
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 14 (2009), Paper no. 21, pages 548–568.

Journal URL
http://www.math.washington.edu/~ejpecp/

Intermittence and nonlinear parabolic stochastic partial

differential equations∗

Mohammud Foondun†and Davar Khoshnevisan‡

Department of Mathematics
University of Utah

Salt Lake City, UT 84112-0090

Abstract

We consider nonlinear parabolic SPDEs of the form ∂tu=L u+σ(u)ẇ, where ẇ denotes space-
time white noise, σ : R→ R is [globally] Lipschitz continuous, and L is the L2-generator of a
Lévy process. We present precise criteria for existence as well as uniqueness of solutions. More
significantly, we prove that these solutions grow in time with at most a precise exponential rate.
We establish also that when σ is globally Lipschitz and asymptotically sublinear, the solution to
the nonlinear heat equation is “weakly intermittent,” provided that the symmetrization of L is
recurrent and the initial data is sufficiently large.
Among other things, our results lead to general formulas for the upper second-moment Lia-
pounov exponent of the parabolic Anderson model for L in dimension (1+1). When L = κ∂x x

for κ > 0, these formulas agree with the earlier results of statistical physics [28; 32; 33], and
also probability theory [1; 5] in the two exactly-solvable cases. That is when u0 = δ0 or u0 ≡ 1;
in those cases the moments of the solution to the SPDE can be computed [1].
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1 Introduction

Let {ẇ(t , x)}t≥0,x∈R denote space-time white noise, and σ : R → R be a fixed Lipschitz function.
Presently we study parabolic stochastic partial differential equations [SPDEs] of the following type:

¯

¯

¯

¯

¯

∂tu(t , x) = (L u)(t , x) +σ(u(t , x))ẇ(t , x),

u(0 , x) = u0(x),
(1.1)

where t ≥ 0, x ∈ R, u0 is a measurable and nonnegative initial function, and L is the L2(R)-
generator of a Lévy process X := {X t}t≥0; and L acts only on the variable x . We follow Walsh
[39] and interpret (1.1) as an Itô-type stochastic PDE. Also, we normalize X so that Eexp(iξX t) =

exp(−tΨ(ξ)) for all t ≥ 0 and ξ ∈ R; L is described via its Fourier multiplier as L̂ (ξ) = −Ψ(ξ) for
all ξ ∈ R. See the books by Bertoin [2] and Jacob [26] for pedagogic accounts.

Our principal aim is to study the mild solutions of (1.1), when they exist. At this point in time,
we understand (1.1) only when its linearization with vanishing inital data has a strong solution.
Together with E. Nualart [19], we have investigated precisely those linearized equations. That is,

¯

¯

¯

¯

¯

∂tu(t , x) = (L u)(t , x) + ẇ(t , x),

u(0 , x) = 0.
(1.2)

And we proved among other things that (1.2) has a strong solution if and only if Paul Lévy’s sym-
metrization X̄ of the process X has local times, where

X̄ t := X t − X ′t for all t ≥ 0, (1.3)

and X ′ := {X ′t}t≥0 is an independent copy of X . In fact, much of the local-time theory of symmetric
1-dimensional Lévy processes can be embedded within the analysis of SPDEs defined by (1.2); see
[19] for details. We also proved in [19] that, as far as matters of existence and regularity are con-
cerned, one does not encounter new phenomena if one adds to (1.2) Lipschitz-continuous additive
nonlinearities [that is, if L u were replaced by L u+ b(u) for a Lipschitz-continuous and bounded
function b : R→ R]. This is why we consider only multiplicative nonlinearities in (1.1).

Let Lipσ denote the Lipschitz constant of σ, and recall that u0 is the initial data in (1.1). Here and
throughout we assume, without further mention, that:

(i) 0< Lipσ <∞, so that σ is [globally] Lipschitz and nontrivial; and

(ii) u0 is bounded, nonnegative, and measurable.

Under these conditions, we prove that the SPDE (1.1) has a mild solution u := {u(t , x)}t≥0,x∈R that
is unique up to a modification. More significantly, we show that the growth of t 7→ u(t , x) is tied
closely with the existence of u. With this aim in mind we choose and fix some x0 ∈ R define the
upper pth-moment Liapounov exponent γ̄(p) of u [at x0] as

γ̄(p) := lim sup
t→∞

1

t
ln E
�¯

¯u(t , x0)
¯

¯

p�

for all p ∈ (0 ,∞). (1.4)

It is possible to prove that when u0 is a constant, γ̄ does not depend on the value of x0. But it does,
in general. However, we suppress the dependence of γ̄ on x0, since we plan to derive inequalities
that hold uniformly over all x0 ∈ R.
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Let us say that u is weakly intermittent1 if, regardless of the value of x0,

γ̄(2)> 0 and γ̄(p)<∞ for all p > 2. (1.5)

We are interested primarily in establishing weak intermittence. However, let us mention also that
weak intermittence can sometimes imply the much better-known notion of full intermittency [5,
Definition III.1.1, p. 55]; the latter is the property that, regardless of the value of x0,

p 7→
γ̄(p)

p
is strictly increasing for all p ≥ 2. (1.6)

Here is a brief justification: Evidently, γ̄ is convex and zero at zero, and hence p 7→ γ̄(p)/p is
nondecreasing. Convexity implies readily that if in addition γ̄(1) = 0, then (1.5) implies (1.6).2 On
the other hand, a sufficient condition for γ̄(1) = 0 is that u(t , x)≥ 0 a.s. for all t > 0 and x ∈ R; for
then, (3.5) below shows immediately that E(|u(t , x)|) = E[u(t , x)] is bounded uniformly in t. We
have proved the following: “Whenever one has a comparison principle—such as that of Mueller [36]

in the case that L = κ∂x x and σ(x) = λx—weak intermittence necessarily implies full intermittency.”

Here, we do not pursue comparison principles. Rather, the principal goal of this note is to demon-
strate that under various nearly-optimal conditions on σ and u0, the solution u to (1.1) is weakly
intermittent.

