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time measure on the intersection of independent Brownian paths. We particularly point out the difference

in the small scale behaviour of the intersection local times in three-dimensional space and in the plane by

studying almost sure limit theorems motivated by the notion of average densities introduced by Bedford

and Fisher. We show that in R3 the intersection local time measure µ of two paths has an average

density of order two with respect to the gauge function ϕ(r) = r, but in the plane, for the intersection

local time measure µp of p Brownian paths, the average density of order two fails to converge. The average

density of order three, however, exists for the gauge function ϕp(r) = r2[log(1/r)]p. We also prove refined
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around these gauge functions by identifying the density distributions, or lacunarity distributions, of the

intersection local times.
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1 Introduction and statement of results

This paper is a contribution to the study of the fractal nature of the intersection local time
measure µ, the natural Hausdorff measure on the intersection of independent Brownian paths in
3-space and in the plane. We investigate the notions of average densities and density distributions
of µ and particularly point out the striking difference between the spatial and the planar case. In
this section we motivate these notions in a general context and embed our results in this context,
leaving the precise definition and properties of intersection local time to the next section.

An important role for the fine geometry of fractal measures µ is played by the behaviour, as
r ↓ 0, of the functions

dϕ : r �→
µ(B(x, r))

ϕ(r)
,

where B(x, r) is the open ball centred in x of radius r and ϕ : (0, ε) → (0,∞) is a suitably
chosen gauge function. For a smooth measure, for example a measure µ absolutely continuous
with respect to the surface measure on an m-submanifold, this function converges for the gauge
function ϕ(r) = rm, as r→ 0, for µ-almost every x to a nonzero limit. Conversely, a measure µ
where we encounter such a convergence has strong regularity properties, see [PM95]. Hence the
fluctuations of this function are a means to describe the irregularities of a measure µ.

For the random measures appearing in the study of nonsmooth stochastic processes, like for
example occupation measures and local times, typically, there is no gauge function ϕ such that
the function dϕ(r) converges to a nonzero limit as r ↓ 0 for all x on a set of positive measure.
It is, however, of interest to find a gauge function ψ such that lim supr↓0 dψ(r) is positive and
finite, as this allows to compare µ to the ψ-Hausdorff measure. Similarly, a gauge function θ such
that lim infr↓0 dθ(r) is positive and finite allows a comparison of µ and the θ-packing measure.
See [JT86] for a survey of such results and methods for measures µ arising in the context of
stochastic processes. These results refer to the behaviour of r �→ µ(B(x, r)) along certain extreme
sequences rn ↓ 0, which asymptotically describe its lower and upper hull. It is natural to try
and describe the oscillation between the lower and upper hull and also find a suitable average
value for µ(B(x, r)). A first step in this direction is the investigation of the average densities
introduced by Bedford and Fisher in [BF92], see also [KF97] for an introduction.

For certain fractal measures Bedford and Fisher observed that, although dϕ(r) does not con-
verge to a nonnegative limit, it is possible to define a generalized limit using classical summation
techniques of Hardy and Riesz. This generalized limit defines an interesting parameter, which
is closely related to Mandelbrot’s concept of fractal lacunarity (see e.g. [BM95]). This pa-
rameter may be used to compare the lacunarity (or mass density) of different fractals with the
same dimension gauge, see [LL94] or [KF97] for explicit calculations. Bedford and Fisher used
logarithmic averaging of order two to define the average densities of order two of µ at x as

lim
ε↓0

1

log(1/ε)

∫ 1
ε

µ(B(x, r))

ϕ(r)

dr

r
.

For many fractal measures this limit was shown to exist for gauge functions of the type ϕ(r) = rα.
Examples include Hausdorff measures on deterministic and random self–similar sets, mixing
repellers or occupation measures of stable processes, see [BF92], [PZ94], [KF92] and [FX95]. We
remark that average densities were also used to characterize geometric regularity of sets, see
[FS95], [JM96], [PM97], or symmetry properties of measures, see [M98a], [MP98].
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Our first result shows that for the intersection local time measure on the intersection of two
Brownian paths in 3-space an average density of order two may be defined using such a gauge
function.

Theorem 1.1 Suppose µ is the intersection local time of two independent Brownian paths in
R
3 started at arbitrary points and running for unit time. Define the gauge function ϕ(r) = r.

Then, with probability one, the average density of order two with respect to ϕ exists at µ-almost
every x and we have

lim
ε↓0

1

log(1/ε)

∫ 1
ε

µ(B(x, r))

ϕ(r)

dr

r
=
4

π
. (1)

In the next theorem we show that for the intersection local time measure µp of p independent
Brownian motions in the plane the behaviour of the average densities is different from the
behaviour observed in the cases above, namely the average density of order two fails to exist
for any gauge function. In this case it is natural to use logarithmic averaging of higher order.
Following [BF92] we define the average density of order three at x by

lim
ε↓0

1

log log(1/ε)

∫ 1/e
ε

µp(B(x, r))

ϕp(r)

dr

r log(1/r)
.

There is a hierarchy in the notions of average densities: The existence of average densities of
order two implies the existence of average densities of order three with the same value, see e.g.
[BF92]. With the choice of a gauge function ϕp(r) involving a logarithmic correction we get a
positive convergence result for the average densities of order three.

Theorem 1.2 Suppose µp is the intersection local time of p independent Brownian paths in R2

started at arbitrary points and running for unit time. Then, with probability one,

(a) for every gauge function at µp-almost every x the average density of order two fails to exist,

(b) for the gauge function ϕp(r) = r2π[log(1/r)/π]p the average density of order three with
respect to ϕp exists at µp-almost every x and we have

lim
ε↓0

1

log log(1/ε)

∫ 1/e
ε

µp(B(x, r))

ϕp(r)

dr

r log(1/r)
= 2p . (2)

Remarks:

• It is not hard to see that both our theorems hold irrespective of the choice of the finite
(and in the first case even infinite) running times of the Brownian motions.

• In the case of occupation measure of a Brownian path similar results hold, in the case of
dimensions larger than three this was proved in [FX95] and in the planar case in [M98b].

• A heuristic explanation for the non-existence of the order-two densities for µp is that the
spectrum of the oscillations of µp(B(x, r)) contains smaller frequencies than in the case
of 3-space, a fact which is due to the longer range of dependence of the random variables
µp(B(x, r)) in the planar case.
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In order to get a finer picture of the oscillation of µ(B(x, r)) around r and µp(B(x, r)) around
r2π[log(1/r)/π]p we study, for fixed Brownian paths, the distributions of µ(B(x, r))/ϕ(r) for a
natural random choice of r. This leads us to the notion of density distributions, or lacunarity
distributions, due also to [BF92]. For a fixed measure µ the density distribution of order n of µ
at x is the asymptotic distribution as T →∞ of

µ(B(x, 1/ exp(n−1)(X)))

ϕ(1/ exp(n−1)(X))
,

where X is uniformly distributed on (0, T ) and exp(n) denotes the nth iterate of the exponential
function. A simple substitution confirms that the density distributions of order two are the limit
distributions as ε ↓ 0 of

1

log(1/ε)

∫ 1
ε

δ{dϕ(r)}
dr

r
,

and the density distributions of order three are the limits of

1

log log(1/ε)

∫ 1/e
ε

δ{dϕ(r)}
dr

r log(1/r)
,

where δ{a} stands for the point mass in a. A straightforward modification of the proof of
Theorem 1.1 shows that for the intersection local time measure in 3-space, with probability
one, the density distribution of order two with respect to ϕ(r) = r exists at µ-almost every
x and equals the distribution of the total intersection local time of two independent two-sided
Brownian motions in the unit ball. In the planar case we get an interesting almost-sure limit
theorem.

