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Abstract

We study the compact law of the iterated logarithm for a certain type of triangular arrays

of empirical processes, appearing in statistics (M–estimators, regression, density estimation,

etc). We give necessary and sufficient conditions for the law of the iterated logarithm of

these processes of the type of conditions used in Ledoux and Talagrand (1991): convergence

in probability, tail conditions and total boundedness of the parameter space with respect to

certain pseudometric. As an application, we consider the law of the iterated logarithm for

a class of density estimators. We obtain the order of the optimal window for the law of the

iterated logarithm of density estimators. We also consider the compact law of the iterated

logarithm for kernel density estimators when they have large deviations similar to those of

a Poisson process.

1. Introduction. We study the law of the iterated logarithm (L.I.L.) for a certain type of

triangular arrays of empirical processes. Let {Xj}∞j=1 be a sequence of independent identically

distributed random variables (i.i.d.r.v.) with values in a measurable space (S,S). Let T̄ be a

parameter set, which has a scalar product defined for each t ∈ T̄ and each 0 < u ≤ 1 (ut ∈ T̄ ).

We will assume that u1(u2t) = (u1u2)t, for each u1, u2 ∈ IR and each t ∈ T̄ . Let g : S × T̄ → IR.

Here, we study the compact law of the iterated logarithm for processes of the form

(1.1) {Un(t) : t ∈ T},

where T ⊂ T̄ ,

Un(t) := an(2 log log n)−1/2n−1
n∑
j=1

(g(Xj , bnt)−E[g(Xj , bnt)])

and {an}∞n=1 and {bn}∞n=1 are sequences of positive numbers with 0 < bn ≤ 1. This problem has

been considered in Arcones (1994) when T = T̄ and the functions are uniformly bounded. An

1Research partially supported by NSF Grant DMS–93–02583 and carried out at the departments of Mathematics

of the University of Utah and of the University of Texas,
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extension of this work is needed to get the results in Arcones (1996a, 1996b). Here, we obtain

necessary and sufficient conditions for the compact L.I.L. for {Un(t) : t ∈ T}. This type of

processes appears often in statistics, such as in the study of M–estimators (Arcones 1994, 1996a),

in regression estimation (see Härdle, 1984; Hall, 1991; and Arcones, 1996b), in density estimation

(see Parzen, 1962; Hall, 1981; Härdle, 1984; Deheuvels and Mason, 1994; and Section 4 below)

and in estimation for stochastic processes (Prakasa Rao, 1983). As a particular case, we get the

L.I.L. of processes of the form

(1.2) {Vn(t) : t ∈ T},

where

(1.3) Vn(t) := (nbdn2 log logn)−1/2
n∑
j=1

(Kt(b
−1
n (x0 −Xj))− E[Kt(b

−1
n (x0 −Xj))]),

{Xj}∞j=1 is a sequence of i.i.d.r.v.’s with values in IRd, x0 ∈ IRd and {Kt : t ∈ T} is a class of

functions in IRd. We apply this L.I.L. to density estimation.

In Section 2, some general facts on necessary and sufficient conditions for the L.I.L. of the

process {Un(t) : t ∈ T} are presented. In particular, we show the a.s. asymptotic equicontinuity

of {Un(t) : t ∈ T} under certain conditions.

In Section 3, we give, under some regularity conditions, necessary and sufficient conditions

for the compact L.I.L. of {Un(t) : t ∈ T} when the limit set is related with a Gaussian process,

similar to the conditions of Ledoux and Talagrand (1988) for random variables with values in a

Banach space: convergence in probability, tail conditions and total boundedness of the parameter

space with respect to certain pseudometric. The key ingredient in the proofs is the Talagrand

isoperimetric inequality for a sum of independent Banach–valued random variables (Theorem

6.17 in Ledoux and Talagrand, 1991). We also consider sufficient conditions for the compact LIL

for the processes in (1.1) and (1.2) when the class of functions is either a VC subgraph class or

satisfies certain bracketing conditions. In the considered situations in this section the limit set

of the sequence (1.1) is the unit of the reproducing kernel Hilbert space of the Gaussian process

with the limit covariance of {ann−1∑n
j=1(g(Xj, bnt)− E[g(Xj, bnt)]) : t ∈ T}.

In Section 4, we consider the L.I.L. for the processes in (1.2) whose limit set is related with a

Gaussian process. We apply these results to the L.I.L. for density estimators. We obtain the rate

of the optimal window in the LIL of density estimators. The conditions that we impose differ

from those of the literature. From example, Deheuvels and Mason (1994, Theorem C) imposed

that the density to be twice continuous differentiable in a neighborhood of x0, we only will assume

first differentiability with continuity.

In Section 5, we consider the L.I.L. for the processes in (1.2) whose limit set is related with

a Poisson process. In this section, we extend the results in Deheuvels and Mason (1990, 1991,

1995)

We use the notation from empirical processes. Given a measurable function g on (S,S) and a
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probability measure µ on S, µg :=
∫
g dµ, in particular,

(1.4) Png := n−1
n∑
i=1

g(Xi) and Pg := E[g(X)],

where X is a copy of X1. l∞(T ) will denote the Banach space consisting of the bounded functions

on T with the supremum norm. As usual, we need to assume some measurability conditions. Let

Ω := SIN × [0, 1]IN , let A be the product σ–algebra on Ω when S is endowed with the σ–algebra A
and [0, 1] is endowed with the Borel σ–algebra. In (Ω,A), we define the probability function Pr as

the product of the probability function P in each S factor and the Lebesgue measure defined in

each [0, 1] factor. The r.v.’s Xi is the function defined in Ω = SIN × [0, 1]IN which takes the value

of the i–th coordinate of SIN . {εi}ni=1 will a Rademacher sequence independent r.v.’s, independent

of the sequence {Xi} and defined in the same probability space (Ω,A,Pr). We also will assume

that the class of functions {g(x, ut) : 0 < u ≤ 1, t ∈ T} is an image admissible Suslin class of

functions in the sense of Dudley (1984, page 101). Sometimes, it will be enough to assume that

{g(x, ut) : 1 − δ0 ≤ u ≤ 1, t ∈ T} is an image admissible Suslin class of functions for some

0 < δ0 < 1.

We will denote to a finite partition π of T to a map π : T → T such that π(π(t)) = π(t), for

each t ∈ T , and the cardinality of {π(t) : t ∈ T} is finite.

2. Some general facts on the LIL for triangular arrays of empirical processes. In

this section, we present some general facts on the L.I.L. of {Un(t) : t ∈ T}. First we recall some

sufficient conditions for the L.I.L. of stochastic processes (see e.g. Arcones and Giné, 1995):

Lemma 2.1. Let {Un(t) : t ∈ T}, n ≥ 1, be any sequence of stochastic processes, suppose that

the following conditions are satisfied:

(i) There exists a set C ⊂ l∞(T ) such that for each t1, . . . , tm ∈ T , with probability one, the

sequence {(Un(t1), . . . , Un(tm))}∞n=1 is relatively compact in IRm and its limit set is

{(x(t1), . . . , x(tm)) : x ∈ C}.

(ii) There exists a pseudometric ρ in T such that (T, ρ) is totally bounded.

(iii) limδ→0 lim supn→∞ supρ(s,t)≤δ |Un(s)− Un(t)| = 0 a.s.

Then, with probability one, {Un(t) : t ∈ T} is relatively compact in l∞(T ) and its limit set is

C.

We have the following necessary conditions for the the compact L.I.L. of the processes in (1.1):

Lemma 2.2. With the former notation, assume that:

(i) For each n, 0 < bn ≤ 1.

(ii) There exists compact set C ∈ l∞(T ) such that, with probability one {Un(t) : t ∈ T} is

relatively compact in l∞(T ) and its limit set is C.

(iii) For each t ∈ T , Un(t)
Pr−→ 0.

(iv) ana
−1
n−1 = O(1).

4



Then,

(a) (T, ρ) is totally bounded, where ρ(s, t) = supx∈C |x(s)− x(t)|.
(b) limδ→0 lim supn→∞ supρ(s,t)≤δ |Un(s)− Un(t)| = 0 a.s.

(c) supt∈T |Un(t)| Pr−→ 0.

Moreover, if T = T̄ and {bn} is non–increasing,

(d) There exists a finite constant c such that

∞∑
n=1

Pr{G(X, bn) ≥ cn(log log n)1/2a−1
n } <∞,

where

G(x, bn) := sup
t∈T
|g(x, bnt)− E[g(X, bnt)]|.

Proof. It is well known that in this situation: (T, ρ) is totally bounded and C is contained

in the set of bounded and ρ–uniformly continuous functions on T (see Arcones and Giné, 1995) .

This implies conditions (a) and (b). Condition (b) implies that

lim
δ→0

lim sup
n→∞

Pr{ sup
ρ(s,t)≤δ

|Un(s)− Un(t)| ≥ η} = 0,

for each η > 0. This fact and conditions (iii) and (a) imply (c). We have that

lim sup
n→∞

sup
t∈T
|Un(t)| = sup

t∈T
sup
x∈C
|x(t)| a.s.

and

lim sup
n→∞

an(2 log logn)−1/2n−1 sup
t∈T
|
n−1∑
j=1

(g(Xj , bnt)− E[g(Xj , bnt)])|

≤ lim sup
n→∞

(ana
−1
n−1)an−1(2 log log(n− 1))−1/2(n− 1)−1 sup

t∈T
|
n−1∑
j=1

(g(Xj , bn−1t)− E[g(Xj, bn−1t)])|

≤ lim sup
n→∞

(ana
−1
n−1) sup

t∈T
sup
x∈C
|x(t)| a.s.

So,

lim sup
n→∞

an(2 log logn)−1/2n−1G(Xn, bn) ≤ c a.s.

for some finite constant c. From this and the lemma of Borel–Cantelli, (d) follows. 2

The problem is to show conditions (i) and (iii) in Lemma 2.1. In order to check these condi-

tions, we will use the following exponential inequality for empirical processes (Talagrand isoperi-

metric inequality):

Theorem 2.3. (Theorem 6.17 in Ledoux and Talagrand, 1991). Let

{X1(t)}t∈T , . . . , {Xn(t)}t∈T be independent random processes indexed by T and let {εi}ni=1 be a

5



Rademacher sequence independent of the last processes. Then, for any integers k ≥ q and any

real numbers s, t > 0

Pr

{
sup
t∈T
|
n∑
i=1

εiXi(t)| ≥ 8qM + 2s + t

}

≤
(
K0

q

)k
+ Pr

{
k∑
i=1

Y ∗i ≥ s

}
+ 2 exp

(
− t2

128qm2

)
,

where K0 is a universal constant, M := E[supt∈T |
∑n
i=1 εiXi(t)I‖Xi‖≤sk−1 |], ‖Xi‖ := supt∈T |Xi(t)|,

m := E

sup
t∈T

 n∑
j=1

X2
i (t)I‖Xi‖≤s/k

1/2


and {Y ∗i }ni=1 denotes the non–increasing rearrangement of supt |Xi(t)|, 1 ≤ i ≤ n.

We must notice that

(2.1) m2 ≤ sup
t∈T

n∑
i=1

E[X2
i (t)I‖Xi‖≤s/k] + 8Msk−1

(see Equation (6.18) in Ledoux and Talagrand, 1991).

The following theorem gives the a.s. asymptotic equicontinuity of the process {Un(t) : t ∈ T}.

Theorem 2.4. With the above notation, suppose that the following conditions are satisfied:

(i) {bn} is a non–increasing sequence of numbers from the interval (0, 1].

(ii) limγ→1+ lim supn→∞ supm:n≤m≤γn |a−1
n am − 1| = 0

and limγ→1+ lim supn→∞ supm:n≤m≤γn |b−1
n bm − 1| = 0.