There is a big literature on intermittency that investigates the special case of (1.1) with L = κ∂x x

and σ(z) = λz for constants κ > 0 and λ ∈ R; that is the parabolic Anderson model. See, for
example, [1; 5; 28; 32; 33; 35], together with their sizable combined references. The existing
rigorous intermittency results all begin with a probabilistic formulation of (1.1) in terms of the
Feynman–Kac formula. Presently, we introduce an analytic method that shows clearly that weak
intermittence is connected intimately with the facts that: (i) (1.1) has a strong solution; and (ii) σ
has linear growth, in one form or another. Our method is motivated very strongly by the theory of
optimal regularity for analytic semigroups [34].

We would like to mention also that there is an impressive body of recent mathematical works on
other Anderson models and Lp(P) intermittency, as well as almost-sure intermittency [7; 6; 8; 10;
11; 16; 18; 20; 21; 24; 22; 27; 31; 38, and their combined references].

A brief outline follows: In §2 we state the main results of the paper; these results are proved subse-
quently in §4, after we establish some a priori bounds in §3. Finally, we show in Appendix A that if
the initial data is continuous, then the solution to (1.1) is continuous in probability, in fact contin-
uous in Lp(P) for all p > 0. Consequently, if u0 is continuous, then u has a separable modification.
As an immediate byproduct of our proof we find that when L is the fractional Laplacian of index
α ∈ (1 ,2] and u0 is continuous, u has a jointly Hölder-continuous modification (Example A.6).

2 Main results

We combine a result of Dalang [14, Theorem 13] with a theorem of Hawkes [25] to deduce that
(1.2) has a strong solution if and only if Υ(β)<∞ for some β > 0, where

Υ(β) :=
1

2π

∫ ∞

−∞

dξ

β + 2ReΨ(ξ)
for all β > 0. (2.1)

1Our notion (1.5) of weak intermittence differs from that of [20, Definition 1.2].
2Inspect the proof of Theorem III.1.2 in Carmona and Molchanov [5, p. 55] for example.
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See also [19]. Furthermore, Υ(β) is finite for some β > 0 if and only if it is finite for all β > 0.
And under this integrability condition, (1.2) has a unique solution as well. For related results, see
Brzeźniak and van Neerven [3].

Motivated by the preceding remarks, we consider only the case that the linearized equation (1.2)
has a strong solution. That is, we suppose here and throughout that Υ(β) < ∞ for all β > 0. We
might note that Υ is decreasing, Υ(β)> 0 for all β > 0, and limβ↑∞Υ(β) = 0.

Our next result establishes natural conditions for: (i) the existence and uniqueness of a solution
to (1.1); and (ii) u to grow at most exponentially with a sharp exponent. It is possible to adapt
the Hilbert-space methods of Peszat and Zabczyk [37] to derive existence and uniqueness. See also
Da Prato [12] and Da Prato and Zabczyk [13]. The theory of Dalang [14] produces the desired
existence and uniqueness in the case that u0 is a constant. And Dalang and Mueller [15] establish
existence and uniqueness when u0 is in a suitable Sobolev space.

Presently, we devise a method that shows very clearly that exponential growth is a consequence of
the existence of a solution, provided that u0 is bounded and measurable. Moreover, our method
yields constants that will soon be shown to be essentially unimproveable.

Henceforth, by a “solution” to (1.1) we mean a mild solution u that satisfies the following:

sup
x∈R

sup
t∈[0,T]

E
�

|u(t , x)|2
�

<∞ for all T > 0. (2.2)

It turns out that solutions to (1.1) have better a priori integrability features. The following quantifies
this remark.

Theorem 2.1. Equation (1.1) has a solution u that is unique up to a modification. Moreover, for all

even integers p ≥ 2,

γ̄(p)≤ inf

¨

β > 0 : Υ

�

2β

p

�

<
1

(zpLipσ)
2

«

<∞, (2.3)

where zp denotes the largest positive zero of the Hermite polynomial Hep.

Remark 2.2. We recall that Hep(x) = 2−p/2Hp(x/2
1/2) for all p > 0 and x ∈ R, where exp(−2x t −

t2) =
∑∞

k=0 Hk(x)t
k/k! for all t > 0 and x ∈ R. It is not hard to verify that

z2 = 1 and z4 =

q

3+
p

6 ≈ 2.334. (2.4)

This is valid simply because He2(x) = x2− 1 and He4(x) = x4− 6x2+ 3. In addition, zp ∼ 2p1/2 as
p→∞, and supp≥1(zp/p

1/2) = 2; see Carlen and Kree [4, Appendix].

Before we explore the sharpness of (2.3), let us examine two cases that exhibit nonintermittence, in
fact subexponential growth. The first concerns subdiffusive growth.

Proposition 2.3. If u0 and σ are bounded and measurable, then for all integers p ≥ 2,

E
�

|u(t , x)|p
�

= o
�

t p/2
�

as t →∞. (2.5)

Remark 2.4. The preceding is close to optimal; for instance, when p = 2, the “o(t)” cannot in
general be improved to “o(tρ)” for any ρ < 1/2. Indeed, consider the case that L = −(−∆)α/2
is the fractional Laplacian. It is easy to see that Υ(β) < ∞ for some β > 0 iff α ∈ (1 ,2]. If
0 < infz∈R |σ(z)| ≤ supz∈R |σ(z)| <∞, then E(|u(t , x)|2) is bounded above and below by constant
multiples of t(α−1)/α. We omit the details.
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For our second proposition we first recall the symmetrized Lévy process X̄ from (1.3).

Proposition 2.5. If X̄ is transient, then for all integers p ≥ 2 there exists δ(p) > 0 such that γ̄(p) = 0
whenever Lipσ< δ(p).

Example 2.6. The conditions of Proposition 2.5 are not vacuous. For instance, Ψ(ξ) = |ξ|α + |ξ|ρ
is the exponent of a symmetric Lévy process X̄ . Moreover, if α ∈ (0 ,1) and ρ ∈ (1 ,2], then X̄ is
transient and has local times.

Our next result addresses the sharpness of (2.3), and establishes an easy-to-check sufficient criterion
for u to be weakly intermittent. Throughout, Υ−1 denotes the inverse to Υ in the following sense:

Υ−1(t) := sup
�

β > 0 : Υ(β)> t
	

, (2.6)

where sup∅ := 0.

Theorem 2.7. If infz∈R u0(z)> 0 and q := infx 6=0 |σ(x)/x |> 0, then

γ̄(2)≥Υ−1
�

1

q2

�

> 0. (2.7)

Our next result is a ready corollary of Theorems 2.1 and 2.7; see Carmona and Molchanov [5, p. 59],
Cranston and Molchanov [9], and Gärtner and den Hollander [20] for phenomenologically-similar
results. It might help to recall (1.3).