Theorem 1.3 Suppose µp is the intersection local time of p independent Brownian paths in the
plane started at arbitrary points and running for unit time. For the gauge function ϕp(r) =
r2π[log(1/r)/π]p the density distribution of order three exists at µp-almost every x and equals
the distribution of the product of p independently with parameter two gamma–distributed random
variables. More explicitly,

lim
ε↓0

1

log(log(1/ε))

∫ 1/e
ε

δ{µp(B(x,r))
ϕp(r)

} dr

r log(1/r)
=

∫ ∞
0
· · ·
∫ ∞
0

δ{a1···ap}

p∏
i=1

ai e
−ai dai . (3)

Remarks:

• The corresponding result for the case of occupation measure was obtained in [M98b].

• As in Theorem 1.2(a) it may be shown that for the intersection local time measure in the
plane, with probability one, the density distribution of order two fails to exist.

• Our theorem shows that, for almost every x, the function r �→ µp(B(x, r)) oscillates around
the gauge functions ϕp(r) in such a way that for “most” scales the ratio µp(B(x, r))/ϕp(r) is
bounded away from 0 and∞ and hence this gauge function describes the typical behaviour
of µp(B(x, r)). To make this more explicit recall the definition of logarithmic densities.
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The logarithmic density of order two, resp. three, of a set N ⊂ (0,∞) is the value of the
limit

lim
ε↓0

1

log(1/ε)

∫ 1
ε

1N(r)
dr

r
, resp. lim

ε↓0

1

log log(1/ε)

∫ 1/e
ε

1N(r)
dr

r log(1/r)
,

if it exists. For the intersection local time of two independent Brownian paths in R3, with
probability one, for every ε > 0 there are 0 < c < C <∞ such that, for µ-almost every x,
we have

c · r < µ(B(x, r)) < C · r
for all r outside a set N of logarithmic density of order two smaller than ε. For the
intersection local time of p independent Brownian paths in the plane, with probability
one, for every ε > 0 there are 0 < c < C <∞ such that, for µ-almost every x, we have

c · r2(log(1/r))p < µp(B(x, r)) < C · r2(log(1/r))p

for all r outside a set N of logarithmic density of order three smaller than ε. These
statements are immediate from the existence of the density distributions upon recalling
Prohorov’s Theorem: Weak compactness of a family of probability distributions implies
uniform tightness of the family.

• The gauge functions ϕ(r) = r and ϕp(r) = r2[log(1/r)]p in the previous remark should be
compared to the gauge functions governing the limsup-behaviour of the density functions
(and thus the dimension gauge) obtained by Le Gall [LG87]. These are in the case of two
Brownian motions in space

ψ(r) = r · [log log(1/r)]2

and in the case of p Brownian motions in the plane

ψp(r) = r2 · [log(1/r) log log log(1/r)]p .

The gauge functions for the liminf-behaviour seem to be unknown for p > 1, see Section 6.

The idea common to the proofs of our theorems is to reduce the problem first to the study
of the intersection local time of independent Brownian paths at a common starting point, say
the origin. To do this we introduce a Palm distribution associated with the intersection local
time (Theorem 3.1) and then derive a 0-1 law (Theorem 3.2) — a technique suitable for the
study of intersection local time in all dimensions. The problem at the origin is then dealt with
by means of the ergodic scaling flow (Section 4), in the case of Brownian paths in space, and
by means of an approximation of the intersection local times by crossing numbers, in the case
of planar paths (Section 5). Some of these methods have been used in [M98b] in the case
of occupation measures, but we believe that the full strength of these methods, in particular
the Palm distribution technique, becomes only apparent in the study of the more complicated
intersection local times.

The paper is organized as follows: In the next section we give a precise definition and collect some
facts about intersection local times. In Section 3 we introduce the Palm distribution associated
with the intersection local time. The following section contains the proofs of our theorems in
the case of Brownian paths in space and in Section 5 we treat the case of Brownian paths in the
plane. Section 6 contains some open questions.
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2 Intersection local time as canonical measure on the inter-
section of Brownian paths

We consider a family of p ≥ 2 independent two-sided Brownian motions B1, . . . , Bp in Rd with
B10 = x1, . . . , B

p
0 = xp. Let

Cd =
{
f : R→ Rd, f is continuous and f(0) = 0

}
,

equipped with the standardWiener measureW on the σ–algebra B(Cd) generated by the cylinder
subsets of Cd. We conveniently assume the motions to be the coordinate processes on the space
Ω = C⊗pd with F = B(Cd)⊗p and P0 = W⊗p, so that for every vector x = (x1, . . . , xp) of initial
points xi ∈ Rd and ω = (ω1, . . . , ωp) ∈ Ω the p independent Brownian motions in Rd with initial
points xi are represented by x+ ω or, more precisely, Bis = xi + ωi(s).

For all time vectors S = (S1, . . . , Sp) and T = (T1, . . . , Tp) with −∞ < Si < Ti < ∞ we study
the set

B1[S1, T1] ∩ · · · ∩Bp[Sp, Tp] =
{
z ∈ Rd : z = B1t1 = · · · = B

p
tp for some ti ∈ [Si, Ti]

}

of intersections of the Brownian paths. By classical results of Dvoretzky, Erdös, Kakutani and
Taylor these intersections are nonempty with positive probability if and only if either d = 2
and p is arbitrary or d = 3 and p = 2. In these cases Dynkin [ED81] and Geman, Horowitz
and Rosen [GH84] have constructed canonical random measures µTS on this set. We follow the
construction of [GH84], see also [LG86]. There is a Borel set Ω0 ⊂ Ω with P0(Ω0) = 1, such
that, for every ω ∈ Ω0, every initial vector x = (x1, . . . , xd), and all S and T , there is a family
{λy : y ∈ (Rd)p−1} of finite measures λy = λy[x + ω] on

∏p
i=1[Si, Ti] with the following two

properties:

(i) the mapping y �→ λy is continuous with respect to the vague topology on the spaceM(Rp)
of locally finite measures on Rp,

(ii) for all Borel functions g : (Rd)p−1 → [0,∞] and f :
∏p
i=1[Si, Ti]→ [0,∞],

∫ T1

S1

· · ·
∫ Tp

Sp

f(s1, . . . , sp) g(B
1
s1 − B

2
s2 , . . . , B

p−1
sp−1 −B

p
sp) dsp . . .ds1 =

∫
Rd(p−1)

g(y)
[∫

fdλy

]
dy.

