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Abstract

We prove the following results about the images and multiple points of an N -parameter,
d-dimensional Brownian sheet B = {B(t)}t∈RN

+
:

(1) If dimHF ≤ d/2, then B(F ) is almost surely a Salem set.
(2) If N ≤ d/2, then with probability one

dimHB(F ) = 2dimHF for all Borel sets F ⊂ RN
+ ,

where “dimH” could be everywhere replaced by the “Hausdorff,” “packing,” “upper
Minkowski,” or “lower Minkowski dimension.”
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(3) Let Mk be the set of k-multiple points of B. If N ≤ d/2 and Nk > (k − 1)d/2, then
dimHMk = dimPMk = 2Nk − (k − 1)d a.s.

The Hausdorff dimension aspect of (2) was proved earlier; see Mountford (1989) and Lin
(1999). The latter references use two different methods; ours of (2) are more elementary,
and reminiscent of the earlier arguments of Monrad and Pitt (1987) that were designed for
studying fractional Brownian motion.
If N > d/2 then (2) fails to hold. In that case, we establish uniform-dimensional properties
for the (N, 1)-Brownian sheet that extend the results of Kaufman (1989) for 1-dimensional
Brownian motion.
Our innovation is in our use of the sectorial local nondeterminism of the Brownian sheet
(Khoshnevisan and Xiao, 2004).

Key words: Brownian sheet, sectorial local nondeterminism, image, Salem sets, multiple
points, Hausdorff dimension, packing dimension
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1 Introduction

Let B = {B(t)}t∈RN
+

denote the (N, d)-Brownian sheet. That is, B is the N -parameter Gaussian

random field with values in Rd; its mean-function is zero, and its covariance function is given by
the following:

Cov (Bi(s) , Bj(t)) =

{∏N
k=1 min(sk, tk), if 1 ≤ i = j ≤ d,

0, otherwise.
(1.1)

We have written B(t) in vector form as (B1(t), . . . , Bd(t)), as is customary.

The (N, d)-Brownian sheet is one of the two natural multiparameter extensions of the ordinary
Brownian motion in Rd. The other one is Lévy’s N -parameter Brownian motion or, more
generally, (N, d)-fractional Brownian motion (fBm) of index H ∈ (0, 1).

It has been long known that fractional Brownian motion is locally nondeterministic (LND, see
Pitt, 1978) whereas the Brownian sheet B is not. As a result, two distinct classes of methods
have been developed; one to study fractional Brownian motion, and the other, Brownian sheet.
Despite this, it has recently been shown that the Brownian sheet satisfies the following“sectorial”
local nondeterminism (Khoshnevisan and Xiao, 2004):

Lemma 1.1 (Sectorial LND) Let B0 be an (N, 1)-Brownian sheet. Then for all positive real
number a, integers n ≥ 1, and all u, v, t1, . . . , tn ∈ [a,∞)N , we have

Var
(
B0(u) | B0(t1), . . . , B0(tn)

)
≥ aN−1

2

N∑
k=1

min
0≤j≤n

∣∣∣uk − tjk

∣∣∣ , (1.2)

Var
(
B0(u)−B0(v) | B0(t1), . . . , B0(tn)

)
≥ aN−1

2

N∑
k=1

min
(

min
0≤j≤n

∣∣∣uk − tjk

∣∣∣+ min
0≤j≤n

∣∣∣vk − tjk

∣∣∣ , |uk − vk|
)
,

(1.3)

where t0k = 0 for every k = 1, . . . , N .

Khoshnevisan and Xiao (2004) have applied the sectorial LND of the Brownian sheet to study
the distributional properties of the level set

B−1(x) :=
{
t ∈ (0,∞)N : B(t) = x

}
, ∀x ∈ Rd. (1.4)

Also, they use sectorial LND of the sheet to study the continuity of the local times of B on a
fixed Borel set F ⊂ (0,∞)N . Khoshnevisan and Xiao have suggested that, for many problems,
the previously-different treatments of the Brownian sheet and fractional Brownian motion can
be unified, and generalized so that they do not rely on many of the special properties of the
sheet or fBm.

The present paper is a continuation of Khoshnevisan and Xiao (2004). Our main purpose is
to describe how to apply sectorial LND in order to study the geometry of the surface of the
Brownian sheet. In some cases, our arguments have analogues for fBm; in other cases, our
derivations can be applied to prove new results about fBm; see the proofs of Theorems 3.3 and
3.6, for instance.
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First we consider the Fourier dimension of the image B(F ) for a general (N, d)-Brownian sheet,
where F ⊂ (0,∞)N is a fixed Borel set. It is well known that

dimHB(F ) = min (d , 2dimHF ) a.s. (1.5)

where dimH denotes Hausdorff dimension. If N > d/2 and we replace dimH by the packing
dimension dimP , then (1.5) can fail; see Talagrand and Xiao (1996). In rough terms, this is
because when N > d/2, dimPB(F ) is not determined by dimPF . It turns out that, in that
case, dimPB(F ) is determined by the packing dimension profile of F defined by Falconer and
Howroyd (1997); see Xiao (1997) for details.

Clearly, two distinct cases come up in (1.5): dimHF > d/2 or dimHF ≤ d/2. In the first case,
Khoshnevisan and Xiao (2004) have shown that B(F ) a.s. has interior points. This verifies an
earlier conjecture of Mountford (1989a). Presently, we treat the second case, and prove that for
all non-random Borel sets F ⊂ (0,∞)N with dimHF ≤ d/2, the image B(F ) is almost surely a
Salem set with Fourier dimension 2dimHF . That is,

Theorem 1.2 If F ⊂ (0,∞)N is a non-random Borel set with dimHF ≤ d/2, then dimFB(F ) =
2dimHF almost surely.

When N = 1, B denotes the ordinary Brownian motion in Rd, and the latter result is due
to Kahane (1985a, 1985b), where he also established a similar result for fractional Brownian
motion. However, Kahane’s proof does not seem to extend readily to the Brownian sheet case.
We will appeal to sectorial LND to accomplish this task.

Note that the exceptional null-set in (1.5) depends on F . One might ask whether the so-called
uniform Hausdorff dimension result is valid. That is, we wish to know whether there exists
a single null set outside which (1.5) holds simultaneously for all Borel sets F ⊂ (0,∞)N . Of
course, this can not be true when N > d/2. For instance, consider F to be the zero set B−1(0).
The following establishes this uniform dimension result in the non-trivial case that N ≤ d/2.
Its proof can be found in Section 2 below.

Theorem 1.3 Choose and fix positive integers N ≤ d/2. Then,

P

{
dimHB(F ) = 2dimHF for all Borel sets F ⊂ (0,∞)N

}
= 1, (1.6)

where “dimH” can be everywhere replaced, consistently, by any one of the following: “dimH”;
“dimP”; “dimM”; or “dimm.”

Starting with the pioneering work of Kaufman (1968) for planar Brownian motion, a number of
authors have established uniform dimension results for stochastic processes; see Xiao (2004) for a
survey of such results for Markov processes and their applications. When N ≤ d/2, the uniform
dimension result for the Brownian sheet was first proved by Mountford (1989b). Mountford’s
proof is based on special properties of the sheet. Lin (1999) has extended the result of Mountford
(1989b) to (N, d, α)-stable sheets [see Ehm (1981) for the definition] by using a “stopping time”
argument for the upper bound, and by estimating the moments of sojourn times for the lower
bound. In Section 3 we provide a relatively elementary proof of Theorem 1.3 which uses our
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notion of sectorial LND. Our proof is reminiscent of the earlier arguments of Kaufman (1968)
and Monrad and Pitt (1987).

As we have mentioned, Theorem 1.3 does not hold when N > d/2. In Section 3 we derive weaker
uniform dimension properties for the (N, 1)-Brownian sheet; see Theorems 3.3 and 3.6. Our
results are extensions of the results of Kaufman (1989) for one-dimensional Brownian motion.

In Section 4 we determine the Hausdorff and packing dimensions of the set Mk of k-multiple
points of the (N, d)-Brownian sheet. Thus, we complete an earlier attempt by Chen (1994).