Corollary 2.8. If σ(x) := λx and infx∈R u0(x)> 0, then:

1. If X̄ is recurrent, then u is weakly intermittent;

2. If X̄ is transient, then u is weakly intermittent if and only if Υ(β)≥ λ−2 for some β > 0; and

3. In all the cases that u is weakly intermittent, γ̄(2) = Υ−1(λ−2).

Even though Corollary 2.8 is concerned with a very special case of (1.1), that special case has a
rich history. Indeed, Corollary 2.8 contains a moment analysis of the socalled parabolic Anderson

model forL . WhenL = κ∂x x , that equation arises in the analysis of branching processes in random
environment [5; 35]. If the spatial motion is a Lévy process with generator L , then we arrive at
(1.1) with σ(x) = λx . For somewhat related—though not identical—reasons, the parabolic Ander-
son model also paves the way for a mathematical understanding of the socalled “KPZ equation” in
dimension (1+1). For further information see the original paper by Kardar, Parisi, and Zhang [29],
Chapter 5 of Krug and Spohn [32], and the Introduction by Carmona and Molchanov [5].

Example 2.9. If the conditions of Corollary 2.8 hold, then the solution to (1.1) with L =

−κ(−∆)α/2 is weakly intermittent with

γ̄(2) =

�

ναλ2α

κ

�1/(α−1)

where ν :=
cosec(π/α)

21/αα
. (2.8)

Of course, we need α ∈ (1 ,2], and this implies that X̄ is recurrent; see Remark 2.4. In order to
derive (2.8), we first recall that

∫∞
0

dx/(1+ xα) = (π/α)cosec(π/α) [23, 3.222#2, p. 337]. Thus,
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a direct computation yields Υ(β) = νκ−1/α β−1+(1/α) for all β > 0. Corollary 2.8, and a few more
simple calculations, together imply (2.8). A similar argument shows that

γ̄(p)≤
p

2

�

να

κ

�

zpλ
�2α
�1/(α−1)

for all even integers p ≥ 2. (2.9)

We can use this in conjunction with the Carlen–Kree inequality [zp ≤ 2
p

p; see Remark 2.2] to
obtain explicit numerical bounds.

In the special case that L = κ∂x x , Example 2.9 tells that γ̄(2) = λ4/(8κ), regardless of the value of
x0 ∈ R. This formula is anticipated by the earlier investigations of Lieb and Liniger [33] and Kardar
[28, Eq. (2.9)] in statistical physics; it can also be deduced upon combining the results of Bertini
and Cancrini [1], in the exact case u0 ≡ 1, with Mueller’s comparison principle [36]. Carmona and
Molchanov [5, p. 59] study a closely-related parabolic Anderson model in which ẇ(t , x) is white
noise over (t , x) ∈ R+ × Zd .

It is also easy to see that the bound furnished by (2.9) is nearly sharp in the case that α = 2 and
p > 2. For example, (2.9) and the Carlen–Kree inequality [zp ≤ 2

p
p] together yield γ̄(p)≤ ϑ(p) :=

(p3λ4)/κ, valid for all even integers p ≥ 2. When p ≥ 2 is an arbitrary integer, the exact answer is
γ̄(p) = p(p2−1)λ4/(48κ) [1; 28; 33], and the lim sup in the definition of γ̄ is a bona fide limit. Our
bound ϑ(p) agrees well with the exact answer in this special case. Indeed,

1≤
ϑ(p)

γ̄(p)
≤ 48

�

1+
1

p2− 1

�

, (2.10)

uniformly for all even integers p ≥ 2, as well as all λ ∈ R and κ ∈ (0 ,∞).
We close with a result that states roughly that if σ is asymptotically linear and X̄ is recurrent, then
a sufficiently large initial data will ensure intermittence. More precisely, we have the following.

Theorem 2.10. Suppose X̄ is recurrent, and q := lim inf|x |→∞ |σ(x)/x |> 0. Then, there exists η0 > 0
such that whenever η := infx∈R u0(x)≥ η0, the solution u is weakly intermittent.

We believe this result presents a notable improvement on the content of Theorem 2.7 in the case
that X̄ is recurrent.

3 A priori bounds

Before we prove the mathematical assertions of §2, let us develop some of the required background.
Throughout we note the following elementary bound:

|σ(x)| ≤ |σ(0)|+ Lipσ|x | for all x ∈ R. (3.1)

Define {Pt}t≥0 as the semigroup associated with L . According to Lemma 8.1 of Foondun et al.
[19], there exist transition densities {pt}t>0, whence we have

(Pt g)(x) =

∫ ∞

−∞
pt(y − x)g(y)dy (t > 0). (3.2)
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For us, the following relation is also significant: (P ∗t g)(x) = (p̆t ∗ g)(x), where P ∗t denotes the
adjoint of Pt in L2(R), and p̆t(x) := pt(−x).

Consider
(Gu0)(t , x) := (Ptu0)(x) = (p̆t ∗ u0)(x) for all t > 0 and x ∈ R. (3.3)

We define also (Gu0)(0 , x) := u0(x) for all x ∈ R. The function v = Gu0 solves the nonrandom
integro-differential equation

¯

¯

¯

¯

¯

∂t v =L v on (0 ,∞)×R,

v(0 , x) = u0(x) for all x ∈ R.
(3.4)

Thus, we can follow the terminology and methods of Walsh [39] closely to deduce that (1.1) admits
a mild solution u if and only if u is a predictable process that solves

u(t , x) = (Gu0)(t , x) +

∫ ∞

−∞

∫ t

0

σ(u(s , y))pt−s(y − x)w(ds dy). (3.5)

We begin by making two simple computations. The first is a basic potential-theoretic bound.

Lemma 3.1. For all β > 0,

sup
t>0

e−β t

∫ t

0

‖ps‖2L2(R)
ds ≤

∫ ∞

0

e−βs‖ps‖2L2(R)
ds = Υ(β). (3.6)

Proof. The inequality is obvious; we apply Plancherel’s theorem to find that

‖ps‖2L2(R)
=

1

2π

∫ ∞

−∞
e−2sReΨ(ξ) dξ for all s > 0. (3.7)

Therefore, Tonelli’s theorem implies the remaining equality.