The above properties imply that

(iii) λy is supported by the set

Λy =
{
(s1, . . . , sp) ∈

p∏
i=1

[Si, Ti] : B
1
s1
−B2s2 = y1, . . . , B

p−1
sp−1 − B

p
sp = yp−1

}
,

(iv) for all Borel functions f :
∏p
i=1[Si, Ti]→ [0,∞],

∫ T1

S1

· · ·
∫ Tp

Sp

f(s1, . . . , sp) dsp . . . ds1 =

∫
Rd(p−1)

[ ∫
fdλy

]
dy .
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Note that (iii) follows from (ii) by choosing gε to be a nonnegative function supported by B(y, ε)
with

∫
gε(x) dx = 1. For every continuous function f with support disjoint from Λy the integral

vanishes as ε ↓ 0 and hence λy is supported by Λy. (iv) follows from (ii) by letting g ≡ 1.
By these properties the image measure µTS = µTS [x+ ω] of λ0 under the mapping (t1, . . . , tp) �→
B1t1 is a finite measure supported by the intersections of the Brownian paths, which we call the
intersection local time of the p Brownian paths. We remark that many authors reserve the term
intersection local time for the family {λy} itself.
Properties (i) and (ii) imply that, for all y ∈ (Rd)p−1 and f nonnegative and continuous, the
mapping ω →

∫
fdλy[ω + x] may be defined as a limit of measurable mappings and hence the

mapping
Λ : (Ω0,F ∩Ω0) −→M(Rp) , ω �→ λy[ω+ x]

into the spaceM(Rp) of locally finite measures, with the Borel structure induced by the vague
topology, is measurable. This also implies measurability of the mapping

M : (Ω0,F ∩ Ω0) −→M(Rd) , ω �→ µTS [ω + x] .

Alternative characterizations show that the intersection local time is indeed a canonical measure
on the intersection of the paths. For example, Le Gall has given a description in terms of the
volume of Wiener sausages. Fix time vectors S and T and define the Wiener sausage Siε as

Siε = Siε(S, T )[x+ ω] =
{
y ∈ Rd : inf{|Bis − y| : Si ≤ s ≤ Ti} ≤ ε

}
. (4)

Define a finite measure µε on Rd, in the case d = 3 and p = 2 by

µε(A) =
1

(2πε)2
*3
(
S1ε ∩ S2ε ∩A

)
, (5)

and in the case d = 2 by

µε(A) =

(
log(1/ε)

π

)p
*2
(
S1ε ∩ · · · ∩ Spε ∩A

)
. (6)

Le Gall has shown in [LG86] that µTS can be characterized by∫
f dµTS = lim

ε↓0

∫
f dµε (7)

for all f : Rd → R continuous and bounded, where convergence holds in probability and in the
Lq-sense for any 1 ≤ q <∞. This implies that there is a sequence εn ↓ 0 such that µεn converges
almost surely to µTS on the spaceM(Rd).
The most interesting characterization given by Le Gall in [LG87] shows that µTS may be defined
intrinsically as a constant multiple of the ψ-Hausdorff measure on the random set B1[S1, T1] ∩
· · · ∩ Bp[Sp, Tp], in the case of two spatial Brownian motions for the gauge function

ψ(r) = r[log log(1/r)]2

and in the case of p planar Brownian motions for

ψp(r) = r2[log(1/r) log log log(1/r)]p.

Although we are not explicitly using this characterization in our proofs, it is our main motivation
for studying intersection local times.
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3 Palm distributions associated with intersection local times

In this section we suppose that either d = 2 and p ≥ 2 is an arbitrary integer or d = 3 and
p = 2. Here we refer to µ = µ[x + ω] = µ10[x + ω] as the intersection local time measure of p
independent Brownian motions started at time 0 in arbitrary points x1, . . . , xp and running for
unit time.

We now address the problem of reducing the investigation of the local geometry of the
intersection local time measure at almost every point to an investigation of the intersection
local time measure at a single typical point. The main difficulty in this reduction lies in the
fact that the typical tuples (t1, . . . , tp) with B

1
t1
= · · · = Bptp cannot be realized as stopping

times and therefore the strong Markov property cannot be applied. We use the idea of Palm
distributions to overcome this difficulty. Palm distributions are also a common tool in other
branches of probability such as queuing theory or point processes, see [OK83] for a general
reference and [UZ88], [PZ94], [MP98] for applications in fractal geometry.

Definition: Denote by M(Rd) the Polish space of all locally finite Borel measures on Rd
equipped with the vague topology and by *d the Lebesgue measure on Rd. A stationary quasi-
distribution is a σ-finite measure Q onM(Rd) that is invariant with respect to the mapping T u
given by T uν(A) = ν(u+A). The intensity of Q is the number λ =

∫
ν(B)Q(dν)/*d(B), which,

by stationarity, is independent of the choice of a Borel set B of positive and finite Lebesgue
measure. With every stationary quasi-distribution Q of finite intensity λ we associate the Palm
distribution P , which is the probability distribution defined by

P (M) =
1

λ · *d(B)

∫ ∫
B

1M(T
uν) ν(du)Q(dν) , (8)

for all Borel sets M ⊂ M(Rd). Note that, by stationarity, this definition does not depend on
the choice of a Borel set B ⊂ Rd of positive and finite Lebesgue measure. It is easy to see that
P is the unique probability distribution such that

λ ·
∫ ∫

G(ν, u) duP (dν) =

∫ ∫
G(T uν, u) ν(du)Q(dν) , (9)

for every measurable G :M(Rd)× Rd → [0,∞].

Theorem 3.1 Suppose that either d = 2 and p ≥ 2 is an arbitrary integer or d = 3 and p = 2.
Denote,

• for every x = (x1, . . . , xp) with xi ∈ Rd, by Px the probability distribution on M(Rd)
defined by Px(M) = P0

{
µ[x + ω] ∈ M

}
for M ⊂ M(Rd) Borel, i.e. the distribution of

the intersection local times µ of p independent Brownian motions in Rd started in x and
running for unit time,

• by Q the σ-finite measure onM(Rd) given by Q(M) =
∫
Px(M \ {φ}) dx for all Borel sets

M ⊂M(Rd), where φ denotes the zero measure,
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• by P the probability distribution on M(Rd) defined by

P (M) =

∫ 1
0
· · ·
∫ 1
0
P0

{
µ
T (y)
S(y) [ω] ∈M

}
dy1 · · ·dyp for M ⊂M(Rd) Borel,

where S(y) = (y1 − 1, . . . , yp − 1) and T (y) = (y1, . . . , yp). In other words, P is the
distribution of the intersection local times µT (Y )S(Y ) for an independent family Y1, . . . , Yp of
uniformly distributed random variables on [0, 1], which are independent of the Brownian
motions.

Then P is the Palm distribution associated with Q.

