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1. The results. This paper constructs a Markov process related both to longest
increasing subsequences of random permutations and to the Burgers equation, a
first-order nonlinear partial differential equation. The process lives on the sites i
of the one-dimensional integer lattice Z. Its state is a configuration η = (ηi)i∈Z of
nonnegative variables ηi ∈ [0,∞) that we picture as vertical sticks on the lattice
sites. The state evolves in continuous time according to the following rule:

(1.1)
At each site i, at rate equal to ηi, a random stick piece u uniformly

distributed on [0, ηi] is broken off ηi and added on to ηi+1.

Our main result is a hydrodynamic scaling limit: The process is scaled by speeding
up time and shrinking lattice distance by a factor N . In the limit N →∞ the em-
pirical profile of the stick configuration converges to a weak solution of the Burgers
equation. The longest increasing subsequences appear in a rigorous construction of
the process and also in the proof of the scaling limit. Motivation for the paper is
discussed in Section 2. First we present our theorems, beginning with the existence
of the process.

According to the conventional interpretation of particle system generators (see
Liggett’s monograph [Lg]), an obvious formalization of rule (1.1) is the generator

(1.2) Lf(η) =
∑
i∈Z

∫ ηi

0

[f(ηu,i,i+1)− f(η)] du ,

where the configuration ηu,i,i+1 is defined, for i, j ∈ Z and 0 ≤ u ≤ ηi, by

(1.3) ηu,i,i+1
j =


ηi − u, j = i

ηi+1 + u, j = i+ 1

ηj , j 6= i, i+ 1.

Lf is certainly well-defined for bounded continuous cylinder functions f (functions
depending on finitely many sticks only) on [0,∞)Z. However, we shall not define
the process through the generator, but by explicitly constructing the probability
distributions of the process on the path space.

Rule (1.1) shows that the process is totally asymmetric in the sense that stick
mass moves only to the right. It is fairly clear that, for the process to be well-
defined from an initial configuration (ηi), we cannot allow arbitrary fast growth of
ηi as i→ −∞. We take the state space to be

Y =

{
η ∈ [0,∞)Z : lim

n→−∞
n−2

−1∑
i=n

ηi = 0

}
.

This is the largest possible state space for which our construction of the process
works. It matches the class of admissible initial profiles of the partial differential
equation, compare with (1.7) below.

We topologize Y with a new metric r defined below. A topology stronger than
the usual product topology is necessary for uniform control over the sticks to the
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left of the origin and because Y is not even a closed subset of [0,∞)Z. For real
numbers a and b, let

r0(a, b) = |a− b| ∧ 1,

and for η, ζ ∈ Y set

r(η, ζ) = sup
n≤−1

r0

(
n−2

−1∑
i=n

ηi , n
−2
−1∑
i=n

ζi

)
+
∞∑
i=0

2−i r0(ηi, ζi).

It is not hard to see that (Y, r) is a complete separable metric space.
A partial order on Y is defined stickwise: η ≥ ζ if ηi ≥ ζi for all i ∈ Z. It may be

intuitively plausible from (1.1) that the process is attractive, and this will be proved
by a coupling. By Feller continuity we mean that Eηf(η(t)) is a continuous function
of η for t > 0 and f ∈ Cb(Y ), the space of bounded continuous functions on Y . As
usual D([0,∞), Y ) denotes the space of right-continuous Y -valued trajectories η(·)
with left limits.

Theorem 1. There is a Feller continuous attractive Markov process on Y with
paths in D([0,∞), Y ) such that

(1.4) Eηf(η(t)) − f(η) =

∫ t

0

Eη
[
Lf(η(s))

]
ds

holds for all bounded continuous cylinder functions f on Y and all initial states
η ∈ Y . The i.i.d. exponential distributions on (ηi)i∈Z are invariant for the process.

Next we turn to the Burgers equation. In one space dimension this is the non-
linear conservation law

(1.5) ∂tu+ ∂x(u2) = 0,

where u(x, t) is a real-valued function defined for (x, t) ∈ R× (0,∞). The solutions
of this equation may develop discontinuities even for smooth initial data. Hence in
general we can hope to solve it only in a weak sense instead of finding a function
u(x, t) that is everywhere differentiable and satisfies (1.5) as it stands. Moreover,
it turns out that our scaling limit does not require the initial data to even be a
function, so we wish to allow as general initial conditions as possible. The following
definition of weak solution turns out to be the right one for our purposes. Recall
that the Radon measures on R are those nonnegative Borel measures under which
bounded sets have finite measure, and that their vague topology is defined by
declaring that νn → ν if νn(φ) → ν(φ) for all functions φ ∈ C0(R) (compactly
supported, continuous).

Definition 1. Let m0 be a Radon measure on R. A measurable function u(x, t) on
R×(0,∞) is a weak solution of (1.5) with initial data m0 if the following conditions
are satisfied:

(i) For a fixed t > 0, u(x, t) is right-continuous as a function of x.
(ii) For 0 < s < t and −∞ < a < b <∞,

sup
s≤τ≤t , a≤x≤b

|u(x, τ )| <∞.
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(iii) For t > 0 and −∞ < a < b <∞,∫ t

0

∫ b

a

u2(x, τ )dxdτ <∞.

(iv) For all φ ∈ C1
0 (R) (compactly supported, continuously differentiable) and

t > 0,

(1.6)

∫
R

φ(x)u(x, t)dx −
∫

R

φ(x)m0(dx) =

∫ t

0

∫
R

φ′(x)u2(x, τ )dxdτ.

Theorem 2. Let m0 be a Radon measure on R such that

(1.7) lim
x→−∞

x−2 m0[x, 0) = 0.

Then there exists a function u(x, t) that satisfies Definition 1 and has the following
additional properties:

(i) For a fixed t > 0, u(x, t) is continuous as a function of x except for countably
many jumps, and

u(x−, t) ≥ u(x+, t) = u(x, t) ≥ 0 for all x.

(ii) Among the solutions satisfying Definition 1, u(x, t) is uniquely characterized
as the one with minimal flux over time: If v(x, t) is another weak solution
satisfying (i)–(iv) of Definition 1, then for t > 0 and all x ∈ R such that
m0{x} = 0,

(1.8)

∫ t

0

u2(x, τ )dτ ≤
∫ t

0

v2(x, τ )dτ.

If equality holds in (1.8) for a.a. x ∈ R (in particular, for all x such that
m0{x} = 0), then u(x, t) = v(x, t) for a.a. x.

(iii) In case m0(dx) = u0(x)dx for some u0 ∈ L∞(R), then u(x, t) is the unique
entropy solution characterized by the existence of a constant E > 0 such
that for all t > 0, x ∈ R, and a > 0,

(1.9)
u(x+ a, t)− u(x, t)

a
≤ E

t
.

The uniqueness statement (last sentence in (ii)) is an immediate consequence
of the form of the right-hand side of (1.6). A fairly involved proof shows that
the entropy condition (1.9) guarantees uniqueness with L∞(R) initial data, see
Theorem 16.11 in Smoller’s monograph [Sm]. We prove Theorem 2 in the Appendix
by proving the analogous result for a more general scalar conservation law in one
space dimension.



6

Given m0 satisfying (1.7), we make the following assumption on the sequence
{µN0 }∞N=1 of initial distributions on the stick configurations:

(1.10)

For all −∞ < a < b <∞ and ε > 0,

lim
N→∞

µN0

{
η ∈ Y :

∣∣∣∣ 1

N

[Nb]−1∑
i=[Na]

ηi − m0[a, b)

∣∣∣∣ ≥ ε} = 0.

Hidden in the assumption that µN0 be a measure on Y is of course the condition
that

(1.11) lim
n→−∞

n−2
−1∑
i=n

ηi = 0

holds µN0 -a.s. Additionally, our proof of the scaling limit requires a certain unifor-
mity:

(1.12)

There is a number b ∈ R such that

for all ε > 0 we can find q and N0 that satisfy

sup
N≥N0

µN0

{
η ∈ Y : sup

n≤Nq

N

n2

[Nb]−1∑
i=n

ηi ≥ ε
}
≤ ε.

Let PN be the distribution of the process on D([0,∞), Y ) when the initial dis-
tribution is µN0 , and write ηN(t) for the process. The empirical measure αNt is the
random Radon measure defined by

αNt = N−1
∑
i∈Z

ηNi (t) δ i
N
.

In other words, the integral of a test function φ ∈ C0(R) against αNt is given by

αNt (φ) = N−1
∑
i∈Z

ηNi (t)φ( i
N

).

The definition of αNt incorporates the space scaling: The sticks now reside on the
sites of N−1Z. The time scaling is introduced by explicitly multiplying t by N .
Assumption (1.10) says that αN0 → m0 in probability as N → ∞, and our main
theorem asserts that this law of large numbers is propagated by the stick evolution:

Theorem 3. Assume (1.7) and (1.10)–(1.12), and let u(x, t) be the solution given
in Theorem 2. Then for each t > 0, αNNt → u(x, t)dx in probability as N → ∞,
in the vague topology of Radon measures on R. Precisely, for each φ ∈ C0(R) and
ε > 0,

lim
N→∞

PN
{ ∣∣∣∣αNNt(φ) −

∫
R

φ(x)u(x, t)dx

∣∣∣∣ ≥ ε} = 0.
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Remark 1.13. Here are two examples of initial distributions satisfying (1.10)–(1.12)
(ηNi denotes the stick ηi as a random variable under µN0 ):

(i) For any m0 satisfying (1.7), the deterministic initial sticks ηNi =
Nm0[i/N, (i+ 1)/N) satisfy (1.10)–(1.12).

(ii) Suppose m0(dx) = u0(x)dx for a function u0 ∈ L∞loc(R), and that u∗(x) =
ess supx<y<0 u0(y) grows at most sublinearly: limx→−∞ |x|−1 u∗(x) = 0.
Then we may take (ηNi )i∈Z independent exponentially distributed random
variables with expectations E[ηNi ] = Nm0[i/N, (i + 1)/N).

These claims are verified in Section 10. Furthermore, we show by example that the
independent exponential sticks described in (ii) can fail to lie in Y if u∗(x) grows
too fast as x→ −∞.

These are the main results. The rest of the paper is organized as follows: In
Section 2 we briefly discuss the general themes touched on by the paper. Section 3
describes Hammersley’s particle process and Section 4 contains a string of technical
results about it. Section 5 constructs the stick process in terms of Hammersley’s
process. Section 6 proves that the stick process is attractive through an alternative
construction, utilized also in Section 7 to verify that i.i.d. exponential distributions
are invariant. Section 8 proves the hydrodynamic scaling limit to an equation that
contains an unknown parameter, namely the value c = limn−1/2Ln where Ln is the
longest increasing subsequence of a random permutation on n symbols. In Section
9 we calculate c = 2 by combining the scaling limit of Sect. 8 with a judiciously
chosen explicit solution of the Burgers equation. Section 10 proves the claims made
in Remark 1.13 and presents examples to illustrate the need for the assumptions
we have made. The Appendix develops the existence and uniqueness theorem for
the p.d.e.

There is some independence among the sections: The Appendix can be read
independently of everything else, and everything else can be read without the at-
tractiveness and invariance proofs of Sections 6 and 7. The reader who wishes to
understand how Theorem 3 and c = 2 are proved without wading in technicalities
can read Sections 2 and 3, the first paragraph of Section 5, Section 8 without the
proofs, and then Section 9. The complete proof of Theorem 1 runs from Section 3
to Section 7.

2. The context of the paper. Motivation for this paper comes from two sources:
(1) Hydrodynamic scaling limits for asymmetric particle systems and (2) Ulam’s
problem, or the study of the longest increasing subsequence of a random permuta-
tion.

The asymmetric simple exclusion and zero range processes are the two interact-
ing particle systems that have been studied as microscopic models for nonlinear
conservation laws. A law of large numbers of the type of our Theorem 3 was first
obtained by Rost [Ro] in 1981 for the totally asymmetric simple exclusion process.
His result was valid only for the initial profile u0(x) = I(−∞,0)(x). Techniques devel-
oped over a decade, and in 1991 Rezakhanlou [Re] published results that admitted
a general bounded initial profile u0 ∈ L∞(Rd) and covered both the exclusion and
the zero range process in several space dimensions. In comparison, our Theorem
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3 admits an even more general initial profile, but our approach confines us to one
space dimension.

Of particular interest is the study of the particle system at locations where the
solution u(x, t) of the macroscopic equation has a discontinuity, or a shock. A
recent review of such results is provided in [Fe]. We propose the stick model as
an addition to the arsenal of models on which such questions can be studied. If
these properties of the stick model are accessible, they can be compared with the
wealth of results obtained for the exclusion process to see to what extent the results
are model-specific. The stick model was originally developed to study microscopic
mechanisms for the porous medium equation. See [ES,FIS,SU] for accounts of this
work.

Ulam’s problem is the evaluation of c = limn−1/2Ln where Ln is the length of
the longest increasing subsequence of a random permutation on n symbols. By
now there are several proofs of c = 2. Our paper is partly inspired by the proof of
Aldous and Diaconis [AD]. They turn Hammersley’s [Ha] representation of Ln in
terms of a planar Poisson point process into an interacting particle system which
they analyze in the spirit of Rost to deduce c = 2. This particle system, named
after Hammersley in [AD], is turned in our paper into the stick model by mapping
the interparticle distances to stick lengths. This connection is the same as the one
between the simple exclusion and zero range processes that has been used by Kipnis
[Ki] among others.

To show the connection of the stick model with Ulam’s problem, let us outline
the proof of Theorem 3. At the heart of the proof is a link between the microscopic
description (the stick model) and the macroscopic description (the p.d.e.) in terms
of “distribution functions” of the two measures αNNt and u(x, t)dx. Microscopically
this is given by a configuration of particles z(t) = (zk(t))k∈Z on R that satisfy

(2.1) zi+1(t)− zi(t) = ηi(t).

The macroscopic equivalent is a function U(x, t) that satisfies

(2.2) U(b, t)− U(a, t) =

∫
[a,b)

u(y, t)dy

for a < b. The particle dynamics z(t) corresponding to the stick dynamics of
Theorem 1 can be defined by

(2.3) zk(t) = inf
i≤k

{
zi + Γ((zi, 0), t, k − i)

}
.

Here (zi) is the initial particle configuration and Γ((zi, 0), t, k − i) is a random
variable defined through Hammersley’s point process representation of Ln (precise
definition follows in Sect. 3). Formula (2.3) identifies z(t) as Hammersley’s particle
process. On the other hand, if u(x, t) is the solution described in Theorem 2 then
U(x, t) satisfies

(2.4) U(x, t) = inf
q≤x

{
U0(q) +

(x− q)2

4t

}
.
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By assumption (1.10), N−1z[Nq] → U0(q) as N →∞. Thus the proof of Theorem

3 boils down to showing that N−1Γ
(
(z[Nq], 0),Nt, [Nx] − [Nq]

)
converges to (x −

q)2/4t. The proof of c = 2 is hidden in the identification of this limit, to which
Section 9 is devoted.

