that A and B are polynomials

of degree at most 2 in the variable x. This assumption covers the previous main

examples, but the general principle of the proof may be pushed to reach any finite

degree.
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Theorem 3.1. Assume that A and B are polynomials of the variable x ∈ N
of degree at most 2, and denote by T the differential operator A + B + CNI. Then

ϕ = ϕN is solution of the differential equation

eλB(A+∆A)ϕ− B(e−λAϕ)

= th
(λ
2

)
T 2ϕ+

1

2
ch−2

(λ
2

)
T ∆T ϕ− d

4
eλ/2ch−3

(λ
2

)
T ϕ

where d = ∆2A+∆2B is constant.

Proof. By the integration by parts formula (11),

Aϕ = eλ
∫
Beλx P 2

N (x+ 1)dµ.

Therefore, by (12),

B(e−λAϕ) =
∫
B2eλxP 2

N (x+ 1)dµ

=

∫ [
TPN (x)−APN (x− 1)

]2
eλxdµ

=

∫
T 2eλxP 2

Ndµ+

∫
A2eλxP 2

N (x− 1)dµ

− 2

∫
AT eλxPN (x)PN (x− 1)dµ

(15)

where T = A+B + CN . By the integration by parts formula (11) again,

∫
A2eλxP 2

N (x− 1)dµ = eλ
∫
B(A+∆A) eλxP 2

Ndµ.

In the same way,
∫
AT eλxPN (x)PN (x− 1)dµ

= eλ
∫
B(T +∆T ) eλxPN (x+ 1)PN (x)dµ

= eλ
∫
(T +∆T ) eλx

[
TPN (x)−APN (x− 1)

]
PN (x)dµ

= eλ
∫
T (T +∆T ) eλxP 2

Ndµ− eλ
∫
A(T +∆T ) eλxPN (x)PN (x− 1)dµ.

Hence,

(eλ + 1)

∫
AT eλxPN (x)PN (x− 1)dµ

= eλ
∫
T (T +∆T ) eλxP 2

Ndµ− eλ
∫
A∆T eλxPN (x)PN (x− 1)dµ.
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We make a repeated use of (11) and (12) to get that
∫
A∆T eλxPN (x)PN (x− 1)dµ

= eλ
∫
B(∆T +∆2T ) eλxPN (x+ 1)PN (x)dµ

= eλ
∫
(∆T +∆2T ) eλx

[
TPN (x)−APN (x− 1)

]
PN (x)dµ

= eλ
∫
T (∆T +∆2T ) eλxP 2

Ndµ− eλ
∫
A(∆T +∆2T ) eλx PN (x)PN (x− 1)dµ.

Since ∆2T = d, it follows that

(eλ + 1)

∫
A∆T eλxPN (x)PN (x− 1)dµ

= eλ
∫
T (∆T +∆2T ) eλxP 2

Ndµ− d eλ
∫
A eλxPN (x)PN (x− 1)dµ.

As a last step, apply again (11) and (12) to get
∫
A eλxPN (x)PN (x− 1)dµ = eλ

∫
B eλxPN (x+ 1)PN (x)dµ

= eλ
∫

eλx
[
TPN (x)−APN (x− 1)

]
PN (x)dµ

= eλ
∫
T eλxP 2

Ndµ− eλ
∫
A eλxPN (x)PN (x− 1)dµ

so that

(eλ + 1)

∫
A eλxPN (x)PN (x− 1)dµ = eλ

∫
T eλxP 2

Ndµ.

Collecting all the identities in (15) yields the conclusion. The proof of Theorem 3.1 is

complete.

4. Equilibrium measures

Provided with this general result, we analyze the limiting distributions of affine

images of P 2
Ndµ by the asymptotic differential equations as N → ∞. The main

regime is concerned with the limiting arcsine law on (−1,+1) with density 1
π
√

1−x2

with respect to Lebesgue measure (and we denote throughout this work by ξ a random

variable with this distribution). We also examine, following [Joha2], another regime

with limiting law the symmetric discrete probability measure πρ on Z with Laplace

transform J1(4
√
ρ sh(λ2 )) where J1 is the Laplace transform of ξ. It may be shown that

πρ =
∑

k∈Z

∑

n≥|k|

(−1)n−kρn
(n!)2

(
2n

n+ k

)
δk
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when ρ > 0, and π0 = δ0. While this distribution is certainly known, and related to

Bessel functions, we have not been able to properly identify it.

On the basis of this analysis, we deduce the corresponding asymptotic behavior

of the Cesaro averages 1
N

∑N−1
`=0 P 2

` dµ for the various ensembles addressed in Section 2,

as appropriate mixtures of affine transformations of the arcsine law with an independent

uniform distribution. By (3), the results are interpreted as equilibrium measures of the

(rescaled) mean spectral measures µ̂N for the corresponding Coulomb gas (1). This

description provides, as in the continuous case [Le], a new view at equilibrium measures

of the classical orthogonal polynomial ensembles (with varying coefficients). For

characterizations as minimizers of logarithmic potentials of the orthogonal polynomials

cf. [Joha1], [Joha3], [S-T]. Alternate descriptions as asymptotic zero distributions of

orthogonal polynomials are provided in [D-S], [K-VA].

We turn to our examples of interest.

a) The Poisson-Charlier polynomials. Let thus µ = µθ be the Poisson measure

of parameter θ > 0, and denote by PN , N ∈ N, the normalized (in L2(µ)) Poisson-

Charlier orthogonal polynomials for µθ. Part ii) has to be compared to Theorem 1.6

of [Joha2].

Proposition 4.1. Let XN = Xθ
N be a random variable on N with distribution

P 2
Ndµ

θ. Then E(XN ) = θ +N .

i) If θN →∞ as N →∞, then

XN − (θ +N)

2
√
θN

converges weakly to the arcsine law on (−1,+1). In particular, if θ = θN ∼ hN ,

N →∞, h ≥ 0, XN/N converges weakly to uξ + v where u2 = 4h and v = h+ 1.

ii) If θN → ρ ≥ 0, N →∞, then XN − (θ +N) converges weakly to πρ.

Proof. By the recurrence relation

xPN = −
√
θ
√
N + 1PN+1 + (θ +N)PN −

√
θ
√
N PN−1

of the Poisson-Charlier orthogonal polynomials, it immediately follows that

E(XN ) =

∫
xP 2

Ndµ
θ = θ +N.