Proof: Let us first check that Q is indeed σ-finite. For this purpose let Mn = {ν ∈ M(Rd) :
ν(B(0, n)) > 0}. Observe thatM(Rd) =

⋃∞
n=1Mn ∪{φ} and recall the definition of the Wiener

sausage from (4) to obtain

Q(Mn) =

∫
Rpd

P0{µ[x+ ω](B(0, n)) > 0} dx

≤
∫
*d(S1n) · · ·*d(Spn) P0(dω)

≤
(
*d(B(0, 1))

)p
E

{ p∏
i=1

(
max
0≤s≤1

|ωi(s)|+ n
)d}

<∞ .

Hence Q is σ-finite. To show the Palm property of P fix a function G :M(Rd)× Rd → [0,∞].
For u ∈ Rd and x = (x1, . . . , xp) ∈ Rpd we simply write x+u for the vector (x1+u, . . . , xp+u).
Observe that T uµ[x+ ω] = µ[x− u+ ω]. Hence, recalling the notation t = (t1, . . . , tp),

∫ ∫
G
(
T uν, u

)
ν(du)Q(dν)

=

∫
Rpd

∫ [ ∫
G
(
µ[x− u+ ω], u

)
µ[x+ ω](du)

]
P0(dω) dx

=

∫
Rpd

∫ [ ∫
G
(
µ[x− x1 − ω1(t1) + ω], x1 + ω1(t1)

)
λ0[x+ ω](dt)

]
P0(dω) dx .

For t = (t1, . . . , tp) ∈ [Si, Ti]p we write ω(t) = (ω1(t1), . . . , ωp(tp)). By property (iii) of the
family λy, for every 1 ≤ i ≤ p and λ0[x+ ω]-almost every t,

x1 + ω1(t1) = xi + ωi(ti) ,

and hence the last expression equals

∫
Rpd

∫ [ ∫
G
(
µ[ω − ω(t)], x1+ ω1(t1)

)
λ0[x+ ω](dt)

]
P0(dω) dx .

Observe that λy[x+ ω] = λy(x)[ω], where

y(x) = (y1 + x2 − x1, . . . , yp−1 + xp − xp−1) .

9



Hence we may substitute y = (x2−x1, . . . , xp−xp−1) for (x2, . . . , xp) and obtain, using Fubini’s
Theorem and property (iv) of λy,∫

Rpd

∫ [ ∫
G
(
µ[ω − ω(t)], x1+ ω1(t1)

)
λ0[x+ ω](dt)

]
P0(dω) dx

=

∫ ∫
Rd

∫
Rd(p−1)

[ ∫
G
(
µ[ω − ω(t)], x1 + ω1(t1)

)
λy[ω](dt)

]
dy dx1 P0(dω)

=

∫ ∫
Rd

[ ∫ 1
0
· · ·
∫ 1
0
G
(
µ[ω − ω(s)], x1 + ω1(s1)

)
dsp . . . ds1

]
dx1 P0(dω) .

Observe now that, for s1, . . . , sp fixed, the distribution of the process ωi(t)−ωi(si) and ωi(t−si)
under P0 coincide. Hence the distribution of µ[ω−ω(s)] and µT (y)S(y) coincide for yi = 1−si. Using
again Fubini’s Theorem and substitutions u = x1 + ω1(s1) and yi = 1− si,∫ ∫

Rd

[ ∫ 1
0
· · ·
∫ 1
0
G
(
µ[ω − ω(s)], x1+ ω1(s1)

)
dsp . . . ds1

]
dx1 P0(dω)

=

∫ 1
0
· · ·
∫ 1
0

∫ [ ∫
Rd

G
(
µ[ω − ω(s)], u

)
du
]
P0(dω) dsp . . . ds1

=

∫ 1
0
· · ·
∫ 1
0

∫ [ ∫
G
(
µ
T (y)
S(y)
[ω], u

)
du
]
P0(dω) dyp . . .dy1

=

∫ ∫
Rd

G(ν, u) duP (dν) .

Altogether, we have shown that∫ ∫
G
(
T uν, u

)
ν(du)Q(dν) =

∫ ∫
Rd

G(ν, u) duP (dν) .

Plugging G(ν, u) = 1B(u) into this formula also gives

λ =
1

*d(B)

∫ ∫
1B(u) ν(du)Q(dν) =

1

*d(B)

∫ ∫
Rd

1B(u) duP (dν) = 1 .

Hence we have verified formula (9), identifying P as the Palm distribution of Q. �

The Palm distribution P is the principal tool in the proof of the following theorem, which
includes a 0-1 law.

Theorem 3.2 Consider a Borel set M ⊂M(Rd)×Rd with the properties

• if (ν1, x) ∈ M and there are ν2 ∈ M(Rd) and ε > 0 with ν1 = ν2 on B(x, ε), then
(ν2, x) ∈M ,

• if (ν, x) ∈M , then (T uν, x− u) ∈M for all u ∈ Rd.

Suppose X = (X1, . . . , Xp) is an arbitrary random vector with Xi[ω] < 0 and Y = (Y1, . . . , Yp)
is an arbitrary random vector with Yi[ω] > 0. Denote by µ̃[ω] the intersection local time with
respect to the time domain

∏p
i=1[Xi, Yi]. Then the condition

P0

{
ω : (µ̃[ω], 0) ∈M

}
> 0

10



implies that, for every choice x of initial points,

Px

{
µ : (µ, y) ∈M for µ-almost every point y

}
= 1 .

We prepare the proof of this proposition by verifying a formula of Mecke [JM67], see also [UZ88],
which characterizes every Palm distribution P .

Lemma 3.3 Let P be the Palm distribution associated with a stationary random measure Q of
finite intensity. Then, for every Borel function G :M(Rd)×Rd → [0,∞], we have

∫ ∫
G(ν, u) ν(du)P (dν) =

∫ ∫
G(T uν,−u) ν(du)P (dν) . (10)

Proof: Using first (8) and then (9) we infer that, for every G :M(Rd)× Rd → [0,∞] Borel,
∫ ∫

G(T uν,−u) ν(du)P (dν)

=
1

*d(B)

∫ ∫
B

∫
G(T v+uν,−u) T vν(du) ν(dv)Q(dν)

=
1

*d(B)

∫ ∫ ∫
B

G(T uν, v − u) ν(dv) ν(du)Q(dν)

=
1

*d(B)

∫ ∫ ∫
B−u

G(T uν, v) T uν(dv) ν(du)Q(dν)

=
1

*d(B)

∫ ∫
Rd

∫
B−u

G(ν, v) ν(dv) duP (dν)

=

∫ ∫
G(ν, u) ν(du)P (dν) .

�

Proof of Theorem 3.2: In the proof we consider the product space Ω1 = Ω× [0, 1]p endowed
with the product measure P1 = P0⊗ *p, where *p is the uniform distribution on [0, 1]p and P0 is
as before. We denote the elements of Ω1 by (ω, y) and define a family of p independent Brownian
motions on our space by Bis(ω) = ωi(s). A random measure µ, which is distributed according to
our Palm distribution P , and a random measure µ̃, as in the theorem, are realized on our space
Ω1 as

µ[ω, y] = µ
T (y)
S(y) [ω] and µ̃[ω] = µ

Y [ω]
X[ω][ω] .