In the above we have mentioned various concepts of fractal dimensions such as Hausdorff, pack-
ing and box-counting dimensions, and packing dimension profiles. Xiao (2004) contains a brief
introduction on their definitions and properties. We refer to Falconer (1990) for further informa-
tion on Hausdorff and box-counting dimensions and to Taylor and Tricot (1985) for information
on packing measures and packing dimension.

Throughout this paper, B = {B(t)}t∈RN
+

denotes an (N, d)-Brownian sheet. Sometimes we refer
to B as an “(N, d)-sheet,” or alternatively a “sheet.” We use | · | to denote the Euclidean norm
in Rm irrespective of the value of the integer m ≥ 1. We denote the m-dimensional Lebesgue
measure by λm. Unspecified positive and finite constants will be denoted by c which may have
different values from line to line. Specific constants in Section i will be denoted by ci,1 , ci,2 and
so on. Finally, we denote the closed ball of radius r > 0 about x ∈ Rd consistently by

U(x, r) :=
{
y ∈ Rd : |x− y| ≤ r

}
. (1.7)

2 Salem sets

In this section we continue the line of research of Kahane (1985a, 1985b, 1993) and study
the asymptotic properties of the Fourier transforms of the image measures under the mapping
t 7→ B(t), where B is the (N, d)-Brownian sheet. In particular, we will show that, for every
non-random Borel set F ⊂ (0,∞)N such that dimHF ≤ d/2, B(F ) is almost surely a Salem set.

Let ν be a Borel probability measure on Rd. We say that ν is an Mβ-measure if its Fourier
transform ν̂ possesses the following property:

ν̂(ξ) = o(|ξ|−β) as |ξ| → ∞. (2.1)

Note that if β > d/2, then certainly ν̂ is square-integrable on Rd. This, and the Plancherel
theorem, together imply that ν is supported by a set of positive d-dimensional Lebesgue measure.
From this perspective, our main interest is in studying sets that carry only finite Mβ-measures
with β ≤ d/2.

We define the Fourier dimension of ν as

dimFν := sup
{
α ∈ [0, d] : ν is an Mα/2-measure

}
. (2.2)

Then it is easy to verify that

dimFν = lim inf
|ξ|→∞

−2 log |ν̂(ξ)|
log |ξ|

∧ d. (2.3)
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Define the Fourier dimension of a Borel set E ⊂ Rd as

dimFE = sup
ν∈P(E)

dimFν, (2.4)

where P(E) is the collection of all probability measures on E for any Borel set E. The Fourier
dimension bears a relation to the Hausdorff dimension of E. First, recall that for every 0 < α < d
the α-dimensional Riesz energy of a Borel probability measure ν on Rd is a constant multiple of∫

Rd |ν̂(ξ)|2|ξ|α−d dξ (Kahane, 1985a; Ch. 10). Therefore, the Frostman theorem implies that for
every Borel set E ⊂ Rd,

dimFE ≤ dimHE. (2.5)

Moreover, this inequality is often strict, as observed in Kahane (1985, p. 250) that the Hausdorff
dimension of E ⊂ Rd does not change when E is embedded in Rd+1, while the Fourier dimension
of E now considered as a subset of Rd+1 will be 0. Another interesting example is the standard,
ternary Cantor set C on the line. Then, a theorem of Rajchman [see Kahane and Salem (1994,
p. 59) or Zygmund (1959, p. 345)] suggests that dimFC = 0, whereas a celebrated theorem of
Hausdorff states that dimHC = log 2/ log 3.

In accordance with the existing literature we say that a Borel set E is a Salem set if (2.5) is
an equality; i.e., if dimFE = dimHE. Such sets are of importance in studying the problem of
uniqueness and multiplicity for trigonometric series; see Zygmund (1959, Chapter 9) and Kahane
and Salem (1994) for more information.

Let B0 := {B0(t)}t∈RN
+

denote the N -parameter Brownian sheet in R. For all n ≥ 2 and

t1, . . . , tn, s1, . . . , sn ∈ (0, ∞)N , we will write s := (s1, . . . , sn), t := (t1, . . . , tn), and

Ψ(s, t) := Var

 n∑
j=1

(
B0(tj)−B0(sj)

) . (2.6)

For s ∈ (0, ∞)nN and r > 0, we define

O(s, r) :=
n⋃

i1=1

· · ·
n⋃

iN=1

N⋂
k=1

{
u ∈ (0,∞)N :

∣∣∣uk − sik
k

∣∣∣ ≤ r
}
, and

G(s, r) :=
{
t = (t1, . . . , tn) : tj ∈ O(s, r) for all 1 ≤ j ≤ n

}
.

(2.7)

We point out that O(s, t) is a finite union of hyper-cubes whose sides are parallel to the axes.
Moreover, there are no more than nN of these hyper-cubes in O(s, t).

The following lemma is essential for the proof of Theorem 1.2.

Lemma 2.1 Let ε ∈ (0, T ) be fixed. There exists a positive constant c2,1 such that Ψ(s, t) ≥ c2,1 r
for all r ∈ (0, ε) and all s, t ∈ [ε , T ]nN with t /∈ G(s, r).

Proof O ur proof follows the proof of Proposition 4.2 of Khoshnevisan and Xiao (2004); see
Lemma 1.1 of the present paper.

Since t /∈ G(s, r), there exist j0 ∈ {1, . . . , n} and k0 ∈ {1, . . . , N} such that

min
1≤`≤n

|tj0k0
− s`

k0
| > r. (2.8)
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The pair (j0, k0) is held fixed for the remainder of the proof.

For all u ≥ 0 and 1 ≤ k ≤ N , define

Xk(u) :=
B0(

k − 1 terms︷ ︸︸ ︷
ε, . . . , ε , ε+ u,

N − k terms︷ ︸︸ ︷
ε, . . . , ε )−B0(

N times︷ ︸︸ ︷
ε, . . . , ε)

ε(N−1)/2
. (2.9)

Clearly, the process {Xk(u)}u≥0 is centered and Gaussian. In fact, a direct computation of its
covariance proves that Xk is standard Brownian motion.

For all t ∈ [ε, T ]N , we decompose the rectangle [0, t] into the following disjoint union:

[0, t] = [0, ε]N ∪
N⋃

k=1

Dk(tk) ∪∆(ε, t), (2.10)

where Dk(tk) := {s ∈ [0, T ]N : 0 ≤ si ≤ ε if i 6= k, and ε < sk ≤ tk}, and ∆(ε, t) can be written
as a union of 2N −N − 1 sub-rectangles of [0, t]. Then we have the following decomposition for
B0: For all t ∈ [ε, T ]N ,

B0(t) = B0(ε, . . . , ε) + ε(N−1)/2
N∑

k=1

Xk(tk − ε) +B′(ε, t). (2.11)

Here, B′(ε, t) :=
∫
∆(ε,t) dB0(s). Since all the processes on the right-hand side of (2.11) are

defined as increments of B0 over disjoint sets, they are independent. Therefore

Ψ(s, t) ≥ εN−1
N∑

k=1

Var

 n∑
j=1

(
Xk(t

j
k − ε)−Xk(s

j
k − ε)

)
≥ εN−1Var

 n∑
j=1

(
Xk0(t

j
k0
− ε)−Xk0(s

j
k0
− ε)

) .
(2.12)

Because {Xk0(u)}u≥0 is standard Brownian motion and |tj0k0
− sj

k0
| ≥ r for all j = 1, . . . , n, we

can apply Equation (8) of Kahane (1985a, p. 266, Eq. (8)) to conclude that

Var

 n∑
j=1

(
Xk0(t

j
k0
− ε)−Xk0(s

j
k0
− ε)

) ≥ c2,2r. (2.13)

[To obtain this, we set Kahane’s parameter as follows: γ = n = 1; his p is our n; his tj is our
tjk0

− ε; s` is our s`
k0
− ε; and his ε is our r.] Our lemma follows from (2.12) and (2.13). �

Now we consider the (N, d)-Brownian sheet B. For any Borel probability measure µ on RN
+ , we

let µB denote the image-measure of µ under the mapping t 7→ B(t). The Fourier transform of
µB can be written as follows:

