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1 Introduction

The zero-range process is a system of interacting particles moving in a discrete lattice A,
that here we will assume to be a subset of Z?. The interaction is “zero range”, i.e. the
motion of a particle may be only affected by particles located at the same lattice site. Let
¢ : N — [0,400) be a function such that ¢(0) = 0 and ¢(n) > 0 for every n > 0. In
the zero-range process associated to ¢(-) particles evolve according to the following rule:
for each site © € A, containing 7, particles, with probability rate ¢(n,) one particle jumps
from x to one of its nearest neighbors at random. Waiting jump times of different sites are
independent. If ¢(n) = An then particles are independent, and evolve as simple random
walks; nonlinearity of ¢(-) is responsible for the interaction. Note that particles are neither
created nor destroyed. When A is a finite lattice, for each N > 1, the zero-range process in
A restricted to configurations with N particles is a finite irreducible Markov chain, whose
unique invariant measure vy is proportional to

II 1 (1.1)

' b
zeA C(T]x) ’
where

1 forn=0
c(n)! = { c(n)e(n —1)---¢(1) otherwise.

Moreover the process is reversible with respect to vy’

If the function n — c¢(n) does not grow too fast in n, then the zero range process can
be defined in the whole lattice Z?. In this case the extremal invariant measures form a one
parameter family of uniform product measures, with marginals

(1.2)

where p > 0, Z(a(p)) is the normalization, and a(p) is uniquely determined by the condition
f4o[N:] = p (we use here the notation u[f] for [ fdu).

In this paper we are interested in the rate of relaxation to equilibrium of zero-range
processes. In general, for conservative systems of symmetric interacting random walks in a
spatial region A, for which the interaction between particles is not too strong, the relaxation
time to equilibrium is expected to be of the order of the square of the diameter of A, as it is
the case for independent random walks. On a rigorous basis, however, this result has been
proved in rather few cases. For dynamics with exclusion rule and finite-range interaction
(Kawasaki dynamics) relaxation to equilibrium with rate diam(A)? has been proved (see
[7, 2]) in the high temperature regime. For models without the exclusion rule, i.e. with a
possibly unbounded particle density, available results are even weaker (see [5] and [9]). Zero-
range processes are special models without the exclusion rule. In some respect zero-range
processes may appear simpler than Kawasaki dynamics: the interaction is zero-range rather
than finite-range and, as a consequence, invariant measures have a simpler form. However,
they exhibit various fundamental difficulties, including:
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e due to unboundedness of the density of particles various arguments used for exclusion
processes fail; in principle the rate of relaxation to equilibrium may depend on the
number of particles, as it actually does in some cases;

e there is no small parameter in the model; one would not like to restrict to “small”
perturbations of a system of independent particles.

In [5] a first result for zero-range processes has been obtained. Let SV/J\V be the Dirichlet

form associated to the zero-range process in A = [0, L]¢ N Z¢ with N particles. Then, under
suitable growth conditions on ¢(-) (see Section 2), the following Poincaré inequality holds

vy L 1 < CL2E N (1. ), (1.3)

where C' may depend on the dimension d but not on N or L. Moreover, by suitable test
functions, the L—dependence in (1.3) cannot be improved, i.e. one can find a positive
constant ¢ > 0 and functions f = fy 1, so that v{'[f, f] > cL?*€ w(f, ) for all L, N. In other
terms, (1.3) says that the spectral gap of € N shrinks proportlonally to LQ, independently of
the number of particles N. It is well known that Poincaré inequality controls convergence
to equilibrium in the L2(vY)-sense: if (SA);>¢ is the Markov semigroup corresponding to the
process, then for every function f

(st = A1) < e (- gz ) A 10 - A1), (1.4

Poincaré inequality is however not sufficient to control convergence in stronger norms, e.g.
in total variation, that would follow from the logarithmic-Sobolev inequality

Ent,x (f) < s(L, N)Ex (/. /1), (1.5)

where Ent,~(f) = vy YIflog f]1 — vi[f]log vy’ [f]. The constant s(L, N) in (1.5) is intended
to be the smallest possible, and, in principle, may depend on both L and N.

Our main aim is to prove that s(L, N) < CL? for some C' > 0, i.e. the logarithmic-
Sobolev constant scales as the inverse of the spectral gap. This is the first conservative
system with unbounded particle density for which this scaling is established (see comments
on page 423 of [4]). It turns out that the proof of this result is very long and technical, and
it roughly consists in two parts. In the first part one needs to show that

s(L) :=sup s(L, N) < +o0, (1.6)
N>1

i.e. that s(L, N) has an upper bound independent of N, while in the second part a sharp
induction in L is set up to prove the actual L? dependence. For this induction to work one
has to choose L sufficiently large as a starting point, and for this L an upper bound for
s(L, N) independent of N has to be known in advance. Note that for models with bounded
particle density inequality (1.6) is trivial.