(iii) There are constants r1, r2 > 0, 1 > δ0 > 0, such that

lim sup
γ→1+

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

γj Pr{Gδ0(X, b[γj ]) ≥ rγj(log j)1/2a−1
[γj ]} <∞,

where

Gδ0(x, bn) := sup
t∈T

sup
1−δ0≤u≤1

|g(x, ubnt)− E[g(X, ubnt)]|.

(iv) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
1−δ≤u≤1

sup
t∈T
|Un(ut)| ≥ η} = 0.

(v) For each η > 0, there exists a δ > 0 such that

lim sup
γ→1+

∞∑
j=2

exp

− η log j

sup s,t∈T
ρ(s,t)≤δ

s2
[γj ](s, t)

 <∞
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and

lim sup
γ→1+

∞∑
j=2

exp

− η log j

sup1−δ≤u≤1 supt∈T s
2
[γj ](ut, t)

 <∞,

where s2
n(s, t) = a2

nn
−1Var(g(X, bns)− g(X, bnt)).

Then,

(2.2) lim
δ→0

lim sup
n→∞

sup
s,t∈T

ρ(s,t)≤δ

|Un(s)− Un(t)| = 0 a.s.

Proof. Without loss of generality, we may assume that E[g(X, t)] = 0 for each t ∈ T . Given

2−2 > η > 0, take δ > 0 and γ (in this order), such that

(2.3) 0 < δ ≤ δ0;
∞∑
j=2

exp

− η2 log j

supρ(s,t)≤δ s
2
[γj ](s, t)

 <∞;

∞∑
j=2

exp

− η2 log j

sup1−δ≤u≤1 supt∈T s
2
[γj ](ut, t)

 <∞; 1 < γ < 1 + η;

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

γj Pr{Gδ0(X, b[γj ]) ≥ rγj(log j)1/2a−1
[γj ]} <∞;

lim sup
n→∞

sup
m:n≤m≤γn

|b−1
n bm − 1| < 1− δ and

lim sup
n→∞

sup
m:n≤m≤γn

|(2 log log n)−1/2ann
−1(2 log logm)1/2a−1

m m− 1| < η.

Let nj = [γj]. We claim that by the Talagrand isoperimetric inequality

(2.4) lim sup
j→∞

sup
t,s∈T

ρ(t,s)≤δ

|Unj (t)− Unj(s)| ≤ 28K
1/2
0 η1/2 + 25(r1 + 1)(log η−1)−1 a.s.,

where K0 is the constant in Theorem 2.3. By condition (v),

sup
s,t∈T

ρ(s,t)≤δ

(log log γj)−1s2
[γj ](s, t)→ 0.

So, by symmetrization (see for example Lemma 1.2.1 in Giné and Zinn, 1986),

(2.5) Pr{ sup
ρ(s,t)≤δ

(2 log j)−1/2anj |(Pnj − P )(g(·, bnjs)− g(·, bnjt))|

≥ 28K
1/2
0 η1/2 + 32(r1 + 1)(log η−1)−1}

≤ 4 Pr

{
sup

ρ(s,t)≤δ
(log j)−1/2anjn

−1
j |

nj∑
i=1

εi(g(Xi, bnjs)− g(Xi, bnjt))|

≥ 65K1/2
0 η1/2 + 16(r1 + 1)(log η−1)−1

}
,
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for j large, where {εi} is a sequence of i.i.d. Rademacher r.v.’s independent of the sequence {Xi}.
Now, we claim that by Theorem 2.3 last expression is bounded by

(2.6) 8j−2 + 16(η−r + 2)δj + 8 exp

(
− η2 log j

supρ(s,t)≤δ s
2
nj

(s, t)

)
, for j large,

where

δj := sup
r1(log j)−1≤t≤r2

e−r1t
−1

γj Pr{G(X, b[γj ]) ≥ tγj(log j)1/2a−1
[γj ]}.

We consider two cases. If

(2.7) δj ≤ j−3,

we take

q = K0η
−1, k = 2(log j)(log η−1)−1,

t = 26K
1/2
0 η1/2(log j)1/2 and s = 8(1 + r1)(log η−1)−1(log j)1/2.

We have that (K0/q)k = j−2 and

k∑
i=1

Y ∗nj ,i ≤ 4(log j)(log η−1)−1anjn
−1
j max

1≤i≤nj
G(Xi, bnj )

where {Y ∗nj ,i}
nj
i=1 is a non–increasing rearrangement of

sup
ρ(s,t)≤δ

anjn
−1
j |g(Xi, bnjs)− g(Xi, bnjt)|, 1 ≤ i ≤ nj.

From this estimation and (2.7),

Pr{
k∑
i=1

Y ∗nj ,i ≥ s} ≤ nj Pr{G(X, bnj ) ≥ 2(r1 + 1)nja
−1
nj

(log j)−1/2} ≤ j−2.

We have that by the Hoffmann–Jørgensen inequality (see for example Proposition 6.8 in Ledoux

and Talagrand, 1991)

E[sup
t∈T

anj (log j)−1/2n−1
j |

nj∑
i=1

εig(Xi, bnjt)IG(Xi,bnj )≤cnja−1
nj

(log j)−1/2 |]→ 0

for any c <∞. So,

a2
nj
n−1
j sup

ρ(s,t)≤δ
E[(g(X, bnjs)− g(Xi, bnjt))

2]

+(8s/k)E[ sup
ρ(s,t)≤δ

anjn
−1
j |

nj∑
i=1

εi(g(Xi, bnjs)− g(Xi, bnjt))|]

≤ sup
ρ(s,t)≤δ

s2
nj

(s, t) + o(1), for j large.

From the former estimations, it follows that (2.5) is bounded by (2.6).
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If (2.7) does not hold, we take q, t and s as before and k = (log δ−1
j )(log η−1)−1. Using that

k∑
i=1

Y ∗nj ,i ≤ lY
∗
nj ,1

+ kY ∗nj ,l,

where l := [4 + 4r1], we get that

Pr{
k∑
i=1

Y ∗nj ,i ≥ s} ≤ Pr{Y ∗nj ,1 ≥ 2−1l−1s}+ Pr{Y ∗nj ,l ≥ 2−1k−1s} ≤ δj(η−r1 + η−2r1).

Again by the Hoffmann–Jørgensen inequality

E[sup
t∈T

anj(log j)−1/2n−1
j |

nj∑
i=1

εig(Xi, bnjt)IG(Xi,bnj )≤cnja−1
nj

(log j)1/2(log δ−1
j )−1|]→ 0,

for any c <∞. So,

a2
nj
n−1
j sup

ρ(s,t)≤δ
E[(g(X, bnjs)− g(Xi, bnjt))

2]

+(24s/k)E[sup
t∈T

anj (log j)−1/2n−1
j |

nj∑
i=1

εig(Xi, bnjt)IG(Xi,bnj )≤cnja−1
nj

(log j)1/2(log δ−1
j )−1|]

≤ sup
ρ(s,t)≤δ

s2
nj

(s, t) + o((log j)(log δ−1
j )−1).

Hence, (2.5) is bounded by (2.6).

Next, we will prove that

(2.8) lim sup
j→∞

sup
ρ(s,t)≤δ

sup
nj<n≤nj+1

|Un(t)− Unj (t)− Un(s) + Unj (s)|

≤ 211K
1/2
0 η1/2 + 28(r1 + 1)(log η−1)−1.

We have that, for nj < n,

(2.9) (2 log logn)−1/2an(Pn − P )g(·, bnt)− (2 log log nj)
−1/2anj (Pnj − P )g(·, bnjt)

= ((2 log log n)−1/2ann
−1 − (2 log log nj)

−1/2anjn
−1
j )

nj∑
i=1

g(Xi, bnj t)

+(2 log logn)−1/2ann
−1

n∑
i=nj+1

g(Xi, bnjt)

+(2 log log n)−1/2ann
−1

n∑
i=1

(g(Xi, bnt)− g(Xi, bnjt))

=: In(t) + IIn(t) + IIIn(t).

By (2.3), for n large,

sup
nj<n≤nj+1

sup
ρ(s,t)≤δ

|In(t)− In(s)|

9



≤ η sup
ρ(s,t)≤δ

(2 log lognj)
−1/2anjn

−1
j |

nj∑
i=1

g(Xi, bnjt)|.

Therefore,

(2.10) lim sup
j→∞

sup
nj<n≤nj+1

sup
ρ(s,t)≤δ

|In(s)− In(t)| ≤ 29K
1/2
0 η1/2 + 26(r1 + 1)(log η−1)−1 a.s.

By symmetrization and the Lévy inequality,

Pr{ sup
nj<n≤nj+1

sup
ρ(s,t)≤δ

|IIn(s)− IIn(t)| ≥ 29K
1/2
0 η1/2 + 26(r1 + 1)(log η−1)−1}

≤ 8 Pr{ sup
ρ(s,t)≤δ

(2 log lognj)
−1/2anjn

−1
j |

nj+1∑
i=nj+1

εi(g(Xi, bnjs)− g(Xi, bnj t))|

≥ 65K1/2
0 η1/2 + 16(r1 + 1)(log η−1)−1}.

So, from this and the estimation of (2.5),

(2.11) lim
j→∞

sup
nj<n≤nj+1

sup
ρ(s,t)≤δ

|IIn(s)− IIn(t)| ≤ 29K
1/2
0 η1/2 + 26(r1 + 1)(log η−1)−1 a.s.

By (2.3), supnj<n≤nj+1
|b−1
nj
bn − 1| ≤ 1− δ, for j large. So,

sup
nj<n≤nj+1

sup
t∈T
|IIIn(t)|

≤ η sup
1−δ≤u≤1

sup
t∈T

sup
nj<n≤nj+1

(2 log log nj)
−1/2anjn

−1
j |

n∑
i=1

(g(Xi, ubnjt)− g(Xi, bnjt))|.

By the argument leading to (2.4)

lim sup
j→∞

sup
1−δ≤u≤1

sup
t∈T

sup
nj<n≤nj+1

(2 log lognj)
−1/2anjn

−1
j |

n∑
i=1

(g(Xi, ubnjt)− g(Xi, bnj t))|

≤ 28K
1/2
0 η1/2 + 25(r1 + 1)(log η−1)−1 a.s.,

Hence,

(2.12) lim sup
j→∞

sup
nj<n≤nj+1

sup
t∈T
|IIIn(t)| ≤ 29K

1/2
0 η1/2 + 26(r1 + 1)(log η−1)−1 a.s.

(2.8) follows, from (2.9)–(2.12). (2.4) and (2.8) imply (2.2) 2

Remarks 2.5. Conditions (i) and (ii) in Theorem 2.4 are easy to check. We must observe

that condition (iii) in Theorem 2.4 is similar to condition (7.7) in Ledoux and Talagrand (1991).

In order to check this condition, it suffices to prove any of the following conditions:

(c.1) There exist positive constants r1, r2 and p such that

lim
γ→1+

∞∑
j=2

sup
r1(log j)−1≤r≤r2

rpγj Pr{Gδ0(X, b[γj ]) ≥ rγj(log j)1/2a−1
[γj ]} <∞.
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(c.2) There exists a constant r1 > 0 such that

an(log logn)1/2n−1Gδ0(X, bn) ≤ r1 a.s.

for each n large enough.

(c.3) There exist positive constants r1, r2 and p such that

lim
γ→1+

∞∑
j=2

γj Pr{Gδ0(X, b[γj ]) ≥ r2γ
j(log j)1/2a−1

[γj ]} <∞

and

lim
γ→1+

∞∑
j=2

ap[γj]γ
j(−p+1)(log j)p/2E[Gp

δ0
(X, b[γj ])Ir1γj(log j)−1/2a−1

[γj]
≤Gδ0 (X,b[γj ])≤r2γj(log j)1/2a−1

[γj]

] <∞.

(c.4) There exists an integer n0 such that E[H2(X)(log log(H(X) + e))−1] <∞, where

H(x) := sup
n≥n0

ann
−1/2Gδ0(x, bn).

(c.1) implies from condition (iii) because er1r
−1
rp = 0(1), uniformly on a bounded interval.