µ̂B (ξ) =
∫

RN
+

eiξ·B(t) µ(dt), ∀ξ ∈ Rd. (2.14)

The following theorem describes the asymptotic behavior of µ̂B (ξ) as |ξ| → ∞.
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Theorem 2.2 Let τ : R+ → R+ be a non-decreasing function satisfying the “doubling property.”
That is, τ(2r) ≤ c2,3 τ(r) for all r ≥ 0. Choose and fix a Borel probability measure µ on [ε, T ]N

such that
µ(U(x, r)) ≤ c2,4 τ(2r),

∀x ∈ RN
+ , r ≥ 0. (2.15)

Then there exists a finite, positive constant % such that

lim sup
|ξ|→∞

|µ̂B (ξ)|√
τ (1/|ξ|2) log% |ξ|

<∞ a.s. (2.16)

Proof S ince the components B1, . . . , Bd of the Brownian sheet B are independent copies of
B0 = {B0(t)}t∈RN

+
, we see from (2.14) that for any positive integer n ≥ 1,

‖µ̂B (ξ)‖2n
2n = E

[∫
R2nN

+

eiξ·
Pn

j=1(B(tj)−B(sj)) µ⊗n(ds)µ⊗n(dt)

]

=
∫

R2nN
+

e−|ξ|
2Ψ(s,t)/2 µ⊗n(ds)µ⊗n(dt),

(2.17)

where ‖ · ‖n denotes the Ln(P) norm and µ⊗n(ds) := µ(ds1)× · · · × µ(dsn).

Let s ∈ [ε, T ]nN be fixed and we integrate [µ⊗n(dt)] first. Write∫
RnN

+

e−|ξ|
2Ψ(s,t)/2 µ⊗n(dt)

=
∫
G(s,r)

e−|ξ|
2Ψ(s,t)/2 µ⊗n(dt)

+
∞∑

k=1

∫
G(s,r2k)\G(s,r2k−1)

e−|ξ|
2Ψ(s,t)/2 µ⊗n(dt).

(2.18)

By (2.15), we always have∫
G(s,r)

e−|ξ|
2Ψ(s,t)/2 µ⊗n(dt) ≤

(
c2,4n

Nτ(2r)
)n
. (2.19)

Choose and fix some ξ ∈ Rd\{0}, and consider r := |ξ|−2. It follows from Lemma 2.1, the
doubling property of function τ , and (2.15) that∫

G(s,r2k)\G(s,r2k−1)
e−|ξ|

2Ψ(s,t)/2 µ⊗n(dt)

≤ e−c2,1 |ξ|
2r2k−2

(
c2,4n

Nτ(2k+1r)
)n

≤
(
c2,4n

Nτ(2r)
)n

e−c2,62k

ckn
2,3
.

(2.20)

But 1 +
∑∞

k=1 exp(c2,62
k)ckn

2,3
≤ cn

2,7
nρn with ρ := log c2,3 . Therefore, (2.19) and (2.20) together

imply the following bound for the integral of (2.18):∫
RnN

+

e−|ξ|
2Ψ(s,t)/2 µ⊗n(dt) ≤ cn

2,8
n(N+ρ)n

[
τ(2/|ξ|2)

]n
. (2.21)
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Integrate both sides of (2.21) [µ⊗n(ds)] to find that

‖µ̂B (ξ)‖2n
2n ≤ cn

2,9
n(N+ρ)n

[
τ(2/|ξ|2)

]n
. (2.22)

This and the Stirling formula together imply the existence of an a > 0 such that

sup
ξ∈Rd

E

exp

a ∣∣∣∣∣ µ̂B (ξ)√
τ(2/|ξ|2)

∣∣∣∣∣
2/(N+ρ)

 ≤ 2. (2.23)

The Markov inequality implies then that for all b > 0,∑
m∈Zd

P
{
|µ̂B (m)| ≥ b

√
τ(2/|m|2) logN+ρ |m|

}
≤ 2

∑
m∈Zd

|m|−ab2/(N+ρ)
, (2.24)

which is finite as long as we picked b >
(
d/a
)(N+ρ)/2. By the Borel–Cantelli lemma,

lim sup
|m|→∞

|µ̂B (m)|√
τ(2/|m|2) logN+ρ |m|

<∞ a.s. (2.25)

Therefore (2.16) follows, with % := N + ρ, from (2.25) and Lemma 1 of Kahane (1985a, p. 252).
This finishes the proof of Theorem 2.2. �

We are ready to present our proof of Theorem 1.2.

Proof [ Proof of Theorem 1.2] In accord with (1.5) and (2.5),

dimFB(F ) ≤ dimHB(F ) = 2dimHF a.s., (2.26)

for every Borel set F ⊆ RN
+ that satisfies dimHF ≤ d/2.

To prove the converse inequality, it suffices to demonstrate that if dimHF ≤ d/2 then
dimFB(F ) ≥ 2γ a.s. for all γ ∈ (0, dimHF ). Without loss of generality, we may and will
assume F ⊂ (0,∞)N is compact. See Theorem 4.10 of Falconer (1990) for the reasoning. Hence
we may further assume that F ⊂ [ε, T ]N for some positive constants ε < T .

Frostman’s lemma implies that there is a probability measure µ on F such that µ(U(x, r)) ≤
c2,11 r

γ for all x ∈ RN
+ and r > 0; see (1.7) for notation. Let µB denote the image measure of

µ under B, and appeal to Theorem 2.2 to find that dimFµB ≥ 2γ a.s. Because γ ∈ (0,dimHF )
is arbitrary, it follows that dimFB(F ) ≥ dimFµB ≥ 2dimHF . This bound complements (2.26),
whence follows our proof. �

3 Uniform dimension results for the images

In this section we prove Theorem 1.3, and present a weak uniform dimension property of the
(N, 1)-sheet.

Our proof of Theorem 1.3 is reminiscent of the method of Kaufman (1968) designed for the
planar Brownian motion. See also the techniques of Monrad and Pitt (1987) for N -parameter
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fBm in Rd. The following lemma constitutes the key step in our proof; it will come in handy
also in Section 4 below. Throughout, we write

Fn := 4−n {1, 2, . . . , 4n}N ∀n ≥ 1. (3.1)

Lemma 3.1 Choose and fix N ≤ d/2, ε, δ ∈ (0, 1), and β ∈ (1− δ, 1). Then with probability 1,
for all large enough n, there do not exist more than 2nδd distinct points of the form tj ∈ Fn such
that ∣∣B(ti)−B(tj)

∣∣ < 3 · 2−nβ ∀i 6= j. (3.2)

Proof T hroughout this proof define

Ω(u, v) := |B(u)−B(v)| ∀u, v ∈ RN
+ . (3.3)

Let An be the event that there do exist more than 2nδd distinct points of the form 4−nkj such
that (3.2) holds. Let Nn be the number of n-tuples of distinct t1, . . . , tn ∈ Fn such that (3.2)
holds; i.e.,

Nn :=
∑

· · · · · ·
∑

t1,...,tn∈Fn
all distinct

1{Ω(ti,tj)<3·2−nβ}. (3.4)

Because An ⊆
{
Nn ≥

(
[2nδd+1]

n

)}
, Markov’s inequality implies that

P(An) ≤ E(Nn)×
(

[2nδd + 1]
n

)−1

. (3.5)

Thus, we estimate

E(Nn) =
∑

· · · · · ·
∑

t1,...,tn∈Fn
all distinct

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}
. (3.6)

Let us fix n− 1 distinct points t1, . . . , tn−1 ∈ Fn, and first estimate the following sum:∑
tn∈Fn\{t1,...,tn−1}

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}
. (3.7)

For all fixed t1, . . . , tn−1 ∈ Fn we can find at most (n−1)N points of the form τu = (τu
1 , . . . , τ

u
N ) ∈

[ε, 1]N such that for every ` = 1, . . . , N ,

τu
` = tj` for some j = 1, . . . , n− 1. (3.8)

Let us denote the collection of these τu’s by Γn := {τu}u∈U(n). Clearly, t1, . . . , tn−1 are all in
Γn, and #U(n) ≤ (n− 1)N .