According to Theorem 3.1, ϕ = ϕN the Laplace transform (14) of P 2
Ndµ

θ

satisfies the differential equation in λ ∈ C,

a2(λ)ϕ
′′ + a1(λ)ϕ

′ + a0(λ)ϕ = 0
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where

a2(λ) = th
(λ
2

)
,

a1(λ) = 2(θ −N) th
(λ
2

)
+

1

2
ch−2

(λ
2

)
− 2θ sh(λ),

a0(λ) = (θ −N)2th
(λ
2

)
+

1

2
(θ −N)ch−2

(λ
2

)
− θ eλ.

Let vN = θ + N and denote by ψ(λ) = ψN (λ) = e−λvNϕN (λ) the Laplace

transform of the centered random variable XN − vN . Then ψ solves the differential

equation

a2(λ)ψ
′′ +

[
2vNa2(λ) + a1(λ)

]
ψ′ +

[
v2
Na2(λ) + vNa1(λ) + a0(λ)

]
ψ = 0. (16)

We have

2vNa2(λ) + a1(λ) = 4θ th
(λ
2

)
+

1

2
ch−2

(λ
2

)
− 2θ sh(λ)

and

v2
Na2(λ) + vNa1(λ) + a0(λ) = 4θ2 th

(λ
2

)
+ θ ch−2

(λ
2

)
− 2θ(θ +N) sh(λ)− θ eλ.

As θN → ρ ≥ 0, the limiting differential equation is given by

th
(λ
2

)
Ψ′′ +

1

2
ch−2

(λ
2

)
Ψ′ − 2ρ sh(λ)Ψ = 0,

that is

sh(λ)Ψ′′ +Ψ′ − 4ρ sh(λ) ch2
(λ
2

)
Ψ = 0. (17)

The Laplace transform J1 of the arcsine law on (−1,+1) solves the differential equation

λJ ′′1 + J ′1 − λJ1 = 0 (cf. [Le]). By a change of variables, J1(4
√
ρ sh(λ2 )) satisfies

(17). Now, it is easily checked that J1(4
√
ρ sh(λ2 )) is the Laplace transform of πρ. To

justify the weak convergence, the moment recurrence relations for the Poisson-Charlier

polynomials (see for example Lemma 5.1 below) may be used to show that, for example,

supN E([XθN

N − vN ]4) < ∞, θ = θN ∼ hN , h ≥ 0. Extracting a weakly convergent

subsequence, along the imaginary axis, the Fourier transform ψ, as well as its first and

second derivative, converge pointwise as N →∞ to, respectively, Ψ, Ψ′ and Ψ′′. Part
ii) of the proposition thus follows.

When θN → ∞, change λ into ελ, ε → 0, to get that ψ(ε)(λ) = ψ(ελ) solves

the differential equation

λψ(ε)′′ + ψ(ε)′ −
[
(4N + 2) + θε2λ2

]
θε2λψ(ε) + o(ε) = 0

where o(ε) means tending to 0 as θε2 ∼ 1. As ε = (4θN)−1/2 → 0, N →∞,

λΨ′′ +Ψ′ − λΨ = 0,
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that is the differential equation satisfied by the Laplace transform J1 of the arcsine

distribution on (−1,+1). We conclude as in the previous case. Proposition 4.1 is thus

established.

As a corollary, we describe the limiting equilibrium distribution of the mean

spectral measure µ̂N = E
(

1
N

∑N
i=1 δxi/N

)
of the Poisson orthogonal polynomial

ensembles as a mixture of the arcsine law with an independent uniform distribution.

The result is in complete analogy with the continuous setting [Le].

Corollary 4.2. Let QN be the Coulomb gas distribution (1) associated to the

Poisson measure µθ with parameter θ > 0. As θ = θN ∼ hN , N → ∞, h ≥ 0, µ̂N

converges weakly to 2
√
hUξ + h+U where ξ has the arcsine law on (−1,+1) and U is

uniform on [0, 1] and independent from ξ.

It is worthwhile mentioning that
√
U ξ is distributed according to the semicircle

law on (−1,+1) so that the law of 2
√
hUξ+ h+U may be considered as a generalized

semicircle distribution. In the classical limit (cf. [Ch], [K-S] from the Poisson-Charlier

ensemble to the Hermite ensemble, we effectively recover the semicircle law. Its density

may be obtained explicitely as

1

2
− 1

π
arcsin

(
x+ h− 1

2
√
hx

)

on the interval [(
√
h− 1)2, (

√
h+ 1)2] provided that h > 1, whereas when h ≤ 1 there

is an extra piece equal to 1 on the interval [0, (
√
h− 1)2] (compare [K-VA]).

Proof. We argue as in the proof of Proposition 4.2 of [Le]. Let Xθ
N be random

variables with law (P θ
N )

2
dµθ where µθ is the Poisson measure with parameter θ > 0

and P θ
N is the N -th Poisson-Charlier orthogonal polynomial for µθ. For f : R → R

bounded and continuous, write

∫
f
( x
N

) 1

N

N−1∑

`=1

(P θN

` )2dµθN =
1

N

N−1∑

`=1

∫
f

(
`

N
· x
`

)
(P θN

` )2dµθN

=

∫ 1

1/N

E

(
f

(
UN (t) ·

XθN

NUN (t)

NUN (t)

))
dt

where UN (t) = `/N for `/N < t ≤ (` + 1)/N , ` = 0, 1, . . . , N − 1 (UN (0) = 0). Since

UN (t)→ t, t ∈ [0, 1], and by Proposition 4.1 i), Xθ
N/N converges weakly to 2

√
h ξ+h+1

as θ = θN ∼ hN , N →∞, h ≥ 0, it follows that

lim
N→∞

∫
f
( x
N

) 1

N

N−1∑

`=0

(P θN

` )2dµθN = E

(
f

(
U

[
2

√
h

U
ξ +

h

U
+ 1

]))

= E
(
f
(
2
√
hU ξ + h+ U

))
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where U is uniform on [0, 1] and independent from ξ. Together with (3), the claims

follows. The proof of Corollary 4.2 is complete.

b) The Meixner polynomials. Here µ = µγq denotes the negative binomial law

with parameters 0 < q < 1 and γ > 0, and PN , N ∈ N, are the normalized (in L2(µ))

Meixner orthogonal polynomials for µγq . As for the Poisson-Charlier case, we deduce

the following result.