Next we present our second elementary estimate.

Lemma 3.2. For all a, b ∈ R and ε > 0,

(a+ b)2 ≤ (1+ ε)a2+
�

1+ ε−1
�

b2. (3.8)

Proof. Define h(ε) to be the upper bound of the lemma. Then, h : (0 ,∞) → R+ is minimized at
ε= |b/a|, and the minimum value of h is a2+ 2|ab|+ b2, which is in turn ≥ (a+ b)2.

Now we proceed to establish the remaining required estimates.

For every positive t and all Borel sets A ⊂ R, we set wt(A) := ẇ([0 , t]× A), and let Ft denote the
σ-algebra generated by all Wiener integrals of the form

∫

g(x)ws(dx), as the function g ranges
over L2(R) and the real number s ranges over [0 , t]. Without loss of too much generality we may
assume that the resulting filtrationF := {Ft}t≥0 satisfies the usual conditions, else we enlarge each
Ft in the standard way. Here and throughout, a process is said to be predictable if it is predictable
with respect to F ; see also Walsh [39, p. 292].
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Given a predictable random field f , we define

(A f )(t , x) :=

∫ ∞

−∞

∫ t

0

σ( f (s , y))pt−s(y − x)w(ds dy), (3.9)

for all t ≥ 0 and x ∈ R, provided that the stochastic integral exists in the sense of Walsh [39]. We
also define a family of p-norms {‖ f ‖p,β}β>0, one for each integer p ≥ 2, via

‖ f ‖p,β :=

¨

sup
t≥0

sup
x∈R

e−β tE
�¯

¯ f (t , x)
¯

¯

p�
«1/p

. (3.10)

Variants of these norms appear in several places in the SPDE literature. See, in particular, Peszat
and Zabczyk [37]. However, there is a subtle [but very important!] novelty here: The supremum is
taken over all time.

Recall the definition of zp from Theorem 2.1.

Lemma 3.3. If f is predictable and ‖ f ‖p,β <∞ for a real β > 0 and an even integer p ≥ 2, then

‖A f ‖p,β ≤ zp

�

|σ(0)|+ Lipσ‖ f ‖p,β

�

r

Υ

�

2β

p

�

. (3.11)

Proof. In his seminal 1976 paper [17], Burgess Davis found the optimal constants in the Burkholder–
Davis–Gundy [BDG] inequality. In particular, Davis proved that for all t ≥ 0 and p ≥ 2,

zp = sup







‖Nt‖Lp(P)

‖〈N , N〉t‖1/2Lp/2(P)

: N ∈Mp







, (3.12)

where 0/0 := 0 and Mp denotes the collection of all continuous Lp(P)-martingales. We apply Davis’s
form of the BDG inequality [loc. cit.], and find that

‖(A f )(t , x)‖p
Lp(P)

≤ zp
pE







¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

ds
¯

¯σ( f (s , y))
¯

¯

2 ¯
¯pt−s(y − x)

¯

¯

2

¯

¯

¯

¯

¯

p/2





.

(3.13)

Since p/2 is a positive integer, the preceding expectation can be written as

E







p/2
∏

j=1

∫ ∞

−∞
dy j

∫ t

0

ds j

¯

¯σ( f (s j , y j))
¯

¯

2
¯

¯

¯pt−s j
(y j − x)

¯

¯

¯

2






. (3.14)

The generalized Hölder inequality tells us that

E







p/2
∏

j=1

¯

¯σ( f (s j , y j))
¯

¯

2






≤

p/2
∏

j=1



σ( f (s j , y j))




2

Lp(P) . (3.15)
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Therefore, a little algebra shows us that

‖(A f )(t , x)‖2
Lp(P) ≤ z2

p

∫ ∞

−∞
dy

∫ t

0

ds


σ( f (s , y))




2
Lp(P)

¯

¯pt−s(y − x)
¯

¯

2
. (3.16)

Owing to (3.1) and Minkowski’s inequality,

‖(A f )(t , x)‖2
Lp(P)

≤ z2
p

∫ ∞

−∞
dy

∫ t

0

ds
�

c0+ c1‖ f (s , y)‖Lp(P)

�2 ¯
¯pt−s(y − x)

¯

¯

2
,

(3.17)

where c0 := |σ(0)| and c1 := Lipσ, for brevity. Therefore, Lemmas 3.1 and 3.2 together imply the
following bound, valid for all ε,β > 0:

‖(A f )(t , x)‖2
Lp(P) ≤

�

1+ ε−1
�

z2
pc2

0 e2β t/pΥ

�

2β

p

�

(3.18)

+ (1+ ε)z2
pc2

1

∫ ∞

−∞
dy

∫ t

0

ds ‖ f (s , y)‖2
Lp(P)

¯

¯pt−s(y − x)
¯

¯

2
.

Because ‖ f (s , y)‖2
Lp(P) ≤ exp(2βs/p)‖ f ‖2

p,β , it follows that

‖(A f )(t , x)‖2
Lp(P)

≤
�

1+ ε−1
�

z2
pc2

0 e2β t/pΥ

�

2β

p

�

+ (1+ ε)z2
pc2

1 e2β t/p‖ f ‖2p,β

∫ ∞

−∞
dy

∫ t

0

ds e−2βs/p
¯

¯ps(y − x)
¯

¯

2

≤
�

1+ ε−1
�

z2
pc2

0 e2β t/pΥ

�

2β

p

�

+ (1+ ε)z2
pc2

1 e2β t/p‖ f ‖2p,βΥ

�

2β

p

�

.

(3.19)

See Lemma 3.1 for the final inequality. We multiply both sides by exp(−2β t/p) and optimize over
t ≥ 0 and x ∈ R to deduce the estimate

‖A f ‖2p,β ≤ z2
p

n
�

1+ ε−1
�

|σ(0)|2+ (1+ ε)Lip2
σ‖ f ‖

2
p,β

o

Υ

�

2β

p

�

. (3.20)

The preceding is valid for all ε > 0. Now we choose

ε :=







|σ(0)|/(Lipσ‖ f ‖p,β) if |σ(0)| · ‖ f ‖p,β > 0,

0 if σ(0) = 0,

∞ if ‖ f ‖p,β = 0,

(3.21)

to arrive at the statement of the lemma. Of course, “ε =∞” means “send ε→∞” in the preceding.