It follows from Lemma 1.1 that for every tn /∈ Γn, there exists τun ∈ Γn such that

Var
(
B0(tn) | B0(t1), . . . , B0(tn−1)

)
≥ c3,1 |tn − τun | . (3.9)
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But the coordinate processes B1, . . . , Bd are i.i.d. copies of B0. Being Gaussian, the conditional
density function of B(tn) given B(t1), . . . , B(tn−1) is therefore bounded above by {c3,1 |tn −
τun |}−d/2. Consequently, (3.9) implies that

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}

≤ P
{

max
1≤i6=j≤n−1

Ω(ti, tj) < 3 · 2−nβ

}
·

(
3 · 2−nβ

c
1/2
3,1 |tn − τun |1/2

)d

.

(3.10)

This has content only when tn /∈ Γn. If tn ∈ Γn, then instead we use the obvious bound,

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}
≤ P

{
max

1≤i6=j≤n−1
Ω(ti, tj) < 3 · 2−nβ

}
. (3.11)

The most conservative combination of (3.10) and (3.11) yields∑
tn∈Fn\{t1,...,tn−1}

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}

≤ P
{

max
1≤i6=j≤n−1

Ω(ti, tj) < 3 · 2−nβ

}

×

 ∑
tn /∈Γn

c3,2

(
3 · 2−nβ

|tn − τun |1/2

)d

+ (n− 1)N

 .
(3.12)

Note that

∑
tn /∈Γn

(
3 · 2−nβ

|tn − τun |1/2

)d

≤
∑

τu∈Γn

∑
tn 6=τu

(
3 · 2−nβ

|tn − τu|1/2

)d

≤ c3,3(n− 1)N+12n(1−β)d.

(3.13)

The last inequality is due to the fact that if N ≤ d/2 then for all fixed τu,∑
tn 6=τu

1
|tn − τu|d/2

≤ c n 2nd. (3.14)

Plug (3.13) into (3.12) to obtain∑
tn∈Fn\{t1,...,tn−1}

P
{

max
1≤i6=j≤n

Ω(ti, tj) < 3 · 2−nβ

}

≤ P
{

max
i6=j≤n−1

Ω(ti, tj) < 3 · 2−nβ

}
× c3,4(n− 1)N+12n(1−β)d.

(3.15)

We apply induction, and sum the latter over tn−1, . . . , t1, in this order. Thanks to (3.6), this
proves that

E(Nn) ≤ cn
3,5

[(n− 1)!]N+1 2n2(1−β)d. (3.16)
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By (3.5) and (3.16), we can bound P(An) as follows:

P(An) ≤ cn
3,6

(n− 1)n(N+2) 2n2(1−β−δ)d. (3.17)

We have used also the elementary inequality,(
[2nδd + 1]

n

)
≥
(

2nδd + 1
n

)n

≥ 2n2δd

nn
. (3.18)

Because 0 < 1− β < δ, (3.17) implies that
∑∞

n=1 P(An) < ∞. According to the Borel–Cantelli
Lemma, P(lim supnAn) = 0. This finishes the proof of our lemma. �

Recall (3.1). For n = 1, 2, . . . and k := (k1, . . . ,kN) ∈ 4nFn define

In
k :=

N⋂
i=1

{
t ∈ [0, 1]N : (ki − 1)4−n ≤ ti ≤ ki4−n

}
. (3.19)

Each In
k is then a hyper-cube of side-length 4−n, and its sides are parallel to the axes.

According to Theorem 2.4 of Orey and Pruitt (1973), the Brownian sheet has the same uniform
modulus of continuity as Brownian motion, as long as we stay away from the axes. In particular,
for all ε ∈ (0, 1), we have,

lim
η→0

ηθ−(1/2) sup
s,t∈[ε ,1]N :
|s−t|≤η

|Ω(s, t)| = 0 a.s. ∀θ ∈ (0, 1/2); (3.20)

see (3.3) for the definition of Ω. Consequently, for all β, ε ∈ (0, 1), the following holds with
probability one:

max
k∈4NFn

sup
t∈In

k∩[ε ,1]N
|B(t)−B(4−nk)| ≤ 2 · 2−nβ for all n large. (3.21)

This and Lemma 3.1 together imply our next lemma.

Lemma 3.2 Choose and fix ε, δ ∈ (0, 1) and β ∈ (1− δ, 1). Then a.s.,

sup
x∈Rd

∑
k∈{1,...,4n}N

1{B−1(U(x,2−nβ))∩[ε,1]N∩In
k 6=∅}

≤ 2nδd, (3.22)

for all n sufficiently large.

Now we are ready to prove Theorem 1.3.

Proof [ Proof of Theorem 1.3] Because of the σ-stability of Hausdorff and packing dimensions
and the scaling probability of B, we only need to verify (1.6) for all Borel sets F ⊆ [ε , 1]N . [This
argument is sometimes called regularization.]

The modulus of continuity of the Brownian sheet (3.20), and Theorem 6 of Kahane (1985a, p.
139) together imply that outside a single null set,

P
{
dimHB(F ) ≤ 2dimHF for every Borel set F ⊆ [0, 1]N

}
= 1. (3.23)
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Next we derive the same bound, but where “dimH” is replaced everywhere by “dimM ,”“dimm ,”
and/or “dimP .”

For any bounded Euclidean set K let NK(r) be the metric entropy of K at r > 0; i.e., NK(r)
is the minimum number of balls of radius r > 0 needed to cover K. Recall that dimMK =
lim supr→0 logNK(r)/| log r|, whereas dimmK = lim infr→0 logNK(r)/| log r|. Now choose and
fix some ε ∈ (0, 1), and a (possibly-random) compact set F ⊆ [ε , 1]N . Given any radius-r ball
U ⊂ [ε , 1]N and any η ∈ (0, 1/2), the diameter of B(U) is at most rη; consult (3.20). This
proves that outside a single null set, the following holds for all Borel sets F ⊆ [ε , 1]N and all
r, η ∈ (0, 1/2).

NB(F )(r
η) ≤ c3,7NF (r). (3.24)

From this, we can readily deduce the following outside a single null set: For all Borel sets
F ⊆ [ε , 1]N , dimMB(F ) ≤ η−1dimMF and dimmB(F ) ≤ η−1dimmF . Let η ↑ 1/2 and then ε ↓ 0
to find that (3.23) holds also when “dimH” is replaced by either “dimM” or “dimm .” It also holds
for “dimP” by regularization of dimM .

To prove the lower bounds it suffices to verify that outside a single null set,

dimHB
−1(E) ≤ 1

2
dimHE, (3.25)

for every Borel set E ⊆ Rd, where “dimH” could be any one of “dimH ,” “dimm ,” “dimM ,” or
“dimP .” Indeed, we can then select E := B(F ) and derive the lower bounds by noticing that
B−1(B(F )) ⊇ F . Equivalently, we seek to prove that for all ε ∈ (0, 1), the following holds a.s.,
simultaneously for all Borel sets E ⊂ Rd:

dimH

{
t ∈ [ε, 1]N : B(t) ∈ E

}
≤ 1

2
dimHE (3.26)

First we prove this for dimH = dimH . By regularization, it suffices to consider only compact sets
E ⊂ Rd.

Let α > dimHE be fixed (but possibly random); also choose and fix ε, δ ∈ (0, 1) and β ∈ (1−δ, 1).
Then we can find balls U(x1, r1), U(x2, r2), . . . that cover E, and

∞∑
`=1

rα
` <∞. (3.27)

Thanks to Lemma 3.2, outside a single null set, we have: for all ` large, [ε , 1]N ∩B−1(U(x`, r`))
is a union of at most r−δd/β

` -many balls of radius r2` . [For r` := 2−n, this is precisely Lemma
3.2. For the general case, use monotonicity and the fact that δ and β can be changed a little
without changing the content of the lemma.] Hence we have obtained a covering of B−1(E).
Let s := 1

2α + (2β)−1(δd) and appeal to (3.27) to find that
∑

` r
−δd/β
` r2s

` < ∞. This proves
that dimHB

−1(E) ≤ 1
2α + (2β)−1(δd). Let δ ↓ 0 and α ↓ dimHE to obtain (3.26) for Hausdorff

dimension.