In the actual proof the process z(t) and the function U(x, t) become the primary
objects, and η(t) and u(x, t) are defined by (2.1)–(2.2). The formal similarity of
(2.3) and (2.4) acquires depth through various parallel properties of the evolutions.
For example, there is a semigroup property in the obvious sense:

zk(t) = inf
i≤k

{
zi(s) + Γ((zi, s), t, k − i)

}
and U(x, t) = inf

q≤x

{
U(q, s) +

(x− q)2

4(t− s)

}
for any 0 ≤ s ≤ t. What is most intriguing is that the semigroup (2.3) operates
at the level of paths, or individual realizations, of the stochastic process, yet it
matches with the action on the macroscopic level where all randomness has been
scaled away.

We conclude with some observations about the macroscopic equations of the
three processes, the stick, the exclusion, and the zero range. The equation of the
totally asymmetric exclusion process,

(2.5) ρt + [ρ(1− ρ)]x = 0,

is also often called the Burgers equation because the formula ρ = 1/2−u transforms
between weak solutions of (1.5) and (2.5). But since this connection does not
preserve nonnegativity (u ≥ 0, ρ ≥ 0) it does not link the stick and exclusion
processes.

As the mass of a particle model comes in discrete units there is a minimal rate at
which mass leaves an occupied site, while for the stick model there is no such positive
lower bound. This simple observation manifests itself in the speed of propagation
of the macroscopic equation. The equation of the zero range process is

(2.6) ρt + f(ρ)x = 0

with f(ρ) =
∫
c(η0) νρ(dη). Here c(k) is the rate at which a single particle leaves

a site when there are k particles present, and νρ is the equilibrium measure with
expectation ρ. The basic hypothesis for the hydrodynamic limit is that c : N →
[0,∞) be a bounded nondecreasing function with 0 = c(0) < c(1) (see [Re]). A
computation shows that f ′(0) = c(1), while for the stick model the corresponding
derivative is (d/du)(u2)|u=0 = 0. By Remark A17 of the Appendix, the source
solution of (2.6) travels with speed c = c(1) > 0, while the left endpoint of the
source solution for (1.5) never leaves the origin. Similarly for (2.5), there is a
nonzero speed (d/dρ)[ρ(1− ρ)]|ρ=0 = 1.

3. The particle picture. To prove Theorem 1 we construct the stick process in
terms of a related particle process. The state of the particle process is a sequence
z = (zk)k∈Z of particle locations on R, labeled so that zk+1 ≥ zk for all k. The
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connection with the stick configuration is that ηi = zi+1 − zi for all i. Thus to
match (Y, r) we define the state space of the particle process to be

Z =
{
z ∈ RZ : zk+1 ≥ zk for all k ∈ Z and lim

k→−∞
k−2zk = 0

}
,

with the metric

s(z,w) = sup
k≤−1

r0(k−2zk, k
−2wk) +

∞∑
k=0

2−kr0(zk , wk).

It is clear that as a metric space (Y, r) is equivalent to (Zβ , s) for any β ∈ R, where
Zβ = {z ∈ Z : z0 = β}.

The evolution of the particle configuration is defined in terms of a rate 1 Poisson
point process on R × (0,∞). Fix a realization of such a process, in other words,
a simple point measure on R × (0,∞). For 0 ≤ s < t and −∞ < a < b < ∞,
consider all the up-right paths of points in the rectangle (a, b]×(s, t]: These are finite
sequences (x1, t1), . . . , (x`, t`) of points of the point process contained in (a, b]×(s, t]
such that x1 < x2 < · · · < x` and t1 < t2 < · · · < t`. Define L↗((a, s), (b, t)) to be
the maximal number of points on such a path. (This notation is from [AD].) An
inverse to this quantity is defined by

(3.1) Γ((a, s), t, k) = inf{h ≥ 0 : L↗((a, s), (a + h, t)) ≥ k}.
In other words, Γ((a, s), t, k) is the horizontal distance needed for building an up-
right path of k points starting at (a, s), with vertical distance t− s at our disposal.
Suppose Γ((a, s), t, k) = h and (x1, t1), . . . , (xk, tk) is an up-right path of k points
in (a, a + h] × (s, t]. Let γ be the piecewise linear curve got by connecting (a, s)
to (x1, t1), (x1, t1) to (x2, t2), and so on up to (xk , tk), and then (xk, tk) to (xk, t).
Thus γ connects the horizontal time-s and time-t lines. We call γ an up-right curve
that realizes Γ((a, s), t, k), and say that γ contains an up-right path of k points.

Given an initial configuration (zi) ∈ Z, the positions of the particles at time
t > 0 are defined by

(3.2) zk(t) = inf
i≤k

{
zi + Γ((zi, 0), t, k − i)

}
.

In the next section we prove rigorously that this evolution is well-defined for a.e.
realization of the Poisson point process, and that it defines a Feller process on the
path space D([0,∞), Z). But first we wish to point out that this is the process that
Aldous and Diaconis [AD] call Hammersley’s particle process: Set

N(x, t) = sup{k : zk(t) ≤ x}.
Then N(y, t) − N(x, t) is the number of particles in (x, y] at time t, and N( · , t)
evolves by the rule

N(x, t) = sup
−∞<z≤x

{
N(z, 0) + L↗((z, 0), (x, t))

}
,

which is precisely formula (10) in [AD]. In [AD] the reader can also find illuminating
pictures of typical paths of the particles. We regard z as a particle configuration
rather than as a Radon measure on R to retain the flexibility of having infinitely
many particles in a bounded interval, or even at a single location.
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4. The particle process as a Feller process on D([0,∞), Z). As the particle
evolution is defined in terms of Γ, and Γ contains the same information as L↗, we
could from now on express everything in terms of Γ and entirely forget L↗. But
we choose not to do this, for L↗ is convenient to work with, and through L↗ we
emphasize the connection of our paper with past work on increasing subsequences
and related problems.

We write P for all probabilities involving the Poisson point process, and Pz when
the probability space of the point process is augmented by the choice of an initial
configuration z ∈ Z. These easily obtained bounds are fundamental to all that
follows:

Lemma 4.1. For any s ≥ 0, a ∈ R, τ, h > 0, and k ∈ Z+:

(4.2) P
{
L↗((a, s), (a + h, s+ τ )) ≥ k

}
≤ (τh)k

(k!)2
.

Furthermore, if β0 ≥ e2,

(4.3) P
{
L↗((a, s), (a + h, s+ τ )) ≥ β0

√
τh
}
≤ exp

[
−2β0

√
τh
]
.

Proof. Given that there are j (≥ k) points in the rectangle (a, a + h] × (s, s + τ ],
the probability of having an up-right path of length ≥ k among them is at most(
j
k

)
(k!)−1. (Because then one of the

(
j
k

)
possible k-sets must be an up-right path,

and given the x-coordinates of a k-set, only one of the k! equally likely orderings of
the t-coordinates turns it into an up-right path.) Since j has Poisson distribution
with expectation τh,

P
{
L↗((a, s), (a + h, s+ τ )) ≥ k

}
≤
∑
j≥k

e−τh(τh)j

j!

(
j

k

)
1

k!

=
(τh)k

(k!)2
,

proving (4.2). For (4.3), use (k!)−1 ≤ (e/k)k and then take k = dβ0

√
τh e, the

smallest integer above β0

√
τh. �

As the first application we check that (3.2) defines an evolution in Z.

Proposition 4.4. Let z ∈ Z and define z(t) = (zk(t))k∈Z by (3.2) for 0 < t <∞.
Then the following holds for almost every realization of the point process: For all
t > 0, z(t) ∈ Z and for each k ∈ Z there exist −∞ < i−(k, t) ≤ i+(k, t) such that

zk(t) = zi + Γ((zi, 0), t, k − i)

holds for i = i±(k, t) but fails for all i < i−(k, t) and i > i+(k, t).

Proof. Fix T > 0 and let ε > 0 be arbitrary but small enough so that

(1/2)(T ε)−1/2 ≥ e2.
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Then by (4.3)

(4.5) Pz
{
L↗((zi, 0), (zi + ε i2, T )) ≥ |i|/2

}
≤ e−|i| for all i.

By Borel-Cantelli and the monotonicity of L↗, there exists a Pz-almost surely finite
random variable J such that

(4.6) L↗((zi, 0), (zi + ε i2, t)) < |i|/2 for 0 < t ≤ T and i ≤ J .

Fix a realization of the point process for which J > −∞. By hypothesis |zi| = o(i2)
as i→ −∞, hence there exists a number j0 such that

(4.7) zi ≥ −ε i2/2 for i ≤ j0.

Now fix k ∈ Z and t ≤ T , and set I = J ∧ j0 ∧ (−2|k|). Then whenever i ≤ I,
we have k − i ≥ |i|/2, whence by (4.6)

Γ((zi, 0), t, k − i) ≥ Γ((zi, 0), t, |i|/2) ≥ ε i2,

and then by (4.7)

(4.8) zi + Γ((zi, 0), t, k − i) ≥ ε i2/2,

which is ≥ zk for all small enough i. Thus only a finite range of i’s come into
question as possible minimizers in (3.2), and the existence of i±(k, t) follows.

To quantify this finite range of i’s, pick k0 < 0 so that 2εk2 > zk for k ≤ k0.
Then (4.8) implies that for k ≤ J ∧ j0 ∧ k0,

zk(t) = min
2k≤i≤k

{
zi + Γ((zi, 0), t, k − i)

}
and consequently by (4.7)

(4.9) zk(t) ≥ z2k ≥ −2εk2.

By the monotonicity of L↗, (4.6) remains valid if ε is decreased. In other words,
this argument can be repeated for arbitrarily small ε > 0, with new values of j0
and k0, but without changing the realization of the point process or the value of J .
Then (4.9) shows that |zk(t)| = o(k2) as k →−∞. The property zk+1(t) ≥ zk(t) is
immediate from (3.2), and thereby z(t) ∈ Z. To get a single Pz-null set outside of
which these properties hold simultaneously for all t, let T ↗∞ along a countable
set. �

To establish Pz-a.s. properties of the evolution, fix an initial configuration z ∈ Z
and a realization of the point process such that the statement of Proposition 4.4 is
valid. It is obvious from (3.2), but important, that

(4.10) zk(t) ≤ zk(s) for 0 ≤ s < t.

With a little more work we see that (Pz-a.s.) each realization of the particle evolu-
tion satisfies a semigroup property:
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Proposition 4.11. For 0 ≤ s < t,

(4.12) zk(t) = inf
j≤k

{
zj(s) + Γ((zj(s), s), t, k − j)

}
.

Proof. Let z denote the right-hand side of (4.12). Pick `(j) ≤ j such that

zj(s) = z`(j) + Γ((z`(j), 0), s, j − `(j)).
Combining up-right paths that realize Γ((z`(j) , 0), s, j−`(j)) and Γ((zj(s), s), t, k−
j) shows that

Γ((z`(j), 0), s, j − `(j)) + Γ((zj(s), s), t, k − j) ≥ Γ((z`(j), 0), t, k − `(j)),
from which

z = inf
j≤k

{
z`(j) + Γ((z`(j), 0), s, j − `(j)) + Γ((zj (s), s), t, k − j)

}
≥ inf
j≤k

{
z`(j) + Γ((z`(j), 0), t, k − `(j))

}
≥ zk(t).

Conversely, pick i so that zk(t) = zi+Γ((zi, 0), t, k− i) and consider the up-right
curve γ that realizes Γ((zi, 0), t, k − i). If the up-right path in γ does not reach
above the horizontal time-s line, then zk(s) = zk(t) and consequently z ≤ zk(t).
Otherwise, let γ = γ′ ∪ γ′′ be a partition of γ into the pieces in R × (0, s] and
R× (s, t], respectively, and let j ∈ [i, k) be such that γ′ contains an up-right path
of j − i points. Let (x, s) be the intersection of γ with the time-s line. Then
zj(s) ≤ x (this is true even if j − i = 0) and γ′′ forms an upper bound for the
minimization in (3.1) for Γ((zj(s), s), t, k − j). Thus

zk(t) ≥ zj(s) + Γ((zj(s), s), t, k − j) ≥ z. �

Lemma 4.13. Let 0 < s < t and i < j < k. Then

(4.14) zi + Γ((zi, 0), s, k − i) ≤ zj + Γ((zj , 0), s, k − j)
implies

(4.15) zi + Γ((zi, 0), t, k − i) ≤ zj + Γ((zj , 0), t, k − j).

Proof. If zi + Γ((zi, 0), s, k − i) ≤ zj + Γ((zj , 0), t, k − j) then we have nothing to
prove, for

zi + Γ((zi, 0), t, k − i) ≤ zi + Γ((zi, 0), s, k − i)
is automatically true as Γ((zi, 0), t, k−i) is nonincreasing in t. Thus we may assume

zi + Γ((zi, 0), s, k − i) > zj + Γ((zj , 0), t, k − j),
from which it follows that the up-right curves γi and γj realizing Γ((zi, 0), s, k − i)
and Γ((zj , 0), t, k − j), respectively, intersect. Let γi = γ′i ∪ γ′′i be a partition of γi
into the two pieces preceding and following the point of intersection, and similarly
γj = γ′j ∪γ′′j . Assumption (4.14) implies that γ′j ∪γ′′i contains at most k− j points,
from which it follows that γ′i ∪ γ′′j contains at least k − i points. Consequently the

up-right path in γ′i ∪ γ′′j forms an upper bound for the minimization in (3.1) for
Γ((zi, 0), t, k − i), which implies (4.15). �

Recall that i−(k, t) = min
{
i : zk(t) = zi + Γ((zi, 0), t, k − i)

}
.
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Corollary 4.16. For a fixed k, i−(k, s) ≥ i−(k, t) whenever s < t.

Proof. Let i < j = i−(k, t). Then (4.15) cannot happen, hence by Lemma 4.13
neither can (4.14), and so i cannot equal i−(k, s). �

By arguments with up-right curves similar to those employed above, we leave it
to the reader to prove another property we shall need later:

Lemma 4.17. For all k and t, i−(k + 1, t) ≥ i−(k, t).

We now turn to the regularity of the paths z(t). First we show that the trajec-
tory of a single particle is in the space D([0,∞),R) (Pz-a.s.), and then utilize the
monotonicity built into (zk(t))k∈Z to extend this to the whole configuration.

Lemma 4.18. For a fixed k, zk(t) is right-continuous and has left limits as a
function of t.

Proof. By (4.10) limits exist from both left and right, and we shall be done after
showing that for some ε = ε(k, t0) > 0, zk(t) = zk(t0) for t0 ≤ t < t0 + ε. By (4.12)

(4.19) zk(t) = inf
j≤k

{
zj(t0) + Γ((zj (t0), t0), t, k − j)

}
.

Fix t1 > t0 and let

j1 = inf
{
j : zk(t1) = zj(t0) + Γ((zj(t0), t0), t1, k − j)

}
.