Proposition 4.3. LetXN be a random variable on N with distribution P 2
Ndµ

γ
q .

Then E(XN ) = vN where

vN =
N + q(γ +N)

1− q .

i) If γ = γN ∼ c′N , N → ∞, c′ ≥ 0, and q is fixed, then XN/N converges

weakly to uξ + v where

u2 =
4q(c′ + 1)

(1− q)2 and v =
1 + q(c′ + 1)

1− q .

ii) If γ = γN ∼ c′N , N →∞, c′ ≥ 0, and qN2 → ρ ≥ 0, N →∞,then XN −vN
converges weakly to π(1+c′)ρ.

Proof. By the recurrence relation

(1− q)xPN = −√q
√
γ +N

√
N + 1PN+1 +

[
N + q(γ +N)

]
PN

−√q
√
γ +N − 1

√
N PN−1

of the Meixner orthogonal polynomials, it immediately follows that

E(XN ) =

∫
xP 2

Ndµ
γ
q = vN .

According to Theorem 3.1, ϕ = ϕN the Laplace transform (14) of P 2
Ndµ

γ
q

satisfies the differential equation in λ ∈ C such that Re (λ) < log 1
q ,

a2(λ)ϕ
′′ + a1(λ)ϕ

′ + a0(λ)ϕ = 0

where

a2(λ) = (1 + q)2th
(λ
2

)
− 2q shλ,

a1(λ) = 2(1 + q)
[
qγ − (1− q)N

]
th
(λ
2

)
+

(1 + q)2

2
ch−2

(λ
2

)
− 2qγ shλ− 2q chλ,

a0(λ) =
[
qγ − (1− q)N

]2
th
(λ
2

)
+

(1 + q)

2

[
qγ − (1− q)N

]
ch−2

(λ
2

)
− qγ eλ.
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Denote by ψ(λ) = ψN (λ) = e−λvNϕN (λ) the Laplace transform of the centered

random variable XN − vN . Then ψ satisfies the differential equation (16). It is easily

checked that, as qN2 → ρ, N →∞, for every λ fixed,

2vNa2(λ) + a1(λ) =
1

2
ch−2

(λ
2

)
+ o(N)

while

v2
Na2(λ) + vNa1(λ) + a0(λ) = −2(1 + c′)ρ sh(λ) + o(N).

Hence, the limiting differential equation is given, as in the Poisson case, by

sh(λ)Ψ′′ +Ψ′ − 4(1 + c′)ρ sh(λ)ch2
(λ
2

)
Ψ = 0.

The conclusion follows similarly.

When γN → ∞ with q fixed, change λ into ελ, ε → 0, to get that

ψ(ε)(λ) = ψ(ελ) solves the differential equation

λψ(ε)′′ + ψ(ε)′ − q

(1− q)2
[
(4N + 2) +

q

(1− q)2 γε
2λ2
]
γε2λψ(ε) + o(ε) = 0

where o(ε) means tending to 0 as γε2 ∼ 1. We then conclude as for Proposition 4.1.

The following corollary on the equilibrium measure µ̂N = E
(

1
N

∑N
i=1 δxi/N

)
of

the Meixner ensemble is established as in the Poisson case.

Corollary 4.4. Let QN be the Coulomb gas distribution (1) associated to the

negative binomial law µγq with parameters 0 < q < 1 and γ > 0. As γ = γN ∼ c′N ,

N →∞, c′ ≥ 0, µ̂N converges weakly to

2

1− q
√
qU(c′ + U) ξ +

1

1− q
[
U + q(c′ + U)

]

where ξ has the arcsine law on (−1,+1) and U is uniform on [0, 1] and independent

from ξ.

According to the description of the Marchenko-Pastur law in [Le], the law

that appears in Corollary 4.4 may be considered as a generalized Marchenko-Pastur

distribution. In the limit as q → 1 from the Meixner ensemble to the Laguerre ensemble,

we effectively recover a Marchenko-Pastur law. The density of this distribution is

explicitely given in [Joha1]. Compare also [K-VA].

c) The Krawtchouk polynomials. Let µ = µKp be the binomial distribution on

{0, 1, . . . ,K} with parameter of success 0 < p < 1 and denote by PN , 0 ≤ N ≤ K, the

normalized (in L2(µ)) Krawtchouk orthogonal polynomials for µKp . The corresponding

result is obtained by the formal change γ = −K and q = − p
1−p in the Meixner ensemble.
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Of course, this may be justified by carefully reproducing the various steps of the proof

of Proposition 4.3.

Proposition 4.5. Let XN be a random variable on N with distribution

P 2
Ndµ

K
p . Then E(XN ) = vN where

vN = (1− 2p)N + pK.

i) If K = KN ∼ κN , N → ∞, κ ≥ 1, and p is fixed, then XN/N converges

weakly to uξ + v where

u2 = 4p(1− p)(κ− 1) and v = p(κ− 1) + 1− p.

ii) If K = KN ∼ κN , N → ∞, κ ≥ 1, and pN2 → ρ ≥ 0, N → ∞, then

XN − vN converges weakly to π(κ−1)ρ.

Corollary 4.6. Let QN be the Coulomb gas distribution (1) associated to

the binomial law µKp on {0, 1, . . . ,K} with parameter of success 0 < p < 1. As

K = KN ∼ κN , N →∞, κ ≥ 1, µ̂N converges weakly to

2
√
p(1− p)U(κ− U) ξ + p(κ− U) + (1− p)U

where ξ has the arcsine law on (−1,+1) and U is uniform on [0, 1] and independent

from ξ.

d) The Hahn polynomials. Let µ = µKα,β be the distribution (13), and denote

by PN , 0 ≤ N ≤ K, the normalized (in L2(µ)) Hahn orthogonal polynomials for µKα,β .

Let ϕ = ϕN be the Laplace transform (14) of P 2
Ndµ

K
α,β . According to Theorem 3.1, ϕ

satisfies a differential equation of the fourth order. In the limits however, this equation

is turned into a second order equation similar to the ones of the preceding statements.