As regards the other three dimensions, we note that by Lemma 3.2, for all n large and all Borel
sets E ⊂ Rd,

NB−1(E)∩[ε ,1]N (4−n) ≤ 2nδd +NE(2−nβ). (3.28)
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Here, as before, δ ∈ (0, 1) and β ∈ (1−δ, 1) are fixed. Take the base-4 logarithm of the preceding
display, divide it by n, and then apply a standard monotonicity argument to obtain the following:

dimM

(
B−1(E) ∩ [ε , 1]N

)
≤ max

(
δd

2
,
β

2
dimME

)
,

dimm

(
B−1(E) ∩ [ε , 1]N

)
≤ max

(
δd

2
,
β

2
dimmE

)
.

(3.29)

Let β ↑ 1 and δ ↓ 0 to deduce (3.26) for dimM and dimm . Regularization and the said inequality
for dimM results in (3.26) for dimP . This completes our proof. �

When N > d/2, both (1.6) no longer holds. In fact, when N > d/2, the level sets of B have
dimension N − (d/2) > 0 (Khoshnevisan, 2002; Corollary 2.1.2, p. 474). Therefore, (1.6) is
obviously false for F := B−1(0).

In the following, we prove two weaker forms of uniform result for the images of the (N, 1)-
Brownian sheet B0; see Theorems 3.3 and 3.6 below. They extend the results of Kaufman
(1989) for one-dimensional Brownian motion.

Theorem 3.3 With probability 1 for every Borel set F ⊆ (0, 1]N ,

dimHB0(F + t) = min(1, 2dimHF ) for almost all t ∈ [0, 1]N . (3.30)

Define
HR(x) := R1[−1,1](Rx)

∀x ∈ R, R > 0. (3.31)

Also define

IR(x, y) :=
∫

[0,1]N
HR (B0(x+ t)−B0(y + t)) dt ∀R > 0, x, y ∈ [ε , 1]N . (3.32)

The following lemma is the key to our proof of Theorem 3.3. Sectorial LND plays an important
role in its proof.

Lemma 3.4 For all x, y ∈ [ε, 1]N , R > 1 and integers p = 1, 2, . . . ,

‖IR(x, y)‖p
p ≤ cp

3,8
(p!)N |y − x|−p/2. (3.33)

Proof T he pth moment of IR(x, y) is equal to

Rp

∫
· · ·
∫

[0,1]Np

P
{

max
1≤i≤p

∣∣B0(x+ ti)−B0(y + ti)
∣∣ < R−1

}
dt1 · · · dtp. (3.34)

We will estimate the above integral by integrating in the order dtp, dtp−1, . . . , dt1. First let
t1, . . . , tp−1 ∈ [0, 1]N be fixed and assume, without loss of generality, that all coordinates of
t1, . . . , tp−1 are distinct. In analogy with (3.3) define

Ωi := B0(x+ ti)−B0(y + ti) ∀i = 1, . . . , p. (3.35)
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We begin by estimating the conditional probabilities

P(tp) := P
{
|Ωp| < R−1

∣∣∣∣ max
1≤i≤p−1

|Ωi| < R−1

}
. (3.36)

Because B0 is sectorially LND, we have

Var (Ωp |Ωi, 1 ≤ i ≤ p− 1)

≥ Var
(
Ωp

∣∣B0(x+ ti), B0(y + ti), 1 ≤ i ≤ p− 1
)

≥ c3,9

N∑
k=1

min {υk + ῡk , |xk − yk|} ,
(3.37)

where c3,9 > 0 is a constant which depends on ε [we have used the fact that xk + tpk ≥ ε for every
1 ≤ k ≤ N ] and

υk := min
0≤i≤p−1

(
|tpk − tik|, |xk + tpk − yk − tik|

)
,

ῡk := min
0≤i≤p−1

(
|tpk − tik|, |yk + tpk − xk − tik|

)
,

(3.38)

where t0k = 0 for every k = 1, . . . , N .

Observe that for every 1 ≤ k ≤ N , we have

υk + ῡk ≥ min
0≤i≤p−1
`=1,2,3

∣∣∣tpk − zi,`
k

∣∣∣ , (3.39)

where zi,1
k = tik, z

i,2
k = tik + yk − xk and zi,3

k = tik + xk − yk for k = 1, . . . , N .

It follows from (3.37) and (3.39) that

Var (Ωp |Ωi, 1 ≤ i ≤ p− 1)

≥ c3,10

N∑
k=1

min
{

min
0≤i≤p−1
`=1,2,3

∣∣∣tpk − zi,`
k

∣∣∣ , |xk − yk|
}
.

(3.40)

Therefore, we have

P(tp) ≤ c3,11R
−1

 N∑
k=1

min
{

min
0≤i≤p−1
`=1,2,3

∣∣∣tpk − zi,`
k

∣∣∣ , |xk − yk|
}−1/2

. (3.41)

We note that the points t1, . . . , tp−1 introduce a natural partition of [0, 1]N . More precisely, let
π1, . . . , πN be N permutations of {1, . . . , p− 1} such that for every k = 1, . . . , N ,

t
πk(1)
k < t

πk(2)
k < . . . < t

πk(p−1)
k . (3.42)

For convenience, we define also tπk(0)
k := 0 and tπk(p)

k := 1 for all 1 ≤ k ≤ N .
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For every j = (j1, . . . , jN ) ∈ {1, . . . , p− 1}N , let τ j = (tπ1(j1)
1 , . . . , t

πN (jN )
N ) be the “center” of the

rectangle

Ij :=
N∏

k=1

[
t
πk(jk)
k −

t
πk(jk)
k − t

πk(jk−1)
k

2
, t

πk(jk)
k +

t
πk(jk+1)
k − t

πk(jk)
k

2

)
, (3.43)

with the convention being that whenever jk = 1, the left-end point of the interval is 0; and when-
ever jk = p−1, the interval is closed and its right-end is 1. Thus the rectangles {Ij}j∈{1,...,p−1}N

form a partition of [0, 1]N .
For every tp ∈ [0, 1]N , there is a unique j ∈ {1, . . . , p − 1}N such that tp ∈ Ij. Moreover, there
exists a point sj (depending on tp) such that for every k = 1, . . . , N , the k-th coordinate of sj

satisfies
sjk ∈

{
t
πk(jk)
k , t

πk(jk−1)
k + |xk − yk|, t

πk(jk+1)
k − |xk − yk|

}
, (3.44)

[If j1 = 1, then we should also include tpk in the right hand side of (3.44). Since this does not
affect the rest of the proof, we omit it for convenience] and

min
0≤i≤p−1
`=1,2,3

∣∣∣tpk − zi,`
k

∣∣∣ = ∣∣∣tpk − sjk

∣∣∣ (3.45)

for every k = 1, . . . , N . Hence, for every tp ∈ Ij, (3.41) can be rewritten as

P(tp) ≤ c3,11 R
−1

[
N∑

k=1

min
{
|tpk − sjk| , |xk − yk|

}]−1/2

. (3.46)

Note that, as tp varies in Ij, there are at most 3N corresponding points sj. Define

IGj :=
{
tp ∈ Ij : for every sj we have |xk − yk| ≤ |tpk − sjk| for all k = 1, . . . , N

}
as the set of “Good”points, and IBj := Ij \IGj be the collection of “Bad points.” For every tp ∈ IGj ,
(3.46) yields

P(tp) ≤ c3,11 R
−1

[
N∑

k=1

|xk − yk|

]−1/2

≤ c3,11 R
−1 |y − x|−1/2. (3.47)

If tp ∈ IBj , then for sj satisfying (3.46) we have |tpk − sjk| < |xk − yk| for some k ∈ {1, . . . , N}.
We denote the collection of those indices by U . Then, for every k /∈ U , |xk − yk| ≤ |tpk − s

j
k|, and

we have

P(tp) ≤ c3,11 R
−1

[∑
k∈U

∣∣∣tpk − sjk

∣∣∣+∑
k/∈U

|xk − yk|

]−1/2

. (3.48)