(c.2) follows immediately from (c.1). It is easy to see that

rpγj Pr{Gδ0(X, b[γj ]) ≥ rγj(log j)1/2a−1
γj }

≤ γj Pr{Gδ0(X, b[γj ]) ≥ r22
j(log j)1/2a−1

[γj ]}

+r−p1 ap[γj ]γ
j(−p+1)(log j)p/2E[Gp

δ0
(X, b2j)Ir1γj(log j)−1/2a−1

[γj]
≤G(X,b

[γj ]
)≤r2γj(log j)1/2a−1

[γj]

]

for r1(log j)−1 ≤ r ≤ r2. So (c.3) implies (c.1). Because a[γj ][γ
j]−1/2Gδ0(X, b[γj ]) ≤ H(X) for j

large, (c.4) implies that (c.3) is satisfied for any p > 2. To every particular situation, one of these

different conditions can be the most appropriate (see Arcones, 1996b).

Condition (iv) in Theorem 2.4 follows from the following condition:

(iv)’ For some 1 > δ0 > 0,

(2.13) sup
t∈[1−δ0,1]×T

ann
−1(2 log log n)−1/2|

n∑
j=1

(g(Xj , bnt)− E[g(Xj, bnt)])| Pr−→ 0.

The notions of VC class and bracketing entropy may be helpful to check last condition. Next

theorem follows from Corollary 2.4 in Arcones (1995a).

Theorem 2.6. With the above notation, suppose that:

(i) The class of functions {g(·, ut) : t ∈ T, 0 < u ≤ 1} is a VC subgraph class of functions.

(ii) {bn} is a non–increasing sequence of numbers from the interval (0, 1]

(iii) For each η > 0,

nPr{sup
t∈T

ann
−1(2 log log n)−1/2|g(X, bnt)| ≥ η} → 0.

11



(iv) For each t ∈ T ,

lim
n→∞

a2
nn
−1(2 log log n)−1E[|g(X, bnt)|2Iann−1(2 log logn)−1/2|g(X,bnt)|≤1] = 0

(v)

sup
n≥1

a2
nn
−1(2 log logn)−1E[sup

t∈T
|g(X, bnt)|2Iann−1(2 log logn)−1/2 supt∈T |g(X,bnt)|≤1] <∞.

(vi) For each η > 0, there exists a finite partition π of T such that

a2
nn
−1(2 log logn)−1 sup

t∈T
E[|g(X, bnt)− g(X, bnπ(t))|2Iann−1(2 log logn)−1/2 supt∈T |g(X,bnt)|≤1] ≤ η.

(vii)

lim
n→∞

sup
t∈T

an(2 log log n)−1/2|E[g(X, bnt)Iann−1(2 log logn)−1/2|g(X,bnt)|≥1]| = 0.

Then,

sup
t∈T

ann
−1(2 log logn)−1/2|

n∑
j=1

(g(Xj , bnt)− E[g(Xj, bnt)])| Pr−→ 0.

Previous theorem improves on Theorem 2.6 in Alexander (1987).

Next theorem follows from Theorem 1.5 in Arcones (1995b).

Theorem 2.7. With the above notation, suppose that:

(i) {bn} is a non–increasing sequence of numbers from the interval (0, 1]

(ii) For each η > 0,

nPr{sup
t∈T

ann
−1(2 log log n)−1/2|g(X, bnt)| ≥ η} → 0.

(iii) For each t ∈ T ,

lim
n→∞

a2
nn
−1(2 log log n)−1E[|g(X, bnt)|2Iann−1(2 log logn)−1/2|g(X,bnt)|≤1] = 0

(iv)

lim
n→∞

sup
t∈T

an(2 log log n)−1/2|E[g(X, bnt)Iann−1(2 log logn)−1/2|g(X,bnt)|≥1]| = 0.

(v) There are positive integers q0 and n0; a finite partition πq of T for each q ≥ q0; a function

γq : T → [0,∞), for each q ≥ q0; and a function ∆n,q(·, πq(t)) : Sn,j → [0,∞), for each 1 ≤ j ≤ kn,

each n ≥ n0, each q ≥ q0 and each t ∈ T ; such that

ann
−1(2 log log n)−1/2|g(x, bnt)− g(x, bnπq(t))| ≤ ∆n,q(x, πq(t)),

for each x ∈ S, each n ≥ n0, each q ≥ q0 and each t ∈ T ;

sup
n≥n0

nE[(2q∆n,q(X, πq(t)))∧ (22q∆2
n,q(X, πq(t))I∆2

n,q(X,πq(t))≤1] ≤ 1,
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lim
k→∞

sup
t∈T

∞∑
q=k

2−qγq(t) = 0,

and ∞∑
q=q0

∑
t∈Tq

e−γ
2
q (πq(t)) <∞.

Then,

sup
t∈T

ann
−1(2 log logn)−1/2|

n∑
j=1

(g(Xj , bnt)− E[g(Xj, bnt)])| Pr−→ 0.

When g(x, θ) is smooth in θ to check condition (iv) in Theorem 2.4, we can use propositions

1.7 and 1.8 in Arcones (1995b).

Condition (v) in Theorem 2.4 is satisfied if

lim
δ→0

lim sup
n→∞

sup
s,t∈T

ρ(s,t)≤δ

a2
nn
−1Var(g(X, bns)− g(X, bnt)) = 0

and

lim
δ→0

lim sup
n→∞

sup
1−δ≤u≤1

sup
t∈T

a2
nn
−1Var(g(X, ubnt)− g(X, bnt)) = 0.

3. The LIL for triangular arrays of empirical processes. Here, we present necessary

and sufficient conditions for the L.I.L. of {Un(t) : t ∈ T}. The limit set is the unit ball of the

reproducing kernel Hilbert space (r.k.h.s.) of certain covariance function. We refer to Aronszajn

(1950) for the definition and main properties of r.k.h.s.’s.

Next, we present the main result of this section:

Theorem 3.1. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a measurable space

(S,S). Let T be a parameter set. Let g : S × T → IR be a function such that g(·, t) : S → IR is a

measurable function for each t ∈ T . Let w be a positive function defined on (0, 1]. Let {bn} be a

sequence of real numbers from the interval (0, 1]. Suppose that:

(i) There exists a scalar product defined for each t ∈ T and each 0 ≤ u ≤ 1, so that ut ∈ T .

(ii) For each s, t ∈ T , the following limit exists

R(s, t) := lim
u→0+

Cov(g(X, us), g(X, ut))

w2(u)
.

(iii) {bn} and {ann−1(log logn)−1/2} are non–increasing sequences, where an = n1/2

w(bn)
.

(iv) limγ→1+ lim supn→∞ supm:n≤m≤γn |a−1
n am − 1| = 0

and limγ→1+ lim supn→∞ supm:n≤m≤γn |b−1
n bm − 1| = 0.

(v) For each t ∈ T , limu→1− ρ(ut, t) = 0, where

ρ2(s, t) := R(s, s) +R(t, t)− 2R(s, t).
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(vi)

lim
τ→0+

lim sup
n→∞

sup
t∈T

n−1a2
nE[(g(X, bnt)− E[g(X, bnt)])

2IG(X,bn)≥τ (log logn)−1/2a−1
n n] = 0.

(vii) There are positive constants r1 and r2, such that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

2j Pr{G(X, b2j ) ≥ r2j(log j)1/2a−1
2j
} <∞,

where

G(x, b) := sup
t∈T
|g(X, bt)− E[g(X, bt)]|.

Then, the following set of conditions ((a) and (b)) are equivalent:

(a) There is a compact set C ⊂ l∞(T ) such that, with probability one,

{an(2 log logn)−1/2(Pn − P )g(·, bnt) : t ∈ T}

is relatively compact in l∞(T ) and its limit set is C.

(b.1) (T, ρ) is totally bounded.

(b.2) an(2 log logn)−1/2 supt∈T |(Pn − P )g(·, bnt)| Pr−→ 0.

(b.3) For each η > 0, there exists a δ > 0 such that

lim sup
γ→1+

∞∑
n=2

exp

− η logn

supρ(s,t)≤δ s
2
[γn](s, t)

 <∞,

where s2
n(s, t) = a2

nn
−1Var(g(X, bns)− g(X, bnt)).

Moreover, if either (a) or (b) are satisfied, the limit set C is the unit ball of the r.k.h.s. of the

covariance function R(s, t).

Proof. Without loss of generality, we may assume that E[g(X, t)] = 0 for each t ∈ T .

Assume that the set of conditions (b) holds. We apply Lemma 2.1. In order to get condi-

tion (iii) in Lemma 2.1, we apply Theorem 2.4. First, we observe that conditions (i), (ii) and

(iv) in Theorem 2.4 are satisfied. Because, G(x, bn) and ann
−1(log log n)−1/2 are non–increasing,

condition (vii) implies that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

γj Pr{G(X, b[γj ]) ≥ rγj(log j)1/2a−1
[γj]} <∞,

for any γ > 1. So, condition (iii) in Theorem 2.4 holds.

Next, we will show that the limit covariance is that of a self–similar process. We claim that

there exists a constant α ≥ 0 such that

(3.1) R(as, at) = aαR(s, t) for each s, t ∈ T, and each 1 ≥ a ≥ 0.
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If R(t, t) = 0 for each t ∈ T , (3.1) is trivially true. Assume otherwise, i.e. there exists a t0 ∈ T
such that R(t0, t0) 6= 0. First, we will show that w(u) is a function regularly varying at 0. We

have that

ρ2(ut0, t0) = R(ut0, ut0)− 2R(ut0, t0) +R(t0, t0)→ 0 as u→ 1− .

So, R(ut0, ut0) 6= 0, for each u in a left neighborhood of 1. We also have that

lim
u→0+

w2(au)

w2(u)
= lim

u→0+

w2(au)

Var(g(X, aut0))

Var(g(X, aut0))

w2(u)
=
R(at0, at0)

R(t0, t0)

for each 0 < a ≤ 1. Hence, by (for example) Theorem 1.4.1 in Bingham, Goldie and Teugels

(1987), w(u) is a function regularly varying at 0 and there is a real number α such that

lim
u→0+

w2(au)

w2(u)
= aα

for each a > 0. Because (T, ρ) is totally bounded, α ≥ 0. Therefore, (3.1) follows.

Next, we prove that

(3.2) lim
u→1−

sup
t∈T

ρ(ut, t) = 0.

Given δ > 0, take a δ–covering t1, . . . , tp of T , i.e. for each t ∈ T , there is a 1 ≤ j ≤ p such that

ρ(t, tj) ≤ δ. We have that

ρ(t, ut) ≤ ρ(t, tj) + ρ(tj, utj) + ρ(utj, ut) ≤ δ(1 + uα/2) + ρ(tj, utj).

So, (3.2) follows. From this, we get that condition (v) in Theorem 2.4 is equivalent to (b.3).

Therefore, from Theorem 2.4, condition (i) in Lemma 2.1 holds.

Obviously, condition (ii) in this lemma is satisfied.

As to condition (iii) in this lemma. Condition (vi) implies that there exist a sequence τn ↘ 0

such that

(3.3) lim sup
n→∞

sup
t∈T

n−1a2
nE[(g(X, bnt)−E[g(X, bnt)])

2IG(X,bn)≥τn(log logn)−1/2a−1
n n) = 0.

By the proof in Theorem 2.4, it follows that

(3.4) sup
0≤u≤1

an(2 log logn)−1/2|(Pn − P )(g(·, bnut)IG(X,bn)≥τn(log logn)−1/2a−1
n n)| → 0 a.s.

for each t ∈ T . Now that the process is truncated at the right level, the argument in Theorem 3

in Arcones (1994) gives that for each t1, . . . , tp ∈ T , {(Un(t1), . . . , Un(tp))}, is relatively compact

in IRp and its limit set is {(x(t1), . . . , x(tp)) ∈ IRp : x ∈ C}, where C is the unit ball of the r.k.h.s.

of the covariance function R(s, t). So, (b) implies (a).