We plan to carry out a fixed-point argument in order to prove Theorem 2.1. The following result
shows that the stochastic-integral operator f 7→ A f is a contraction on suitably-chosen spaces.
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Lemma 3.4. Choose and fix an even integer p ≥ 2. For every β > 0, and all predictable random fields

f and g that satisfy ‖ f ‖p,β + ‖g‖p,β <∞,

‖A f −A g‖p,β ≤ zpLipσ

r

Υ

�

2β

p

�

‖ f − g‖p,β . (3.22)

Proof. The proof is a variant of the preceding argument. Namely,

E
�¯

¯(A f )(t , x)− (A g)(t , x)
¯

¯

p�

≤ zp
pE







¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

ds
¯

¯σ( f (s , y))−σ(g(s , y))
¯

¯

2 ¯
¯pt−s(y − x)

¯

¯

2

¯

¯

¯

¯

¯

p/2





(3.23)

≤
�

zpLipσ
�p

E







¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

ds
¯

¯ f (s , y)− g(s , y)
¯

¯

2 ¯
¯pt−s(y − x)

¯

¯

2

¯

¯

¯

¯

¯

p/2





.

We write the expectation as

E







p/2
∏

j=1

∫ ∞

−∞
dy j

∫ t

0

ds j

¯

¯ f (s j , y j)− g(s j , y j)
¯

¯

2
¯

¯

¯pt−s j
(y j − x)

¯

¯

¯

2






, (3.24)

and apply (3.15) to obtain the bound

E
�¯

¯(A f )(t , x)− (A g)(t , x)
¯

¯

p�

(3.25)

≤
�

zpLipσ
�p

�∫ ∞

−∞
dy

∫ t

0

ds ‖ f (s , y)− g(s , y)‖2
Lp(P)

¯

¯pt−s(y − x)
¯

¯

2
�p/2

≤
�

zpLipσ
�p ‖ f − g‖p

p,β eβ t

�∫ ∞

−∞
dy

∫ t

0

ds e−2βs/p
¯

¯ps(y − x)
¯

¯

2
�p/2

.

This has the desired effect; see Lemma 3.1.

4 Proofs of the main results

Proof of Theorem 2.1. Define v0(t , x) := u0(x) for all (t , x) ∈ R+ × R. Since u0 is assumed to be
bounded, ‖v0‖p,β <∞ for all β > 0 and all even integers p ≥ 2. Now we iteratively set

vn+1(t , x) := (A vn)(t , x) + (Gu0)(t , x) for all n≥ 0. (4.1)

If we setA v−1 := v0, then thanks to Lemma 3.3, for all n≥−1,

‖A vn+1‖p,β ≤ zp

�

|σ(0)|+ Lipσ‖A vn‖p,β

�

r

Υ

�

2β

p

�

. (4.2)
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Since limβ→∞Υ(β) = 0, we can always choose and fix β > 0 such that

z2
pLip2

σΥ

�

2β

p

�

< 1. (4.3)

Given such a β we find, after a few lines of computation, that

sup
n≥0
‖A vn‖p,β ≤

zp|σ(0)|
p

Υ(2β/p)

1− zpLipσ
p

Υ(2β/p)
. (4.4)

Because Gu0 is bounded uniformly by supz∈R u0(z), the preceding yields

sup
k≥1
‖vk‖p,β ≤

zp|σ(0)|
p

Υ(2β/p)

1− zpLipσ
p

Υ(2β/p)
+ sup

z∈R
|u0(z)|, (4.5)

which is finite. Consequently, Lemma 3.4 assures us that all n≥ 1,

‖vn+1− vn‖p,β = ‖A vn−A vn−1‖p,β

≤ zpLipσ

r

Υ

�

2β

p

�

‖vn− vn−1‖p,β .
(4.6)

Because of (4.3), this proves the existence of a predictable random field u such that limn→∞ ‖vn −
u‖p,β = limn→∞ ‖A vn−A u‖p,β = 0. Consequently, ‖u‖p,β <∞, ‖u−A u−Gu0‖p,β = 0, and

E
�¯

¯u(t , x)− (A u)(t , x)− (Gu0)(t , x)
¯

¯

p�

= 0 for all (t , x) ∈ R+ ×R. (4.7)

These remarks prove all but one of the assertions of the theorem; we still need to establish that
u is unique up to a modification. For that we follow the methods of Da Prato [12], Da Prato and
Zabczyk [13], and especially Peszat and Zabczyk [37]: Suppose there are two solutions u and ū to
(1.1). Define for all predictable random fields f , and T > 0,

‖ f ‖2,β ,T :=

¨

sup
t∈[0,T]

sup
x∈R

e−β tE
�
¯

¯ f (t , x)
¯

¯

2
�

«1/2

. (4.8)

Then, we can easily modify the proof of Lemma 3.4, using also the fact that z2 = 1 [Remark 2.2], to
deduce that if u and ū are two solutions to (1.1), then the following holds for all T > 0:

‖u− ū‖2,β ,T = ‖A u−A ū‖2,β ,T

≤ Lipσ
p

Υ(β)‖u− ū‖2,β ,T .
(4.9)

Because Υ(β) vanishes as β tends to infinity, this proves that ‖u− ū‖2,β ,T = 0 for all T > 0 and all
sufficiently large β > 0. This implies that u and ū are modifications of one another.

Proof of Proposition 2.3. Because c4 := supx∈R(|σ(x)| ∨ |u0(x)|)<∞, the Burkholder–Davis–Gundy
implies that

‖u(t , x)‖Lp(P) ≤ c4+ c4zp

�∫ t

0

‖ps‖2L2(R)
ds

�1/2

. (4.10)
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Therefore, it suffices to prove that

∫ t

0

‖ps‖2L2(R)
ds = o(t) as t →∞. (4.11)

The left-most term is equal to t
∫ 1

0
‖pst‖2L2(R)

ds. According to (3.7), the map s 7→ ‖ps‖2L2(R)
is non-

increasing, and lims→∞ ‖ps‖L2(R) = 0 by the dominated convergence theorem. Therefore, a second
appeal to the dominated convergence theorem yields (4.11) and hence the theorem.