The result is the following. We skip the somewhat tedious details of the proof, and

furthermore only examine the first regime.

Proposition 4.7. Let XN be a random variable on N with distribution

P 2
Ndµ

K
α,β . Then E(XN ) = vN where

vN =
(α+ β +N + 1)(α+N + 1)(K −N)

(α+ β + 2N + 1)(α+ β + 2N + 2)
+

(α+ β +K +N + 1)(β +N)N

(α+ β + 2N)(α+ β + 2N + 1)
.

If K = KN ∼ κN , N → ∞, κ ≥ 1, α = αN ∼ aN , β = βN ∼ bN , N → ∞,

a, b ≥ 0 or a, b ≤ −κ, then XN/N converges weakly to uξ + v where

v = v(a, b, κ) =
(a+ b+ 1)(a+ 1)(κ− 1) + (a+ b+ κ+ 1)(b+ 1)

(a+ b+ 2)2
,

u2 = u2(a, b, κ) =
2(a+ b+ κ+ 1)(b+ 1)

(a+ b+ 1)(a+ 1)(κ− 1)(a+ b+ 2)4

×
[
(a+ b+ 1)2(a+ 1)2(κ− 1)2 + (a+ b+ κ+ 1)2(b+ 1)2

]
.
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Corollary 4.8. Let QN be the Coulomb gas distribution (1) associated to the

distribution (13) on {0, 1, . . . ,K} with parameters α and β, α, β > −1 or α, β < −K.

As K = KN ∼ κN , α = αN ∼ a, β = βN ∼ b, N → ∞, κ ≥ 1, a, b ≥ 0 or a, b ≤ −κ,
µ̂N converges weakly to

U u
( a
U
,
b

U
,
κ

U

)
ξ + U v

( a
U
,
b

U
,
κ

U

)

where ξ has the arcsine law on (−1,+1) and U is uniform on [0, 1] and independent

from ξ.

In the presentation of [Le], the law that appears in Corollary 4.8 may be

considered as a generalized form of the equilibrium measures for the Jacobi Unitary

Ensemble [Fo], [C-C], [Co]. In the limit as κ → ∞ from the Hahn ensemble to the

Jacobi ensemble, we effectively recover these measures. Compare also [K-VA].

5. Moment identities and small deviation inequalities

In the second part of this work, we develop the integration by parts strategy

to examine the deviation inequalities (9) and (10) for the random growth function

W ([cN ], N) and the length Ln of the longest increasing subsequence in a random

permutation. We namely derive expressions for the (factorial) moments of the mean

spectral measures of the preceding discrete orthogonal polynomial ensembles from

which the small deviation bounds on the rightmost charges of the associated Coulomb

gas at the appropriate Tracy-Widom asymptotics may easily be deduced. The approach

may be seen as an alternate direct argument for results that may be drawn for the earlier

investigation by K. Johansson [Joha1] using large deviation principles together with

superadditivity of random growth functions.

We only deal here with the Poisson-Charlier and Meixner ensembles. In

particular, we have not been able so far to study similarly the Hahn ensemble, due to

the lack of explicit generating functions for the corresponding orthogonal polynomials.

Lemma 5.1. Let µ = µθ be the Poisson measure on N with parameter θ > 0,

and denote by P`, ` ∈ N, the normalized (Poisson-Charlier) orthogonal polynomials for

µθ. Then, for every integer k,

∫
x(x− 1) · · · (x− k + 1)

1

N

N−1∑

`=0

P 2
` dµ

θ

=
k∑

i=0

θk−i
(
k

i

)2
1

N

N−1∑

`=i

`(`− 1) · · · (`− i+ 1).

Proof. By the integration by parts formula (11), for any, say, polynomial
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function f on N, ∫
xfdµθ = θ

∫
f(x+ 1)dµθ. (18)

For every x ∈ N and every ` ≥ 1,

P`(x+ 1) = P`(x) +

√
`

θ
P`−1(x).

Iterating, for every x ∈ N, k ≥ 1 and ` ≥ 1,

P`(x+ k) =
k∧∑̀

i=0

θ−i/2
(
k

i

)[
`(`− 1) · · · (`− i+ 1)

]1/2
P`−i(x).

Now, by (18), for every ` ∈ N and k ≥ 1,

∫
x(x− 1) · · · (x− k + 1)P 2

` dµ
θ = θk

∫
P 2
` (x+ k)dµθ.

Hence, by orthogonality,

∫
x(x− 1) · · · (x− k + 1)P 2

` dµ
θ =

k∧∑̀

i=0

θk−i
(
k

i

)2

`(`− 1) · · · (`− i+ 1).

The conclusion follows.

Note that Lemma 5.1 may be used to recover Corollary 4.2. In particular, one

may observe for further purposes that, from the proof of Lemma 5.1, if XN = Xθ
N is

a random variable with distribution P 2
Ndµ

θ, and if θ = θN ∼ hN , N →∞, h ≥ 0, for

every fixed k,

lim
N→∞

1

Nk
E
((
XN

)k)
=

k∑

i=0

hk−i
(
k

i

)2

.

On the other hand, we know from Proposition 4.1 that the limiting distribution of

XN/N is uξ+v where ξ has the arcsine distribution on (−1,+1) and u2 = 4h, v = h+1.

Therefore, for every h ≥ 0 and every k ∈ N,

E
(
[uξ + v]k

)
=

k∑

i=0

hi
(
k

i

)2

(19)

for u2 = 4h and v = h+ 1.

The next lemma describes the corresponding moment identities for the Meixner

polynomials.
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Lemma 5.2. Let µ = µγq be the negative binomial distribution on N with

parameters 0 < q < 1 and γ > 0, and denote by P` = P γ
` , ` ∈ N, the normalized

(Meixner) orthogonal polynomials for µγq . Then, for every integer k,

∫
x(x− 1) · · · (x− k + 1)

1

N

N−1∑

`=0

P 2
` dµ

γ
q

=
( q

1− q
)k k∑

i=0

q−i
(
k

i

)2
1

N

N−1∑

`=i

(γ + `)k−i ` !
(`− i)! .

Proof. We make use of the integration by parts formula (11) to obtain that,

for any, say, polynomial function f on N,

∫
xfdµγq =

γq

1− q

∫
f(x+ 1)dµγ+1

q . (20)

For every x ∈ N and every ` ≥ 1,

P γ
` (x+ 1) = P γ

` (x) + (q − 1)

√
`

qγ
P γ+1
`−1 (x).