Assume condition (a). By Lemma 2.2, (b.1), (b.2) and

(3.5) lim
δ→0

lim sup
n→∞

sup
s,∈T

ρ(s,t)≤δ

an(log log n)−1/2|(Pn − P )(g(·, bns)− g(·, bnt))| = 0 a.s.

15



hold. Condition (vi) and (b.1) imply that there exist a sequence τn ↘ 0 satisfying (3.4). So, we

may assume that

G(X, bn) ≤ τn(log logn)−1/2a−1
n n a.s.

Now, (3.5) and the Kolmogorov zero–one law imply that there exists a constant c(δ) such that

lim sup
n→∞

an(2 log logn)−1/2 sup
ρ(s,t)≤δ

|(Pn − P )(g(·, bnt)− g(·, bns))| = c(δ) a.s.

and limδ→0 c(δ) = 0. Given η > 0, take δ > 0 such that 100c2(δ) < η. Let 1 < γ < 8/7 such that

lim sup
n→∞

sup
m:n≤m≤[γn]

|a−1
n am − 1| ≤ 1/2.

We have that, with probability one, for n large

10−1η1/2 > a[γn]γ
−n(logn)−1/2 sup

ρ(s,t)≤δ
|

[γn]∑
j=1

(g(Xj , b[γn]t)− g(Xj , b[γn]s))|

and

(2/5)η1/2 > a[γn]γ
−n(logn)−1/2 sup

ρ(s,t)≤δ
|

[γn−1]∑
j=1

(g(Xj , b[γn]t)− g(Xj , b[γn]s))|

Hence,

a[γn]γ
−n(logn)−1/2 sup

ρ(s,t)≤δ
|

[γn]∑
j=[γn−1]+1

(gn(Xj , t)− gn(Xj, s))| < 2−1η1/2,

for n large enough, where

gn(x, t) := g(x, b[γn]t)IG(x,b[γn])≤τn(logn)−1/2a−1
[γn]

γn − E[g(X, b[γn]t)IG(X,b[γn])≤τn(logn)−1/2a−1
[γn]

γn].

By the lemma of Borel–Cantelli

(3.6)
∞∑
n=1

Qn <∞,

where

Qn = Pr{a[γn]γ
−n(logn)−1/2 sup

ρ(s,t)≤δ
|

[γn]∑
j=[γn−1]+1

(gn(Xj , t)− gn(Xj , s))| ≥ 2−1η1/2}.

We claim that

(3.7) exp

− η logn

supρ(s,t)≤δ s̃
2
[γn](s, t)

 ≤ Qn + n−2

for n large, where s̃2
n(s, t) = a2

nn
−1Var(gn(X, s) − gn(X, t)). We apply the Kolmogorov lower

bound (see for example Theorem 5.2.2 in Stout, 1974). In the notation in this reference,

ε = 2−1η1/2(1− γ−1)−1/2(log n)1/2(s̃[γn](s, t))
−1
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and

c = τ[γn](1− γ−1)−1/2(log n)−1/2(s̃[γn](s, t))
−1.

We need that ε > ε(1) and εc ≤ π(1). We have that s̃n(s, t) ≤ 2τn(log log n)1/2. Therefore,

ε > ε(1) for n large. If 2−1τ[γn](1 − γ−1)−1η1/2(s̃[γn](s, t))
−2 ≤ π(1), then we may apply the

Komogorov lower bound to get that

exp

− η logn

s̃2
[γn](s, t)

 ≤ Qn.

If 2−1τ[γn]η
1/2(1− γ−1)−1(s̃[γn](s, t))

−2 > π(1), then s̃2
[γn](s, t) ≤ η/2, for n large. So, (3.7) holds.

(b.3) follows from (3.3), (3.6) and (3.7). 2

Theorem 3.1 is an improvement of Theorem 3 in Arcones (1994). Some applications of last

theorem to statistics can be found in Arcones (1994, 1996a, 1996b).

Remarks 3.2. The part (b) implies (a) is true for any choice of pseudometric ρ. For example,

in the case that T is a bounded subset of IRd, in order to show (a), it suffices to check conditions

(i)–(vii) and (b.1)–(b.3) with the Euclidean distance.

Consider the following condition:

(b.4) There exists a finite constant c such that

∞∑
n=3

Pr{G(X, bn) ≥ cn(log log n)1/2a−1
n } <∞.

By Lemma 2.2, this condition is a necessary condition for the L.I.L. In some cases, (b.4)

implies condition (vii) in Theorem 3.1. Assuming this, and (i)–(vi) in Theorem 3.1, we have that

(a) is equivalent to (b.1)–(b.4). For example if there are positive constants c and q such that

(3.8) k−1(k(log log k)1/2a−1
k )q ≤ cn−1(n(log logn)1/2a−1

n )q

for each 3 ≤ k ≤ n, then condition (b.4) implies condition (vii) in Theorem 3.1. This claim

follows from the proof of Lemma 7.8 in Ledoux and Talagrand (1991). Condition (3.8) is satisfied

if n(log logn)1/2a−1
n is regularly varying with positive index. In any case, any condition from the

Remark 2.5 maybe easier to check in a particular situation. The condition

(c.2)’ There exists a sequence {τn}∞n=1 of positive numbers converging to zero, such that

an(log logn)1/2n−1G(X, bn) ≤ τn a.s.

implies conditions (vi) and (vii) in Theorem 3.1. We also have that condition (c.3) in Remark

2.5 implies conditions (vi) and (vii) in Theorem 3.1.

If we take as an index set T ⊂ T̄ , we still can have L.I.L. with limit set being a r.k.h.s.:

Theorem 3.3. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in a measurable space

(S,S). Let T̄ be a parameter set, which has a scalar product defined for each t ∈ T̄ and each
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0 ≤ u ≤ 1. Let g : S × T̄ → IR be a function such that g(·, t) : S → IR is a measurable function

for each t ∈ T̄ . Let T ⊂ T̄ . Let w be a positive function defined on (0, 1]. Let {bn} be a sequence

of real numbers from the interval (0, 1]. Suppose that:

(i) For each s, t ∈ T , the following limit exists

R(s, t) := lim
u→0+

Cov(g(X, us), g(X, ut))

w2(u)
.

(ii) {bn} and {ann−1(log logn)−1/2} are non–increasing sequences, where an = n1/2

w(bn)
.

(iii) limγ→1+ lim supn→∞ supm:n≤m≤γn |a−1
n am − 1| = 0

and limγ→1+ lim supn→∞ supm:n≤m≤γn |b−1
n bm − 1| = 0.

(iv) There are constants r1, r2 > 0, 1 > δ0 > 0, such that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

γj Pr{Gδ0(X, b[γj ]) ≥ rγj(log j)1/2a−1
[γj ]} <∞,

for each γ > 1.

(v) For each t ∈ T ,

lim
τ→0+

lim sup
n→∞

n−1a2
nE[(g(X, bnt)− E[g(X, bnt)])

2I|g(X,bnt)−E[g(X,bnt)]|≥τ (log logn)−1/2a−1
n n)] = 0.

(vi) (T, ρ) is totally bounded.

(vii) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
1−δ≤u≤1

sup
t∈T
|Un(ut)| ≥ η} = 0.

(viii) For each η > 0, there exists a δ > 0 such that

lim sup
γ→1+

∞∑
j=2

exp

− η log j

sup s,t∈T
ρ(s,t)≤δ

s2
[γj ](s, t)

 <∞,

and

lim sup
γ→1+

∞∑
j=2

exp

− η log j

supt∈T sup1−δ≤u≤1 s
2
[γj ](ut, t)

 <∞,

where s2
n(s, t) = a2

nn
−1Var(g(X, bns)− g(X, bnt)).

Then, with probability one,

{an(2 log logn)−1/2(Pn − P )g(·, bnt) : t ∈ T}

is relatively compact and its limit set is the unit ball of the r.k.h.s. of the covariance function

R(s, t).

Proof. We apply Theorem 2.1. The a.s. asymptotic equicontinuity follows from Theorem

2.4. In order to prove the L.I.L for the finite dimensional distributions, we need condition (iv)
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for each γ > 1, because we need blocks nj = [γj], with γ close to one and infinity. We only

need condition (v) in the way it is stated, because to prove the L.I.L for the finite dimensional

distributions, we only need to truncate for a finite number of t’s. 2

We also will need the following variation of Theorem 3.3:

Theorem 3.4. Under the usual notation, suppose that:

(i) For each s, t ∈ T , the following limit exists

R(s, t) := lim
u→0+

Cov(g(X, us), g(X, ut))

w2(u)
.

(ii) {bn} is non–increasing and limγ→1+ lim supn→∞ supm:n≤m≤γn |b−1
n bm − 1| = 0.

(iii) There are 1 < p <∞ and 0 < a <∞ such that

ann
−1(log logn)p/2 → a,

where an = n1/2

w(bn)
.

(iv) There are positive constants r0 > 0 and δ0 > 0, such that for each η > 0,

sup{ne2r2/(p+1)

Pr{Gδ0(X, bn) ≥ r} : r0(log logn)(p−1)/2 ≤ r ≤ η(log log n)(p+1)/2, n ≥ 1} <∞.

(v) For each t ∈ T ,

lim
τ→0+

lim sup
n→∞

n−1a2
nE[(g(X, bnt)− E[g(X, bnt)])

2IG(X,bn)≥τ (log logn)−1/2a−1
n n) = 0.

(vi) (T, ρ) is totally bounded.

(vii) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
1−δ≤u≤1

sup
t∈T
|Un(ut)| ≥ η} = 0.

(viii) For each η > 0, there exists a δ > 0 such that

lim
γ→1+

∞∑
j=2

exp

(
− η(log j)p+1

γj supρ(s,t)≤δ Var(g(X, bγjs)− g(X, bγj t))

)

and

lim
γ→1+

∞∑
j=2

exp

(
− η(log j)p+1

γj sup1−δ≤u≤1 supt∈T Var(g(X, ubγj t)− g(X, bγj t))

)
.

Then, with probability one,

{an(2 log logn)−1/2(Pn − P )g(·, bnt) : t ∈ T}

is relatively compact and its limit set is the unit ball of the r.k.h.s. of the covariance function

R(s, t).
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Proof. Without loss of generality, we may assume that E[g(X, t)] = 0 for each t ∈ T . The

proof is exactly the same as that of Theorem 3.3. The difference is in the bound in the term

Pr{∑k
i=1 Y

∗
nj ,i
≥ s} in the Talagrand isoperimetric inequality. Take 1 < r < (p + 1)/2. Let

ζ =
∑∞
i=1 i

−r. We want to show that for each η > 0, there exists a δ > 0 and a γ > 1, such that

∞∑
j=1

Pr

{
sup

ρ(s,t)≤δ
|
nj∑
i=1

εi(g(Xi, bnjs)− g(Xi, bnj t))|

≥ (16K
1/2
0 η + 8ζη + 8r(log η−1)−1)(log j)(p+1)/2

}
<∞,

where nj = [γj]. To prove this we apply Theorem 2.3 with

q = K0η
−1, k = [2(log j)(log η−1)−1]

t = 16K
1/2
0 η(log j)(p+1)/2 and s = (2ζη + 4r(log η−1)−1)(log j)(p+1)/2,

Let lj = r−2/(p+1)(log j)2/(p+1). We have that if Y ∗nj ,i ≤ 2i−rη(log j)(p+1)/2 for 1 ≤ i ≤ lj and

Y ∗nj ,lj ≤ 2r(log j)(p−1)/2, then
k∑
i=1

Y ∗nj ,i ≤ s.