Proof of Theorem 2.7. We aim to prove that

∫ ∞

0

e−β tE
�

|u(t , x)|2
�

dt =∞ provided that Υ(β)≥ q−2. (4.12)

This implies (2.7), as the following argument shows: Suppose, to the contrary, that E(|u(t , x)|2) =
O(exp(αt)) as t →∞, where Υ(α)> q−2 and x ∈ R. It follows from this that

∫ ∞

0

e−β tE
�

|u(t , x)|2
�

dt ≤ const ·
∫ ∞

0

e−(β−α)t dt, (4.13)

and this is finite for every β ∈ (α ,Υ−1(q−2)). Our finding contradicts (4.12), and thence follows
(2.7). It remains to establish (4.12).

Let us introduce the following notation:

Fβ (x) :=

∫ ∞

0

e−β tE
�

|u(t , x)|2
�

dt

Gβ(x) :=

∫ ∞

0

e−β t
¯

¯(p̆t ∗ u0)(x)
¯

¯

2
dt

Hβ(x) :=

∫ ∞

0

e−β t
¯

¯pt(x)
¯

¯

2
dt.

(4.14)

Because

E
�

|u(t , x)|2
�

=
¯

¯

�

p̆t ∗ u0
�

(x)
¯

¯

2
+

∫ ∞

−∞
dy

∫ t

0

ds E
�
¯

¯σ(u(s , y))
¯

¯

2
�
¯

¯pt−s(y − x)
¯

¯

2
,

(4.15)

we may apply Laplace transforms to both sides, and then deduce that for all β > 0 and x ∈ R,

Fβ(x) = Gβ(x) +

∫ ∞

−∞
dy Hβ(x − y)

∫ ∞

0

ds e−βsE
�
¯

¯σ(u(s , y))
¯

¯

2
�

. (4.16)

Because |σ(z)|2 ≥ q2|z|2 for all z ∈ R, we are led to the following:

Fβ (x)≥ Gβ(x) + q2(Fβ ∗Hβ)(x). (4.17)
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This is a “renewal inequation,” and can be solved by standard methods. We will spell that argument
out carefully, since we need an enhanced version shortly: If we define the linear operatorH by

(H f )(x) := q2
�

Hβ ∗ f
�

(x), (4.18)

then we can deduce that H nFβ −H n+1Fβ ≥H nGβ , pointwise, for all integers n ≥ 0. We sum this
inequality from n= 0 to n= N and find that

Fβ (x)≥
�

H N+1Fβ
�

(x) +

N
∑

n=0

�

H nGβ
�

(x)

≥
N
∑

n=0

�

H nGβ
�

(x).

(4.19)

It follows, upon letting N tend to infinity, that

Fβ(x)≥
∞
∑

n=0

(H nGβ)(x). (4.20)

If η := infx u0(x), then (p̆t ∗ u0)(x)≥ η pointwise, and hence Gβ(x)≥ η2/β . Consequently,

(H Gβ)(x)≥
q2η2

β
·
∫ ∞

−∞
Hβ(x)dx

=
q2η2

β
·Υ(β);

(4.21)

consult Lemma 3.1 for the identity. We can iterate the preceding argument to deduce that
Fβ(x) ≥ η2β−1

∑∞
n=0(q

2Υ(β))n, whence Fβ(x) = ∞ as long as Υ(β) ≥ q−2. This verifies (4.12),
and concludes our proof.

Proof of Proposition 2.5. We recall the well-known fact that

X̄ is recurrent if and only if

∫ 1

−1

dξ

ReΨ(ξ)
=∞. (4.22)

Otherwise, X̄ is transient; see Exercise V.6 of Bertoin [2, p. 152]. Because Υ(β) <∞ for all β > 0,
and since ReΨ(ξ)≥ 0, it is manifest that (4.22) is equivalent to the following:

X̄ is recurrent if and only if lim
β↓0
Υ(β) =∞. (4.23)

Consequently, when X̄ is transient, supβ>0Υ(β) = limβ↓0Υ(β) < ∞, and the proposition fol-
lows immediately from Theorem 2.1. In fact, we can choose δ(p) to be the reciprocal of
zp{supβ>0Υ(β)}1/2.

Proof of Corollary 2.8. Thanks to (4.22), when X̄ is recurrent, we can find β > 0 such that Υ(β) >
1/λ2. Theorem 2.7 implies the exponential growth of u, and the formula for γ̄(2) follows upon
combining the quantitative bounds of Theorems 2.1 and 2.7. The case where X̄ is transient is
proved similarly.
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We close the paper with the following.

Proof of Theorem 2.10. We modify the proof of Theorem 2.7, and point out only the requisite
changes. First of all, let us note that for all q0 ∈ (0 ,q) there exists A = A(q0) ∈ [0 ,∞) such
that |σ(z)| ≥ q0|z| provided that |z|> A. Consequently, for all s ∈ R+ and y ∈ R,

E
�
¯

¯σ(u(s , y))
¯

¯

2
�

≥ q2
0E
�
¯

¯u(s , y)
¯

¯

2
; |u(s , y)|> A

�

≥ q2
0E
�
¯

¯u(s , y)
¯

¯

2
�

− q2
0A2.

(4.24)

Eq. (4.15) implies that E(|u(t , x)|2) is bounded below by

¯

¯(p̆t ∗ u0)(x)
¯

¯

2
+ q2

0

∫ ∞

−∞
dy

∫ t

0

ds E
�
¯

¯u(s , y)
¯

¯

2
�
¯

¯pt−s(y − x)
¯

¯

2

− q2
0A2

∫ t

0



ps





2
L2(R)

ds.

(4.25)

We multiply both sides of the preceding display by exp(−β t), for a fixed β > 0, and integrate [dt]

to find that

Fβ (x)≥ Gβ(x) + (H Fβ )(x)−
q2

0A2

β
Υ(β), (4.26)

where the notation is borrowed from the proof of Theorem 2.7. We apply H n to both sides to
deduce the following: For all integers n≥ 0 and x ∈ R,

(H nFβ )(x)≥ (H nGβ)(x) + (H n+1Fβ )(x)−
q2

0A2

β
Υ(β) ·

¯

¯q2
0Υ(β)

¯

¯

n

≥
η2

β
·
¯

¯q2
0Υ(β)

¯

¯

n
+ (H n+1Fβ )(x)−

A2

β
·
¯

¯q2
0Υ(β)

¯

¯

n+1
,

(4.27)

thanks to the tautological bound u0 ≥ η. We collect terms to obtain the following key estimate for
the present proof:

(H nFβ )(x)− (H n+1Fβ )(x)≥
η2− A2q2

0Υ(β)

β
×
¯

¯q2
0Υ(β)

¯

¯

n
, (4.28)

valid for all integers n ≥ 0 and x ∈ R. Because X̄ is recurrent, (4.23) ensures that we can choose
β > 0 sufficiently small that q0Υ(β) > 1. Consequently, Fβ(x) ≡ ∞ as long as η is greater than
Aq0Υ(β). This proves the theorem; confer with the paragraph immediately following (4.12).