Iterating, for every x ∈ N, k ≥ 1 and ` ≥ 1,

P γ
` (x+ k) =

k∧∑̀

i=0

(q − 1√
q

)i(k
i

)[
(γ)i

]−1/2 [
`(`− 1) · · · (`− i+ 1)

]1/2
P γ+i
`−i (x).

Now, by (20), for every ` ∈ N and k ≥ 1,

∫
x(x− 1) · · · (x− k + 1)

(
P γ
`

)2
dµγq =

( q

1− q
)k

(γ)k

∫
P γ
` (x+ k)2dµγ+k

q .

Hence, by orthogonality,

∫
x(x− 1) · · · (x−k + 1)

(
P γ
`

)2
dµγq

=
( q

1− q
)k

(γ)k

k∧∑̀

i,j=0

(q − 1√
q

)i+j
(
k

i

)(
k

j

)[
(γ)i(γ)j

]−1/2

×
[ ` !

(`− i)! ·
` !

(`− j)!
]1/2 ∫

P γ+i
`−i P

γ+j
`−j dµ

γ+k
q .

To make use of this identity, we need to evaluate the integrals

∫
P γ+i
`−i P

γ+j
`−j dµ

γ+k
q .

1134



To this task, we use the generating function of the Meixner polynomials given by

(
1− λ

q

)x
(1− λ)−(x+γ) =

∞∑

n=0

√
(γ)n
n!

P γ
n (x)

( λ√
q

)n
, λ < q.

Using the identity
∫ (

1− λ

q

)x
(1− λ)−(x+γ+i)

(
1− λ′

q

)x
(1− λ′)−(x+γ+j)dµγ+k

q

= (1− λ)k−i(1− λ′)k−j
∫ [(

1−
√
λλ′

q

)x(
1−

√
λλ′

)−(x+γ+k)
]2
dµγ+k

q

for λ, λ′ < q, it is easily checked, identifying the series coefficients, that for every

n,m ∈ N,

(
(γ + i)n(γ + j)m

n!m!

)1/2∫
P γ+i
n P γ+j

m dµγ+k
q

=
∑

(a,b)∈I

(
k − i
a

)(
k − j
b

)(
−√q

)a+b (γ + k)n−a
(n− a)!

where

I =
{
(a, b) ∈ N2; 0 ≤ a ≤ (k − i) ∧ n, 0 ≤ b ≤ (k − j) ∧m,n− a = m− b

}
.

Hence, for n = `− i, m = `− j,
(
(γ + i)`−i(γ + j)`−j

(`− i)!(`− j)!

)1/2∫
P γ+i
`−i P

γ+j
`−j dµ

γ+k
q

=
k∧∑̀

r=i∨j

(
k − i
r − i

)(
k − j
r − j

)(
−√q

)2r−(i+j) (γ + k)`−r
(`− r)! .

After some work, it follows that

∫
x(x− 1) · · · (x− k + 1)

(
P γ
`

)2
dµγq =

( q

1− q
)k k∧∑̀

r=0

q−r
(
k

r

)2
(γ + `)k−r ` !

(`− r)! .

The conclusion follows.

As in the Poisson case, Lemma 5.2 may be used to recover Corollary 4.4.

As announced, we now draw from the moment identities of Lemmas 5.1 and

5.2 non-asymptotic bounds on the tail distributions of the measures 1
N

∑N−1
`=0 P 2

` dµ.

By (3), if Q = QN has the Coulomb gas distribution (1), for every t,

Q
({

max
1≤i≤N

xi ≥ t
})
≤
∫ N∑

i=1

1{xi≥t}dQ(x) =

∫ ∞

t

N−1∑

`=0

P 2
` dµ. (21)
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The rightmost charge under the Coulomb gas Q may thus be estimated by bounds on

the tail of the distribution 1
N

∑N−1
`=0 P 2

` dµ. To this task, the moment identities put

forward will prove tight enough to obtain sharp deviation inequalities. These are used

to produce sharp estimates, for fixed N , on the random growth functions W described

in the introduction, as well as on the distribution of the longest increasing subsequence

in a random partition, at the rate given by the Tracy-Widom asymptotics. Below, we

carefully examine the various regimes on the Poisson-Charlier ensemble. The Meixner

(and Krawtchouk) ensemble is discussed next, with however fewer details.

a) The Poisson-Charlier ensemble. Let Y = YN be a random variable with

distribution with density 1
N

∑N−1
`=0 P 2

` with respect to the Poisson measure µ = µθ

with parameter θ > 0, As announced, we bound above, for fixed N , the probability

P({Y ≥ t}) according to the various regimes of the parameter θ.

By Lemma 5.1, for any integer t ≥ k ≥ 1 and any N > k ≥ 1,

P
(
{Y ≥ t}

)
≤ 1

t(t− 1) · · · (t− k + 1)

∫
x(x− 1) · · · (x− k + 1)

1

N

N−1∑

`=0

P 2
` dµ

θ

≤ (t− k)!
t!

k∑

i=0

θk−i
(
k

i

)2
1

N

N−1∑

`=i

` !

(`− i)! .

By Stirling’s asymptotics, there is a numerical constant C ≥ 1 such that for

integers w, z with 1 ≤ w ≤ z/C,

1

Czw
eB(w,z) ≤ (z − w)!

z!
≤ C

zw
eB(w,z) (22)

where

B(w, z) =
∑

n≥1

1

n(n+ 1)

wn+1

zn
.

Hence, for 1 ≤ k ≤ N/C,

P
(
{Y ≥ t}

)
≤ a0 +

C

tk
· 1

N

N−1∑

`=1

`k
k∑

i=0

(θ
`

)k−i(k
i

)2

eB(k,t)−B(i,N)

where a0 = Cθk

Ntk
eB(k,t) and where C > 0 is a large enough numerical constant possibly

varying from line to line below.