Since

Pr{Y ∗nj ,i ≥ 2t} ≤ (Pr{Y ∗nj ,1 ≥ 2t})i ≤ (nPr{G(X, bn) ≥ t})i,

(see the proof of Theorem 6.20 in Ledoux and Talagrand (1991)) we have that

Pr{
k∑
i=1

Y ∗nj ,i ≥ s} ≤
lj∑
i=1

Pr{Y ∗nj ,i ≥ 2i−rη(log j)(p+1)/2}+ Pr{Y ∗nj ,lj ≥ 2r(log j)(p−1)/2}

≤ (θ − 1)−1θlj−2 log j + θe−2 log j ≤ O(j−3/2),

where

θ := 2 + sup{ne2r2/(p+1)

Pr{G(X, bn) ≥ r} : r0(log logn)(p−1)/2 ≤ r ≤ η(log logn)(p+1)/2}.

The rest of the estimations are as in previous proofs and are omitted. 2

4. The L.I.L. for density estimators. First, we consider the L.I.L. for the stochastic

processes in (1.2).

Theorem 4.1. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in IRd, let {Kt(·) : t ∈ T}
be a class of measurable function on IRd, let M < ∞, let λ be the Lebesgue measure on IRd, let

x0 ∈ IRd and let {bn} be a sequence of positive numbers. Suppose that:

(i) bn ↘ 0 and log logn
bdnn

↘ 0.

(ii) For each t ∈ T , Kt(x) = 0 if |x| > M , and
∫
IRdK

2
t (x) dx <∞.
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(iii) There are r1, r2 > 0 and 1 > δ0 > 0, such that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

2jbd2jλ{x ∈ IRd : Gδ0(x) ≥ r2j/2(log j)1/2b
d/2
2j } <∞

where

Gδ0(x) := sup
1−δ0≤u≤1

sup
t∈T
|Kt(u

−1x)|.

(iv) X has a density f in a neighborhood of x0, which is continuous at x0.

(v) (T, ρ) is totally bounded, where ρ2(s, t) :=
∫
IRd(Ks(x)−Kt(x))2 dx.

(vi) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
1−δ≤u≤1

sup
t∈T
|Vn(ut)| ≥ η} = 0,

where

Vn(t) := (nbdn2 log logn)−1/2
n∑
j=1

(Kt(b
−1
n (x0 −Xj))− E[Kt(b

−1
n (x0 −Xj))]).

Then, with probability one, {Vn(t) : t ∈ T} is relatively compact in l∞(T ) and its limit set is

C :=
{(

(f(x0))
1/2
∫
IRd
Kt(x)α(x) dx

)
t∈T

:
∫
IRd
α2(x) dx ≤ 1

}
.

Proof. We apply Theorem 3.3. Let T̄ = {ut : 0 ≤ u ≤ 1, t ∈ T}, let w(u) = ud/2, let

an = b−d/2n n1/2 and let g(x, ut) = Kt(u−1(x0 − x)). By a change of variables

(4.1) u−dE[g(X, us)g(X, ut)] = u−d
∫
|x0−x|≤uM

Ks(u
−1(x0 − x))Kt(u

−1(x0 − x))f(x) dx

=
∫
|y|≤M

Ks(y)Kt(y)f(x0 − uy) dy →
∫
|y|≤M

Ks(y)Kt(y)f(x0) dy,

as u→ 0+. We also have that

u−dE[g(X, us)]E[g(X, ut)] = ud
∫
|y|≤M

Ks(y)f(x0 − uy) dy
∫
|y|≤M

Kt(y)f(x0 − uy) dy → 0.

Therefore,

lim
u→0+

u−dCov(g(X, us), g(X, ut)) = f(x0)
∫
IRd
Ks(x)Kt(x) dx,

i.e. condition (i) in Theorem 3.3 holds. It is easy to see that conditions (ii)–(vii) in this theorem

hold. By the argument in (4.1), there exists and integer n0 and a finite constant c, such that

b−dn E[(Ks(b
−1
n (x0 −X)) −Kt(b

−1
n (x0 −X)))2] ≤ c

∫
x∈Rd

(Kt(x)−Ks(x))2 dx

for each s, t ∈ T and each n ≥ n0. So,

lim
δ→0

lim sup
n→∞

sup
ρ(s,t)≤δ

b−dn E[(Ks(b
−1
n (x0 −X))−Kt(b

−1
n (x0 −X)))2] = 0.
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We claim that

(4.2) lim
u→1−

∫
IRd

(Kt(u
−1x)−Kt(x))2 dx = 0

for each each t ∈ T . By the dominated convergence theorem, (4.2) holds for each bounded, contin-

uous function Kt. By the Lusin theorem, (4.2) holds for each function Kt with
∫
IRdK

2
t (x) dx <∞.

This and the totally boundedness of (T, ρ), imply that

lim
δ→0

lim sup
n→∞

sup
1−δ≤u≤1

sup
t∈T

b−dn E[(Kt(u
−1b−1

n (x0 −X)) −Kt(b
−1
n (x0 −X))2] = 0.

Therefore, the result follows. 2

Remarks 4.2. If {Kt(u−1x) : 0 ≤ u ≤ 1, t ∈ T} = {Kt(x) : t ∈ T}, and conditions (i)–(iv) in

the Theorem 4.1 are satisfied, then Theorem 3.1 gives that {Vn(t) : t ∈ T} satisfies the compact

L.I.L. if and only if (T, ρ) is totally bounded and supt∈T |Vn(t)| Pr−→ 0. Condition (iii) in Theorem

4.1 is a moment condition.

Under {Kt(u−1x) : 0 ≤ u ≤ 1, t ∈ T} = {Kt(x) : t ∈ T}, by Lemma 2.2, a necessary condition

for the L.I.L. is that there exists a finite constant c such that

∞∑
n=3

Pr{G(X, bn) ≥ c(log logn)1/2bd/2n n1/2} <∞.

This implies that there exists a constant c (possibly different) such that

(4.3)
∞∑
n=3

bdnλ{x ∈ IRd : G(x) ≥ c(log log n)1/2bd/2n n1/2} <∞,

where G(x) = sup0≤u≤1 supt∈T |Kt(u−1x)|. It is easy to see that if {bdn} is regularly varying with

index p > −1, then (4.3) is equivalent to

(4.4)
∫
IRd
G2
δ0

(x)(log log(Gδ0(x) + 9))−1 dx <∞.

We also have that if {bdn} is regularly varying with index p > −1, then (4.4) is equivalent to

condition (iii) in Theorem 4.3. To see this, we will need the following proposition:

Proposition 4.3. With the notation in Theorem 4.1, suppose that:

(i) bn ↘ 0.

(ii) There are constants τ, p > 0 such that

an/ak ≥ τ (n/k)p,

for each 9 ≤ k ≤ n, where an = nbdn log log n.

(iii)

(4.5)
∞∑
n=5

2n/2bd/22n λ{x ∈ IRd : Gδ0(x) ≥ a
1/2
2n } <∞.
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Then,
∞∑
n=2

sup
r1(logn)−1≤r≤r2

e−r1r
−1

2nbd2nλ{x ∈ IRd : Gδ0(x) ≥ ra1/2
2n } <∞,

for each r1, r2 > 0.

Proof. Let γn = 2n/2bd/22n λ{x ∈ IRd : Gδ0(x) ≥ a
1/2
2n }. Let βn =

∑∞
j=0 2−jγn+j . It is easy to

see that γn ≤ βn, βn ≤ 2βn+1 and
∑∞
n=1 βn < ∞. Let r1(log j)−1 ≤ r ≤ r2, then there exists a

integer k such that

2−kp/2 ≤ τ 1/2r ≤ 2(−k+1)p/2.

Since 2−np/2 < τ 1/2r1(logn)−1, 1 ≤ k ≤ n. We have that

ra
1/2
2n ≥ τ−1/22−kp/2a1/2

2n ≥ a
1/2
2n−k .

Thus,

e−r1r
−1

2nbd2nλ{x ∈ IRd : Gδ0(x) ≥ ra
1/2
2n } ≥ e−r1r

−1

2nbd2nλ{x ∈ IRd : Gδ0(x) ≥ ad/22n−k}

≤ e−r1r−1

2kbd2nβn−kb
−d
2k ≤ e−r1c

1/22(k−1)p/2+2kβn ≤ cβn,

for a universal constant c. So, the claim follows. 2

It follows from previous proposition that if {bn} is regularly varying with order p for some

0 > p > −1 (and conditions (i) and (ii) in Proposition 4.3 are satisfied), then (4.4) is equivalent

to condition (iii) in Theorem 4.1.

If

(4.6) bdnn(log logn)−p → a,

for some finite positive constant a and some p > 0, then condition (4.3) is equivalent to

(4.7)
∫
IRd

exp
(
cG2/(p+1)(x)

)
dx <∞,

for some c <∞. Next theorem follows from Theorem 3.4.

Theorem 4.4. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in IRd, let {Kt(·) : t ∈ T
be a class of measurable function on IRd, let M < ∞, let λ be the Lebesgue measure on IRd, let

x0 ∈ IRd and let {bn} be a sequence of positive numbers. Suppose that:

(i) For each t ∈ T , Kt(x) = 0 if |x| > M , and
∫
IRdK

2
t (x) dx <∞.

(ii) There are constants 0 < a <∞ and 1 < p <∞ such that

(log log n)−pnbdn → a.

(iii) There exists 1 > δ0 > 0 such that, for each 0 < u <∞,∫
|x|≤M

exp(uG2/(p+1)
δ0

(x)) dx <∞.
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(iv) X has a density f in a neighborhood of x0, which is continuous at x0.

(v) (T, ρ) is totally bounded, where ρ2(s, t) :=
∫
IRd(Ks(x)−Kt(x))2 dx.

(vi) For each η > 0,

lim
δ→0

lim sup
n→∞

Pr{ sup
1−δ≤u≤1

sup
t∈T
|Vn(ut)| ≥ η} = 0.

Then, with probability one, {Vn(t) : t ∈ T} is relatively compact in l∞(T ) and its limit set is{(
(f(x0))1/2

∫
IRd
Kt(x)α(x) dx

)
t∈T

:
∫
IRd
α2(x) dx ≤ 1

}
.

Theorems 2.6 and 2.7 give sufficient conditions for condition (vi) in Theorem 4.1. For example,

{I|x|≤u : 0 ≤ u ≤ 1} be a VC subgraph class of functions. Let {bn} be a sequence satisfying

condition (i) in Theorem 4.1. Then, by theorems 4.1 and 2.6, with probability one,

{(nbdn2 log logn)−1/2
n∑
j=1

(I|x0−Xj |≤ubn − Pr{|x0 −Xj | ≤ ubn}) : 0 ≤ u ≤ 1}

is relatively compact and its limit set is

C :=


(

(f(x0))1/2
∫
|x|≤u

α(x) dx

)
0≤u≤1

:
∫
IRd
α2(x) dx ≤ 1

 .
When T has only one element, the conditions given by these theorems simplify. Next, we state

what we obtain for a unique kernel.

Theorem 4.5. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in IRd, let K(·) be a

measurable function on IRd, let M < ∞, let λ be the Lebesgue measure on IRd, let x0 ∈ IRd and

let {bn} be a sequence of positive numbers. Suppose that:

(i) bn ↘ 0 and log logn
bdnn

↘ 0.

(ii) K(x) = 0 if |x| > M , and
∫
IRdK

2(x) dx <∞.

(iii) There are r1, r2 > 0 and 1 > δ0 > 0, such that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

2jbd2jλ{x ∈ IRd : sup
1−δ0≤u≤1

|K(u−1x)| ≥ r2j/2(log j)1/2b
d/2
2j } <∞.

(iv) X has a density f in a neighborhood of x0, which is continuous at x0.

(v) The class of functions {K(u−1·) : 0 ≤ u ≤ 1} is a VC subgraph class of functions.

(vi)

lim
δ→0+

lim sup
n→∞

(2 log logn)−1
∫
x∈[−M,M ]d

sup
1−δ≤u≤1

(K(u−1x)−K(x))2

×I
sup1−δ0≤u≤1 |K(u−1x)|≤n1/2b

d/2
n (2 log logn)1/2 dx = 0.