5 Final Remarks

We close the bulk of this paper with a few remarks. These remarks are motivated by some of the
thoughtful questions of the anonymous referees.
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5.1

Consider the formal SPDE (1.1) when x ∈ Rd for d ≥ 2 and L denotes the generator of a d-
dimensional Lévy process. In the linearized case [σ ≡ 1], that SPDE does not have a random-
field solution [14; 19]. Therefore, it is not known how one describes the analogue of (1.1) for
general multiplicative nonlinearities σ. When σ(u)≡ u, some authors have studied the analogue of
(1.1) where x ∈ Zd and L := the generator of a continuous-time random walk on Zd ; consult the
bibliography. Under various conditions on the noise term, full intermittency is shown to hold. The
methods of the present paper can be extended to establish weak intermittency for fully-nonlinear
discrete-space versions of (1.1), but we will not develop such a theory here.

5.2

One might wish to improve weak intermittency [i.e., existence of finite lim sups for the moments]
to full intermittency in the fully nonlinear setting. We do not know how to do that. In fact, it is
highly likely that such limits do not exist, as the following heuristic argument might suggest.

Consider a function σ such that σ(u) = u for a “positive density of u ∈ R,” and σ(u) = 2u for
the remaining values of u ∈ R. Then one might imagine that the solution u(t , x) to (1.1) di-
vides its time equally on {u ∈ R : σ(u) = u} and {u ∈ R : σ(u) = 2u}. The existing liter-
ature on the parabolic Anderson model then might suggest that lim supt→∞ t−1 ln E(|u(t , x)|2) is
equal to limt→∞ t−1 ln E(|ρ(t , x)|2) where ρ solves (1.1) with σ(u) = 2u. And one might imag-
ine equally well that lim inft→∞ t−1 ln E(|u(t , x)|2) is identical to limt→∞ t−1 ln E(|r(t , x)|2), where
r solves (1.1) with σ(u) = u. If these heuristic arguments are in fact correct, then one does not
expect to have second-moment Liapounov exponents; only an upper exponent—defined in terms of
a lim sup—and a typically-different lower exponent—defined in terms of a lim inf. At present, we
are not able to make these arguments rigorous. Nor can we construct counter-examples.

5.3

Some of the central estimates of this paper require the assumption that u0 is bounded below. This
condition is quite natural [1; 5]. But the physics literature on the parabolic Anderson model [28]
suggests that one might expect similar phenomena when u0 has compact support [and is, possibly,
sufficiently smooth]. At this time, we do not know how to study the fully-nonlinear case wherein u0

has compact support.

A Regularity

The goal of this appendix is to show that one can produce a nice modification of the solution to
(1.1). We recall that σ : R→ R is assumed to be Lipschitz continuous.

Theorem A.1. If u0 is continuous, then the solution to (1.1) is continuous in Lp(P) for all p > 0.

Consequently, u has a separable modification. If, in addition, u0 is uniformly continuous, then for all

T, p > 0,

lim
δ,ρ↓0

sup
|s−t|≤δ
0≤s,t≤T

sup
|x−y|≤ρ

x ,y∈R



u(t , x)− u(s , y)




Lp(P) = 0. (A.1)
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This theorem is a ready consequence of the following series of Lemmas A.2, A.3, A.4, and A.5,
together with successive applications of the triangle inequality. Many of the methods of this section
expand on those of the earlier sections.

Let̟ denote the uniform modulus of continuity of u0. That is,

̟(δ) := sup
|a−b|<δ

a,b∈R

¯

¯u0(a)− u0(b)
¯

¯ . (A.2)

Lemma A.2. If u0 is continuous, then so is (t , x) 7→ (Ptu0)(x). If u0 is uniformly continuous, then so

is (t , x) 7→ (Ptu0)(x); in fact for all δ,ρ > 0,

sup
t≥0

sup
|x−z|≤δ

¯

¯(Ptu0)(x)− (Ptu0)(z)
¯

¯≤̟(δ), (A.3)

and

sup
|t−s|<ρ

sup
x∈R

¯

¯(Pt u0)(x)− (Psu0)(x)
¯

¯≤ inf
a>0

�

̟(a) + Aρ sup
0<ξ<1/a

|Ψ(ξ)|
�

, (A.4)

with A := 14 supz∈R |u0(z)|.

Proof. We note that

(Ptu0)(x)− (Psu0)(y) = E
�

u0(X t + x)− u0(Xs + y)
�

. (A.5)

Because u0 is bounded, if it were continuous also, then (t , x) 7→ (Ptu0)(x) is continuous by the
dominated convergence theorem. Henceforth, we assume that u0 is uniformly continuous. Inequal-
ity (A.3) follows again from the dominated convergence theorem. As regards (A.4), we note that

sup
x∈R

¯

¯(Pt u0)(x)− (Psu0)(x)
¯

¯≤ E

�

̟
�¯

¯X t − Xs

¯

¯

�

∧ 2 sup
z∈R
|u0(z)|

�

. (A.6)

Because |1− Eexp(iξ(X t − Xs))| ≤ |t − s| · |Ψ(ξ)|, Paul Lévy’s characteristic-function inequality [30,
Exercise 7.9, p. 112] shows that for all a > 0,

P
�

|X t − Xs|> a
	

≤ 7a

∫ 1/a

0

¯

¯

¯1− Eeiξ(X t−Xs)
¯

¯

¯ dξ

≤ 7|t − s| sup
0<ξ<1/a

|Ψ(ξ)|.
(A.7)

This completes our proof readily.