Set now

ω′N =

(
1 +

√
θ

N

)2

(≥ 1)
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and assume that t ≥ ω′NN . Then, for every i ≤ k ≤ N/C,

B(k, t)−B(i,N) ≤ 1

2N

[ k2

ω′N
− i2

]
+
∑

n≥2

1

n(n+ 1)
· 1

ω′N
nNn

[kn+1 − in+1]

≤ (k − i)k√
ω′N N

−
√
ω′N − 1

ω′N
· k

2

N
+ (k − i)

∑

n≥2

1

n
· kn

ω′N
nNn

≤ (k − i)
(

k√
ω′N N

+
k2

ω′NN
2

)
−
√
ω′N − 1

ω′N
· k

2

N
.

Therefore, for ` ≥ 1,

k∑

i=0

(θ
`

)k−i(k
i

)2

eB(k,t)−B(i,N) ≤ exp

(
−
√
ω′N − 1

ω′N
· k

2

N

) k∑

i=0

dk−i
(
k

i

)2

where

d = d` =
θ

`
e

k√
ω′

N
N

+ k2

ω′
N

N2

.

Clearly
k∑

i=0

dk−i
(
k

i

)2

≤
(
1 +

√
d
)2k

that takes care of the main exponential estimate. However, in order to take into

account some polynomial factors, a somewhat improved bound is helpful. To this task

it is convenient to observe that, by (19),

k∑

i=0

dk−i
(
k

i

)2

= E
([

2
√
d ξ + 1 + d

]k)

where ξ has the arcsine distribution on (−1,+1). Now, for every j ≥ 0,

E(ξ2j+1) = 0, E(ξ2j) =
(2j)!

22j(j!)2
≤ C√

j + 1
,

so that

E
([

2
√
d ξ + 1 + d

]k)
=

k∑

j=0

(
k

j

)(
2
√
d
)jE(ξj)(1 + d)k−j

≤ 2C
k∑

j=0

1√
j + 1

(
k

j

)(
2
√
d
)j
(1 + d)k−j

≤ 2C
(
1 +

√
d
)2k k∑

j=0

1√
j + 1

(
k

j

)
pj(1− p)k−j
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where

p = p` =
2
√
d

(1 +
√
d )2

.

A simple binomial estimate shows that

k∑

i=0

1√
j + 1

(
k

j

)
pj(1− p)k−j ≤ C√

pk

so that finally
k∑

i=0

dk−i
(
k

i

)2

≤ C√
pk

(
1 +

√
d
)2k

.

Summarizing,

P
(
{Y ≥ t}

)
≤ a0 +

C

tk
exp

(
−
√
ω′N − 1

ω′N
· k

2

N

)
1

N

N−1∑

`=1

`k√
p`k

(
1 +

√
d`
)2k

. (23)

Now,

p` ≥
1

C
min

(√
`

θ
,

√
θ

`

)
.

On the other hand,

1

N

N−1∑

`=1

( `
N

)k± 1
4 (
1 +

√
d`
)2k

=
1

N

N−1∑

`=1

( `
N

)± 1
4

(√
`

N
+

√
θ

N
e

k

2
√

ω′
N

N
+ k2

2ω′
N

N2

)2k

≤ C

k

(
1 +

√
θ

N
e

k

2
√

ω′
N

N
+ k2

2ω′
N

N2

)2k

,

while

1

ω′N
k

(
1 +

√
θ

N
e

k

2
√

ω′
N

N
+ k2

2ω′
N

N2

)2k

=

(
1 +

√
ω′N − 1√
ω′N

(
e

k

2
√

ω′
N

N
+ k2

2ω′
N

N2

− 1

))2k

≤ exp

(√
ω′N − 1√
ω′N

(
k2

√
ω′NN

+
Ck3

ω′NN
2

))
.

As a consequence of the preceding and of (23), for k ≤ N/C,

P
(
{Y ≥ t}

)
≤ a0 +

C

k3/2
max

( θ
N
,
N

θ

)1/4(ω′NN
t

)k
exp

(√
ω′N − 1√
ω′N

· Ck3

ω′NN
2

)
.

Choose now t = [ω′NN + r], r ≥ 1. Together with (21), we finally get that for

every θ > 0, N ≥ 1, r ≥ 1 and 1 ≤ k ≤ N/C, where C > 0 is numerical,

QN
({

max
1≤i≤N

xi ≥ ω′NN + r
})

≤ Na0 +
CN

k3/2
max

( θ
N
,
N

θ

)1/4
(

N

[ω′NN + r]

)k

exp

(√
ω′N − 1√
ω′N

· Ck3

ω′NN
2

)
.

(24)

1138



We now distinguish between the various regimes of θ.

When θN → ρ > 0 as N → ∞, it has been shown by K. Johansson [Joha2]

that the Poisson-Charlier ensemble converges to the Poissonization of the Plancherel

measure on partitions. In particular,

lim
N→∞

QN
({

max
1≤i≤N

xi ≥ N − 1 + t
})

= P
(
{LN ≥ t}

)

where Ln(σ) is the length of the longest increasing subsequence in a random per-

mutation σ of size n, and where N is an independent Poisson random variable with

parameter ρ > 0. Setting k = δN , δ > 0 small enough, and r = 2
√
ρ ε ≥ 1, in the limit

as N →∞ we conclude from (24) that

P
({
LN ≥ 2

√
ρ (1 + ε)

})
≤ C

(
√
ρ δ3)1/2

e−2
√
ρ εδ+C

√
ρ δ3 .

Optimizing in δ > 0 shows that, for any ρ ≥ 1, any 0 < ε ≤ 1 and some numerical

constant C > 0,

P
({
LN ≥ 2

√
ρ (1 + ε)

})
≤ C e−

√
ρ ε3/2/C .

Now, for ρ ≥ 1 integer, since P({Ln ≥ t}) is increasing in n,

P
({
LN ≥ 2

√
ρ (1 + ε)

})
=

∞∑

n=0

e−ρ
ρn

n!
P
({
Ln ≥ 2

√
ρ (1 + ε)

})

≥
( ∞∑

n=ρ

e−ρ
ρn

n!

)
P
({
Lρ ≥ 2

√
ρ (1 + ε)

})

≥ 1

C
P
({
Lρ ≥ 2

√
ρ (1 + ε)

})
.

We thus conclude to the following small deviation version of (10).

Proposition 5.3. Let Ln(σ) be the length of the longest increasing subse-

quence in a permutation σ of size n taken at random uniformly on the symmetric

group Sn. For any n ≥ 1 and 0 < ε ≤ 1,

P
({
Ln ≥ 2

√
n (1 + ε)

})
≤ C e−

√
n ε3/2/C

where C > 0 is numerical.