Then, with probability one,

(nbdn2 log logn)−1/2
n∑
j=1

(K(b−1
n (x0 −Xj))− E[K(b−1

n (x0 −Xj))])
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is relatively compact and its limit set is

C :=
{

(f(x0))1/2
∫
IRd
K(x)α(x) dx :

∫
IRd
α2(x) dx ≤ 1

}
.

Observe that if log log(bdnn) = O(log logn), then condition (vi) in Theorem 4.5 is satisfied if

lim
δ→0+

∫
x∈[−M,M ]d

(log log(9 + sup
1−δ≤u≤1

|K(u−1x)−K(x)|))−1 sup
1−δ≤u≤1

(K(u−1x)−K(x))2 dx = 0.

If bdnn(log logn)−p → a, for some finite positive constant a and some p > 1, then condition (vi) in

Theorem 4.5 is satisfied if

lim
δ→0+

sup
t>0

t2p/(p+1)λ{x ∈ [−M,M ]d : sup
1−δ≤u≤1

|K(u−1x)−K(x)| ≥ t} = 0.

In general, condition (vi) in Theorem 4.5 is between the second moment and the first moment.

In the bracketing case, we have the following:

Theorem 4.6. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in IRd, let K(·) be a

measurable function on IRd, let M < ∞, let λ be the Lebesgue measure on IRd, let x0 ∈ IRd and

let {bn} be a sequence of positive numbers. Suppose that:

(i) bn ↘ 0 and log logn
bdnn

↘ 0.

(ii) K(x) = 0 if |x| > M , and
∫
IRdK

2(x) dx <∞.

(iii) There are r1, r2 > 0 and 1 > δ0 > 0, such that

∞∑
j=2

sup
r1(log j)−1≤r≤r2

e−r1r
−1

2jbd2jλ{x ∈ IRd : sup
1−δ0≤u≤1

|K(u−1x)| ≥ r2j/2(log j)1/2b
d/2
2j } <∞.

(iv) X has a density f in a neighborhood of x0, which is continuous at x0.

(v) There are c, v > 0 such that

(4.8) nbdn

∫
x∈[−M,M ]d

((nbdn log log n)−1/2 sup
1−δ≤u≤1

|K(u−1x)−K(x)|)

∧((nbdn log logn)−1 sup
1−δ≤u≤1

(K(u−1x)−K(x))2) dx ≤ cδv,

for each δ > 0 small enough and each n large enough.

Then, with probability one,

(nbdn2 log logn)−1/2
n∑
j=1

(K(b−1
n (x0 −Xj))− E[K(b−1

n (x0 −Xj))])

is relatively compact and its limit set is

C :=
{

(f(x0))1/2
∫
IRd
K(x)α(x) dx :

∫
IRd
α2(x) dx ≤ 1

}
.
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As before, we have that condition (v) in Theorem 4.6 is a tail condition, between the second

moment and the first moment.

Next, we present a law of the iterated logarithm of a class of density kernel estimators:

Theorem 4.7. Under the conditions in Theorem 4.1, suppose also that (ii) and (iv) are

reinforced to:

(ii)’ For each t ∈ T , Kt(x) = 0 if |x| > M ,
∫
IRd Kt(x) dx = 1,

∫
IRd xKt(x) dx = 0 and∫

IRdK
2
t (x) dx <∞.

(iv)’ X has a density f in a neighborhood of x0, which is second differentiable at x0.

Then,

(a) If nbd+4
n (log logn)−1 → 0, then, with probability one,

{n1/2bd/2n (2 log logn)−1/2

n−1b−dn

n∑
j=1

Kt(b
−1
n (x0 −Xj))− f(x0)

 : t ∈ T},

is relatively compact and its limit set is{(
(f(x0))1/2

∫
IRd
Kt(x)α(x) dx

)
t∈T

:
∫
IRd
α2(x) dx ≤ 1

}
.

(b) If nbd+4
n (log log n)−1 → a, for some constant a, 0 < a <∞, then, with probability one,

{n1/2bd/2n (2 log log n)−1/2(n−1b−dn

n∑
j=1

Kt(b
−1
n (x0 −Xj))− f(x0)) : t ∈ T},

is relatively compact and its limit set is{(∫
IRd
Kt(x)

(
(f(x0))

1/2α(x) + a1/22−1/2x′f ′′(x0)x
)
dx

)
t∈T

:
∫
IRd
α2(x) dx ≤ 1

}
.

(c) If nbd+4
n (log log n)−1 →∞, then

lim
n→0

sup
t∈T
|n−1b−d−1

n

n∑
j=1

Kt(b
−1
n (x0 −Xj))− b−1

n f(x0)−
∫
IRd
f(x)2−1/2x′f ′′(x0)x dx| = 0 a.s.

Proof. We have that

n−1b−dn

n∑
j=1

Kt(b
−1
n (θ0 −Xj))− f(x0)

= n−1b−dn

n∑
j=1

(Kt(b
−1
n (x0 −Xj))− E[Kt(b

−1
n (x0 −Xj))])

+
∫
|x|≤M

Kt(x)(f(x0 − bnx)− f(x0)− (f ′(x0))x) dx.

This and Theorem 4.1 imply the claim. 2
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Observe that the higher order of convergence is attained for

(4.9) bn ' (log logn)1/(d+4)n−1/(d+4).

This result is related with a result on the optimal window in the convergence in distribution of

density estimators in Parzen (1962).

5. The L.I.L. for triangular arrays of empirical processes in the Poisson domain

of attraction. We study the law of the iterated logarithm for a triangular arrays of empirical

processes in the Poisson domain, i.e. the limit set is the limit set appearing in the L.I.L. of certain

Poisson process. First, we consider the case of one function. This problem has been considered

by Deheuvels and Mason (1990, 1991, 1995) in the case that d = 1 for a sequence of i.i.d.r.v.’s

with uniform distribution on [0, 1]. We use a large deviations approach as in these references.

A reference in large deviations is Dembo and Zeitouni (1993). To avoid repetitions, here is the

framework that we will use:

Set–up. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values in IRd, let X be a copy of X1, let

M <∞, let x0 ∈ IRd, let {bn} be a sequence of positive numbers, let K be a measurable function

on IRd and let {Kt : t ∈ T} be a class of functions on IRd. Assume that:

(c.1) There exists a positive number a, such that n−1b−dn log log n→ a.

(c.2) X has a density f in a neighborhood of x0, which is continuous and positive at x0.

We study the logarithm of the iterated logarithm of processes of the form {Vn(Kt) : t ∈ T},
where

(5.1) Vn(Kt) := a(log log n)−1
n∑
j=1

Kt(b
−1
n (x0 −Xj))

and {Kt : t ∈ T} is a class of functions on IRd.

First, we present a lemma on the large deviations of Vn(K).

Lemma 5.1. With the notation in the Set–up, assume conditions (c.1), (c.2),

(c.3) K(x) = 0, if |x| > M .

(c.4) There exists a positive constant r0 such that
∫
|x|≤M er0|K(x)| dx <∞.

Then:

(i) For each closed set C ∈ IR,

(5.2) lim sup
n→∞

a(log logn)−1 log(Pr{Vn(K) ∈ C}) ≤ − inf
u∈C

I(u,K),

where

I(u,K) = sup
r∈IR

(ru− f(x0)
∫
IRd

(erK(x) − 1) dx), for u ∈ IR.

(ii) For each open set G ∈ IR,

(5.3) lim inf
n→∞

a(log logn)−1 log(Pr{Vn(K) ∈ G}) ≥ − inf
u∈G

I(u,K).
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(iii) For each r > 0, each u > 0 and each n ≥ 1,

(5.4) Pr{
n∑
j=1

K(b−1
n (x0 −Xj)) ≥ u} ≤ exp

(
−ur + nbdn

∫
IRd

(erK(x) − 1)f(x0 − bnx) dx
)
.

Proof. To show claims (i) and (ii) we apply Theorem II.2 in Ellis (1984) (see also Section

2.3 in Dembo and Zeitouni, 1993). By a change of variables

E[erK(b−1
n (x0−X))] = 1 + bdn

∫
IRd

(erK(x) − 1)f(x0 − bnx) dx,

for n large. So,

a(log logn)−1 log
(
E[erVn(K)]

)
= a(log log n)−1n log

(
1 + bdn

∫
IRd

(erK(x) − 1)f(x0 − bnx) dx
)

→ f(x0)
∫
IRd

(erK(x) − 1) dx,

for r > 0. The rest of the conditions in this theorem are easily checked.

Part (iii) follows from the Cramér method:

Pr{
n∑
j=1

K(b−1
n (x0 −Xj)) ≥ u} ≤ e−urE[exp(

n∑
j=1

rK(b−1
n (x0 −Xj)))]

= e−ur
(

1 + bdn

∫
IRd

(erK(x) − 1)f(x0 − bnx) dx
)n

≤ exp
(
−ur + nbdn

∫
IRd

(erK(x) − 1)f(x0 − bnx) dx
)
,

for r > 0 (by the Chebyshev inequality). 2

Let {N(u) : u ∈ IRd} be a multidimensional Poisson process with parameter f(x0) and let

Z(K) =
∫
IRd K(x) dN(x), for a function K with compact support. Then, the moment generating

function of Z(K) is

E[erZ(K)] = exp(f(x0)
∫
IRd

(erK(x) − 1) dx).

So, the rate function in the Chernoff theorem of Z(K) is I(u,K) (a reference in this topic is

Chapter 2 in Dembo and Zeitouni, 1993). In particular, I(u,K) is the Legendre transform of

E[erZ(K)]. Since E[Z(K)] = f(x0)
∫
IRdK(x) dx, we have that I(u,K) has the following properties:

(i) I(u,K) is a convex function.

(ii) I(u,K) is non–decreasing in [f(x0)
∫
IRdK(x) dx,∞) and non–increasing in

(−∞, f(x0)
∫
IRdK(x) dx].

(iii) I(u,K) ≥ 0 and I(f(x0)
∫
IRdK(x) dx,K) = 0.

(iv) I(u, f) = supr≥0(ru− f(x0)
∫
IRd(e

rK(x) − 1) dx), for u ≥ f(x0)
∫
IRd K(x) dx.

In particular, we have that

(5.5) lim
n→∞

a(log logn)−1 log(Pr{Vn(K) ≥ u}) = I(u,K),
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for u ≥ f(x0)
∫
IRd K(x) dx.

The following fact is known. Although, we have not found any reference where it is stated

exactly in this way.

Lemma 5.2. With the notation the Set–up, let K be a measurable function satisfying (c.3)

and (c.4). Then,

(5.6) sup{u ≥ f(x0)
∫
IRd
K(x) dx : sup

r∈IR
(ru− f(x0)

∫
IRd

(erK(x) − 1) dx) ≤ a}

= sup{
∫
IRd
K(x)α(x) dx :

∫
IRd
h((f(x0))

−1α(x)) dx ≤ (f(x0))−1a}

where h(x) = x log x− x+ 1 if x ≥ 0; and h(x) =∞ if x < 0.

Moreover, if rK is a any positive number such that
∫
IRd h(erKK(x)) dx = (f(x0))−1a, then the

expression (5.6) is f(x0)
∫
IRdK(x)erKK(x) dx.

Proof. We will need the following elementary inequality: for each x ≥ 0 and each y ∈ IR,

(5.7) xy ≤ h(x) + ey − 1.

Let

M1(K, a) := sup{u ≥ f(x0)
∫
IRd
K(x) dx : sup

r∈IR
(ru− f(x0)

∫
IRd

(erK(x) − 1) dx) ≤ a}

and let

M2(K, a) := sup{
∫
IRd
K(x)α(x) dx :

∫
IRd
h((f(x0))−1α(x)) dx ≤ (f(x0))

−1a}.