If j1 = k we can stop here, so suppose j1 < k. If j satisfies the requirement in
braces, then for some i ≤ j there is an up-right curve from (zi, 0) to (zk(t1), t1)
through (zj(t0), t0), and hence i−(k, t1) ≤ j. In particular, j1 above is finite. Let

(4.20)
ε = sup{δ ∈ (0, t1 − t0) : [zj1 (t0), zk(t0)]× (t0, t0 + δ)

contains no point process points}.

Since a realization of the point process is a Radon measure, ε > 0. Let t ∈ (t0, t0+ε).
By Corollary 4.16 (with time zero replaced by time t0) there is no j < j1 such that

zk(t) = zj(t0) + Γ((zj (t0), t0), t, k − j).

For j ≥ j1
zj(t0) + Γ((zj (t0), t0), t, k − j) ≥ zk(t0)

by the definition (4.20) of ε, since t ∈ (t0, t0 + ε). Thus (4.19) gives zk(t) =
zk(t0). �

Proposition 4.21. The path z(·) is an element of D([0,∞), Z).

Proof. Fix t0. We need to show that s(z(t), z(t0)) → 0 as t ↘ t0. Let 0 < ε < 1.
Since z, z(t0 + 1) ∈ Z, we may pick k0 < 0 so that

k−2
0 |z0| ≤ ε/4, |zk(t0 + 1)| ≤ ε k2/4 whenever k ≤ k0, and 2−|k0| < ε/4.
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Use Lemma 4.18 to pick t1 ∈ (t0, t0 + 1) so that

|zk(t)− zk(t0)| ≤ ε/8 for |k| ≤ |k0| whenever t0 < t < t1.

Now let t0 < t < t1. Since zk(t0 + 1) ≤ zk(t) ≤ zk(t0) ≤ z0 for k ≤ k0, we have

s(z(t), z(t0)) ≤ sup
k<k0

k−2|zk(t)− zk(t0)|+ ε/4 + 2−|k0|

≤ sup
k<k0

k−2
(
|zk(t0 + 1)|+ |z0|

)
+ ε/2

≤ ε.

By a similar argument we show that z(t)→ z as t↗ t0, where z ∈ Z is defined by
zk = limt↗t0 zk(t). �

A few words about technical details that the reader is welcome to skip. Z is a
measurable subset of [−∞,+∞)Z in the natural product σ-field, and the Borel field
of Z coincides with its relative σ-field as a subspace of [−∞,+∞)Z. P is a Borel
probability measure on the space Ms of simple point measures ρ on R × (0,∞),
endowed with the vague topology. We leave it to the reader to convince herself that
Γ((zi, 0), t, k) is a jointly measurable function of (z, ρ) ∈ Z ×Ms. Consequently
(3.2) defines z(t) = (zk(t))k∈Z as a [−∞,+∞)Z-valued jointly measurable function
of (z, ρ). By the results of this section, there is a measurable set A ⊂ Z ×Ms

satisfying Pz(Az) = 1 for all z ∈ Z (Az is the z-section of A), on which z(t) ∈ Z
and the other properties proved in this section hold for all 0 ≤ t < ∞. A can
be defined by requiring that, for each fixed T , (4.6) holds for all small enough
ε with some finite J . For (z, ρ) /∈ A we redefine the evolution by z(t) ≡ z for
some fixed element z ∈ Z, so that z(t) becomes a measurable Z-valued function of
(z, ρ) ∈ Z ×Ms. Since the redefined z(·) is constant on the exceptional set where
Proposition 4.21 fails, we have in fact produced a map (z, ρ) 7→ z(·) from Z ×Ms

into D([0,∞), Z). This is again measurable since the Borel field of D([0,∞), Z) is
generated by the projections z(·) 7→ z(t), 0 ≤ t <∞.

Thus we have constructed the distribution of z(·) under Pz as a Borel proba-
bility measure on D([0,∞), Z). From Proposition 4.11 it follows that this particle
process is Markovian. As the last result of this section we prove that the transition
probabilities are Feller continuous.

Write w(t) for the evolution defined by (3.2) for an initial configuration w. The
point process gives a natural coupling of the particle evolutions z(t) and w(t).

Lemma 4.22. Let ε0, ε1 > 0, t > 0, and z ∈ Z. Then there exists a δ > 0 such
that

(4.23) P(z,w)
{
s(z(t), w(t)) ≤ ε0

}
≥ 1− ε1

whenever w ∈ Z satisfies s(z,w) ≤ δ.

Proof. Pick δ0 < ε0/20 small enough so that (1/2)(3 t δ0)−1/2 ≥ e2. As in the proof
of Proposition 4.4, there exists a P(z,w)-a.s. finite random variable J such that

(4.24) L↗((zi − δ0i2, 0), (zi + 2 δ0i
2, t)) < |i|/2 for i ≤ J .
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Pick k0 < 0 to satisfy

(4.25)
P(z,w){J ≥ k0} ≥ 1− ε1/2, 2−|k0| < ε0/20,

k−2
0 |z0| ≤ δ0, and |zk| ≤ δ0k2 whenever k ≤ k0.

Pick k1 < 0 to satisfy

(4.26) k1 ≤ 2 k0 and δ0k
2
1 ≥ z|k0| + 1.

Pick δ1 ∈ (0, 1) so that the event

(4.27)
{

the set
⋃

k1≤i≤|k0|
(zi−δ1, zi+δ1)×(0, t] contains no point process points

}
has P(z,w)-probability at least 1 − ε1/2. (Note that the events appearing above do
not depend on w so for them P(z,w)-probability is the same as Pz-probability.) Pick
δ > 0 so that whenever s(z,w) ≤ δ,

(4.28) |zi −wi| < δ1 for k1 ≤ i ≤ |k0| and i−2|zi − wi| < δ0 for i < 0.

For the remainder of the proof, pick and fix w ∈ Z so that s(z,w) ≤ δ, and a
realization of the point process for which J ≥ k0 and which has no points in⋃

k1≤i≤|k0|
(zi − δ1, zi + δ1)× (0, t].

Since realizations not satisfying these requirements have P(z,w)-probability less than
ε1, the proof is completed by showing that s(z(t), w(t)) ≤ ε0.

It follows from (4.25), (4.26), (4.28), and from δ1 < 1 that for i ≤ k1

[wi, w|k0|] ⊂ [zi − δ0i2, zi + 2 δ0i
2],

hence by (4.24) and (4.26) for |k| ≤ |k0|,

(4.29) L↗((wi, 0), (w|k0|, t)) ≤ |i|/2 ≤ k − i,

and thus

(4.30) wi + Γ((wi, 0), t, k − i) ≥ w|k0| ≥ wk.

This implies that for |k| ≤ |k0|,

(4.31) wk(t) = min
k1≤i≤k

{
wi + Γ((wi, 0), t, k − i)

}
.

The same statement holds for z too, as it is certainly true that s(z, z) ≤ δ. Now
observe from (4.28) that for k1 ≤ i ≤ |k0|, zi and wi lie in the vertical strip

(zi − δ1, zi + δ1)× (0, t]



17

that contains no point process points, and consequently when computing zk(t) and
wk(t) by (4.31), the same up-right paths are available. Hence we have

(4.32) zk(t) = wk(t) for |k| ≤ |k0|.

For k < k0 similar reasoning gives

(4.33)

wk(t) = min
2k≤i≤k

{
wi + Γ((wi, 0), t, k − i)

}
≥ w2k ≥ z2k − 4 k2 δ0

≥ −8 k2 δ0.

Combining (4.25), (4.32), (4.33), and the fact that wk(t) ≤ wk0(t) = zk0(t) ≤ z0

for k ≤ k0, gives

s(z(t), w(t)) ≤ sup
k≤k0

k−2|zk(t)−wk(t)|+ 2−|k0|

≤ sup
k≤k0

k−2
(
16 k2 δ0 ∨ |z0|

)
+ ε0/20 ≤ ε0. �

From this lemma it follows easily that Ez[f(z(t))] is a continuous function of z
for f ∈ Cb(Z), or that the transition probability of the particle process is Feller
continuous.

5. From the particle process to the stick process. Given an initial stick
configuration η and a number β, define a particle configuration z̃β = z̃β(η) by

(5.1) z̃βi =


β +

∑i−1
j=0 ηi, i > 0

β, i = 0

β −
∑−1

j=i ηi, i < 0.

A stick configuration η̃ = η̃(z) is defined in terms of a particle configuration z by

η̃i = zi+1 − zi.

These formulas extend to continuous mappings between D([0,∞), Y ) and
D([0,∞), Z) in the natural way. The probability distributions P η on D([0,∞), Y )
are defined by

(5.2) P η{ η(·) ∈ A} = Pz̃
β (η)

{
η̃(z(·)) ∈ A

}
(for Borel subsets A of D([0,∞), Y )) where the choice of β is immaterial as η̃(z̃β(η))
= η for all β and the distribution of the Poisson point process is invariant under
translations. It follows from the development of the previous section that this
defines the stick process η(t) as a Y -valued Markov process with Feller continuous
transition probabilities.

The remainder of this section is devoted to the proof of (1.4). We begin with
some sharper estimates on the probabilities of the particle process.
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Lemma 5.3. Let z ∈ Z. Whenever t ≤ tk(z),

(5.4) Pz
[
zk(t) /∈

{
zk , zk−1 + Γ((zk−1, 0), t, 1)

} ]
≤ C t2 λ2

k(z),

where

(5.5) λk(z) = zk−1 ∨ 0 + sup
i≤k−2

|zi ∧ 0|
(k − i)2

,

(5.6) tk(z) =
[
2 e2 λk(z)

]−1
,

and C is a constant independent of everything else.

Proof. The case λk(z) = 0 is trivial: All particles for i ≤ k − 1 stay piled at the
origin for all time. Assuming λ = λk(z) > 0, it follows from (5.5) that

(5.7) zk−1 − zi ≤ λ (k − i)2 for i ≤ k − 2.

For the event
zk(t) /∈

{
zk , zk−1 + Γ((zk−1, 0), t, 1)

}
it is necessary that

L↗((zi, 0), (zk−1, t)) ≥ k − i
for some i ≤ k − 2. Thus the probability in (5.4) is at most∑

i≤k−2

Pz
{
L↗((zi, 0), (zk−1, t)) ≥ k − i

}
which by (4.2) and (5.7) is bounded by

∑
i≤k−2

[t(zk−1 − zi)]k−i
[(k − i)!]2 ≤

∑
j≥2

tjλj j2j (j!)−2

= t2 λ2
∑
n≥0

[(
n
√
t λ
)n

(n!)−1
]2 [

(1 + 2/n)n(n+ 2)/(n+ 1)
]2
.

Inside the last sum, the first factor of the nth term is bounded by
(
e
√
t λ
)2n ≤ 2−n,

as (n!)−1 ≤ (e/n)n and t ≤ tk(z), and the second factor is bounded by a constant
uniformly over n. �
Lemma 5.8. Let z ∈ Z. For all t > 0 and p <∞,

Ez
[

sup
k≤−1

∣∣∣∣zk(t)

k2

∣∣∣∣p ] <∞.
Proof. Fix z, t, and p. Pick ε < 1/4 small enough so that (1/2)(2 t ε)−1/2 ≥ e2.
Pick k0 < 0 to satisfy

(5.9) k−2
0 |z0| ≤ ε and |zk| ≤ ε k2 whenever k ≤ k0.
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Pick i(k) so that
zk(t) = zi(k) + Γ((zi(k), 0), t, k − i(k)).

Now let r ≥ 1 and k ≤ k0. We wish to estimate Pz
{
zk(t) ≤ −r k2

}
. So suppose

zk(t) ≤ −r k2. Then −r k2 ≥ zk(t) ≥ zi(k) ≥ −ε i(k)2, from which follow

i(k) ≤ k
√
r/ε and k − i(k) ≥ |i(k)|/2,

as ε/r ≤ 1/4. On the other hand,

zk(t)− zi(k) ≤ z0 − zi(k) ≤ 2 ε i(k)2

and L↗((zi(k), 0), (zk(t), t)) = k − i(k), so

L↗((zi(k), 0), (zi(k) + 2 ε i(k)2, t)) ≥ |i(k)|/2.

Thus by (4.3),

Pz
{
zk(t) ≤ −r k2

}
≤ Pz

{
L↗((zi, 0), (zi + 2 ε i2, t)) ≥ |i|/2 for some i ≤ k

√
r/ε
}

≤
∑

i≤k
√
r/ε

e−|i|

≤ C0 exp
[
−|k|

√
r/ε
]

for a constant C0. Summing first over k ≤ k0 and then increasing C0 appropriately
to take care of k ∈ {k0 + 1, . . . ,−1} gives, still for r ≥ 1 and for another constant
C1 > 0,

Pz
{

inf
k≤−1

zk(t)

k2
< −r

}
≤ C0 e

−C1
√
r.

Since zk(t) ≤ z0 for all t > 0 and k ≤ 0, there is a further constant C2 (that depends
on z) such that

Ez
[(

sup
k≤−1

|zk(t)|
k2

)p ]
≤ C2 +C0 p

∫ ∞
1

e−C1
√
r rp−1 dr <∞. �

Corollary 5.10. With λk(z) defined by (5.5) and for all z, k, t, and p <∞,

Ez
[ ∣∣λk(z(t))

∣∣p ] <∞ and Ez
[
|zk(t)|p

]
<∞.

Proposition 5.11. For all bounded continuous cylinder functions f on Y ,

(5.12) Eηf(η(t)) − f(η) =

∫ t

0

Eη
[
Lf(η(s))

]
ds
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where Lf is defined by (1.2).

Proof. Fix m > 0 so that f(η) = f(η−m, . . . , ηm). For τ > 0 define the following
events:

(5.13)

Hτ =
⋃

−m≤k≤m+1

[
zk(τ ) /∈

{
zk , zk−1 + Γ((zk−1, 0), τ, 1)

} ]
,

Gnτ =
{

[z−m−1, zm+1]× (0, τ ] contains

exactly n point process point(s)
}

, n = 0, 1, and

G̃τ =
{

[z−m−1, zm+1]× (0, τ ] contains

more than one point process point
}
.

These events depend both on the initial condition z and on the point process in
R× (0, τ ]. Setting

λ(z) =
m+1∑
k=−m

λk(z)

with λk(z) from (5.5), Lemma 5.3 implies that

(5.14) Pz(Hτ ) ≤ C τ 2 λ2(z) whenever τ ≤ [2 e2 λ(z)]−1.

With

δ(z) = zm+1 − z−m−1,

we have Pz(G0
τ ) = e−τ δ(z), Pz(G1

τ ) = e−τ δ(z)τ δ(z), and Pz(G̃τ ) ≤ τ 2δ(z)2.
A partitioning into cases yields

Ez
[
f(η̃(τ ))

]
= f(η̃) · Ez

[
IG0

τ
(1− IHτ )

]
+

1

δ(z)

m∑
k=−m−1

∫ zk+1

zk

f(η̃zk+1−r,k,k+1)dr · Ez
[
IG1

τ
(1− IHτ )

]
+ Ez

[
f(η̃(τ )) · I

G̃τ∪Hτ
]

= [e−τ δ(z) + e−τ δ(z)τ δ(z)] f(η̃) + e−τ δ(z)τ Lf(η̃)

+ ‖f‖∞
(
Pz(Hτ ) + Pz(G̃τ )

)
·O(1).