For the first step, assume that P0
{
ω : (µ̃[ω], 0) ∈ M

}
> 0. We note that, as the set {0} is a

polar set for each of our p independent Brownian paths, for every δ > 0, there exists a (random)
ε > 0 such that none of the ωi intersects B(0, ε) in the time interval (δ, Yi[ω]) and (Xi[ω],−δ).
As the condition (µ̃[ω], 0) ∈ M depends only on the behaviour of the intersection local time in
an arbitrarily small neighbourhood of the origin, we infer from Blumenthal’s 0-1-law that

P0

{
ω : (µ̃[ω], 0) ∈M

}
= 1 .

11



By the same argument as above there is a random ε > 0 such that the random measures µ[ω, y]
and µ̃[ω] coincide on the ball B(0, ε) and we infer that

P1

{
(ω, y) : (µ[ω, y], 0) ∈M

}
= 1 .

As µ[ω, y] is Palm distributed we may apply (10) to the function G(ν, u) = 1− 1M(ν, u). From
the second property of M we know that G(ν, 0) = G(T uν,−u) = 0, for every u, and hence

∫ ∫
G(T uν,−u) ν(du)P (dν) =

∫ ∫
G(ν, 0) ν(du)P (dν) = 0 .

(10) implies that
∫ ∫

G(ν, u) ν(du)P (dν) = 0, i.e.

P
{
µ : (µ, u) ∈M for µ-almost every u

}
= 1. (11)

We now distinguish two cases: In the first case the given initial points x1, . . . , xp coincide. Then
we can obviously assume that this point is the origin. Let δ > 0. We may choose ε > 0 so small
that, with probability exceeding 1−δ, the paths {B2t : −ε ≤ t ≤ 0} and {B2t : 1−ε ≤ t ≤ 1} do
not hit the path Eδ := {B1t : δ ≤ t ≤ 1− δ}. This event implies that around every u ∈ Eδ there
is a small neighbourhood on which the measures µ[ω, y] coincide for every value of y ∈ [1−ε, 1]p.
Recall that the event (µ, u) ∈ M depends only on the behaviour of µ in an arbitrarily small
neighbourhood of u. From (11) and the independence of y and the Brownian motions ω we thus
infer that for the intersection local time µ on the time interval [0, 1]p we have

Px

{
µ : (µ, u) ∈M for µ-almost all u ∈ Eδ

}
≥ 1− δ .

Letting δ ↓ 0 implies the statement in the first case.
In the case that not all initial points are identical we may assume that x1 �= x2. We apply (8)
and infer from (11) that

Q
({

µ : (µ, u) ∈M for µ-almost all u
}c)

= 0 .

Hence the conclusion of the proposition holds for all initial vectors x = (x1, . . . , xp) outside a
set N ⊂ Rdp of Lebesgue measure zero. We now find, for every δ > 0, some ε > 0 such that,
with probability larger than 1 − δ, the paths {B1t : 0 ≤ t ≤ ε} and {B1t : 1 ≤ t ≤ 1 + ε}
do not intersect the path {B2t : 0 ≤ t ≤ 1 + ε}. As Px-almost surely (B1ε , . . . , B

p
ε ) �∈ N , our

conclusion holds for the intersection local time measure of the Brownian motions with respect
to the interval [ε, 1 + ε]p, which coincides with probability at least 1 − δ with the intersection
local time measure with respect to the interval [0, 1]p. As δ > 0 was arbitrary, we infer that

Px

{
µ : (µ, y) ∈M for µ-almost every point y

}
= 1 ,

as required to complete the proof. �

Remarks:
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• In the remainder of this paper we shall apply Theorem 3.2 to the following Borel subsets
ofM(Rd)×Rd.

M2(a) =
{
(µ, x) : lim

ε↓0

1

log(1/ε)

∫ 1
ε

µ(B(x, r))

ϕ(r)

dr

r
= a
}
,

M c
2 =

{
(µ, x) : lim

ε↓0

1

log(1/ε)

∫ 1
ε

µ(B(x, r))

ϕ(r)

dr

r
fails to exist

}
,

M3(a) =
{
(µ, x) : lim

ε↓0

1

log log(1/ε)

∫ 1/e
ε

µ(B(x, r))

ϕ(r)

dr

r log(1/r)
= a
}
,

L2(γ) =
{
(µ, x) : lim

ε↓0

1

log(1/ε)

∫ 1
ε

δ{
µ(B(x,r))
ϕ(r)

} dr

r
= γ
}
,

L3(γ) =
{
(µ, x) : lim

ε↓0

1

log log(1/ε)

∫ 1/e
ε

δ{
µ(B(x,r))
ϕ(r)

} dr

r log(1/r)
= γ
}
.

• In the case d = 3, p = 2 and x1 = x2 a more direct approach to the reduction problem,
which is inspired by the technique of [LG92], is possible. We believe that this approach is
also related to the concept of Palm distributions, yet the precise nature of this relation is
unclear. The interested reader may contact N.-R. Shieh for a manuscript on this approach.

4 Proofs for intersections of Brownian paths in space

In this section we complete the proof of Theorem 1.1. Throughout the proof we will rely on the
transience of Brownian motion in R3. We may define the last exit times

Xi(r)[ω] = inf{t ≤ 0 : ωi(t) ∈ B(0, r)} and Yi(r)[ω] = sup{t ≥ 0 : ωi(t) ∈ B(0, r)} .

We define X(r) = (X1(r), X2(r)) and Y (r) = (Y1(r), Y2(r)) with associated random measures
µ̃(r)[ω] as in Theorem 3.2. By Theorem 3.2 it suffices to show that, for M =M2(4/π),

P0

{
ω ∈ Ω : (µ̃(1)[ω], 0) ∈M

}
= 1 . (12)

For this purpose we introduce a group of scaling operators as follows. For every a > 0 and ω ∈ Ω
or ω ∈ C3, we set

(∆aω)(t) =
ω(at)√

a
, t ≥ 0. (13)

Recall the definition of Ω0 from Section 2. Let ω ∈ Ω0 and a > 0. We claim that, for every pair
S = (S1, S2), T = (T1, T2) of time vectors and every initial vector x = (x1, x2) there is a family
{λy[x + ∆aω]} satisfying the conditions (i) and (ii). Indeed, we pick the measures λy[ω] with
respect to the time vectors aS = (aS1, aS2) and aT = (aT1, aT2), and we choose

λy[x+∆aω](M) =
1√
a
λ√ay[

√
ax+ ω](aM) for every Borel set M ⊂ [S1, T1]× [S2, T2] .