Suppose that u < M1, then there is a real number r0 such that

r0u−K(x0)
∫
IRd

(er0K(x) − 1) dx = sup
r∈IR

(ru − f(x0)
∫
IRd

(erK(x) − 1) dx) ≤ a.

Observe that u = f(x0)
∫
IRdK(x)er0K(x) dx. Let α(x) = f(x0)er0K(x), then∫

IRd
h((f(x0))−1α(x)) dx = (f(x0))−1r0u−

∫
IRd

(er0K(x) − 1) dx ≤ (f(x0))−1a.

So, M1 ≤ M2. Since α0(x) ≡ f(x0) satisfies h((f(x0))−1α0(x)) ≡ 0, M2 ≥
∫
IRd K(x)f(x0) dx.

Suppose that
∫
IRd h((f(x0))−1α(x)) dx ≤ (f(x0))−1a and

∫
IRd K(x)α(x) dx ≥ ∫

IRd K(x)f(x0) dx.

By (5.7),∫
IRd

(rK(x)(f(x0))−1α(x)− erK(x) + 1) dx ≤
∫
IRd
h((f(x0))−1α(x)) dx ≤ (f(x0))−1a

for each r ∈ IR. So, M2 ≤M1. The rest of the proof follows along similar lines. 2

Observe that if there exists a δ > 0 such that λ{x ∈ IRd : f(x) ≥ δ} ≥ δ, then ψ(r) =∫
IRd h(erK(x)) dx is a continuous function with ψ(0) = 0 and limr→∞ ψ(r) =∞. So, there exists a

positive number rK such that ψ(rK) = (f(x0))−1a.
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We will denote

(5.8) M(K, a) := sup
{∫

IRd
K(x)α(x) dx :

∫
IRd
h((f(x0))

−1α(x)) dx ≤ (f(x0))−1a

}
.

We will consider two cases of L.I.L. for a processes in the Poisson domain because when the

function is non–negative the assumptions are weaker.

Theorem 5.3. With the notation in the Set–up, assume (c.1) and (c.2). Let K be a non–

negative function satisfying (c.3), (c.4),

(c.5)

lim
δ→∞

lim sup
n→0

(log logn)−1E[ sup
1−δ≤u≤1

|
n∑
j=1

(K(u−1b−1
n (x0 −Xj))−K(b−1

n (x0 −Xj)))|] −→ 0.

(c.6) For each r > 0, there exists a δ > 0 such that

(5.9)
∫
IRd

exp

(
r sup

1−δ≤u≤1
|K(u−1x)−K(x)|

)
dx <∞.

Then,

(5.10) lim sup
n→∞

a(log logn)−1
n∑
j=1

K(b−1
n (x0 −Xj)) = M(K, a) a.s.

Proof. Let δ > 0 and let γ > 1. For [γj] ≤ n ≤ [γj+1], we have that

(5.11) Vn(K) ≤ a(log log[γj])−1
[γj+1]∑
i=1

K(b−1
n (x0 −Xi))

≤ a(log log[γj])−1
[γj+1]∑
i=1

K(b−1
[γj ](x0 −Xi))

+a(log log[γj])−1 sup
1−δ≤u≤1

|
[γj+1]∑
i=1

(K(u−1b−1
[γj ](x0 −Xi))−K(b−1

[γj ](x0 −Xi)))|,

if γ is close enough to one. Given η > M(f, a), there exists a r > 0 such that

rη − f(x0)
∫
IRd(e

rK(x) − 1) dx > a. So, by Lemma 1

Pr{a(log log[γj])−1
[γj+1]∑
i=1

K(b−1
[γj ](x0 −Xi)) ≥ γη} ≤ j−s

for j large enough and some s > 1. Hence

(5.12) lim sup
j→∞

a(log log[γj])−1
[γj+1]∑
i=1

K(b−1
[γj ](x0 −Xi)) ≤M(K, a) a.s.
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We also have that

(5.13) a(log j)−1 sup
1−δ≤u≤1

|
[γj+1]∑
i=1

(K(u−1b−1
[γj ](x0 −Xi))−K(b−1

[γj ](x0 −Xi)))|

≤ a(log j)−1
[γj+1]∑
i=1

Ḡδ(b
−1
[γj ](x0 −Xi))IḠδ(b−1

[γj]
(x0−Xi))>M

+a(log j)−1[γj+1] sup
1−δ≤u≤1

|E[(K(u−1b−1
[γj ](x0 −X))−K(b−1

[γj ](x0 −X)))IḠδ(b−1

[γj ]
(x0−X))≤M ]|

+a(log j)−1 sup
1−δ≤u≤1

∣∣∣∣∣∣
[γj+1]∑
i=1

(
K(u−1b−1

[γj](x0 −Xi))−K(b−1
[γj ](x0 −Xi)))IḠδ(b−1

[γj]
(x0−Xi))≤M

−E[K(u−1b−1
[γj ](x0 −Xi))IḠδ(b−1

[γj]
(x0−Xi))≤M −K(b−1

[γj ](x0 −Xi))IḠδ(b−1

[γj]
(x0−Xi))≤M ]

)∣∣∣∣
=: IM,δ,j + IIM,δ,j + IIIM,δ,j,

where Ḡδ(x) := sup1−δ≤u≤1 |K(u−1x) − K(x)|. Given η > 0, let r = 3η−1. Then, there exists a

δ > 0 such that
∫

(erḠδ(x) − 1) dx <∞. So, if M large enough,

γ
∫
IRd

(erḠδ(x)IḠδ(x)≥M − 1) dx ≤ 1.

By Lemma 5.1,

Pr{
[γj+1]∑
i=1

Ḡδ(b
−1
[γj ](x0 −Xi))IḠδ(b−1

[γj ]
(x0−Xi))≥M ≥ η log j}

≤ exp
(
−rη log j + [γj+1]b[γj ]

∫
IRd

(erḠδ(x) − 1)IḠδ(x)≥Mf(x0 − b[γj ]x) dx
)
≤ j−2,

for j large. So,

(5.14) lim
M→∞

lim sup
δ→0

lim sup
n→∞

IM,δ,j = 0 a.s.

By (b.2) and the Lusin theorem

(5.15) IIM,δ,j ≤ 0(1) sup
1−δ≤u≤1

∫
IRd
|K(u−1x)−K(x)| dx→ 0.

By Theorem 2.4, for each M <∞ there exist a δ > 0, such that

∞∑
j=1

Pr{IIIM,δ,j ≥ η} <∞.

Observe that we need that

(5.16) lim
M→0

lim sup
δ→0

lim sup
j→∞

E[IIIM,δ,j] = 0.

31



This condition follows from (c.5). So,

lim
M→0

lim sup
δ→0

lim sup
n→∞

IIIM,δ,j = 0 a.s.

for each M <∞. From (5.11)–(5.16)

(5.17) lim sup
n→∞

Vn(K) ≤M(K, a) a.s.

By the second lemma of Borel–Cantelli and Lemmas 1 and 2

lim sup
j→∞

a(log j)−1
[γj ]∑

k=[γj−1]+1

K(b−1
[γj ](Xk − x0)) = (γ − 1)γ−1M(K, aγ(γ − 1)−1) a.s.

So,

lim sup
j→∞

V[γj ](f) ≥ (γ − 1)γ−1M(K, aγ(γ − 1)−1) a.s.

Since (γ − 1)γ−1M(K, aγ(γ − 1)−1)→M(K, a) as γ →∞, the result follows. 2

The last theorem is a generalization of Theorem 8 in Deheuvels and Mason (1991) to the

multivariate and non–uniform case, under weaker hypotheses. Observe that

(log logn)−1E[ sup
1−δ≤u≤1

|
n∑
j=1

(K(u−1b−1
n (x0 −Xj))−K(b−1

n (x0 −Xj))|]

≤ (log logn)−1nE[ sup
1−δ≤u≤1

|K(u−1b−1
n (x0 −X))−K(b−1

n (x0 −X))|]

= O(1)
∫
IRd

sup
1−δ≤u≤1

|K(u−1x)−K(x)| dx.

So, condition (c.5) follows from the condition

(5.18) lim
δ→0

∫
IRd

sup
1−δ≤u≤1

|K(u−1x)−K(x)| dx = 0.

By a previous argument, we have that if the class {K(u−1x) : 0 ≤ u ≤ 1} is a VC subgraph class

and

(5.19) lim
δ→0+

∫
IRd

sup
1−δ≤u≤1

|K(u−1x)−K(x)| dx <∞,

then (c.5) follows.

Theorem 5.4. With the notation in the Set–up, assume (c.1) and (c.2). Let K be a function

satisfying (c.3), (c.5), (c.6) and

(c.7) For each 0 < r <∞,
∫
|x|≤M er|K(x)| dx <∞.

Then,

lim sup
n→∞

a(log logn)−1
n∑
j=1

K(b−1
n (x0 −Xj)) = M(K, a) a.s.
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Proof. By Lemma 5.1 and the lemma of Borel–Cantelli

(5.20) lim sup
j→∞

V[γj ](K) ≤M(K, a) a.s.

We claim that

(5.21) lim sup
γ→1+

lim sup
j→∞

sup
[γj ]≤n≤[γj+1 ]

|V[γj ](K)− Vn(K)| = 0 a.s.

We have that

(5.22) V[γj ](K)− Vn(K) = a(log logn)−1
n∑
i=1

(K(b−1
n (x0 −Xi))−K(b−1

[γj ](x0 −Xi))

+a(log log n)−1
n∑

i=[γj ]+1

K(b−1
[γj ](x0 −Xi))

+a((log log n)−1 − (log log[γj])−1)
n∑

i=[γj ]+1

K(b−1
[γj ](x0 −Xi))

=: In + IIn + IIIn.

By the argument in Theorem 5.3

lim sup
γ→1+

lim sup
j→∞

sup
[γj ]≤n≤[γj+1 ]

|In| = 0 a.s.

We have that

sup
[γj ]≤n≤[γj+1 ]

|IIn| ≤ a(log log[γj])−1
[γj+1]∑
i=[γj ]+1

|K(b−1
[γj ](x0 −Xi))|.

By Lemma 5.1

Pr{
[γj+1]∑
i=[γj ]+1

|K(b−1
[γj ](x0 −Xi))| ≥ η log j}

≤ exp
(
−rη log j + ([γj+1]− [γj])b[γj]E[er|K(X)|− 1]

)
≤ j−2,

if rη > 3 and γ is close enough to one. The term IIIn can be dealt with similarly. By the second

lemma of Borel–Cantelli and Lemma 1

lim sup
j→∞

a(log j)−1
[γj ]∑

k=[γj−1]+1

K(b−1
[γj ](x0 −Xk)) = (γ − 1)γ−1M(K, aγ(γ − 1)−1) a.s.

and

lim sup
j→∞

a(log j)−1
[γj−1]∑
k=1

K(b−1
[γj ](x0 −Xk)) ≤ γ−1M(K, aγ) a.s.

So,

lim sup
n→∞

Vn(K) ≥ (γ − 1)γ−1M(K, aγ(γ − 1)−1)− γ−1M(K, aγ) a.s.
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We have that (γ − 1)γ−1M(K, aγ(γ − 1)−1)→M(K, a) as γ →∞. Fix r > 0,

r(2aγr−1) −
∫
IRd

(erK(x) − 1) dx > aγ

for γ large. So, M(K, aγ) ≤ 2aγr−1 for γ large. Hence, γ−1M(K, aγ)→ 0 as γ →∞. Therefore,

the result follows. 2

Next, we will consider the L.I.L. uniformly over a class of functions.

It is easy to see that the proof of Lemma 2 in Finkelstein (1971) applies to this situation,

giving the following:

Lemma 5.5. With the notation in the Set–up, assume (c.1) and (c.2). Let K1, . . . , Kp be

measurable functions in IRd satisfying (c.3) and (c.5)–(c.7). Then, with probability one,

(Vn(K1), . . . , Vn(Kp))

is relatively compact and its limit set is

(5.23)
{(∫

IRd
K1(x)α(x) dx, . . . ,

∫
IRd
Kp(x)α(x) dx

)
:
∫
IRd
h((f(x0))

−1α(x)) dx ≤ (f(x0))−1a

}
.