We abbreviated η̃(τ ) = η̃(z(τ )). The integration variable r in the second term of
the middle formula is the x-coordinate of the point process point in [z−m−1, zm+1]×
(0, τ ], given that there is exactly one. Thus for a constant C depending only on
‖f‖∞,

(5.15)
∣∣Ez[f(η̃(τ )

]
− f(η̃)− τ Lf(η̃)

∣∣ ≤ C τ 2 δ(z)2 + C Pz(Hτ ).

Let A be a constant large enough so that τ = A−3 satisfies τ < [2 e2 A]−1. Increase
A further so that n = t/τ is an integer. Let sj = jτ , j = 0, . . . , n. Fix an initial
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configuration η and set z = z̃β(η) for some β we need not specify. By the Markov
property

(5.16)

Eηf(η(t)) − f(η)

= Ez
[ n−1∑
j=0

(
Ez(sj)

[
f(η̃(τ ))

]
− f(η̃(sj))

) ]

= Ez
[ ∫ t

0

n−1∑
j=0

I(sj,sj+1](s)Lf(η̃(sj+1))ds

]

+ τ Ez
[
Lf(η̃)− Lf(η̃(t))

]
+ Ez

[ n−1∑
j=0

Rj

]
,

where

(5.17) Rj = Ez(sj)
[
f(η̃(τ )

]
− f(η̃(sj))− τ Lf(η̃(sj)).

By the monotonicity of the particle locations,

δ(z(s)) ≤ ξ ≡ zm+1 − z−m−1(t) for 0 ≤ s ≤ t (Pz-a.s.),

and by Corollary 5.10 Ez[ |ξ|p ] <∞ for all p. Clearly |Lf(η̃(s))| ≤ 2 ‖f‖∞ δ(z(s)),
so by the right continuity of paths and dominated convergence, the first term of
the last formula in (5.16) converges, as τ → 0, to

Ez
[ ∫ t

0

Lf(η̃(s))ds

]
=

∫ t

0

Eη
[
Lf(η(s))

]
ds.

The second term vanishes as τ → 0 by the same bound in terms of ξ. The proof
will be complete once we have shown that the third term vanishes as A→∞.

By (5.14) and (5.15)

|Rj | ≤ C τ 2 δ(z(sj))
2 + C Pz(sj)(Hτ )

≤ C τ 2 δ(z(sj))
2 + C τ 2A2 +C I{λ(z(sj))≥A} .

Adding up these terms and using τ = A−3 and n = tA3 gives (the value of the
constant C has obviously been changing from line to line)

(5.18)
Ez
[ n−1∑
j=0

|Rj|
]
≤ C nτ 2 Ez[ |ξ|2 ] +C nτ 2A2 + C

n−1∑
j=0

Pz
{
λ(z(sj)) ≥ A

}
≤ C tA−1 + C tA3 Pz{ψ ≥ A},

where we defined

ψ = λ(z(t)) +

m+1∑
k=−m

|zk−1|

and used the inequality ψ ≥ λ(z(s)) for 0 ≤ s ≤ t. By Corollary 5.10 Ez[ |ψ|p ] <∞
for all p <∞, thus the last line of (5.18) vanishes as A→∞. �
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6. Attractiveness of the stick process. To prove attractiveness we present
an alternative construction of the stick process, again in terms of Poisson point
processes but this time with no reference to Hammersley’s particle system. This
second construction has the advantage of being more directly connected with the
stick dynamics and it reduces the proof of attractiveness to a mere observation.
However, the moment estimates needed for this construction seem hard to come by
without the help of the first construction in terms of the particle system.

The technical problem is to control the amount of stick mass moving in from the
left, so we perform the construction in two steps:

Step 1. We use the new construction to define the dynamics of (ζk(t))−M≤k<∞ for
a fixed M <∞, or equivalently, we set ζk(t) = 0 for all t ≥ 0 and k < −M .
The difficulty is simply defined away: There is no mass to the left of site
−M that needs controlling.

Step 2. We let M ↗∞ and use the original construction to show that the processes
ζM (·) constructed in Step 1 converge weakly to the stick process defined by
(5.2).

Fix initial configurations η and z = z̃0(η) for the duration of the section. As
before, the particle dynamics z(·) is defined by (3.2), with the corresponding stick
dynamics η̃k(t) = zk+1(t)− zk(t). For M ∈ Z+ set

ηMk = ηk · I{k≥−M} and zMk =

{
zk, k ≥ −M
z−M , k < −M.

Write zM (·) for the particle dynamics defined by (3.2) with initial configuration
zM . Note that zMk (t) ≥ z−M and zMk (t) ≥ zk(t) for all k, and zMk (t) = z−M for
k ≤ −M . The corresponding stick dynamics is defined by η̃Mk (t) = zMk+1(t)−zMk (t),

and we have η̃Mk (t) = 0 for all k ≤ −M − 1 and all t ≥ 0. The stick processes η̃(·)
and η̃M (·) have distributions P η and P η

M

on D([0,∞), Y ), respectively, defined by
(5.2).

This was the old construction performed in the previous section. Next we explain
the new construction that results in a sequence of processes ζM (·) with distributions

Qη
M

on D([0,∞), Y ). Start by giving each site k ∈ Z a realization Ak of a rate 1
Poisson point process on (0,∞)× [0,∞). Points of these processes are denoted by
(t, b) with the interpretation that t ∈ (0,∞) stands for time and b ∈ [0,∞) for the
vertical height of a stick. To avoid conflicts, assume that all the t-coordinates of
Ak are distinct from those of A` for k 6= `.

Consider a fixed M ∈ Z+ for a while. Set ζMk (t) = 0 for all t ≥ 0, if k < −M .
The evolution of ζMk (t) for k ≥ −M is determined by the following rule: Starting
at any time t, ζMk (·) remains equal to ζMk (t) until the first time s > t when either
(1) site k receives a stick piece from site k − 1 or (2) there is a point (s, b) ∈ Ak
such that b < ζMk (t), which sets ζMk (s) = b and gives the remaining piece ζMk (t)− b
to site k + 1.

Here is the precise inductive definition. Starting with the initial configuration
ηM , define

ζM−M (t) = ηM−M ∧ min{b : (s, b) ∈ A−M for some s ≤ t}.
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The stick at site −M only decreases with time as it receives no stick mass from the
left. This generates a sequence of jump times 0 = τ−M,0 < τ−M,1 < τ−M,2 < . . .↗
∞ such that

τ−M,n+1 = inf{t > τ−M,n : ζM−M (t−) > ζM−M (t)},

with corresponding jumps u−M,n = ζM−M ((τ−M,n)−) − ζM−M (τ−M,n). Now the in-
duction step for an arbitrary k > −M : Given from the step for k − 1 are times
0 = τk−1,0 < τk−1,1 < τk−1,2 < . . . ↗ ∞ and numbers uk−1,n > 0, n = 1, 2, 3, ....
These specify that site k receives from site k − 1 a piece of length uk−1,n at time
τk−1,n. Set ζMk (0) = ηMk , and having defined ζMk (t) for 0 ≤ t ≤ τk−1,n, set

ζMk (t) = ζMk (τk−1,n) ∧ min{b : (s, b) ∈ Ak for some s ∈ (τk−1,n, t] }

for t ∈ (τk−1,n, τk−1,n+1), and then

ζMk (τk−1,n+1) = ζMk ((τk−1,n+1)−) + uk−1,n+1.

This specifies the evolution of ζMk (·). As the last part of the induction step, con-
struct the input for the next step by setting τk,0 = 0,

τk,n+1 = inf{t > τk,n : ζMk (t−) > ζMk (t)}

and uk,n = ζMk (τk,n−)− ζMk (τk,n).
It is fairly clear that the path ζM (·) thus constructed is a continuous

D([0,∞), Y )-valued function of the initial configuration η and of the point mea-
sures {Ak}k∈Z (closeness among sequences {Ak}k∈Z of point measures taken in the

product topology sense). Let Qη
M

denote the distribution of ζM (·) on D([0,∞), Y ),
another Feller continuous Markov process on Y . We shall prove that, as M →∞,
the processes ζM (·) converge to the stick process η̃(·):

Proposition 6.1. Qη
M → P η on D([0,∞), Y ) as M →∞.

Since zMk (t) ↘ zk(t) a.s. as M ↗ ∞ for all t and k, it is clear that the finite-

dimensional distributions of P η
M

converge to the finite-dimensional distributions

of the stick process P η. Thus to conclude weak convergence of Qη
M

to P η we need

to prove (i) that Qη
M

= P η
M

and (ii) that the sequence {QηM}∞M=1 is tight on the
space D([0,∞), Y ).

Lemma 6.2. Qη
M

= P η
M

.

Proof. All sticks remain zero for all time to the left of −M under both Qη
M

and

P η
M

, hence it suffices to show that (ζMk (·))−M≤k≤K = (η̃Mk (·))−M≤k≤K in distri-
bution, for any fixed K < ∞. Fix a number κ > 0, and consider the compact
space

(6.3) X = Xκ−M,K =

{
ζ ∈ [0,∞){−M,... ,K} :

K∑
i=−M

ζi ≤ κ
}
.
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Take κ large enough for X to contain the initial configuration (ηMk )−M≤k≤K chosen
above. Since the dynamics moves stick mass only to the right and no stick mass is
entering from the left of site −M , X is closed under the dynamics. With finite total
stick mass there are a.s. only finitely many stick-cutting events in any finite time
interval, so we can view both (ζMk (·))−M≤k≤K and (η̃Mk (·))−M≤k≤K as Markov
jump processes on X, with a common initial state. To see that these processes
coincide it is then enough to observe that they have a common strong generator

(6.4) L−M,Kf(ζ) =

K∑
i=−M

∫ ζi

0

[f(ζu,i,i+1)− f(ζ)] du,

whose domain is all of C(X). For η̃M (·) this follows from noting that estimates
(5.14)–(5.15) hold uniformly over X. We leave to the reader the analogous calcu-
lation for ζM (·). �

Next a compactness criterion whose proof we leave to the reader.

Lemma 6.5. A subset K of Y is compact if and only if

(i) K is compact in the product topology of [0,∞)Z, and

(ii) lim
n→−∞

sup
η∈K

n−2
−1∑
i=n

ηi = 0.

Lemma 6.6. The sequence {P ηM}∞M=1 is tight on D([0,∞), Y ), and consequently

so is {QηM }∞M=1

Proof. By standard compactness criteria (see for example Thm 7.2 in Ch. 3 of
[EK]), we need to check two things:

(i) For each t and ε > 0 there exists a compact set K ⊂ Y such that

inf
M
P η

M

{ η(t) ∈ K } ≥ 1− ε.

(ii) For every ε > 0 and T there exists a δ > 0 and M0 <∞ such that

sup
M≥M0

P η
M{w′(η(·), δ, T ) ≥ ε } ≤ ε,

where

(6.7)
w′(η(·), δ, T ) = inf

{ti}
sup{r(η(s), η(t)) :

s, t ∈ [ti−1, ti) for some i = 1, . . . , n }

and {ti} ranges over all partitions such that 0 = t0 < t1 < · · · < tn−1 < T ≤ tn,
min

0≤i≤n−1
(ti+1 − ti) > δ, and n ≥ 1.

Proof of (i): By the tightness of the distribution of z(t) on Z, pick a compact
K1 ⊂ Z such that Pz{z(t) ∈ K1} > 1 − ε/4. An obvious modification of the
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compactness criterion of Lemma 6.5 applies to Z, hence n−2 βn → 0 as n→ −∞,
where βn = supw∈K1

|wn|. Pick ak > 0 so that

Pz
{
zk(t) ≤ zk+1 − ak

}
< ε 2−|k|−2.

Set

K =

{
ζ ∈ Y : ζk ≤ ak for all k ∈ Z,

−1∑
i=n

ζi ≤ βn + 2−n for all n ≤ −1

}
,

a compact subset of Y . In the next calculation, use the following facts:

η̃Mk (t) = zMk+1(t)− zMk (t) ≤ zk+1 − zk(t),

and
−1∑
i=n

η̃Mi (t) = zM0 (t)− zMn (t) ≤ z0 − zn(t) = |zn(t)|,

as we set z0 = 0 at the outset. Thus

P η
M

{ η(t) /∈ K } = Pz{ η̃M (t) /∈ K }

≤ ε
∑
k∈Z

2−|k|−2 + Pz
{
|zn(t)| ≥ βn + 2−n for some n ≤ −1

}
≤ ε.

Proof of (ii): We need only consider δ ≤ 1 so set τ = T+1. For any s, t appearing
inside the braces in (6.7) and any k0 > 0,

r(η̃M (s), η̃M (t)) ≤ k−2
0 r0(z0(τ ), z0) + sup

k≤−k0

r0(k−2zk(τ ), k−2zk)

+

k0∑
k=−k0

r0(η̃Mk (s), η̃Mk (t)) + 2−k0 .

Thus

(6.8)

Pz
{
w′(η̃M (·), δ, T ) ≥ ε

}
≤ Pz

{
r0(z0(τ ), z0) ≥ k2

0 (ε/3− 2−k0)
}

+ Pz
{

sup
k≤−k0

k−2 r0(zk(τ ), zk) ≥ ε/3
}

+ Pz
{
w′
(
(η̃M (·))−k0≤k≤k0 , δ, T

)
≥ ε/3

}
,

where w′
(
(η̃M (·))−k0≤k≤k0 , δ, T

)
is the modulus of continuity defined as in (6.7)

but with the metric

r(k0)(η, ζ) =

k0∑
k=−k0

r0(ηk, ζk).
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Choose k0 large enough so that the first and second term after ≤ in (6.8) are both
≤ ε/3. This bound is uniform in M , hence it remains to find M0 and δ so that

Pz
{
w′
(
(η̃M (·))−k0≤k≤k0 , δ, T

)
≥ ε/3

}
≤ ε/3 for M ≥M0.

Let
J = i−(−k0, τ ) ≡ min

{
i : z−k0(τ ) = zi + Γ((zi, 0), τ,−k0 − i)

}
.

By Proposition 4.4, J is a Pz-a.s. finite random variable. On the event {J ≥ −M0 },

zk(t) = zMk (t) = zM0

k (t) for k ≥ −k0, M ≥M0, and 0 ≤ t ≤ τ

by Corollary 4.16 and Lemma 4.17. Pick M0 large enough so that Pz{J < −M0 } <
ε/6. Then for M ≥M0,

Pz
{
w′
(
(η̃M (·))−k0≤k≤k0 , δ, T

)
≥ ε/3

}
≤ Pz

{
w′
(
(η̃(·))−k0≤k≤k0 , δ, T

)
≥ ε/3

}
+ ε/6.