It follows from (3.47) and (3.48) that
∫
Ij
P(tp) dtp is at most∫

IGj

c3,11 R
−1 |y − x|−1/2 dtp

+
∫

IBj

c3,11 R
−1

[∑
k∈U

∣∣∣tpk − sjk

∣∣∣+∑
k/∈U

|xk − yk|

]−1/2

dtp

≤ c3,12 R
−1 |y − x|−1/2,

(3.49)
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where the last inequality follows from the facts that |x − y| ≤
√
N and the integral over IBj is

bounded by cR−1. Hence, we have∫
[0,1]N

P(tp) dtp =
∑
j

∫
Ij

P(tp) dtp ≤ c3,12 p
N R−1 |y − x|−1/2. (3.50)

Continue integrating dtp−1, . . . , dt1 in (3.34) in the same way, we finally obtain (3.33) as desired.
�

Remark 3.5 For later use in the proof of Theorem 3.6, we remark that the method of the proof
of Lemma 3.4 can be used also to prove that∫

· · ·
∫

[0,1]2Np

P2

{
max

1≤j≤2p
|B0(x+ tj)−B0(y + tj)| ≤ 2−7n/8

}
dt

≤ cp
3,13

[(2p)!]N
(
2−7np/2n2p + 2−7np/2 |x− y|−2p

)
.

(3.51)

In fact, by taking R := 27n/8 in (3.41), we obtain

P2(t2p) ≤ 2−7n/4c3,14

 N∑
k=1

min

 min
0≤i≤2p−1

`=1,2,3

∣∣∣t2p
k − zi,`

k

∣∣∣ , |xk − yk|


−1

. (3.52)

Based on (3.52) and the argument in the proof of Lemma 3.4, we follow through (3.47), (3.48),
and (3.49). This leads us to (3.51).

With the help of Lemma 3.4, we can modify the proof of Theorem 1 in Kaufman (1989) to prove
our Theorem 3.3.

Proof [ Proof of Theorem 3.3] Almost surely, dimHB0(F + t) ≤ min
(
1, 2dimHF

)
for all Borel

sets F and all t ∈ [0, 1]N . Thus, we need to prove only the lower bound.

We first demonstrate that there exists a constant c3,15 and an a.s.-finite random variable n0 =
n0(ω) such that almost surely for all n > n0(ω),

I2n(x, y) ≤ c3,15n
N |y − x|−1/2 ∀x, y ∈ [ε, 1]N . (3.53)

Consider the set Qn ⊆ [0, 1]N defined by

Qn :=
{

8−nk : kj = 0, 1, . . . , 8n, ∀j = 1, . . . , N
}
. (3.54)

Then #Qn = (8n + 1)N . So the number of pairs x, y ∈ Qn is at most c 82Nn. Hence for u > 1,
Lemma 3.4 implies that

P
{
I2n(x, y) > unN |y − x|−1/2 for some x, y ∈ Qn ∩ [ε , 1]N

}
≤ 82Nn cp

3,7
(p!)N (unN )−p.

(3.55)
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By choosing p := n, u := c3,7 82N , and owing to Stirling’s formula, we know that the probabilities
in (3.55) are summable. Therefore, by the Borel-Cantelli lemma, a.s. for all n large enough,

I2n(x, y) ≤ c3,16n
N |y − x|−1/2 ∀x, y ∈ Qn ∩ [ε, 1]N . (3.56)

Now we are ready to prove (3.53). This is a trivial task unless n2N 4−n < |y − x|, which
we assume is the case. For x, y ∈ [ε , 1]N , we can find x̄ and ȳ ∈ Qn−1 ∩ [ε, 1]N so that
|x− x̄| ≤

√
N 8−n and |y − ȳ| ≤

√
N 8−n, respectively. By the modulus of continuity of B0, we

see that I2n(x, y) ≤ I2n−1(x̄, ȳ) for all n large enough. On the other hand, by (3.56) and the
assumption n2N 4−n < |y − x|, we have

I2n−1(x̄, ȳ) ≤ (n− 1)N |x̄− ȳ|−1/2 ≤ c3,15n
N |y − x|−1/2. (3.57)

Equation (3.53) follows.

For any Borel set F ⊂ (0, 1]N and all γ ∈ (0,dimHF ), we choose η ∈ (0, 1∧ 2γ). Then F carries
a probability measure µ such that

µ(S) ≤ c3,17 (diamS)γ for all measurable sets S ⊂ (0, 1]N . (3.58)

By Theorem 4.10 in Falconer (1990), we may and will assume µ is supported on a compact
subset of F . Hence (3.53) is applicable.

Let νt be the image measure of µ under the mapping x 7→ B0(x+t) (x, t ∈ (0, 1]N ). By Frostman’s
Theorem, in order to prove dimHB0(F + t) ≥ η, it suffices to prove that∫∫

R2

νt(du) νt(dv)
|u− v|η

<∞. (3.59)

Now we follow Kaufman (1989), and note that the left-hand side is equal to∫∫
µ(dx)µ(dy)

|B0(x+ t)−B0(y + t)|η

= η

∫ ∞

0

∫∫
HR (B0(x+ t)−B0(y + t)) Rη−2 µ(dx)µ(dy) dR

≤ 1 +
∫ ∞

1

∫∫
HR (B0(x+ t)−B0(y + t)) Rη−2 µ(dx)µ(dy) dR.

(3.60)

To prove that the last integral is finite for almost all t ∈ [0, 1]N , we integrate it over [0, 1]N and
prove that ∫∫ ∫ ∞

1
IR(x, y)Rη−2 dRµ(dx)µ(dy) <∞. (3.61)

We split the above integral over D = {(x, y) : |x − y| ≤ R−2} and its complement, and denote
them by J1 and J2, respectively. Since (µ× µ)(D) ≤ c3,17 R

−2γ and η ∈ (0, 2γ), we have

J1 ≤ c3,17

∫ ∞

1
R−2γ+η−1 dR <∞. (3.62)
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On the other hand, |x − y|−1/2 < R for all (x, y) ∈ Dc. Moreover, by (3.53), IR(x, y) <
c(ω) (logR)N |x− y|−1/2. It follows that

J2 ≤ c3,18(ω)
∫∫

µ(dx)µ(dy)
|x− y|1/2

∫ ∞

|x−y|−1/2

Rη−2 (logR)N dR

< c3,19(ω)
∫∫

logN (1/|y − x|)
|x− y|η/2

µ(dx)µ(dy) <∞,

(3.63)

where the last inequality follows from (3.58). Combining (3.62) and (3.63) gives (3.61). This
completes the proof of Theorem 3.3. �

Theorem 3.6 With probability 1: λ1(B0(F + t)) > 0 for almost all t ∈ (0,∞)N , for every Borel
set F ⊂ (0, 1]N with dimHF > 1/2.

Proof S ince dimHF > 1/2, there exists a Borel probability measure µ on F such that∫∫
µ(ds)µ(dt)
|s− t|1/2

<∞. (3.64)

Again, we will assume that µ is supported by a compact subset of F .

Let νt denote the image-measure of µ, as it did in the proof of Theorem 3.3. It suffices to prove
that ∫

[0,1]N

∫
R
|ν̂t(u)|2 du dt <∞, a.s., (3.65)

where exception null set does not depend on µ. Here, ν̂t denotes the Fourier transform of νt;
i.e.,

ν̂t(u) :=
∫

RN
+

eiuB0(x+t)µ(dx). (3.66)

Note that we only need to consider x ∈ [0, 1]N in (3.66) because the support of µ is contained
in [0, 1]N .

We choose and fix a smooth, even function ψ : R → R+ such that ψ(s) = 1 when 1 ≤ |s| ≤ 2
and ψ(s) = 0 outside 1/2 < |s| < 5/2. Then

∫
|u|>1 |ν̂t(u)|2 du is bounded above by

∞∑
n=0

∫
R
ψ(2−nu) |ν̂t(u)|2 du

=
∞∑

n=0

2n

∫
R2N

+

ψ̂ (2nB0(x+ t)− 2nB0(y + t)) µ(dx)µ(dy).