13



The continuity (i) is clearly satisfied and (ii) follows from the following scaling argument. For
all Borel functions g : R3 → [0,∞] and f : [S1, T1]× [S2, T2]→ [0,∞],∫

R3

g(y)

∫
f(t1, t2) λy[x+∆aω](dt1, dt2) dy

=
1√
a

∫
R3
g(y)

∫
f(t1/a, t2/a) λ√ay[

√
ax+ ω](dt1, dt2) dy

=
1

a2

∫
R3

g(y/
√
a)

∫
f(t1/a, t2/a) λy[

√
ax+ ω](dt1, dt2) dy

=
1

a2

∫ aT1

aS1

∫ aT2

aS2

f(s1/a, s2/a) g
((ω1(s1) +√ax1)− (ω2(s2) +√ax2)√

a

)
ds2 ds1

=

∫ T1

S1

∫ T2

S2

f(s1, s2) g
(
(∆aω1(s1) + x1)− (∆aω2(s2) + x2)

)
ds2 ds1 .

We can therefore define the intersection local times µ̃(r)[∆aω] for all ω ∈ Ω0 and a > 0.
Observing that the last exit times satisfy

Xi(r)[∆aω] = inf
{
s ≤ 0 :

∣∣ωi(as)∣∣ = √ar
}
= a−1Xi(

√
ar)[ω]

and
Yi(r)[∆aω] = sup

{
s ≥ 0 :

∣∣ωi(as)∣∣ = √ar
}
= a−1Yi(

√
ar)[ω] ,

we get the following scaling property

µ̃(r)[∆aω](B(0, r)) =
1√
a
λ0[ω]

(
{(at1, at2) : ∆aω1(t1) ∈ B(0, r)}

)

=
1√
a
λ0[ω]

(
{(s1, s2) : ω1(s1) ∈ B(0,

√
ar)}
)

=
1√
a
µ̃(
√
ar)[ω](B(0,

√
ar)) . (14)

We define

Ω′ =
{
f : [0,∞)→ R, f is monotonically increasing and f(0) = 0

}

and denote by F ′ the σ-algebra generated by the cylinder sets. We now let

Ω1 =
{
ω ∈ Ω : there is a > 0 such that ∆aω ∈ Ω0

}
⊃ Ω0 .

This set is obviously a ∆-invariant set of full measure. Recall that ∆-invariance means that
ω ∈ Ω1 implies ∆aω ∈ Ω1 for every a > 0. It is clear that r �→ µ̃(r)[ω](B(0, r)) is monotonically
increasing for all ω ∈ Ω1 and hence, for every ω ∈ Ω1, the function H [ω] : r �→ µ̃(r)[ω](B(0, r))
defines an element of Ω′. Moreover, the mapping H : (Ω1,F1) → (Ω′,F ′) is measurable, where
F1 denotes the restriction of F to Ω1. Define a probability distribution P′ on (Ω′,F ′) as the
distribution of the random function H , or more precisely, let

P
′(A) = P0({ω ∈ Ω0 : H [ω] ∈ A}) , for A ∈ F ′.

14



We now introduce a second group of scaling operators. For every a > 0 and f ∈ Ω′, we set

(∆̃af)(r) =
f(
√
ar)√
a

, r ≥ 0. (15)

We also set
τs = ∆exp(s), τ̃s = ∆̃exp(s), −∞ < s <∞.

(14) implies that
∆̃a(Hω) = H(∆aω) .

This is the flow–homomorphism property, as it has been termed in [BF92, p119]. By definition,
τs = ∆exp(s) is a measure–preserving flow on (Ω1,F1,P0). It is well known that this flow is
ergodic (in fact, this is the ergodicity of the Ornstein-Uhlenbeck stationary process). Hence, by
the above flow–homomorphism, τ̃s = ∆̃exp(s) is also an ergodic flow on (Ω

′,F ′,P′). By Birkhoff’s
Ergodic Theorem, for P′-almost all f ,

lim
R→∞

1

R

∫ R

0
F (τ̃−sf) ds = E

′F, (16)

whenever F ∈ L1(P′), where E′ denotes expectation with respect to P′. We define F (f) =
f(1), f ∈ Ω′. Then

E
′F =

∫
Ω′
F (f)P′(df) =

∫
Ω0

F (H [ω])P0(dω) = EH(1).

This value may be explicitly calculated using the formula for the total intersection local time in
the unit ball for two one-sided Brownian motions starting at the origin and running till infinity,
see [LG87, (2.c)]. Observe that in our case we have to add the contributions of the intersection
local times of 4 pairs of one-sided Brownian motions.

EH(1) = 4

∫
B(0,1)

[
G(0, y)

]2
dy =

1

π2

∫
B(0,1)

1

|y|2 dy =
4

π
,

where G(x, y) = 1
2π|x−y| is the potential kernel. Altogether we get, P0-almost surely,

lim
ε↓0

1

log(1/ε)

∫ 1
ε

µ̃(1)(B(0, r))

r

dr

r
= lim
R→∞

1

R

∫ R

0

H(e−s/2)

e−s/2
ds =

4

π
,

which is (12) and hence we obtain Theorem 1.1 by applying Theorem 3.2 to the set M2(4/π).

To obtain the statement about the density distributions it suffices, by Theorem 3.2 applied to
the set L2(γ) with the appropriate choice of γ, to consider the limit

lim
ε↓0

1

log(1/ε)

∫ 1
ε

δ{
µ̃(1)[ω](B(0,r))

r

} dr

r
.

We choose Fλ(f) = exp(−λf(1)) in (16) and get, P0-almost surely, for all rational λ > 0,

lim
ε↓0

1

log(1/ε)

∫ 1
ε

exp
{
− λµ̃(B(0, r))/r

} dr
r
= lim
R→∞

1

R

∫ R

0
Fλ(τ̃−s) ds = E

′F ,
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and by monotonicity this follows for all positive λ. The continuity theorem for Laplace
transforms now finishes the proof of the convergence of the density distributions of order two
in the case of 3-space.

Remark: The method in this section has also been used “dually” to prove a certain growth
condition of Brownian intersection points in [NS97].

5 Proofs for intersections of Brownian paths in the plane

The arguments used in this section are quite natural extensions of the arguments used in [M98b]
in the case of occupation measure. We let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp) be given by
the hitting times

Xi[ω] = sup
{
t < 0 : |ωi(t)| = 1

}
and Yi[ω] = inf

{
t > 0 : |ωi(t)| = 1

}
.

In order to prove Theorem 1.2 it remains to verify the condition of Theorem 3.2 for the measures
µ̃ coming from this choice of X and Y and the set M =M3(2

p).

For the moment fix a number b > 0 and define an = e−bn. We define the crossing numbers
N i
1(n) as the number of downward crossings of the interval (an, an−1) performed by the process

Xt = |Bit | for t ≥ 0 before it first reaches the level 1. Analogously define the crossing numbers
N i
2(n) as the number of downcrossings of (an, an−1) for the process Xt = |Bi−t| for t ≥ 0. The
next lemma collects the necessary facts about the behaviour of the crossing numbers.

Lemma 5.1 (i) P0-almost surely, for all (k1, . . . , kp) ∈ {1, 2}p,

lim
n→∞

1

logn

n∑
m=1

1

m

N 1k1(m) · · ·N
p
kp
(m)

mp
= 1 .