The last probability no longer varies with M , hence can be made ≤ ε/6 by choosing
δ small enough. �

We have proved Proposition 6.1. It remains to make explicit the coupling that
proves attractiveness.

Proposition 6.9. Given initial configurations η, ζ ∈ Y such that η ≤ ζ, there is a
joint distribution P (η,ζ) whose marginals are the stick processes started with η and
ζ and for which P (η,ζ){ η(t) ≤ ζ(t) } = 1 for all t.

Proof. Use the new construction described in this section to produce processes
ηM (·) and ζM(·) with initial conditions ηM and ζM , respectively, and couple them
through common point processes {Ak}k∈Z. Let PM denote the joint distribution
of (ηM (·), ζM (·)). It is clear from the construction that ηMk (t) ≤ ζMk (t) holds for
all M , k, and t, for a.e. realization of {Ak}k∈Z. Same reasoning shows in fact that
PM+1 stochastically dominates PM . Thus PM converges to a distribution P that
by the earlier part of this section has the right marginals, and we take it to be
P (η,ζ). �

7. The invariance of exponentially distributed sticks. Let ν be the prob-
ability distribution on Y under which the (ηi)i∈Z are i.i.d. exponential random
variables with common mean β−1. Write S(t) for the semigroup of the stick pro-
cess on Y , and pick and fix a cylinder function f ∈ Cb(Y ). We wish to prove

(7.1) ν
(
S(t)f

)
= ν(f).

Pick K so that f(η) = f(η−K , . . . , ηK) and let M > K. Write SM (t) for the
semigroup of the process (ζMk (·))−M≤k≤M considered in the proof of Lemma 6.2.
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Since SM(t) can be restricted to the compact space Xκ−M,M where it has the strong

generator LM = L−M,M of (6.4), we have

SM (t)f(ζ) − f(ζ) =

∫ t

0

LM [SM (s)f ](ζ)ds,

valid for all ζ ∈ X−M,M ≡ [0,∞){−M,... ,M}. Integrating against ν gives

ν(SM(t)f) − ν(f) =

∫ t

0

ν
(
LM [SM (s)f ]

)
ds.

By Proposition 6.1 SM(t)f → S(t)f as M →∞, pointwise and boundedly. Hence
to prove (7.1) it suffices to show that

(7.2) ν
(
LM [SM (s)f ]

)
→ 0 as M →∞

for each s, boundedly.
Set g(η) = SM (s)f(η). Note that g(η) = g(η−M , . . . , ηK). Thus

ν
(
LM [SM(s)f ]

)
= ν

( K∑
i=−M

∫ ηi

0

[g(ηu,i,i+1)− g(η)] du

)

=
K∑

i=−M
ν

(∫ ηi

0

g(ηu,i,i+1)du

)
−

K∑
i=−M

ν(ηig(η)).

Consider the ith term of the first sum. Write ν̃ for the marginal distribution of
(ηj)j 6=i,i+1. Then

ν

(∫ ηi

0

g(ηu,i,i+1)du

)
= ν̃

(
β2

∫ ∞
0

dηi

∫ ∞
0

dηi+1 e
−β(ηi+ηi+1)

∫ ηi

0

du g(ηu,i,i+1)

)
= ν̃

(
β2

∫ ∞
0

du

∫ ∞
0

dηi+1

∫ ∞
u

dηi e
−β(ηi+ηi+1) g(ηu,i,i+1)

)
= ν̃

(
β2

∫ ∞
0

du

∫ ∞
u

dωi+1

∫ ∞
0

dωi e
−β(ωi+ωi+1) g((ηj)j 6=i,i+1, ωi, ωi+1)

)
= ν(ηi+1g(η)),

by the change of variable ωi = ηi−u, ωi+1 = ηi+1 +u. Substituting this back above
gives

ν
(
LM [SM (s)f ]

)
= ν

(
ηK+1SM(s)f

)
− ν
(
η−MSM(s)f

)
.

This shows that ν
(
LM [SM(s)f ]

)
is bounded, uniformly over s and M . Add and

subtract SM−1(s)f in the last term, and use independence and translation invari-
ance to write

ν
(
LM [SM(s)f ]

)
= ν(η0) ν

(
SM(s)f

)
− ν(η0) ν

(
SM−1(s)f

)
− ν
(
η−M [SM (s)f − SM−1(s)f ]

)
.

Let M →∞ and apply Proposition 6.1. This proves (7.2), and completes the proof
of Theorem 1.
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8. The scaling limit. It follows from subadditive ergodic theory that there is a
constant c ∈ (0,∞) such that

(8.1)
L↗((a, s), (a + h, s+ τ ))√

τh
→ c in probability as τh→∞.

(See [Du], section 6.7, or [Ha].) It is also clear that this convergence, being really
a statement about the distribution of L↗, is valid even if the base point (a, s)
varies with (τ, h). It follows readily that, for any sequence rN ∈ R, any t > 0 and
−∞ < a < b <∞,

(8.2)
1

N
Γ
(
(rN , 0),Nt, [Nb] − [Na]

)
→ (b− a)2

c2t
in probability as N →∞.

The symbol c is reserved for the constant defined by (8.1), except in the Appendix,
where it denotes another important constant. In this section we prove the following
proposition:

Proposition 8.3. Assume (1.7) and (1.10)– (1.12) as in the statement of Theorem
3. Let u(x, t) be the solution given by Theorem A1 to the equation

(8.4) ∂tu+ (c2/4)∂x(u2) = 0

with initial condition m0. Then for each t > 0, αNNt → u(x, t)dx in probability as
N →∞, in the vague topology of Radon measures on R.

The value c = 2 is calculated and the proof of Theorem 3 thereby completed in
the next section.

Fix a function U0(x) such that m0[a, b) = U0(b)−U0(a) for all −∞ < a < b <∞.
From the initial stick configuration ηN distributed according to µN0 , define initial
particle configurations by zN = z̃NU0(0)(ηN ), as in formula (5.1). Then assumption
(1.10) guarantees that

(8.5)
1

N
zN[Nx] → U0(x) in probability as N →∞

for all x ∈ R. As before, the particle process zN (t) is a.s. defined by (3.2) as a
function of the initial configuration zN (now random) and the Poisson point process
on R× (0,∞). The stick process is then defined by

(8.6) ηNi (t) = zNi+1(t)− zNi (t).

For the remainder of the section we assume that everything is defined on some
common probability space and write P for all probabilities.

By the Appendix, the formula

(8.7) U(x, t) = inf
q≤x

{
U0(q) +

(x− q)2

c2t

}
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solves (8.4) in the following sense: For each t > 0, the solution u(x, t) is the Radon-
Nikodym derivative dmt/dx of the measure mt defined by mt[a, b) = U(b, t) −
U(a, t). To prove Proposition 8.3 it suffices to show that αNNt[a, b)→ U(b, t)−U(a, t)
in probability for any fixed −∞ < a < b <∞. By (8.6) this follows from having

(8.8)
1

N
zNk(N)(Nt)→ U(x, t) in probability as N →∞

whenever k(N)/N → x. By the continuity of U(x, t) in x, it suffices to take
k(N) = [Nx] in (8.8). It is this statement that we shall now prove for a fixed (x, t).
Recall from (3.2) that

(8.9)
1

N
zN[Nx](Nt) = inf

j≤[Nx]

{
1

N
zNj +

1

N
Γ
(
(zNj , 0),Nt, [Nx] − j

)}
.

The upper bound

lim
N→∞

P

{
1

N
zN[Nx](Nt) ≤ U(x, t) + ε

}
= 1

(ε > 0 arbitrary) is an immediate consequence of formulas (8.2), (8.5), (8.7), and
(8.9). For the complementary lower bound, first a preliminary lemma. It is here
that we need assumption (1.12). For r < x, set

(8.10) ξN,r = min
[Nr]<j≤[Nx]

{
zNj + Γ

(
(zNj , 0),Nt, [Nx] − j

)}
.

Lemma 8.11. Given ε > 0, there exist r < x and N0 such that, for N ≥ N0,

(8.12) P
{
zN[Nx](Nt) 6= ξN,r

}
< ε.

Proof. Choose ε0 > 0 such that (2 t ε0)−1/2 ≥ 2 e2. Let b be the number given by
assumption (1.12), and set

AN,q =

{
sup
j≤Nq

N

j2

(
zN[Nb] − zNj

)
< ε0

}
.

If x ≤ b set BN = the whole space, otherwise

BN =

{ ∣∣∣∣ 1

N
zN[Nx] −

1

N
zN[Nb] −m0[b, x)

∣∣∣∣< ε0

}
.

Now choose r and N1 so that

P (AN,q) > 1− ε/3 whenever N ≥ N1 and q ≤ r (by (1.12)),

r ≤ −2|x| − 2, and r−2 m0[b, x) < ε0/2 (if b < x).
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Pick N2 so that P (BN ) > 1 − ε/3 and e−2N(x−r)+2 < ε/3 whenever N ≥ N2. Set
N0 = N1 ∨N2 and let N ≥ N0. Then

zN[Nx] − zNj ≤ 2j2ε0/N for zN ∈ AN,r ∩BN and j ≤ [Nr].

(This follows directly from the definition of AN,r if x ≤ b, and by writing zN[Nx] −
zNj = zN[Nx] − zN[Nb] + zN[Nb] − zNj if x > b.) For j ≤ [Nr], (4.3) implies that

P
{
L↗((zNj , 0), (zN[Nx],Nt)) ≥ [Nx]− j and zN ∈ AN,r ∩BN

}
≤ exp

[
−2([Nx] − j)

]
.

Summing over j ≤ [Nr] gives

P
{
L↗((zNj , 0), (zN[Nx],Nt)) ≥ [Nx] − j for some j ≤ [Nr], and zN ∈ AN,r ∩ BN

}
≤ ε/3.

Now observe that zN[Nx](Nt) 6= ξN,r is not possible unless L↗((zNj , 0), (zN[Nx],Nt)) ≥
[Nx] − j for some j ≤ [Nr], and so

P
{
zN[Nx](Nt) 6= ξN,r

}
≤ ε/3 + P (AcN,r) + P (BcN ) < ε. �

The next lemma gives the lower bound and completes the proof of Proposition
8.3.

Lemma 8.13. For ε > 0,

lim
N→∞

P

{
1

N
zN[Nx](Nt) ≥ U(x, t) − ε

}
= 1.

Proof. By the previous lemma, it suffices to show that

(8.14) lim
N→∞

P

{
1

N
ξN,r < U(x, t) − ε

}
= 0

for an arbitrary r < x. Pick a partition r = r0 < r1 < r2 < · · · < rs = x such that
r`+1 − r` < c2 t ε/4(x− r). This ensures that

(8.15)
(x− r`)2

c2 t
− 3 ε

4
<

(x− r`+1)2

c2 t
− ε

4
.

Since the j that realizes the minimum in (8.10) necessarily satisfies [Nr`] < j ≤
[Nr`+1] for some ` = 0, 1, . . . , s− 1,

ξN,r ≥ min
0≤`<s

{
zN[Nr`] + Γ

(
(zN[Nr`], 0),Nt, [Nx] − [Nr`+1]

)}
.
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The probability in (8.14) is then at most

s−1∑
`=0

P

{
1

N
zN[Nr`] +

1

N
Γ
(
(zN[Nr`], 0),Nt, [Nx] − [Nr`+1]

)
< U(x, t) − ε

}
.

By (8.7) and (8.15) the `th term of the sum is at most

P

{
1

N
zN[Nr`] +

1

N
Γ
(
(zN[Nr`], 0),Nt, [Nx] − [Nr`+1]

)
< U0(r`) +

(x− r`)2

c2 t
− ε

}
≤ P

{
1

N
zN[Nr`] < U0(r`)−

ε

4

}
+ P

{
1

N
Γ
(
(zN[Nr`], 0),Nt, [Nx] − [Nr`+1]

)
<

(x− r`+1)2

c2 t
− ε

4

}
,

and these vanish as N →∞ by (8.2) and (8.5). �

9. The value c = 2. To deduce c = 2 we utilize the hydrodynamic limit of
Proposition 8.3 for the initial profile u0(x) = I(−∞,0)(x). The solution to (8.4) with
u(x, 0) = u0(x) is, by the Appendix,

(9.1) u(x, t) = I(−∞,c2t/4)(x).

Before proceeding we describe a coupling useful for a restricted class of initial
distributions.

Lemma 9.2. Let η, ζ ∈ Y be two possibly random initial configurations such that
(ηi)i<0 = (ζi)i<0 in distribution, ηi = 0 a.s. for i ≥ 0, and (ζi)i≥0 are arbitrary.
There is a coupling of the two processes such that, almost surely, η(t) ≤ ζ(t) for all
t ≥ 0, and ηi(t) = ζi(t) for all t ≥ 0 and i < 0.

Proof. We could use the coupling of Proposition 6.9, but in this case we can do
with the simpler particle construction of Section 5. Let w(t) and z(t) be the particle
processes through which ζ(t) and η(t) are defined by

(9.3) ζi(t) = wi+1(t)− wi(t) and ηi(t) = zi+1(t)− zi(t).

We couple w(·) and z(·) through a common point process on R×(0,∞) and through
their initial configurations, defined by w = z̃0(ζ) (recall (5.1)) and zi = wi for i ≤ 0,
zi = z0 = w0 = 0 for i > 0. One can argue directly from (3.2) that zi(t) = wi(t)
whenever zi(t) < 0, otherwise zi(t) = 0 ≤ wi(t). This gives the conclusion via
(9.3). �

Apply this to the following setting: Let (ηi)i<0 be i.i.d. exponential random
variables with expectations E[ηi] = 1, and ηi = 0 for i ≥ 0. This defines initial
stick distributions µ = µN0 (the same for all N , hence we drop the superscript N
from η) that satisfy assumptions (1.10)–(1.12) for the initial profile u0. Let ζ(t) be
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a stationary stick process such that (ζi(t))i∈Z are i.i.d. exponential variables with
expectation one for each t ≥ 0. Then Lemma 9.2 implies that the sticks (ηi(t))i<0

stay in equilibrium for all time, and gives uniform moment bounds on ηi(t) for
i ≥ 0.

Take f(η) =
(∑m

i=0 ηi

)
∧M in (1.4) and let M ↗∞ to get

(9.4) E

[ m∑
i=0

ηi(t)

]
= t− 1

2

∫ t

0

E
[
η2
m(s)

]
ds.

The first term after the equality sign, t, comes from (1/2)E
[
η2
−1(s)

]
= 1, utilizing

the fact that η−1(s) = ζ−1(s) in distribution. Fix b ≥ c2t/4 + 2, take m = [Nb],
replace t by Nt, and divide by N in (9.4) to get

(9.5) E
(
αNNt[0, b]

)
= t− 1

2N

∫ Nt

0

E
[
η2

[Nb](s)
]
ds.