The second case of interest concerns the regime θ = θN ∼ hN , N → ∞,

h ≥ 0, for which we described in the preceding section the asymptotic behavior of the

mean spectral measure. As we have seen there, whenever θ = θN ∼ hN , N → ∞,

h ≥ 0, we know from Corollary 4.2 that YN/N converges weakly to 2
√
hU ξ + h + U .

Together with (24) we bound above the probability that YN/N exceeds the right
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endpoint ω′ = 2
√
h + h + 1 = (1 +

√
h )2 of the support of 2

√
hU ξ + h + U . This

result may also be seen as a consequence of (9) in the limit from the Meixner ensemble

to the Poisson-Charlier ensemble.

Proposition 5.4. Let Q = QN be the Coulomb gas with respect to the Poisson

measure with parameter θ > 0. Assume that θ = hN , h > 0, and set

ω′ =
(
1 +

√
h
)2
.

Then, for every N ≥ 1 and 0 < ε ≤ 1,

Q
({

max
1≤i≤N

xi ≥ ω′N(1 + ε)
})
≤ C e−Nε3/2/C

where C > 0 only depends on h > 0.

Recall that under the distribution QN , the coordinates xi = xNi , 1 ≤ i ≤ N ,

depend on N . Let us consider then max1≤i≤N
xN

i

N , N ≥ 1, as a sequence of random

variables on some probability space with respective distributions QN , N ≥ 1. When

θ = θN ∼ hN , N → ∞, h ≥ 0, we deduce from the preceding and the Borel-Cantelli

lemma that

lim sup
N→∞

max
1≤i≤N

xNi
N
≤ ω′ =

(
1 +

√
h
)2

almost surely. The following corollary indicates that it is a true limit. The result is

of course in analogy with the (almost sure) convergence of the largest eigenvalue of

random matrices to the right endpoint of the support of the equilibrium measure.

Corollary 5.5. Under the preceding notation,

lim
N→∞

max
1≤i≤N

xNi
N

=
(
1 +

√
h
)2

almost surely.

Proof. For simplicity, we write xi instead of xNi . By the preceding and the

Borel-Cantelli lemma, it is enough to show that for every ε > 0 small enough,
∑

N

QN
({

max
1≤i≤N

xi ≤ N(ω′ − ε)
})

<∞. (25)

Now,

QN
({

max
1≤i≤N

xi ≤ N(ω′ − ε)
})

= P

({
1

N

N∑

i=1

1xi≤N(ω′−ε) ≥ 1

})
.

Let f be the Lipschitz function which is equal to 1 on (−∞, ω′ − ε], to 0 on [ω′,+∞),

and linear in between. Then, since the law of 2
√
hU ξ+h+U is absolutely continuous

on [0, ω′],

E
(
f
(
2
√
hU ξ + h+ U

))
< 1.
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Hence, by Proposition 4.1, for some N0 large enough and some 0 < η < 1,

E

(
1

N

N∑

i=1

f
(xi
N

))
≤ 1− η

for all N ≥ N0. Therefore,

QN
({

max
1≤i≤N

xi ≤ N(ω′ − ε)
})
≤ QN

({
1

N

N∑

i=1

f
(xi
N

)
− E

(
1

N

N∑

i=1

f
(xi
N

))
≥ η

})
.

We now make use of the following elementary lemma.

Lemma 5.6. Let F : RN → R be a Lipschitz function such that
∫
FdQN = 0.

Then

sup
N

1

N6

∫
F 4dQN ≤ 8 ‖F‖4Lip sup

N

∫
1

N

N∑

i=1

(xi
N

)4

dQN .

Proof. By Jensen’s inequality and the mean zero hypothesis,
∫
F 4dQN ≤

∫ ∫ ∣∣F (x)− F (y)
∣∣4dQN (x)dQN (y).

Hence, for each N ,
∫
F 4dQN ≤ ‖F‖4Lip

∫ ∫
|x− y|4dQN (x)dQN (y) ≤ 8 ‖F‖4Lip

∫ ∫
|x|4dQN .

By Cauchy-Schwarz,

|x|4 =

( N∑

i=1

x2
i

)2

≤ N
N∑

i=1

x4
i

from which the conclusion follows.

Apply now this lemma to the Lipschitz function

F (x) =
1

N

N∑

i=1

f
(xi
N

)
−
∫

1

N

N∑

i=1

f
(xi
N

)
dQN , x = (x1, . . . , xN ) ∈ RN ,

for which ‖F‖Lip ≤ N−2‖f‖Lip. Together with the preceding, we get, for every N ≥ 1,

QN
({

max
1≤i≤N

xi ≤ N(ω′ − ε)
})
≤

8‖f‖4Lip

η4N2
sup
N

∫
1

N

N∑

i=1

(xi
N

)4

dQN .

Following Section 4,

lim
N→∞

∫
1

N

N∑

i=1

(xi
N

)4

dQN = E
([

2
√
hU ξ + h+ U

]4)
<∞.
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Hence (25) holds, and the proof of Corollary 5.5 is easily completed.

b) The Meixner ensemble. We only discuss in details the second regime, q fixed,

γ = γN ∼ c′N , N → ∞, c′ ≥ 0, but the first one, γ fixed, q = ρ
N2 , N → ∞, ρ > 0,

may be analyzed in complete analogy with the Poisson-Charlier ensemble (although at

a somewhat heavier technical level).

Let now Y = YN be random variables with distribution with density
1
N

∑N−1
`=0 P 2

` with respect to µγq . Whenever γ = γN ∼ c′N , N → ∞, c′ ≥ 0, we

know from Corollary 4.4 that YN/N converges weakly to

2

1− q
√
qU(c′ + U) ξ +

1

1− q
[
U + q(c′ + U)

]
. (26)

In the following, we bound the probability that YN/N exceeds the right endpoint

ω′ =
2

1− q
√
q(c′ + 1) +

1

1− q
[
1 + q(c′ + 1)

]
=

(
1 +

√
q(c′ + 1)

)2

1− q
of the support of (26).