(3.67)

Consequently, it suffices to show that
∞∑

n=0

2n

∫
[0,1]N

∫
R2N

+

ψ̂ (2nB0(x+ t)− 2nB0(y + t)) µ(dx)µ(dy) dt <∞. (3.68)

To this end, we define for all x, y ∈ [0, 1]N and n ≥ 1,

J(x, y, n) :=
∫

[0,1]N
ψ̂ (2nB0(x+ t)− 2nB0(y + t)) dt. (3.69)

835



Lemma 3.7 There exists a positive and finite constant α such that, with probability 1, for all
n large,

sup
4−nn2≤|y−x|≤

√
N

√
|y − x| |J(x, y, n)| ≤ c3,20n

2N (2 + α)−n. (3.70)

Proof F or all integer p ≥ 1,

‖J(x, y, n)‖2p
2p = E

∫
[0,1]2Np

2p∏
j=1

ψ̂
(
2nB0(x+ tj)− 2nB0(y + tj)

)
dt


= E

∫
Sn

2p∏
j=1

ψ̂
(
2nB0(x+ tj)− 2nB0(y + tj)

)
dt


+ E

∫
[0,1]2Np\Sn

2p∏
j=1

ψ̂
(
2nB0(x+ tj)− 2nB0(y + tj)

)
dt

 ,
(3.71)

where t := (t1, . . . , t2p) and

Sn :=
2p⋃

k=1

N⋃
`=1

{
t ∈ [0, 1]2Np :

∣∣∣tk` − tj`

∣∣∣ > rn and

∣∣∣x` + tk` − tj` − y`

∣∣∣ > rn
∀j 6= k

}
,

(3.72)

and rn := c3,214
−n(n+ 1)2, where c3,21 > 0 is a constant whose value will be determined later.

We consider the integral over Sn first; it can be rewritten as

E

∫
Sn

∫
R2p

2p∏
j=1

eiξ
j [2nB0(x+tj)−2nB0(y+tj)]ψ(ξj) dξ dt


=
∫

Sn

∫
R2p

e−
1
2
Var(

P2p
j=1 ξj [2nB0(x+tj)−2nB0(y+tj)])

2p∏
j=1

ψ(ξj) dξ dt,

(3.73)

where ξ := (ξ1, . . . , ξ2p).
Now ψ is supported on [−5

2 ,−
1
2 ] ∪ [12 ,

5
2 ]. The sectorial LND of B0 and (3.72) imply that for all

t ∈ Sn and ξ ∈ R2p with |ξj | ∈ [12 ,
5
2 ] for every 1 ≤ j ≤ 2p, we have

Var

 2p∑
j=1

ξj
[
2nB0(x+ tj)− 2nB0(y + tj)

]
≥ Var

(
ξk
[
2nB0(x+ tk)− 2nB0(y + tk)

]∣∣∣ B0(x+ tj), B0(y + tj), j 6= k
)

≥ 1
4

22nVar
(
B0(x+ tk)

∣∣∣ B0(x+ tj), j 6= k; B0(y + ti), ∀1 ≤ i ≤ 2p
)

≥ c3,22 22n
N∑

`=1

min
1≤j 6=k≤2p

{
|tk` − tj` | , |x` + tk` − y` − tj` |

}
≥ c3,222

2nrn = c3,22c3,21(n+ 1)2.

(3.74)
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In the above c3,22 > 0 is a constant depending on ε and again we have used the fact that
x` + tk` ≥ ε for every 1 ≤ ` ≤ N .

By combining (3.73) and (3.74), we obtain

E

∫
Sn

∫
R2p

2p∏
j=1

eiξ
j[2nB0(x+tj)−2nB0(y+tj)] ψ(ξj) dξ dt

 ≤ e−c3,23n2

. (3.75)

Later we will choose the constant c3,21 such that c3,23 is sufficiently large. Thus the integral in
(3.71) over Sn can be neglected.

Now, we consider the integral in (3.71) over Tn := [0, 1]2Np\Sn, which can be written as

Tn =
{
t ∈ [0, 1]2Np : ∀k ∈ {1, . . . , 2p}, ∀` ∈ {1, . . . , N},

∃j`,1 6= k s.t.
∣∣tk` − t

j`,1

`

∣∣ ≤ rn

or ∃j`,2 6= k s.t.
∣∣x` + tk` − y` − t

j`,2

`

∣∣ ≤ rn

}
=

2p⋂
k=1

N⋂
`=1

({
t ∈ [0, 1]2Np : min

j`,1 6=k

∣∣∣tk` − t
j`,1

`

∣∣∣ ≤ rn

}
∪
{
t ∈ [0, 1]2Np : min

j`,2 6=k

∣∣∣x` + tk` − y` − t
j`,2

`

∣∣∣ ≤ rn

})
.

(3.76)

From (3.76), we can see that Tn is a union of at most (4p)2Np sets of the form:

Aj =

t ∈ [0, 1]2Np : max
1≤k≤2p
1≤`≤N

∣∣∣z` + tk` − t
j`,k

`

∣∣∣ ≤ rn

 , (3.77)

where j := (j`,k : 1 ≤ k ≤ 2p, 1 ≤ ` ≤ N) has the property that j`,k 6= k and where z` =
0 or x` − y`.

The following lemma estimates the Lebesgue measure of Tn. Here and throughout, λ` denotes
the Lebesgue measure on R` for all integers ` ≥ 1.

Lemma 3.8 For any positive even number m, all z1, . . . , zm ∈ R, every sequence {`1, . . . , `m} ⊆
{1, . . . ,m} satisfying `j 6= j, and for each r ∈ (0, 1), we have

λm

{
s ∈ [0, 1]m : max

k∈{1,...,m}
|zk + sk − s`k

| ≤ r

}
≤ (2r)m/2. (3.78)

We now continue with the proof of Lemma 3.7 and defer the proof of Lemma 3.8 to the end of
this section.

It follows from (3.76), (3.77) and Lemma 3.8 that

λ2Np(Tn) ≤ (4p)2Np (2rn)Np. (3.79)
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We proceed to estimate the integral in (3.71) over Tn. It is bounded above by∫
Tn

E

 2p∏
j=1

∣∣∣ψ̂(2nB0(x+ tj)− 2nB0(y + tj))
∣∣∣
 dt

=
∫

Tn

E [· · · ; Dn] dt +
∫

Tn

E [· · · ; Dc
n] dt =: I1 + I2,

(3.80)

where

Dn :=
{

max
1≤j≤2p

∣∣B0(x+ tj)−B0(y + tj)
∣∣ > 2−7n/8

}
. (3.81)

Since ψ̂ is a rapidly decreasing function, we derive from (3.79) that

I1 ≤ λ2Np(Tn) ψ̂(2n/8) P(Dn)

≤ (4p)2Np (2rn)Np exp{−c3,24n}
= cp

3,25
(pn)2Np 2−2Nnp exp{−c3,24n}.

(3.82)

Note that c3,24 > 0 can be chosen arbitrarily large, I1 can be made very small [In particular,
I1 is smaller than the last term in (3.83) below]. On the other hand, by the Cauchy-Schwarz
inequality, I2 is at most∫

Tn

P
{

max
1≤j≤2p

|B0(x+ tj)−B0(y + tj)| ≤ 2−7n/8

}
dt

≤ (λ2Np(Tn))1/2

×

[∫
[0,1]2Np

P2

{
max

1≤j≤2p
|B0(x+ tj)−B0(y + tj)| ≤ 2−7n/8

}
dt

]1/2

≤ cp
3,26

(pn)Np 2−Nnp [(2p)!]N/2
(
2−7np/2n2p + 2−7np/2|y − x|−2p

)1/2

≤ cp
3,27

(pn)2Np 2−Nnp−(7np/4)|y − x|−p.

(3.83)

In the above we have used (3.79) and (3.51) in Remark 3.5.