(ii) P0-almost surely,

lim
n→∞

1

n

n∑
m=1

∑ N 1k1(m) · · ·N
p
kp
(m)

mp
fails to exist,

where the (second) summation is with respect to all (k1, . . . , kp) ∈ {1, 2}p.

(iii) P0-almost surely,

lim
n→∞

1

logn

n∑
m=1

1

m
δ{(N ij (m)/m:1≤i≤p , 1≤j≤2)}

=

∫ ∞
0

· · ·
∫ ∞
0

δ{(aij:1≤i≤p , 1≤j≤2)}

p∏
i=1

2∏
j=1

e−a
i
j daij .

Proof: This may be proved using the arguments in [M98b]. There it is shown that, for all
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(k1, . . . , kp) ∈ {1, 2}p, 1 ≤ i ≤ p and κ > 0,

lim
m→∞

E

{N i
ki
(m)

m

}
= 1 and lim

m→∞
E

{
exp
(
− κN i

ki(m)/m
)}
=

1

1 + κ
.

By independence this shows that (i) holds in expectation. By Lemma 3.5 in [M98b], for all
l ≥ m > 0, we have l(m− 1) ≤ E{N i

ki
(m)N i

ki
(l)} ≤ 2ml and

1− m

2l
≥
E

{
N i
ki
(m)
}
E

{
N i
ki
(l)
}

E

{
N i
ki
(m)N i

ki
(l)
} ≥ 1− m

l
.

Using independence and taking p-th powers we get, for some constant C > 0,

1− m

2l
≥
E

{∏p
i=1N

i
ki
(m)
}
E

{∏p
i=1N

i
ki
(l)
}

E

{∏p
i=1N

i
ki
(m)N i

ki
(l)
} ≥ 1−C · m

l
.

From this we infer that, for some constants Cp > 0 and Dp > 0,

Var
{ 1

logn

n∑
m=1

1

m

N 1k1(m) · · ·N
p
kp
(m)

mp

}
≤ 2p+1C

(logn)2

n∑
m=1

n∑
l=m

1

ml

m

l
≤ Cp
logn

and (17)

Var
{1
n

n∑
m=1

∑ N 1k1(m) · · ·N
p
kp
(m)

mp

}
≥ 2

n2

n∑
m=2

n∑
l=m

m

2l
≥ Dp . (18)

Now we argue as in [M98b]. From (17), Chebyshev’s Inequality and the Borel-Cantelli Lemma
we infer that (i) holds for the subsequence nk = exp(k

2). The monotonicity of the sum, together
with the fact that limk→∞ log(nk+1)/ log(nk) = 1, then yield (i) for any sequence. For (ii) we
observe that, if the expression converged, the limit would necessarily be equal to 2p by (i) and
the consistency of the averaging procedures. As we know from [M98b, Lemma 3.5] that the
third moments of the expression in (ii) are bounded, this would imply that the variance (18)
converges to 0, a contradiction to (18). Finally, to prove (iii), we recall from Lemma 4.1 in
[M98b] that, for all fixed κi,j > 0,

E

{
exp(−κi,kiN i

ki
(m)/m)

}
E

{
exp(−κi,kiN i

ki
(l)/l)

}

E

{
exp(−κi,kiN i

ki
(m)/m) exp(−κi,kiN i

ki
(l)/l)

} ≥ 1− C · m
l
,

and we may argue as in the proof of (i) to get, for all rational κi,j > 0,

lim
n→∞

1

logn

n∑
m=1

1

m
exp
{
−

p∑
i=1

2∑
j=1

κi,jN
i
j(m)/m

}
=

p∏
i=1

2∏
j=1

1

1 + κi,j
.

The continuity theorem for Laplace transforms now implies (iii). �
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In the next lemma we describe the approximation of the intersection local time of small balls
by means of the crossing numbers, which follows from the results of [LG87]. The idea of ap-
proximating occupation measure of planar Brownian motion in small balls by crossing numbers
appeared already in [DR63]. It was first used for intersection local times in [LG87].

For every 0 < r ≤ 1 we denote by A(r, eb) the expected mass of B(0, r) induced by the intersec-
tion local time of p independent Brownian paths started at independent uniformly distributed
points on the unit sphere and stopped at their first hitting time of the sphere of radius eb.

Lemma 5.2 P1-almost surely,

µ̃
(
B(0, an)

)
= A(1, eb) · a2n ·

∑ p∏
i=1

N i
ki(n) + o(npa2n) , as n→∞, (19)

where summation is with respect to all (k1, . . . , kp) ∈ {1, 2}p.

Proof: Observe that we are dealing with altogether 2p Brownian motions {Bit}t≥0 and {Bi−t}t≥0
for i = 1, . . . , p. Contributions to the intersection local time µ̃[ω] come from the (altogether
2p) p-tuples of paths with differing superscripts and µ̃[ω] is the sum of the contributions of
these p-tuples. Hence it suffices for our proof to consider a single such tuple, say {Bit}t≥0 for
i = 1, . . . , p, and let µ̂[ω] = µY [ω]0 [ω].

The following inequality is proved in [LG87, Lemma 7] for the case b = log 2, it can be generalized
to arbitrary b > 0 without further effort: For some C > 0 we have

E

{( µ̂(B(0, an))
a2n

− A(1, eb)
p∏
i=1

N i
1(n)
)4}
≤ C · n4p−2 .

It follows that
∞∑
n=1

E

{( µ̂(B(0, an))
a2nn

p
−A(1, eb)

p∏
i=1

N i
1(n)

n

)4}
<∞ ,

from which we infer that, P0-almost surely,

lim
n→∞

µ̂(B(0, an))

a2nn
p

−A(1, eb)
p∏
i=1

N i
1(n)

n
= 0 ,

and the desired result follows, as explained in the beginning, by summing the 2p contributions
of this form. �

Lemma 5.3 For all 0 < r ≤ 1 we have A(r, eb) = r2π · (b/π)p.

Proof: We use the Wiener sausage approximation. By S we denote the unit sphere and by σ
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the uniform distribution on S. In this proof we denote by Zi[x+ω] the first hitting times of the
sphere of radius eb by the Brownian motions x+ ω and denote the Wiener sausages by

Siε[ω, x] =
{
y ∈ R2 : inf{|Bis − y| : 0 ≤ s ≤ Zi[x+ ω]} ≤ ε

}
.