By Lemma 5.2, for any integer t ≥ k ≥ 1 and any N > k ≥ 1,

P
(
{Y ≥ t}

)
≤ 1

t(t− 1) · · · (t− k + 1)

∫
x(x− 1) · · · (x− k + 1)

1

N

N−1∑

`=0

P 2
` dµ

γ
q

≤ (t− k)!
t!

1

(1− q)k
k∑

i=0

qk−i
(
k

i

)2
1

N

N−1∑

`=i

(γ + `)k−i ` !
(`− i)! .

Assume that for some c′, c′0 ≥ 0, γ ≤ c′N + c′0, and set c = c′ + 1 ≥ 1. By (22), for

some large enough C > 0 depending on q, c′ and c′0 (and possibly changing from line

to line below), for every 0 ≤ i ≤ k ≤ N/C and ` ≤ N − 1,

(γ + `)k−i ≤ (cN + c′0)k−i ≤ C(cN)k−ieB̃

where

B̃ =
(k − i)2
cN

− (k − i)2
2(cN + c′0 + k − i) ≤

(k − i)2
2cN

+
Ck3

N2
.

By (22) again,

P
(
{Y ≥ t}

)
≤ a0 +

C

[(1− q)t]k
1

N

N−1∑

`=1

`k
k∑

i=0

(qcN
`

)k−i(k
i

)2

eB(k,t)−B(i,N)+B̃

where a0 = C(qcN)k

N [(1−q)t]k eB(k,t)+B̃ . Assume that t ≥ ω′N . As for the Poisson-Charlier

ensemble, for every i ≤ k ≤ N/C,

B(k, t)−B(i,N) + B̃ ≤ (k − i)2
2cN

+
k2

2ω′N
− i2

2N
+
Ck3

N2

≤ λ1(k − i)
k

N
− λ2

k2

2N
+
Ck3

N2
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with

λ1 =
1

c

(
1 +

c− 1

1 +
√
qc

)
and λ2 =

2
√
qc

1 +
√
qc
λ1.

It follows that

k∑

i=0

(qcN
`

)k−i(k
i

)2

eB(k,t)−B(i,N)+B̃ ≤ exp

(
− λ2k

2

2N
+
Ck3

N2

) k∑

i=0

dk−i
(
k

i

)2

where

d = d` =
qcN

`
eλ1

k
N .

We then argue as in the proof of Proposition 5.4 to conclude to following result.

Proposition 5.7. Let Q = QN be a Coulomb gas with respect to the negative

binomial distribution with parameters 0 < q < 1 and γ ≥ 0. Assume that γ ≤ c′N + c′0
for some c′, c′0 ≥ 0, and set

ω′ =

(
1 +

√
q(c′ + 1)

)2

1− q .

Then, for every N ≥ 1 and every 0 < ε ≤ 1,

Q
({

max
1≤i≤N

xi ≥ ω′N(1 + ε)
})
≤ C e−Nε3/2/C

where C > 0 only depends on q, c′, c′0.

As for the Poisson case, we also have the following corollary.

Corollary 5.8. Under the preceding notation,

lim
N→∞

max
1≤i≤N

xNi
N

= ω′ =

(
1 +

√
q(c′ + 1)

)2

1− q
almost surely.

Recall the shape function W of (5). By (6), and the change ω = ω′ − 1, we

recover from this corollary (cf. [Joha1]) that for every c ≥ 1,

lim
N→∞

1

N
W
(
[cN ], N

)
= ω =

(
1 +

√
qc
)2

1− q − 1

almost surely (since γ = [cN ]−N ∼ c′N , c′ = c−1). With respect to the large deviation

bound (9) of K. Johansson [Joha1], Proposition 5.7 yields the sharp non-asymptotic

inequality at the appropriate small deviation rate

P
({
W
(
[cN ], N

)
≥ ωN(1 + ε)

})
≤ C e−Nε3/2/C
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for every N ≥ 1, 0 < ε ≤ 1, and some constant C > 0 only depending on q and c.

c) The Krawtchouk ensemble. We state the corresponding results for the

Krawtchouk ensemble.

Proposition 5.9. Let Q = QN be a Coulomb gas with respect to the binomial

distribution on {0, 1, . . . ,K} with parameter of success 0 < p < 1. Assume that

K ≥ κN , κ ≥ 1, and set

ω′ =
√
p(κ− 1) +

√
1− p.

Then, for every N ≥ 1 and every 0 < ε ≤ 1,

Q
({

max
1≤i≤N

xi ≥ ω′N(1 + ε)
})
≤ C e−Nε3/2/C

where C > 0 only depends on p and κ.

Again, Proposition 5.9 may be interpreted as a tail inequality on some shape

function in combinatorial probability, namely Seppäläinen’s simplified model of directed

first passage percolation [Se2]. Indeed, let M,N ≥ 1 and consider w(i, j), i, j ∈ N,

independent Bernoulli random variables with probability of success p, 0 < p < 1. Set

W =W (M,N) = max
∑

(i,j)∈π
w(i, j)

where now the maximum is running over all sequences π = (k, jk)1≤k≤M such that

1 ≤ j1 ≤ · · · ≤ jM ≤ N , i.e., with respect to (5), up/right paths from (1, 1) to

(M,N) with exactly one element in each column. It is shown in [Joha2] that whenever

Q = QN denotes the Coulomb gas associated to the binomial distribution with size

K =M +N − 1 and parameter p, then, for every t ≥ 0,

P
(
{W ≥ t}

)
= QN

({
max

1≤i≤N
xi ≥ t+N − 1

})
.

Therefore, as a consequence of Proposition 5.9, for every N ≥ 1 and 0 < ε ≤ 1,

P
({
W
(
[cN ], N

)
≥ ωN(1 + ε)

})
≤ C e−Nε3/2/C

where

ω = ω′ − 1 =
√
pc+

√
1− p− 1

and C > 0 only depends on p and c ≥ 1. Presumably, such a small deviation

inequality may also be shown to follow from some large deviation principle together

with superadditivity. As discussed in [Joha2], [Joha3], the Krawtchouk ensemble is

also related to zig-zag paths in random domino tilings of the Aztec diamond, and

Proposition 5.9 above may be used to produce bounds for this model.
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[Se2] T. Seppäläinen. Exact limiting shape for a simplified model of first-passage percolation on
the plane. Ann. Probab. 26, 1232-1250 (1998).
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