Next let N →∞ in (9.5). By Proposition 8.3 and (9.1),

lim
N→∞

αNNt[0, b] =

∫ b

0

u(x, t)dx = c2 t/4

in probability. By the coupling of Lemma 9.2,

E
[(
αNNt[0, b]

)2] ≤ N−2 E

[( [Nb]∑
i=0

ζi(t)

)2]
≤ C <∞

uniformly over N . Thus the expectations on the left-hand side of (9.5) converge,
and we have

(9.6) c2 t/4 = t − lim
N→∞

1

2N

∫ Nt

0

E
[
η2

[Nb](s)
]
ds.

It remains to argue that

(9.7) lim
N→∞

1

2N

∫ Nt

0

E
[
η2

[Nb](s)
]
ds = 0.

Use the coupling of Lemma 9.2 to show that E[ηk+1(t)] ≤ E[ηk(t)] for all k.

(Let ζ̃(t) have initial sticks ζ̃i = ηi−1. Lemma 9.2 gives ηk+1(t) ≤ ζ̃k+1(t), while

ζ̃k+1(t) = ηk(t) in distribution by the translation invariance of the dynamics.) Thus

E
[
η[Nb](s)

]
≤ E

[
1

N

[Nb]∑
i=[Nb]−N+1

ηi(s)

]
≤ E

(
αNs [b− 1, b]

)
,

and so

(9.8) lim
N→∞

1

2N

∫ Nt

0

E
[
η[Nb](s)

]
ds ≤ lim

N→∞

1

2

∫ t

0

E
(
αNNs[b− 1, b]

)
ds = 0.

On the other hand,

(9.9)
1

2N

∫ Nt

0

E
[
η3

[Nb](s)
]
ds ≤ 1

2N

∫ Nt

0

E
[
ζ3
[Nb](s)

]
ds ≤ C <∞

uniformly over N . (9.8) and (9.9) together imply (9.7), thereby converting (9.6)
into c2 t/4 = t and proving that c = 2.
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10. Remarks on the hypotheses. First we discuss the assumptions (1.10)–
(1.12) imposed on the initial stick distributions.

Proof of Remark 1.13. Case (i) is trivial. Let us show that (1.10) is satisfied in case
(ii). Let β = ess supa−1≤x≤b|u0(x)|. Then

E
[{
ηNi −Nm0[i/N, (i+ 1)/N)

}2 ]
= N2m0[i/N, (i + 1)/N)2 ≤ β2

for [Na] ≤ i < [Nb]. By independence,

E

[(
1

N

[Nb]−1∑
i=[Na]

ηNi −m0[a, b)

)2 ]

= N−2

[Nb]−1∑
i=[Na]

E
[{
ηNi −Nm0[i/N, (i+ 1)/N)

}2 ]
≤ N−1β2(b− a+ 1).

Next we prove (1.12); the similar argument for (1.11) is left to the reader. Since

E[ηNi ] = N

∫ (i+1)/N

i/N

u0(y)dy ≤ u∗(n/N)

for n ≤ i < 0, the variables (ηN−j)0<j≤|n| are stochastically dominated by i.i.d.
exponential variables (ξj)0<j≤|n| with expectations Eξj = u∗(n/N). Given ε > 0,
pick q < 0 so that u∗(x) ≤ ε|x|/2 for x ≤ q. By exponentiation and Markov’s
inequality,

µN0

{
N

n2

−1∑
i=n

ηNi ≥ ε
}
≤ P

{ |n|∑
j=1

ξj ≥ n2ε/N

}
≤ exp

[
−γn2ε/N − |n| log

(
1− γu∗(n/N)

)]
for 0 < γ < [u∗(n/N)]−1. Taking

γ =
1

u∗(n/N)
− N

ε|n|

(now n ≤ Nq so that γ > 0) gives the bound

exp

[
−|n| I

(
ε|n|

Nu∗(n/N)

)]
≤ exp

[
−|n| I(2)

]
with I(2) > 0,

where we set I(x) = x− 1− logx and used the fact that I is strictly increasing and
positive for x > 1. (I is the Cramér rate function of the exp(1)-distribution from
basic large deviation theory.) Thus we have

µN0

{
sup
n≤Nq

N

n2

−1∑
i=n

ηNi ≥ ε
}
≤
∑
n≤Nq

exp
[
−|n| I(2)

]
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which is < ε for large enough N . This completes the proof for Remark 1.13. �
Next some examples where desirable properties fail.

Example 10.1. As soon as there is singularity in m0, we cannot in general hope that
the initial law of large numbers (1.10) holds for the independent exponential sticks
of Remark 1.13(ii): If m0 = δ0, then E[ηN0 ] = N while ηNi = 0 for i 6= 0, hence for

b ≥ 1, N−1
∑[Nb]−1

i=0 ηNi has the exp(1)-distribution for all N , contradicting (1.10).

Example 10.2. In this example the independent exponentially distributed initial
sticks with expectations E[ηNi ] = Nm0[i/N, (i+ 1)/N) fail to lie in Y , though m0

satisfies (1.7) and has a locally bounded density, as smooth as desired.
Fix f ∈ C0(R) such that 0 ≤ f ≤ I(−1,2),

∫
fdx = 1, and f(x) ≥ ε0 > 0 for

0 ≤ x ≤ 1. Let yk = −2k
[
(log log k)1/2

]
and

u0(y) =
∑
k≥1

22kf(y − yk).

Fix N . For 0 ≤ i < N ,

E
[
ηNNyk+i

]
= 22kN

∫ (i+1)/N

i/N

f(y)dy ≥ 22kε0,

hence the variables
(
ηNNyk+i

)
0≤i<N stochastically dominate (22kε0ξi)0≤i<N where

the ξi are i.i.d. exp(1)-variables. Consider the events

Bk =

{N−1∑
i=0

ηNNyk+i ≥ Ny2
k

}
.

By the stochastic dominance

P (Bk) ≥ P
{N−1∑
i=0

ξi ≥ Nε−1
0 log log k

}
=

1

(N − 1)!

∫ ∞
Nε−1

0 log log k

sN−1e−s ds

≥ CN,ε0(log log k)N−1(log k)−N/ε0.

These numbers do not sum and so infinitely many Bk happen a.s. (Borel-Cantelli
applies for the Bk are independent since yk − yk+1 > 1). Thus for infinitely many
k

(Nyk)−2
−1∑

i=Nyk

ηNi ≥ (Nyk)−2
N−1∑
i=0

ηNNyk+i ≥ N−1,

contradicting (1.11).

Example 10.3. As the last example in this series, a deterministic initial configura-
tion that satisfies (1.10)–(1.11) but not (1.12), and the proof we gave in Section 8
fails.
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The macroscopic profile is constant: u0(x) = u(x, t) = 1 for all x and t, and
U0(x) = U(x, t) = x. Let βN and `N be sequences such that both βN/N and `N/N
increase to ∞ as N ↗ ∞, and `N < (NβN )1/2 < βN for all N . By (8.1) and the
fact that c = 2,

L↗
(
(−βN , 0), (−βN/2,Nt)

)
(NβN t/2)1/2

→ 2

in probability as N →∞. Pick and fix t ≥ 1. Then, since `N(NβN t/2)−1/2 ≤
√

2,

P
{
L↗
(
(−βN , 0), (−βN/2,Nt)

)
≤ `N

}
→ 0

as N → ∞. Choose a subsequence Nj ↗ ∞ along which the above probabilities
sum. By Borel-Cantelli there exists an a.s. finite random variable J such that, for
j ≥ J ,

L↗
(
(−βNj , 0), (−βNj/2,Njt)

)
> `Nj

or equivalently
Γ
(
(−βNj , 0),Nj t, `Nj

)
< βNj/2.

Define the initial particles (that implicitly define the initial sticks) by

zNk =


k, k > −`N
−βN , k = `N

−βN + `N + k, k < −`N .
Then

lim
N→∞

N−1 zN[Nx] = x and lim
n→∞

n−2 zNn = 0,

so that (1.10) and (1.11) are satisfied. But on the event {J ≤ j0}, for j ≥ j0,

N−1
j z

Nj
0 (Nj t) ≤ N−1

j z
Nj
−`Nj

+N−1
j Γ

(
(−βNj , 0),Njt, `Nj

)
≤ −βNj/(2Nj).

This contradicts the convergence N−1 zN0 (Nt)→ U(0, t) = 0, since P{J ≤ j0} can
be made arbitrarily close to 1 by choosing j0 large enough. In this example (1.12)
fails because, for large N and with probability 1,

sup
n≤Nq

N

n2

(
zN[Nb] − zNn

)
≥ N

`2N

(
zN−`N+1 − zN−`N

)
≥ 1−N/`N .

Next we look at the restriction m[x, 0) = o(x2) (x → −∞) placed on the initial
macroscopic profile. This condition prevents the solution from becoming infinite
in finite time. If it fails, mass moving in from the left can accumulate too fast.
Suppose ε > 0 and u0(x) = ε|x| for x < 0, u0(x) = 0 for x ≥ 0. Then for t < (2ε)−1

the solution is

u(x, t) =

{
ε|x|(1 − 2εt)−1, x < 0

0, x ≥ 0

and it ceases to exist by time t = (2ε)−1.
Finally we show that the space Z is the largest possible state space for the

particle dynamics obeying (3.2), in the sense that if the process starts outside Z,
there is a finite time after which all the particles are at −∞. Consequently, our
construction for the stick process does not work for initial configurations outside
Y .
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Proposition 10.4. Suppose zi ≤ −εi2 for infinitely many i, for some ε > 0. Then
there exists a t > 0 such that Pz{ zk(t) = −∞ for all k } = 1.

Proof. By (8.1) and the translation invariance of the Poisson point process, there
are constants c0, c1, ε0 ∈ (0,∞) such that

P
{
L↗((x, 0), (x + a, b)) ≥ c0

√
ab
}
≥ ε0 whenever ab ≥ c1,

independently of x ∈ R. Pick and fix t so that c0
√
tε/2 ≥ 1. Let k ∈ Z be arbitrary.

By the hypothesis, we can choose a sequence jn ↘ −∞ such that

−εj2
n ≥ zjn ≥ −ε

[
j2
n+1 − (1/2)(k − jn+1)2

]
.

In particular, now zjn−zjn+1 ≥ (ε/2)(k−jn+1)2. Pick n0 so that t(ε/2)(k−jn+1)2 ≥
c1 for n ≥ n0. Then for n ≥ n0,

ε0 ≤ Pz
{
L↗((zjn+1 , 0), (zjn , t)) ≥ c0[t(zjn − zjn+1)]1/2

}
≤ Pz

{
L↗((zjn+1 , 0), (zjn , t)) ≥ k − jn+1

}
.

These events are independent. Hence a.s.

Γ
(
(zjn+1 , 0), t, k − jn+1

)
≤ zjn − zjn+1 for infinitely many n,

so that

zk(t) ≤ zjn+1 + Γ
(
(zjn+1 , 0), t, k − jn+1

)
≤ zjn for infinitely many n,

forcing zk(t) = −∞. �

Appendix. In this final section of the paper we prove Theorem 2 and deduce
formula (8.7) that was used in Section 8 to prove the scaling limit. There is nothing
to be gained by restricting ourselves to the Burgers equation (1.5), hence we work
in the setting and with the notation of section 3 of Lax’s lectures [La2]. We give an
existence proof and a uniqueness criterion for a nonlinear scalar conservation law
in one space variable, with initial data given by a Radon measure. Such a result
does not seem to be available in the literature, so it may have some independent
interest.

The equation we study is

(A1) ∂tu+ ∂xf(u) = 0

where f ∈ C2(R) satisfies f(0) = 0 (a convenient normalization with no effect on
the equation). Let a(u) = f ′(u). We assume that a′(u) > 0 everywhere so that, in
particular, f is strictly convex. The convex dual of f is given by

(A2) g(z) = sup
u∈R

{
uz − f(u)

}
.
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Alternatively, g is characterized by

g′(z) = b(z) and g(c) = 0,

where, by definition, b is the inverse function of a (b(a(u)) = u) defined on the image
of a and c = a(0). The function b is strictly increasing, hence g is strictly convex.
Furthermore, g is strictly decreasing on (−∞, c], strictly increasing on [c,∞), and
lim
z→∞

g(z) ∧ b(z) =∞. We make two further assumptions, namely

(A3) lim
u→∞

a(u) =∞

and

(A4) r ≡ − inf
u∈R

f(u) <∞.

Assumption (A3) guarantees that both g and b are finite on (c0,∞) for some c0 < c.
Assumption (A4) is needed only for the uniqueness proof where it enables us to deal
with a solution v(x, t) that can take negative values. If we restrict our attention
to nonnegative solutions (A4) is not needed, for (A3) together with f(0) = 0 and
convexity already implies that − infu≥0 f(u) <∞.

The initial profile is a Radon measure m0 on R that satisfies

(A5) lim
x→−∞

m0[x, 0)

g(α|x|) = 0 for all α > 0.

Pick and fix a left-continuous function U0(x) on R such that m0[x, y) = U0(y) −
U0(x) for all −∞ < x < y <∞. For x ∈ R and t > 0, define

(A6) U(x, t) = inf
q≤x−ct

{
U0(q) + t g

(
x− q
t

)}
.

The infimum is not affected by letting q vary over all of R, because no q > x− ct
can give a smaller value than q = x− ct. The first step is to establish that U(x, t)
is finite and that the infimum in (A6) is always achieved (proofs follow after the
main results).

Lemma A7. Assume (A3) and (A5). Then there are numbers −∞ < q−(x, t) ≤
q+(x, t) ≤ x − ct such that U(x, t) = U0(q) + t g((x − q)/t) holds for q = q±(x, t)
but fails for q < q−(x, t) and q > q+(x, t).

For x ∈ R and t > 0, set q(x, t) = q+(x, t) (this is merely a convention, we could
just as well work with q−(x, t)) and then

(A8) u(x, t) = b

(
x− q(x, t)

t

)
.

We shall show that q(x, t) is jointly measurable as a function of (x, t) and hence so
is u(x, t). It is fairly immediate that U(x, t) ≤ U(y, t) whenever x < y, and then we
have a Lebesgue-Stieltjes measure mt defined by mt[x, y) = U(y, t) − U(x, t). The
connection with u(x, t) is that, for t > 0,

(A9) u(x, t) =
dmt

dx
(x).

This is the solution we are looking for. Here is the existence theorem.
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Theorem A1. Assume (A3) and (A5).

(i) For a fixed t > 0, u(x, t) is continuous as a function of x except for countably
many jumps, and

u(x−, t) ≥ u(x+, t) = u(x, t) ≥ 0 for all x.

(ii) For 0 < s < t and −∞ < a < b <∞,

sup
s≤τ≤t , a≤x≤b

|u(x, τ )| <∞.

(iii) For t > 0 and −∞ < a < b <∞,∫ t

0

∫ b

a

|f(u(x, τ ))| dxdτ <∞.

(iv) For all φ ∈ C1
0 (R) (compactly supported, continuously differentiable) and

t > 0,

(A10)

∫
R

φ(x)u(x, t)dx −
∫

R

φ(x)m0(dx) =

∫ t

0

∫
R

φ′(x)f(u(x, τ ))dx dτ.