Combining (3.71), (3.75) with c3,23 large, (3.80), (3.82) and (3.83), we obtain∥∥J(x, y, n)
∥∥2p

2p
≤ cp

3,28
(pn)2Np 2−(N+(7/4))np |y − x|−p (3.84)

for all integers 1 ≤ p ≤ c3,29 n.

By using (3.84), the Borel-Cantelli lemma and the modulus of continuity of B, we can derive
(3.70) in the same way as in the proof of Theorem 3.3. �

Now we conclude the proof of Theorem 3.6. Thanks to Lemma 3.7, we have

2n

∫∫ ∣∣J(x, y, n)
∣∣µ(dx)µ(dy) ≤ c3,282

nn2N (2 + α)−n

∫∫
µ(dx)µ(dy)
|y − x|1/2

≤ c3,30 n
2N

(
2

2 + α

)n

.

(3.85)

This implies (3.68), and finishes our proof of Theorem 3.6. �

838



Proof [ Proof of Lemma 3.8] Given a sequence {`1, . . . , `m} satisfying `j 6= j, we introduce a
partition of the points {s1, . . . , sm} as follows:

We call (si , s`i
) a pair if |zi + si − s

`i
| ≤ r for some zi ∈ {z1, . . . , zm}. We say that a sequence

of pairs C = {(si1
, s

`i1
), . . . , (siτ

, s
`iτ

)} forms a chain if for every (sij
, s

`ij
) ∈ C, there exists

(s
i′
j
, s

`
i′
j

) ∈ C such that {sij
, s

`ij
} ∩ {s

i′
j
, s

`
i′
j

} 6= ∅. First, we start with the pair (s1, s`1) and

form the maximum chain C1. Let Γ1 be the collection of all si’s contained in some pairs of C1.
Secondly we pick a pair (sj , s`j

) from the remaining pairs, and let Γ2 be the collection of all si’s
in the maximal chain containing (sj , s`j

). Clearly, Γ1 ∩ Γ2 = ∅. Continue this procedure, we
get a partition Γ1, . . . ,ΓL of {s1, . . . , sm}, where L is determined by the sequence {`1, . . . , `m}.
Denote τi = #Γi, so that τi ≥ 2,

∑L
i=1 τi = m, and L ≤ m/2.

With the above partition, we can write

λm

{
s ∈ [0, 1]m : max

1≤k≤m
|zk + sk − s`k

| ≤ r

}
=

L∏
i=1

∫
[0,1]τi

1{|zk+sk−s`k
|≤r, sk, s`k

∈Γi} ds̄
i,

(3.86)

where s̄i ∈ [0, 1]τi denotes the vector formed by the elements in Γi.

In order to estimate the integral on [0, 1]τi (i = 1, . . . , L), we note that there is a natural tree
structure in each Γi. We pick any element si0 ∈ Γi as the root of the tree; its first generation
offspring are the elements si01 , . . . si0k1

∈ Γi such that for every j = 1, . . . , k1 either (si0 , si0j )
or (si0j , si0) is a pair. Similarly, we can find the offspring of each si0j , which are the second
generation offspring of si0 . Continuing this procedure, we obtain a tree associated to Γi. If this
tree has q generations, then we can rewrite the multiple integral over [0, 1]τi as a τi-layer iterative
integral by integrating the qth generation offspring at first, then the (q− 1)th generation and so
on. With the exception of the outside-most layer, each layer of integration contributes a factor
2r. Hence, we have ∫

[0,1]τi

1{|zk+sk−s`k
|≤r, sk, s`k

∈Γi} ds̄
i ≤ (2r)τi−1. (3.87)

Thus, it follows from (3.86) and (3.87) that

λm

{
s ∈ [0, 1]m : max

1≤k≤m
|zk + sk − s`k

| ≤ r

}
≤ (2r)

PL
i=1(τi−1) ≤ (2r)m/2. (3.88)

This finishes the proof of Lemma 3.8. �

Remark 3.9 When d > 1 and N > d/2, our proof of Lemma 3.4 breaks down. See (3.49),
where the integral on IBj can not be neglected anymore if d > 1. In this general case, we do not
know whether Theorems 3.3 and 3.6 remain valid.

The following question was raised by Kaufman (1989) for Brownian motion in R. It is still open,
and we reformulate it for the Brownian sheet.
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Question 3.10 Suppose N > d/2. Is it true that, with probability 1, B(F + t) has interior
points for some t ∈ [0, 1]N for every Borel set F ⊂ (0,∞)N with dimHF > d/2?

Xiao (1997) has proved that for the (N, d)-Brownian sheet B with N > d/2 and for any Borel
set F ⊆ (0,∞)N ,

dimPB(F ) = 2 Dimd/2F a.s., (3.89)

where Dimd/2F denotes the (d/2)-dimensional “packing-dimension profile” of F defined by Fal-
coner and Howroyd (1997).

In light of (3.89) and Theorem 3.3, we may ask the following natural question:

Question 3.11 Suppose N > d/2. Is it true that, with probability 1, for every Borel set
F ⊂ (0,∞)N ,

dimPB(F + t) = 2 Dimd/2F for almost all t ∈ [0, 1]N? (3.90)

4 Hausdorff and packing dimensions of the multiple points

Let k ≥ 2 be an integer. We say that x ∈ Rd is a k-multiple point of B if there exist k distinct
points t1, . . . , tk ∈ (0,∞)N such that x = B(t1) = · · · = B(tk). Let Mk be the set of k-multiple
points of B. Define Lk to be the random set,{

(t1, . . . , tk) ∈ (0,∞)Nk : ti’s are distinct and B(t1) = · · · = B(tk)
}
. (4.1)

This is the set of k-multiple times of B.

Rosen (1984) has proved that if Nk > (k − 1)d/2, then B has k-multiple points and

dimHLk = Nk − (k − 1)d/2 a.s. (4.2)

It is possible to show that this formula holds also for dimPLk. Rosen’s proof of (4.2) proceeds
by studying the regularity of the sample functions of the intersection local times of the sheet.

In the following, we determine the Hausdorff and packing dimensions of Mk. An earlier attempt
has been made in Chen (1994). But there are gaps in the proof of his Lemma 2.2 [see lines 2–4
and line -6 on page 57].

In Section 3 we have fixed the gaps in Chen’s proof. In particular, see Lemma 3.1 above. This
is a correct version of Chen’s Lemma 2.2. It is proved by appealing to the sectorial LND of the
sheet. Thus, we can prove the following.

Theorem 4.1 Let k ≥ 2 be an integer, and suppose that N ≤ d/2 and Nk > (k− 1)d/2. Then,

dimHMk = dimPMk = 2Nk − (k − 1)d a.s. (4.3)
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Proof L et L̃k denote the projection of Lk onto RN
+ ; in particular, note that Mk = B(L̃k). It

follows from Theorem 1.3 and (4.2) that

dimPMk ≤ 2Nk − (k − 1)d a.s. (4.4)

Since dimHMk ≤ dimPMk, it remains to show that

dimHMk ≥ 2Nk − (k − 1)d a.s. (4.5)

For this purpose, let I1, . . . , Ik be k pairwise disjoint subcubes of [ε, 1]N and let I =
∏k

j=1 Ij .
Define Mk(I) to be the collection of all x ∈ Rd for which there exists distinct times t1, . . . , tk ∈ I
such that x = B(t1) = · · · = B(tk). Thus, Mk(I) are the k-multiple points of B which correspond
to time-points that are in I. The argument in Chen (1994), coupled with our Lemma 3.1 in
place of Chen’s Lemma 2.2, correctly implies that P{dimHMk(I) ≥ 2Nk − (k − 1)d} > 0. On
the other hand, the independent increment property of the Brownian sheet implies a zero-one
law for dimHMk; see pages 110 and 115 of Rosen (1984). Whence, (4.5) follows. �

Question 4.2 Are there nice, exact Hausdorff and packing measure functions for Mk and Lk?
This question is closely related to the regularity, in time, of the intersection local times of the
sheet. Such regularity theorems are likely to be interesting in their own right. For such results
on Brownian motion, see LeGall (1987, 1989).
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