For all 0 < r < 1, the formulae on p.115 of [LG87] show that

A(r, eb) =

∫
Sp
lim
ε↓0

( log(1/ε)
π

)p
E

{
*2
(
S1ε [ω, x]∩ . . .∩ Spε [ω, x]∩ B(0, r)

)}
dσp(x1, . . . , xp)

=

∫
Sp
lim
ε↓0

( log(1/ε)
π

)p[ ∫
B(0,r)

p∏
i=1

P0(y ∈ Siε[ω, x]) dy
]
dσp(x1, . . . , xp)

=

∫
Sp

∫
B(0,r)

p∏
i=1

Gb(xi, y) dydσ
p(x1, . . . , xp) ,

where

Gb(x, y) =
1

π
log
( |ebx− e−by|
|x− y|

)

denotes the Green function for the Laplace equation with boundary value zero on the circle of
radius eb. To evaluate the integral, we differentiate

∂

∂b

∫
S

Gb(xi, y) dσ(xi) =
1

π

∫
S

∂

∂b
log
(
|ebxi − e−by|

)
dσ(xi) =

1

π

∫
S

1− |e−2by|2
|e−2by − xi|2

dσ(xi) =
1

π
,

using the Poisson integral formula in the last step. Hence
∫
S Gb(xi, y) dσ(xi) = b/π for every

y ∈ B(0, r) and we conclude that

A(r, eb) =

∫
B(0,r)

p∏
i=1

∫
S

Gb(xi, y) dσ(xi) dy = r2π · (b/π)p ,

for all 0 < r < 1 and, letting r → 1, also for r = 1. �

Putting together the previous lemmas we achieve the following approximation.

Lemma 5.4 Let δ > 0. Then we can find an arbitrarily small b > 0 such that for an = e−bn

and the corresponding crossing numbers {N i
j(n)}n≥1 there is, P1-almost surely, an integer N

such that, for all an+1 ≤ r ≤ an and n > N ,

(1− δ)
[ 1

(n+ 1)p
·
∑ p∏

i=1

N i
ki(n+1)− δ

]
≤ µ̃(B(0, r))

r2π(log(1/r)/π)p
≤ (1+ δ)

[ 1
np
·
∑ p∏

i=1

N i
ki(n) + δ

]
,

where summation is with respect to all (k1, . . . , kp) ∈ {1, 2}p.

Proof: Let δ > 0 and fix b > 0 such that e2b < 1+ δ and e−2b > 1− δ. By Lemmas 5.2 and 5.3
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we find, P0-almost surely, an integer N such that, for all n > N ,

∣∣∣ µ̃(B(0, an))
(bn/π)pa2nπ

− 1

np
·
∑ p∏

i=1

N i
ki(n)

∣∣∣ < δ .

We conclude that, whenever an+1 ≤ r ≤ an, then

µ̃(B(0, r))

r2π(log(1/r)/π)p
≤ e2b · µ̃(B(0, an))

(bn/π)pa2nπ
≤ (1 + δ) ·

( 1
np
·
∑ p∏

i=1

N i
ki(n) + δ

)
.

Analogously, we can prove the reverse estimate and we are done. �

To finish the proof of Theorem 1.2, we choose, for given δ > 0, b as in Lemma 5.4 and pick for
small ε > 0 the index n such that an+1 ≤ ε ≤ an. Using Lemma 5.1(i) we get, P0-almost surely,

lim sup
ε↓0

1

log log(1/ε)

∫ 1/e
ε

µ̃(B(0, r))

r2π(log(1/r)/π)p
dr

r log(1/r)

≤ lim sup
n→∞

1

log log(1/an)

n∑
k=1

∫ ak

ak+1

µ̃(B(0, r))

r2π(log(1/r)/π)p
dr

r log(1/r)

≤ lim
n→∞

1 + δ

logn

( n∑
k=1

1

k

∑ p∏
i=1

N i
ki
(k)

k

)
+ δ ≤ 2p · (1 + δ) + δ .

Analogously, we get, P0-almost surely,

lim inf
ε↓0

1

log log(1/ε)

∫ 1/e
ε

µ̃(B(0, r))

r2π(log(1/r)/π)p
dr

r log(1/r)
≥ 2p · (1− δ)− δ .

As δ > 0 was arbitrary, the hypothesis of Theorem 3.2 and hence the result of Theorem 1.2(b)
follows.

To show that the average densities of order two fail to exist, we argue by contradiction. Assuming
that, for some vector x of initial points, the probability is positive that there is a set of positive
measure such that the average density of order two exists for all points from this set, we may
infer from Theorem 3.2 for the set M =M c

2 that

P0

{
ω : (µ̃[ω], 0) ∈M

}
= 0 .

In other words, the average density of order two of µ̃[ω] at 0 exists almost surely. By our previous
result and the consistency of averaging procedures this average density must be equal to 2p and
in particular it must be deterministic. We use the approximation of Lemma 5.4 and the fact
that, due to scaling, the distribution of the crossing numbers is independent of the choice of
b > 0 to infer that, P0-almost surely,

lim
n→∞

1

n

n∑
m=1

∑ p∏
i=1

N i
ki
(m)

m
= 2p ,

where summation is with respect to all (k1, . . . , kp) ∈ {1, 2}p. This is a contradiction to
Lemma 5.1(ii) and hence the proof of Theorem 1.2 is complete.
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Finally, in order to prove Theorem 1.3, it suffices, by applying Theorem 3.2 to the set L3(γ), to
consider the limit

lim
ε↓0

1

log log(1/ε)

∫ 1/e
ε

δ{
µ̃[ω](B(0,r))

r2 log(1/r)

} dr

r log(1/r)
.

Using essentially the same line of argument as above, we apply the approximation given in
Lemma 5.4 and infer from the third part of Lemma 5.1(ii) that, P -almost surely,

lim
ε↓0

1

log log(1/ε)

∫ 1/e
ε

δ{ µ̃(B(0,r))

r2π[log(1/r)/π]p

} dr

r log(1/r)
=

∫ ∞
0
· · ·
∫ ∞
0

δ{
∑
a1k1
···apkp}

p∏
i=1

2∏
j=1

e−a
i
j daij .

We finally observe, from a substitution ai = ai1 + ai2, that

∫ ∞
0
· · ·
∫ ∞
0

δ{
∑
a1k1
···apkp}

p∏
i=1

2∏
j=1

e−a
i
j daij =

∫ ∞
0
· · ·
∫ ∞
0

δ{a1···ap}

p∏
i=1

ai e
−ai dai ,

which is the distribution of the product of p independent gamma(2)-distributed random vari-
ables. This finishes the proof of Theorem 1.3.

6 Open problems and remarks

• As mentioned in the introduction, the lower density behaviour of the density functions
of the intersection local time measures seems to be unknown. It would be interesting to
compare a gauge function θp such that

0 < lim inf
r↓0

µp(B(x, r))

θp(r)
<∞ for µp-almost every x,

with the gauge functions ψp for the upper hull behaviour and the gauge functions ϕp for
the average behaviour of r �→ µp(B(x, r)). However, results of Le Gall and Taylor [LT87]
on the occupation measure case p = 1 strongly suggest that for the intersection local time
of p independent Brownian paths in the plane no such gauge function θp exists. In this
case it would be interesting to see an integral test as in [LT87].

• In this paper we concentrate on the fractal geometry of the intersections of independent
paths. Perhaps the more interesting object is the set of multiple points of a single Brownian
path. The questions raised in this paper, however, do not make sense in this context, as
the canonical measure on this set, the self-intersection local time, is not a locally finite
measure. It is unclear how the lacunarity of such a set can be studied.
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