Items (ii) and (iii) above guarantee that the integrals in (A10) are well-defined,
and (A10) itself says that u(x, t) is a weak solution of (A1) with initial data m0.

Now we turn to uniqueness. As is well-known, the initial profile does not always
uniquely specify a solution, but some additional conditions are needed to rule out
all but one solution. It is by now classical that, with L∞ initial data, a unique
solution is characterized by the following entropy condition:

(A11)

There exists a constant E > 0 such that

u(x+ a, t)− u(x, t)

a
≤ E

t
for all t > 0, x ∈ R, and a > 0.

(See Thm. 16.11 in [Sm].) The solution given by (A8) turns out to be this entropy
solution:

Proposition A12. In case m0(dx) = u0(x)dx for a nonnegative function u0 ∈
L∞(R), then u(x, t) satisfies (A11).

In the general case we can characterize u(x, t) as the solution with minimal flux
accumulated over time. For each x, this quantity is the amount of mass that has
left the interval (−∞, x) by time t, and it is given by

(A13) U0(x)− U(x, t) =

∫ t

0

f(u(x, τ ))dτ.

(This equality and the existence of the integral will be proved later.)
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Theorem A2. Assume (A3)–(A5). Suppose v(x, t) is a measurable function on
R × (0,∞) that satisfies items (ii)–(iv) of Theorem A1 and is right-continuous as
a function of x, for each fixed t > 0. Then f(v(x, τ )) is locally integrable as a
function of τ ∈ [0,∞) for all x ∈ R, and if m0{x} = 0 we have

(A14)

∫ t

0

f(u(x, τ ))dτ ≤
∫ t

0

f(v(x, τ ))dτ

for all t > 0. If equality holds in (A14) for a.e. x ∈ R (in particular, for all x such
that m0{x} = 0), then u(x, t) = v(x, t) for a.e. x.

Some remarks and an example before we turn to the proofs.

Remark A15. The use of formula (A6) to solve conservation laws has been known
since the 1950’s, as evidenced by Lax’s paper [La1]. In the context of Hamilton-
Jacobi equations formula (A6) is known as the Lax formula (see Sect. 11.1 in [Li]).
The novelty of our treatment is in the particular class of initial conditions we cover.

Remark A16. It is clear that Theorem 2 follows from Theorems A1 and A2 and
Proposition A12. Formula (8.7) on which the proof of the scaling limit is based is
a special case of (A6), as the convex dual of f(u) = c2u2/4 is g(z) = z2/c2. The
solution (9.1) can be derived from (A6) and (A8) by calculus.

Remark A17. Formulas (A6) and (A8) are really expressing the solution for general
initial data in terms of the source solution, that is, the solution whose initial measure
m0 equals δ0, a unit mass at the origin. For α ∈ [0,∞] and t > 0 let γt be the
unique number in [0,∞] satisfying g(c+ γt/t) = α/t. Set

wα(x, t) =

{
b(x/t), ct ≤ x < ct+ γt

0, otherwise

and

Wα(x, t) =

∫ x

−∞
wα(y, t)dy =


0, x < ct

t g(x/t), ct ≤ x < ct+ γt

α, x > ct+ γt.

Then for α <∞ wα(x, t) solves (A1) with m0 = αδ0, and is the solution described
in Theorem A1. In general, if the total mass m0(R) = α ∈ [0,∞], then (A6) and
(A8) are equivalent to

U(x, t) = inf
q∈R

{
U0(q) +Wα(x− q, t)

}
and u(x, t) = wα(x− q(x, t), t).

In the terminology of convex analysis, U( · , t) is the infimal convolution of U0 and
Wα( · , t) (see [Rf]).

Example A18. The source solution for the equation ∂tu + ∂x(u2) = 0 for a unit
mass m0 = δ0 is given by

u(x, t) = w1(x, t) = I[0,2
√
t )(x)

x

2t
.
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Furthermore, for any β > 0, the function

vβ(x, t) = I[−√βt,√(4+β)t
)(x)

x

2t

also satisfies all the requirements of Theorem A1 except nonnegativity. The flux test
(A14) distinguishes vβ(x, t) from u(x, t). Yet each vβ(x, t) is an entropy solution
in the sense of (A11), so the entropy condition alone is not a sufficient uniqueness
criterion for singular initial data.

The remainder of the section works through the proofs.

Proof of Lemma A7. First we show that

(A19) lim
q→−∞

[
U0(q) + t g

(
x− q
t

)]
=∞,

which implies that the infimum in (A6) is a finite number. Pick ε ∈ (0, t). By
assumption (A5),

U0(2(q − x)) ≥ −ε g
(
x− q
t

)
for small enough q, hence if q is so small that 2(q − x) ≤ q,

U0(q) + t g

(
x− q
t

)
≥ (t − ε) g

(
x− q
t

)
which increases to ∞ as q ↘ −∞.

By (A19) it suffices to consider only q ranging over some bounded interval. Since
U0(q) is nondecreasing and left-continuous, the expression U0(q) + tg((x− q)/t) is
lower semicontinuous as a function of q. Consequently the infimum in (A6) is
achieved at some q, and then also at the finite values

q−(x, t) = inf{q ≤ x− ct : U(x, t) = U0(q) + tg((x− q)/t)}

and
q+(x, t) = sup{q ≤ x− ct : U(x, t) = U0(q) + tg((x− q)/t)}. �

Recall that we defined q(x, t) = q+(x, t) for t > 0. Set q(x, 0) = x.

Lemma A20.

(i) If x > y, then q+(y, t) ≤ q−(x, t).
(ii) Suppose tj → s > 0 and qj → q̃ as j →∞, and U(x, tj ) = U0(qj)+ tjg((x−

qj)/tj) for all j. Then U(x, s) = U0(q̃) + sg((x − q̃)/s).
(iii) Suppose 0 < t < s, q̃ ≤ x, and U(x, s) = U0(q̃) + sg((x − q̃)/s). Then

U(x, t) = U0(q) + tg((x− q)/t) implies q ≥ q̃.
(iv) Suppose tj ↘ 0 and U(x, tj ) = U0(qj) + tjg((x − qj)/tj) for all j. Then

qj → x.
(v) For a fixed t > 0, q(x, t) is increasing and right-continuous as a function of

x. As a function on R× [0,∞), q(x, t) is upper semicontinuous and locally
bounded, hence in particular jointly measurable.
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Proof. (i) If q = q−(x, t) < q+(y, t) = q̃, then the minimizing property of q gives

(A21) t g

(
x− q
t

)
− t g

(
x− q̃
t

)
≤ U0(q̃)−U0(q).

By g’s strict convexity,

(A22) g

(
y − q
t

)
− g
(
y − q̃
t

)
< g

(
x− q
t

)
− g
(
x− q̃
t

)
.

But (A21) and (A22) together (note the strict inequality in (A22)) contradict the
fact that the infimum in (A6) is achieved for U(y, t) at q̃ = q+(y, t).

The proof of (ii) is left to the reader.
(iii) Let q < q̃. We shall show that q cannot be a minimizer for U(x, t). Since

x− q > x− q̃ ≥ 0, we have

x− q
t

>
x− q
s

and
x− q̃
t
≥ x− q̃

s
,

and by the strict convexity of g,

(A23) t

[
g

(
x− q
t

)
− g
(
x− q̃
t

)]
> s

[
g

(
x− q
s

)
− g
(
x− q̃
s

)]
.

On the other hand, since q̃ is a minimizer for U(x, s),

(A24) U0(q̃) + sg

(
x− q̃
s

)
≤ U0(q) + sg

(
x− q
s

)
.

Equations (A23) and (A24) together imply that

U0(q̃) + tg

(
x− q̃
t

)
< U0(q) + tg

(
x− q
t

)
,

so q cannot be a minimizer for U(x, t).
(iv) Since qj ≤ x− ctj , lim sup qj ≤ x. Suppose that, for some ε > 0 and all j’s,

qj ≤ x− ctj − ε ≤ x. Then (x− qj)/tj ≥ c+ ε/tj . Fix k. By item (iii), qj ≥ qk for
j ≥ k. Recalling that g is increasing on [c,∞) and convex, we have

U0(x− ctj) ≥ U(x, tj ) = U0(qj) + tjg((x− qj)/tj)
≥ U0(qk) + tjg(c+ ε/tj)

≥ U0(qk) + tj
[
g(z) + g′(z)(c + ε/tj − z)

]
= U0(qk) + ε g′(z) + tj

[
g(z) + g′(z)(c − z)

]
for any z. Since U0(x+) ≥ U0(x±), letting tj ↘ 0 gives

U0(x+) ≥ U0(qk) + ε g′(z).
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But the right-hand side can be made arbitrarily large by choice of z. Thus no such
ε > 0 can exist, and we must have that lim inf qj ≥ x.

(v) That q( · , t) is increasing follows from item (i); right-continuity follows from
letting y ↘ x in the inequality

U0(q(y, t)) + tg

(
y − q(y, t)

t

)
≤ U0(q) + tg

(
y − q
t

)
(q ≤ x − ct arbitrary) and from noting that lim inf

y↘x
q(y, t) ≥ q(x, t) by item (i).

For upper semicontinuity we show that q(x, t) ≥ β whenever (xn, tn) → (x, t) in
R× [0,∞) and q(xn, tn) ≥ β for all n. In case xn ↗ x, apply (i), (ii), and (iv):

q(x, t) ≥ lim sup
n→∞

q(x, tn) ≥ lim sup
n→∞

q(xn, tn) ≥ β.

In case xn ↘ x, we have by (i)

β ≤ q(xm, tm) ≤ q(xn, tm)

for all m > n; hence by (ii) or (iv)

β ≤ lim inf
m→∞

q(xn, tm) ≤ q(xn, t).

Now let n→∞ to get
β ≤ lim inf

n→∞
q(xn, t) = q(x, t),

by the right-continuity of q( · , t).
For local boundedness we show that q(x, τ ) is bounded on any rectangle [a, b]×

[0, t]. An upper bound comes from q(x, τ ) ≤ x− cτ . Since q( · , τ ) is increasing, the
lower bound comes from showing that inf

0≤τ≤t
q(a, τ ) > −∞. Suppose q(a, τ )↘ −∞

as τ → σ in [0, t]. If σ = 0, then q(a, τ )→ a by (iv). For σ > 0 the argument used
in the proof of Lemma A7 shows that

U(a, τ ) = U0(q(a, τ )) + τ g

(
a− q(a, τ )

τ

)
→∞,

contradicting the obvious bound U(a, τ ) ≤ U0(a − cτ ) ≤ U0(a + |c|t) valid for all
τ ∈ (0, t]. �
Proof of (A9). Fix t > 0, let −∞ < x < y < ∞, and set qx = q(x, t) and qy =
q(y, t). Then

mt[x, y) = U(y, t) −U(x, t)

≤
[
U0(qx) + t g

(
y − qx
t

)]
−
[
U0(qx) + t g

(
x− qx
t

)]
= t

[
g

(
y − qx
t

)
− g
(
x− qx
t

)]
= b(ξ) (y − x)
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for some ξ ∈
(
(x−qx)/t, (y−qx)/t

)
by the mean value theorem. By the local bound-

edness of b this shows that mt is absolutely continuous with respect to Lebesgue
measure. Letting y ↘ x shows that

dmt

dx
(x) ≤ b

(
x− q(x, t)

t

)
= u(x, t) for a.e. x

by Lebesgue’s differentiation theorem and the continuity of b.
Conversely, take x close enough to y so that (x− qy)/t > c0. Then from

U0(qy)−U0(qx) ≥ t
[
g

(
x− qx
t

)
− g
(
x− qy
t

)]
we get

mt[x, y) = U0(qy)− U0(qx) + t

[
g

(
y − qy
t

)
− g
(
x− qx
t

)]
≥ t
[
g

(
y − qy
t

)
− g
(
x− qy
t

)]
= b(θ) (y − x)

for some θ ∈
(
(x− qy)/t, (y − qy)/t

)
. Letting x↗ y gives

dmt

dx
(y) ≥ b

(
y − q(y, t)

t

)
= u(y, t) for a.e. y. �

Proof of items (i) and (ii) of Theorem A1. Direct consequences of item (v) of
Lemma A20 and the continuity of b. �

As a first step towards solving the equation with u(x, t), we show that the equa-
tion is valid off the {t = 0} boundary.

Lemma A25. For 0 < t0 < t1 and φ ∈ C1
0(R),

(A26)

∫
R

φ(x)u(x, t1)dx−
∫

R

φ(x)u(x, t0)dx =

∫ t1

t0

∫
R

φ′(x)f(u(x, τ )) dxdτ.

Proof. Let t0 = s0 < s1 < · · · < sn = t1 be a partition. Integrate by parts and
utilize the shorthand qi = q(x, si) to write∫

φ(x)u(x, t1)dx−
∫
φ(x)u(x, t0)dx

=

n∑
i=1

∫ [
U(x, si−1)− U(x, si)

]
φ′(x)dx

=

n∑
i=1

∫ [
si−1 g

(
x− qi−1

si−1

)
− si g

(
x− qi
si

)
+ U0(qi−1)−U0(qi)

]
φ′(x)dx.
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Taking into account that g(z) = zb(z)− f(b(z)) and adding and subtracting terms
turns the above sum into

n∑
i=1

∫
φ′<0

[
f

(
b

(
x− qi
si

))
(si − si−1) + αi(x) +Ai(x)

]
φ′(x)dx

+

∫
φ′>0

[
f

(
b

(
x− qi−1

si−1

))
(si − si−1) + βi(x) +Bi(x)

]
φ′(x)dx,

where

αi(x) =

[
U0(qi−1) + si−1 g

(
x− qi−1

si−1

)]
−
[
U0(qi) + si−1 g

(
x− qi
si−1

)]
,

Ai(x) = (x− qi)
[
b

(
x− qi
si−1

)
− b
(
x− qi
si

)]
+ si−1

[
f

(
b

(
x− qi
si

))
− f
(
b

(
x− qi
si−1

))]
,

βi(x) =

[
U0(qi−1) + si g

(
x− qi−1

si

)]
−
[
U0(qi) + si g

(
x− qi
si

)]
, and

Bi(x) = (x− qi−1)

[
b

(
x− qi−1

si−1

)
− b
(
x− qi−1

si

)]
+ si

[
f

(
b

(
x− qi−1

si

))
− f
(
b

(
x− qi−1

si−1

))]
.

Since qi−1 and qi are minimizers in (A6) for U(x, si−1) and U(x, si), respectively,
we have

(A27) αi(x) ≤ 0 and βi(x) ≥ 0.