Lemma A.3. For all even integers p ≥ 2, x , z ∈ R, t ≥ 0, and β > 0,

‖(A u)(t , x)− (A u)(t , z)‖Lp(P)

≤
�

p

π

�1/2
‖σ ◦ u‖p,β etβ/p

¨∫ ∞

−∞

1− cos(ξ|x − z|)
β + 2ReΨ(ξ)

dξ

«1/2

,
(A.8)

where (σ ◦ u)(t , x) := σ(u(t , x)).
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Proof. We follow the pattern of the proof of Lemma 3.4. By the Burkholder–Davis–Gundy inequality,

‖(A u)(t , x)− (A u)(t , z)‖p
Lp(P) (A.9)

≤ zp
pE







¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

dsσ(u(s , y))2
�

pt−s(y − x)− pt−s(y − z)
�2

¯

¯

¯

¯

¯

p/2





.

We write the (p/2) power of the integral as a product and apply the generalized Hölder inequality
to deduce from the preceding that

‖(A u)(t , x)− (A u)(t , z)‖p
Lp(P) (A.10)

≤ zp
p

¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

ds ‖σ(u(s , y))‖2
Lp(P)

�

pt−s(y − x)− pt−s(y − z)
�2

¯

¯

¯

¯

¯

p/2

.

Since ‖σ(u(s , y))‖2
Lp(P) ≤ exp(2sβ/p)‖σ ◦ u‖2

p,β for all β > 0, the preceding and the Carlen–Kree
inequality (Remark 2.2) together yield

‖(A u)(t , x)− (A u)(t , z)‖p
Lp(P) (A.11)

≤ 2ppp/2 ‖σ ◦ u‖2p,β eβ t

¯

¯

¯

¯

¯

∫ ∞

−∞
dy

∫ t

0

ds e−2sβ/p �ps(y − x)− ps(y − z)
�2

¯

¯

¯

¯

¯

p/2

.

In accord with Plancherel’s theorem,
∫ ∞

−∞

�

ps(y − x)− ps(y − z)
�2 dy

=
1

π

∫ ∞

−∞
(1− cos (ξ|x − z|)) e−2sReΨ(ξ) dξ.

(A.12)

The lemma follows from this and a few more lines of computation.

Choose x ∈ R and 0≤ t ≤ T . We can write

(A u)(T, x)− (A u)(t , x) = D1+ D2, (A.13)

where

D1 :=

∫ ∞

−∞

∫ t

0

σ(u(s , y))
�

pT−s(y − x)− pt−s(y − x)
�

w(ds dy),

D2 :=

∫ ∞

−∞

∫ T

t

σ(u(s , y))pT−s(y − x)w(ds dy).

(A.14)

Lemma A.4. For all even integers p ≥ 2 and β > 0,

‖D1‖Lp(P) ≤ eβ t/p
�

p

π

�1/2
‖σ ◦ u‖p,β





∫ ∞

−∞

¯

¯1− e−(T−t)Ψ(ξ)
¯

¯

2

(β/p) +ReΨ(ξ)
dξ





1/2

. (A.15)
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Proof. We adjust the beginning portion of the preceding proof, and after a few lines, arrive at the
following:

E(Dp

1)≤ 2ppp/2‖σ ◦ u‖p
p,β

�∫ t

0

e2βs/p


pT−s − pt−s





2
L2(R)

ds

�p/2

. (A.16)

Thanks to Plancherel’s theorem,



pT−s − pt−s





2
L2(R)

=
1

2π

∫ ∞

−∞
e−2(t−s)ReΨ(ξ)

¯

¯

¯1− e−(T−t)Ψ(ξ)
¯

¯

¯

2
dξ. (A.17)

Therefore, the Lebesgue integral in (A.16) is bounded above by

eβ t

2π

∫ ∞

−∞

¯

¯1− e−(T−t)Ψ(ξ)
¯

¯

2

(2β/p) + 2ReΨ(ξ)
dξ. (A.18)

Solve to finish.

Lemma A.5. For all even integers p ≥ 2 and β > 0,

‖D2‖Lp(P) ≤
p

8p eβT/p ‖σ ◦ u‖p,β

r

Υ

�

1

T − t

�

. (A.19)

Proof. We adapt the proof of the preceding lemma, to the present setting, and deduce that

‖D2‖Lp(P) ≤ 2
p

p ‖σ ◦ u‖p,β eβT/p

 

∫ T−t

0

‖ps‖2L2(R)
ds

!1/2

. (A.20)

But for all ρ > 0,

∫ ρ

0

‖ps‖2L2(R)
ds =

1

2π

∫ ∞

−∞

1− e−2ρReΨ(ξ)

2ReΨ(ξ)
dξ

≤
1

π

∫ ∞

−∞

dξ

(1/ρ) + 2ReΨ(ξ)

= 2Υ(1/ρ).

(A.21)

We have used the elementary fact that (1−e−ρθ )/θ ≤ 2/(ρ−1+θ) for all θ > 0. The lemma follows
easily from these observations.

One can often combine the preceding proof of Theorem A.1 with methods of Gaussian analysis, and
produce an almost-surely continuous modification of u. We conclude this paper with an example of
this method.

Example A.6. Suppose 1 < α ≤ 2 and L = −κ(−∆)α/2. Suppose also that u0 is uniformly Hölder
continuous; that is, ̟(a) = O(aθ ) as a → 0+ for a fixed θ > 0. We claim that in this case u has
a modification that is continuous almost surely. We prove this claim by working out the estimates
produced by Lemmas A.2, A.3, A.4, and A.5. Indeed, (A.3) and (A.4) together show that (t , x) 7→
(Ptu0)(x) is uniformly jointly Hölder continuous with respective Hölder indices υ := θ/(θ + α)
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[for t] and θ [for x]. A few more simple calculations show that: (i) The right-hand side of (A.8) is
O(|x − z|µ) with µ := min(1/2 ,α− 1); and (ii) the right-hand sides of (A.15) and (A.19) are both
O((T − t)η) with η := (α− 1)/(2α). In other words, we can choose and fix β > 0 that yields the
following estimate: For all T, p > 0 there exists a = a(p , T,β) ∈ (0 ,∞) such that for all s, t ∈ [0 , T]

and x , y ∈ R,
‖u(t , x)− u(s , y)‖Lp(P) ≤ a

�

|t − s|υ∧η + |x − y |θ∧µ
�

. (A.22)

A suitable form of the Kolmogorov continuity theorem yields the desired Hölder-continuous modifi-
cation.
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