We also need the following:

Lemma 5.6. Let K be a measurable function on IRd such that K(x) = 0, if |x| > M , and let

0 < a <∞. We define

(5.24) ‖K‖h = sup{|
∫
IRd
K(x)α(x) dx| :

∫
|x|≤M

h((f(x0))−1α(x)) dx ≤ a(f(x0))
−1}.

Then

(i) If a ≥ K(x0)λ{|x| ≤M},
∫
IRd |K(x)| dx ≤ 2(f(x0))−1‖K‖h.

(ii) If f(x0)λ{|x| ≤M} > a > 0,
∫
|x|≤M |K(x)| dx ≤ 2(f(x0))−1(1− z)−1‖K‖h, where z is the

number such that 0 < z < 1 and h(z) = a(f(x0)λ{|x| ≤M})−1.

(iii) For any r > 0,

‖K‖h ≤ f(x0)t−1a+ f(x0)(
∫
|x|≤M

K2(x) dx)1/2(
∫
|x|≤M

e2r|K(x)| dx)1/2.

Proof. To prove (i), for C ⊂ {x ∈ IRd : |x| ≤M}, take α = f(x0)ICc . Since∫
|x|≤M h((f(x0))−1α(x)) dx = λ(C) ≤ a(f(x0))−1, ‖K(·)‖h ≥ f(x0)|

∫
C K(x) dx|. Applying this

relation for C = {K(x) > 0} and C = {K(x) < 0}, we get (i). To prove (ii), for C ⊂ {x ∈ IRd :

|x| ≤M} take α = f(x0)z + f(x0)(1− z)IC and proceed as before.

As to (iii) if
∫
|x|≤M h((f(x0))−1α(x)) dx ≤ a(f(x0))−1, by (5.7)

(f(x0))−1|
∫
|x|≤M

K(x)α(x) dx| ≤ t−1|
∫
|x|≤M

(et|K(x)| − 1 + h((f(x0))−1α(x))) dx|

34



≤ r−1a+
∫
|x|≤M

|K(x)|er|K(x)| dx ≤ r−1a+ (
∫
|x|≤M

K2(x) dx)1/2(
∫
|x|≤M

e2r|K(x)| dx)1/2.

So, the result follows. 2

Finally, we consider the L.I.L. uniformly over a class of functions.

Theorem 5.7. Let {Xj}∞j=1 be a sequence of i.i.d.r.v.’s with values on IRd, let x0 ∈ IRd, let

{Kt : t ∈ T} be a collection of measurable functions in IRd and let {bn} be a sequence of positive

numbers. Suppose that:

(c.1) There exists a positive number a, such that n−1b−dn log log n→ a.

(c.2) X has a density f in a neighborhood of x0, which is continuous and positive at x0.

(c.3) For each t ∈ T , Kt(x) = 0 if |x| > M .

(c.5)

lim
δ→∞

lim sup
n→0

E[ sup
1−δ≤u≤1

sup
t∈T
|Vn(Kt(u

−1·)−E[Vn(Kt(u
−1·))]|] = 0.

(c.6) For each r > 0 and each t ∈ T , there exists a δ > 0 such that

∫
IRd

exp

(
r sup

1−δ≤u≤1
|K(u−1x)−K(x)|

)
dx <∞.

(c.7) For each 0 < r <∞,

∫
|x|≤M

exp

(
r sup
t∈T
|Kt(x)|

)
dx <∞.

(c.8) (T, ρ) is totally bounded, where ρ(s, t) =
∫
IRd |Ks(x)−Kt(x)| dx.

Then, with probability one,

{a(log logn)−1
n∑
j=1

Kt(b
−1
n (x0 −Xj)) : t ∈ T}

is relatively compact and its limit set is{(∫
IRd
Kt(x)α(x) dx

)
t∈T

:
∫
IRd
h((f(x0))−1α(x)) dx ≤ (f(x0))−1a

}
.

Proof. We apply Lemma 2.1. Lemma 5.5 implies the L.I.L. for the finite dimensional

distributions. By the argument used in Theorem 3 to deal with in IM,δ,j,

lim
M→∞

lim sup
n→∞

sup
t∈T
|Vn(KtIG≥M )| = 0 a.s.,

where G(x) = supt∈T |Kt(x)|. By Theorem 2.4 (condition (c.2) in Remark 2.5 is satisfied)

lim
δ→0

lim sup
n→∞

sup
ρ(t1,t2)≤δ

|(Vn((Kt1 −Kt2)IG≤M )− E[Vn((Kt1 −Kt2)IG≤M )]| = 0 a.s.,
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for each M <∞. Obviously

lim
δ→0

lim sup
n→∞

sup
ρ(t1,t2)≤δ

|E[Vn((Kt1 −Kt2)IG≤M )]| = 0,

for each M <∞. So, the claim follows. 2

If ut ∈ T , for each 0 ≤ u ≤ 1 and each t ∈ T , and conditions (c.1), (c.2), (c.3) and (c.7) in the

previous theorem are satisfied, then Lemma 2.2 gives that {Vn(Kt) : t ∈ T} satisfies the compact

L.I.L. if and only if (T, ρ) is totally bounded and supt∈T |Vn(Kt)| Pr−→ 0.

In the case that the functions are nonnegative, satisfying (c.4) and (c.6), condition (c.7) can

be relaxed to

(c.7)” For each 0 < r <∞, there exists a δ > 0 such that

∫
|x|≤M

exp

(
r sup
ρ(s,t)≤δ

|Kt(x)|
)
dx <∞.

By the Remark 1.5, if {Kt(u−1x) : 0 ≤ u ≤ 1, t ∈ T} is a VC subgraph class of functions such

that

(5.25) lim
δ→0+

∫
IRd

sup
1−δ≤u≤1

sup
t∈T
|Kt(u

−1x)| dx <∞,

then conditions (c.5) and (c.8) in Theorem 5.7 are satisfied. As to bracketing, we have the

following:

Proposition 5.8. With the previous notation, assume conditions (c.1), (c.2), (c.3),

(c.9)
∫
IRd |Kt(x)| dx <∞, for each t ∈ T .

(c.10) N (1)

[ ]
(τ, T, λ) <∞, for each τ <∞.

Then,

sup
t∈T
|Vn(Kt)− E[Vn(Kt)]| Pr−→ 0.

Proof. c will denote a universal constant which may varies from line to line. We claim that

if f satisfied (c.9), then

(5.26) |Vn(Kt)− E[Vn(Kt]| Pr−→ 0

Given ε > 0,

E[|Vn(KtI|Kt(x)|>b)−E[Vn(KtI|Kt(x)|>b)]| ≤ c
∫
IRd
|Kt(x)|I|Kt(x)|>b dx ≤ ε,

where and b is a large enough constant. We also have that

Var(Vn(KtI|Kt(x)|≤b)) ≤ c(log logn)−1
∫
IRd
K2
t (x)I|Kt(x)|≤b dx,

which goes to zero. So, (5.26) holds.
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Given τ > 0, there are Kt1, . . . , Ktm ∈ F and functions ∆1, . . . ,∆m such that
∫
IRd ∆k(x) dx ≤ τ

for each 1 ≤ k ≤ m, and for each t ∈ T , there exists a 1 ≤ k ≤ m such that |Kt(x) −Ktk(x)| ≤
∆k(x), for each x ∈ IRd. Hence

sup
t∈T
|Vn(K)− E[Vn(Kt)]| ≤ sup

1≤k≤m
|Vn(Ktk)−E[Vn(Ktk)]|

+ sup
1≤k≤m

|Vn(∆k)− E[Vn(∆k)]|+ 2 sup
1≤k≤m

|E[Vn(∆k)]|.

We have that |E[Vn(∆k)]| ≤ 2f(x0)
∫
IRd |∆k(x)| dx, for n large enough. So,

Pr{sup
t∈T
|Vn(Kt)− E[Vn(Kt)]| ≥ 2(f(x0) + 1)η}

≤ Pr{ sup
1≤k≤m

|Vn(Ktk)− E[Vn(Ktk)]| ≥ η}+ Pr{ sup
1≤k≤m

|Vn(∆k)−E[Vn(∆k)]| ≥ η},

which goes to zero. 2

So, if there exists a δ > 0 such that N (1)

[ ]
(τ, Tδ, λ) < ∞, for each τ < ∞, where {Kt(u

−1x) :

1− δ ≤ u ≤ 1, t ∈ T}, then (c.5) in Theorem 5.7 holds.

Condition (c.5) is also satisfied for VC subgraph classes of functions. Definition and main

properties of VC classes of sets can be found in Chapters 9 and 11 in Dudley (1984). Given a

function f : S → IR, the subgraph of f is the set {(x, t) ∈ S× IR : 0 ≤ t ≤ f(x) or f(x) ≤ t ≤ 0}.
A class of functions F is a VC–subgraph class if the collection of subgraphs of F is a VC class.

It is well known that for any VC subgraph class of functions and any n,

(5.27) E[sup
f∈F
|
n∑
j=1

εjf(Xj)|] ≤ cE[|
n∑
j=1

εj sup
f∈F
|f(Xj)||],

where {εj} is a sequence of Rademacher r.v.’s, independent of the sequence {Xj}, and c is universal

constant depending only on the class F .

Proposition 5.9. With the notation in Theorem 5.7, assume conditions (c.1)–(c.3) in this

theorem. Suppose also that there exists a 0 < δ0 < 1 such that:

(i) {Kt(u−1x) : 1− δ0 ≤ u ≤ 1, t ∈ T} is a VC subgraph class of functions.

(ii) ∫
sup

1−δ0≤u≤1
sup
t∈T
|Kt(u

−1x)| dx <∞.

Then,

lim
δ→∞

lim sup
n→0

E[ sup
1−δ≤u≤1,t∈T

|Vn(Kt(u
−1·)− E[Vn(Kt(u

−1·)]|] = 0.

Proof. Let τ > 0. By symmetrization and (5.27),

E[ sup
1−δ≤u≤1,t∈T

|Vn(Kt, u
−1)− E[Vn(Kt, u

−1)]|]
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≤ 2E[ sup
1−δ≤u≤1,t∈T

(log log n)−1|
n∑
j=1

εjKt(u
−1b−1

n (x0 −Xj)|]

≤ cE[(log logn)−1|
n∑
j=1

εj sup
1−δ≤u≤1,t∈T

|Kt(u
−1b−1

n (x0 −Xj)||]

≤ cE[(log log n)−1|
n∑
j=1

εj sup
1−δ≤u≤1,t∈T

|Kt(u
−1b−1

n (x0 −Xj)|Isup1−δ≤u≤1 supt∈T |Kt(u−1b−1
n (x0−Xj))|≤τ |]

+cE[(log logn)−1|
n∑
j=1

εj sup
1−δ≤u≤1,t∈T

|Kt(u
−1b−1

n (x0 −Xj))|Isup1−δ≤u≤1,t∈T |Kt(u−1b−1
n (x0−Xj )|>τ |]

≤ c(log log n)−1(nE[ sup
1−δ≤u≤1,t∈T

|Kt(u
−1b−1

n (x0 −Xj)|2Isup1−δ≤u≤1,t∈T |Kt(u−1b−1
n (x0−Xj)|≤τ ])

1/2

+c(log log n)−1E[n sup
1−δ≤u≤1,t∈T

|Kt(u
−1b−1

n (x0 −Xj)|Isup1−δ≤u≤1,t∈T |Kt(u−1b−1
n (x0−Xj )|>τ ]

≤ c(log logn)−1/2 + c
∫

sup
1−δ≤u≤1,t∈T

|Kt(u
−1x)|Isup1−δ≤u≤1,t∈T |Kt(u−1x)|>τ dx

So, the claim follows. 2
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