Note that (f ◦ b)′(z) = z b′(z) and use the mean value theorem to rewrite Ai(x) as

Ai(x) = (x− qi)2

(
1

si−1
− 1

si

)[
b′
(
x− qi
θi

)
− si−1

σi
b′
(
x− qi
σi

)]
for some numbers σi, θi ∈ (si−1, si). As x varies in the compact support of φ and
0 < t0 ≤ si−1 < si ≤ t1, the qi stay bounded and the arguments of b′ are contained
in a fixed compact set. Thus by the continuity of b′,

Ai(x) = o(|si − si−1|)
uniformly over x. Similarly one sees that

Bi(x) = o(|si − si−1|).
Combining what we have done so far,∫

φ(x)u(x, t1)dx−
∫
φ(x)u(x, t0)dx

−
n∑
i=1

∫
φ′(x)

[
I{φ′<0}(x) f

(
b

(
x− qi
si

))
+ I{φ′>0}(x) f

(
b

(
x− qi−1

si−1

))]
(si − si−1)dx

=

n∑
i=1

∫ [
I{φ′<0}(x)φ′(x)αi(x) + I{φ′>0}(x)φ′(x)βi(x)

]
dx+

n∑
i=1

o(|si − si−1|).
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For n ∈ Z+ take si = t0 + i(t1 − t0)/n and set

Ψn(x, τ ) =
n∑
i=1

I[si−1,si)(τ )

[
I{φ′<0}(x) f

(
b

(
x− qi
si

))
+ I{φ′>0}(x) f

(
b

(
x− qi−1

si−1

))]
and utilizing (A27) we can write

(A28)

∫
φ(x)u(x, t1)dx −

∫
φ(x)u(x, t0)dx

−
∫ t1

t0

∫
φ′(x) Ψn(x, τ )dxdτ ≥ no(n−1).

It follows from item (ii) of Lemma A20 that

lim
n→∞

Ψn(x, τ ) = I{φ′ 6=0}(x) f

(
b

(
x− q(x, τ )

τ

))
= I{φ′ 6=0}(x) f(u(x, τ ))

whenever q−(x, τ ) = q+(x, τ ). In particular, φ′(x)Ψn(x, τ ) → φ′(x)f(u(x, τ )) a.e.
by Lemma A20(i) and (v). Since

Ψn(x, τ ) ≤ I{φ6=0}×[t0,t1](x, τ ) · sup
z∈K
|f(b(z))|

for a certain compact set K, we may apply dominated convergence to (A28) and
conclude that∫

R

φ(x)u(x, t1)dx−
∫

R

φ(x)u(x, t0)dx−
∫ t1

t0

∫
R

φ′(x)f(u(x, τ ))dx dτ ≥ 0.

Deducing this same inequality for −φ then yields (A26). �
Lemma A29. For all x ∈ R, lim

t→0
U(x, t) = U0(x).

Proof. U(x, t) ≤ U0(x − |c|t) + tg(|c|), hence lim sup
t→0

U(x, t) ≤ U0(x). Conversely,

since g(z) ≥ 0 always, lim inf
t→0

U(x, t) ≥ lim inf
t→0

U0(q(x, t)) ≥ U0(x) by Lemma

A20(iv) and the fact that U0(x±) ≥ U0(x). �
In particular, this says that mt → m0 vaguely as t → 0, so the second term

in (A26) converges to
∫
φdm0 as t0 → 0. To get the required convergence on the

right-hand side of (A26) and thereby prove item (iv) of Theorem A1, we need local
integrability of f(u(x, t)) up to the boundary {t = 0}, as stated in Theorem A1(iii).

Lemma A30.

(i) Suppose U0(ξ) = U0(−∞) > −∞. Then x ≤ ξ + ct implies that U(x, t) =
U0(ξ) and q(x, t) = x− ct.
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(ii) Suppose U0(x) − U0(y) ≤ Ũ0(x) − Ũ0(y) for all −∞ < y < x < ∞. Then
q(x, t) ≥ q̃(x, t) and u(x, t) ≤ ũ(x, t) for all (x, t). (The tilded quantities go
together as the untilded via formulas (A6) and (A8).)

(iii) Suppose Uk0 (x)−Uk0 (y)↗ U0(x)−U0(y) as k↗∞, for all −∞ < y < x <
∞. Then uk(x, t)↗ u(x, t) for all (x, t).

(iv) For β > 0, define

(A31) Uβ0 (x) =

{
U0(x), x ≥ −β
U0(−β), x < −β.

Then Uβ(x, t)↘ U(x, t) as β ↗∞.

Proof. Proofs of (i) and (ii) follow straightforwardly from (A6) and (A8) and the
monotonicity of b. For (iii) we need to show that qk(x, t) ↘ q(x, t). Let q̃ =
limk→∞ qk(x, t). Let q ≤ x− ct be arbitrary, and note that q̃ ≤ qk(x, t) ≤ x− ct.
Use the minimizing property of qk(x, t) and the hypothesis to write

Uk0 (x− ct)−Uk0 (q)− t g
(
x− q
t

)
≤ Uk0 (x− ct)−Uk0 (qk(x, t)) − t g

(
x− qk(x, t)

t

)
≤ Uk0 (x− ct)−Uk0 (q̃)− t g

(
x− qk(x, t)

t

)
≤ U0(x− ct)− U0(q̃)− t g

(
x− qk(x, t)

t

)
.

Letting k↗∞ and comparing the first and last lines gives

U0(q) + t g

(
x− q
t

)
≥ U0(q̃) + t g

(
x− q̃
t

)
,

showing that q̃ is a minimizer for U(x, t) and thereby must satisfy q̃ ≤ q(x, t). By
item (ii) q̃ ≥ q(x, t).

(iv) Obviously Uβ(x, t) ≥ U(x, t) since Uβ0 (q) ≥ U0(q) for all q and β. Let β

be large enough so that −β < q(x, t). Then U0(q(x, t)) = Uβ0 (q(x, t)), and q(x, t)
minimizes for both U(x, t) and Uβ(x, t), giving U(x, t) = Uβ(x, t). �

Lemma A32. For z ∈ R, 0 < t <∞, and −∞ < a < b <∞,

(A33)

∫ t

0

|f(u(z, τ ))| dτ <∞ and

∫ t

0

∫ b

a

|f(u(x, τ ))| dxdτ <∞.

Proof. Define Uβ0 as in (A31), with Uβ(x, t) and uβ(x, t) constructed via (A6) and

(A8) in terms of Uβ0 (q). For −∞ < y < x < ∞ and 0 < s < t, pick a sequence of
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test functions 0 ≤ φn ≤ 1 in (A26) such that φn ≡ 1 on [y+1/n, x] and ≡ 0 outside
[y, x+ 1/n]. Letting n→∞ gives in the limit, by the right-continuity of uβ( · , τ ),

Uβ(x, t)− Uβ(x, s) +

∫ t

s

f(uβ(x, τ ))dτ

= Uβ(y, t)− Uβ(y, s) +

∫ t

s

f(uβ(y, τ ))dτ.

Pick y < −β − |c|t, so that y ≤ −β + cτ for all τ ∈ [0, t]. By item (i) of Lemma
A30, uβ(y, τ ) = b(c) = 0 and Uβ(y, τ ) = U0(−β) for τ ∈ [0, t]. Hence the above
yields

Uβ(x, s) − Uβ(x, t) =

∫ t

s

f(uβ(x, τ ))dτ.

By items (iii) and (iv) of Lemma A30 (and the fact that u(x, τ ) is bounded for
s ≤ τ ≤ t) we may let β ↗∞ and get

(A34) U(x, s) −U(x, t) =

∫ t

s

f(u(x, τ ))dτ.

By assumption (A4),∫ t

s

|f(u(x, τ ))| dτ ≤ 2tr +

∫ t

s

f(u(x, τ ))dτ = 2tr + U(x, s) − U(x, t),

so we may let s↘ 0 and use Lemma A29 to deduce∫ t

0

|f(u(x, τ ))| dτ ≤ C + |U0(x)| + |U(x, t)| <∞

for a constant C . Finiteness of the second integral in (A33) follows by integrating
over a ≤ x ≤ b above. �
Completion of the proof of Theorem A1. Item (iii) is a part of (A33) proved above,
and this justifies taking the t0 ↘ 0 limit in (A26) to obtain (A10). �

Next we develop the uniqueness results, beginning with the fact that we have
the entropy solution for L∞ initial data.

Proof of Proposition A12. Set β = ‖u0‖∞ and let Ũ0(x) = βx. Then Lemma
A30(ii) applies, and u(x, t) ≤ ũ(x, t) ≡ β. On the other hand, u(x, t) = b((x −
q(x, t))/t) and b is strictly increasing, hence we must have c1 < ∞ such that (x −
q(x, t))/t ∈ [c, c1] for all (x, t). Letting E = supc≤z≤c1 b

′(z), we have by the mean
value theorem and the monotonicity of q( · , τ )

u(x+ a, t)− u(x, t) ≤ E (a− q(x+ a, t) + q(x, t))/t ≤ Ea/t. �

Proof of (A13). Let s↘ 0 in (A34), apply (A33) and Lemma A29. �
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Finally we prove Theorem A2. Let us reiterate the assumptions on v(x, t):

(a) On R× (0,∞) v(x, t) is real-valued and jointly measurable, and for a fixed
t > 0, v(x, t) is right-continuous as a function of x.

(b) For 0 < s < t and −∞ < a < b <∞,

(A35) sup
s≤τ≤t , a≤x≤b

|v(x, τ )| <∞.

(c) For t > 0 and −∞ < a < b <∞,

(A36)

∫ t

0

∫ b

a

|f(v(x, τ ))| dxdτ <∞.

(d) For all φ ∈ C1
0(R) and t > 0,

(A37)

∫
R

φ(x) v(x, t)dx −
∫

R

φ(x)m0(dx) =

∫ t

0

∫
R

φ′(x)f(v(x, τ ))dx dτ.

By (A36), we can pick and fix z ∈ R so that

(A38)

∫ t

0

|f(v(z, τ ))| dτ <∞

and z is a continuity point of U0. We start by showing that (A38) continues to hold
when z is replaced by any x ∈ R. Set

(A39) V (x, t) =

∫ x

z

v(y, t)dy −
∫ t

0

f(v(z, τ ))dτ

for t > 0 and x ∈ R. (With the obvious sign convention for the first integral so
that V (b, t)−V (a, t) =

∫
[a,b)

v(y, t)dy for a < b.) Exactly as in the proof of Lemma

A32, (A37) and the right-continuity of v( · , τ ) imply that

(A40)

V (x, t)− V (x, s) +

∫ t

s

f(v(x, τ ))dτ

= V (z, t)− V (z, s) +

∫ t

s

f(v(z, τ ))dτ

= 0,

and then by assumption (A35)

(A41)

∫ t

s

|f(v(x, τ ))| dτ ≤ C + |V (x, t)| + |V (x, s)|.

Note that V (z, s) → 0 as s → 0, and from (A37) we have vague convergence
V (dx, s) →m0(dx) as s→ 0, so that

lim
s→0
|V (x, s)| = lim

s→0
|V (x, s) − V (z, s)| ≤ |U0(x)− U0(z)| ∨ |U0(x+)− U0(z)| <∞,

and we may let s→ 0 in (A41) to deduce that f(v(x, τ )) is locally integrable as a
function of τ on [0,∞) for all x.
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Lemma A42. Suppose 0 < s < t <∞ and a, y ∈ R. Then

(A43) V (y + at, t)− V (y + as, s) =

∫ t

s

[
av(y + aτ, τ )− f(v(y + aτ, τ ))

]
dτ.

Proof. The case a = 0 is already contained in (A40) so suppose a 6= 0. Both sides
of (A43) are continuous from the right in y, so it suffices to prove it for a.e. y. This
permits us to assume that y + at is a Lebesgue point of both v( · , t) and f(v( · , t))
for a.e. t ∈ (0,∞).

Set g(t) = V (y + at, t). For h > 0

(A44) g(t+ h)− g(t) =

∫ t+h

t

[
av(y + aτ, t)− f(v(y + at + ah, τ ))

]
dτ,

so by (A35) g is locally Lipschitz. Thus g′(τ ) exists a.e. and g(t)−g(s) =
∫ t
s
g′(τ )dτ ,

so it suffices to show that the integrand on the right-hand side of (A43) is a weak
derivative of g.

Pick a smooth test function φ(t), compactly supported on (0,∞). Let t0 > 0
be such that [t0,∞) contains the support of φ. From (A44) and an application of
Fubini’s theorem we get, for h > 0,∫ ∞

t0

φ(t)
g(t+ h)− g(t)

h
dt

=

∫ ∞
t0

dt φ(t)
1

h

∫ t+h

t

av(y + aτ, t)dτ

−
∫ ∞
t0

dτ
1

h

∫ τ

(τ−h)∨t0
φ(t) f(v(y + at + ah, τ ))dt

that converges to ∫ ∞
t0

φ(t)
[
av(y + at, t)− f(v(y + at, t))

]
dt

as h → 0, by the continuity of φ, by (A35), and by the assumption on y. Conse-
quently∫

φ′g = lim
h↘0

∫ ∞
t0

φ(t− h)− φ(t)

−h g(t)dt = − lim
h↘0

∫ ∞
t0

φ(t)
g(t+ h)− g(t)

h
dt

= −
∫ ∞
t0

φ(t)
[
av(y + at, t)− f(v(y + at, t))

]
dt. �

Pick and fix a continuity point z of U0 and define V (x, t) by (A39). Let q ≤ z−ct
be a continuity point of U0. Take s ∈ (0, t) small enough so thatw = b((z−q)/(t−s))
is well defined. Set y = z− t(z− q)/(t− s) so that z = y+a(w)t and q = y+a(w)s.
By convexity and the definition of g,

a(w)ξ − f(ξ) ≤ a(w)w − f(w) = g((z − q)/(t− s))
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for all ξ. Thus (A43) gives

V (z, t) = V (q, s) +

∫ t

s

[
a(w)v(y + a(w)τ, τ )− f(v(y + a(w)τ, τ ))

]
dτ

≤ V (q, s) + (t− s) g
(
z − q
t− s

)
,

and letting s↘ 0 yields

(A45) V (z, t) ≤ U0(q) + t g

(
z − q
t

)
− U0(z).

Since U0 is left-continuous, (A45) is valid for all q ≤ z − ct upon taking increasing
limits of continuity points q. Minimizing on the right over q then leads to

V (z, t) ≤ U(z, t)− U0(z),

which by (A13) and (A39) is equivalent to (A14). (The reader may wish to know
that this argument was inspired by that on p. 10 in [La2].)

The last sentence of Theorem A2 is an immediate consequence of the equations
(A10) and (A37), so this concludes the proof.

Acknowledgements. I learned about the work of Aldous and Diaconis from D.
Aldous at the Institute for Mathematics and Its Applications, University of Min-
nesota. Much of this work was completed during a postdoctoral fellowship at the
Institut Mittag-Leffler, whose hospitality is gratefully acknowledged.

References

[AD] D. Aldous and P. Diaconis, Hammersley’s interacting particle process and longest in-
creasing subsequences, Probab. Theory Relat. Fields 103 (1995), 199–213.

[Du] R. Durrett, Probability: Theory and Examples, Wadsworth, Pacific Grove, 1991.
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