This paper is devoted to the proof of (1.6), while the induction leading to the L? growth
is included in [3]. The proof of (1.6) is indeed very long, and relies on quite sharp estimate
on the measure vy . After introducing the model and stating the main result in Section 2, we
devote Section 3 to the presentation of the essential steps of the proof, leaving the (many)
technical details for the remaining sections.
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2 Notations and Main result

Throughout this paper, for a given probability space (Q,F, ) and f : Q — R measurable,
we use the following notations for mean value and covariance:

_ / fdu,  ulf.g) = ul(f — ulfN)(g — ulg)]

and, for f >0,
Ent,(f) := p[flog f] — u[f]log p[f],

where, by convention, 0log 0 = 0. Similarly, for § a sub-o-field of &F, we let u[f|G] to denote
the conditional expectation,

ulf, glS] = pl(f — plfIS)(g — ulglS])IS]

the conditional covariance, and

Ent,(f[G) := p[flog f|S] — u[f]S]log u[f|G]

the conditional entropy.

If A C Q, we denote by 1(x € A) the indicator function of A. If B C A is finite we
will write B CC A. For any z € R we will write |z| := sup{n € Z : n < z} and
[x] :=inf{n € Z:n > z}.

Let A be a possibly infinite subset of Z?, and Q) = N* be the corresponding configuration
space, where N = {0,1,2,...} is the set of natural numbers. Given a configuration n € Q,
and x € A, the natural number 7, will be referred to as the number of particles at x.
Moreover if A’ C A na will denote the restriction of n to A’. For two elements o,& € Qy,
the operations o 4 £ are defined componentwise (for the difference whenever it returns an
element of Q4). In what follows, given = € A, we make use of the special configuration §7,
having one particle at x and no other particle. For f: Qy — R and =,y € A, we let

Ouy f (1) = f(n = 67 +0%) — f(n).

Consider, at a formal level, the operator
TEAN y~x

where y ~ z means |xr —y| = 1, and ¢ : N — R, is a function such that ¢(0) = 0 and
inf{c(n) : n > 0} > 0. In the case of A finite, for each N € N\ {0}, L, is the infinitesimal
generator of a irreducible Markov chain on the finite state space {n € Q, : 7, = N}, where

N = an

FASIAN

is the total number of particles in A. The unique stationary measure for this Markov chain
is denoted by vy and is given by

Al = g H 22)
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where ¢(0)! :=1, ¢(k)! :==¢(1) - ---- c(k), for k> 0, and Z}’ is the normalization factor. The
measure v\ will be referred to as the canonical measure. Note that the system is reversible
for vy, i.e. Ly is self-adjoint in L2(vY) or, equivalently, the detailed balance condition

c(na)vx [{n}] = e(ny + 1) [{n — 6z + 0, }] (2.3)

holds for every x € A and n € 2, such that n, > 0.

Our main result, that is stated next, will be proved under the following conditions.

Condition 2.1 (LG)

sup |c(k + 1) — ¢(k)| := a1 < +o0.
keN

As remarked in [5] for the spectral gap, N-independence of the logarithmic-Sobolev constant
requires extra-conditions; in particular, our main result would not hold true in the case
c(k) = c1(k € N\ {0}). The following condition, that is the same assumed in [5], is a
monotonicity requirement on ¢(-) that rules out the case above.

Condition 2.2 (M) There ezists ko > 0 and ay > 0 such that c(k) — c(j) > ag for any
jeNand k > 5+ kg.

A simple but key consequence of conditions above is that there exists Ag > 0 such that

Atk < c(k) < Agk for any k € N. (2.4)

In what follows, we choose A = [0, L]¢ N Z<. In order to state our main result, we define
the Dirichlet form corresponding to £, and v)':

Ex(f9) = —vi [fLagl = ZZVA (1) Dy f (1) Dryg ()] (2.5)

Theorem 2.1 Assume that conditions (LG) and (M) hold. Then there exists a constant
C(L) > 0, that may only depend on ay,ay, the dimension d and L, such that for every choice
of N>1,L>2and f:Qx — R, f >0, we have

Ent,y () < C(L)Ey (VI VT). (2:6)

3 Outline of the proof

For simplicity, the proof will be outlined in one dimension. The essential steps for the
extension to any dimension are analogous to the ones for the spectral gap, that can be found
in [4], Appendix 3.3. However, in the most technical and original estimates contained in this
work (see Sections 7 and 8), proofs are given in a general dimension d > 1.
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3.1 Step 1: duplication

The idea is to prove Theorem 2.1 by induction on |A|. Suppose |A| = 2L, so that A = AjUA,,
|A1| = |A2| = L, where Ay, Ay are two disjoint adjacent segments in Z. By a basic identity
on the entropy, we have

Ent,~(f) = vy [Entum-ml](f)] + Ent, v (v [1774,])- (3.1)

Note that v{'[-[7,,] = Vzll\l ® V/]\\;_ml. Thus, by the tensor property of the entropy (see [1],
Th. 3.2.2):

v [Ent,y i o f)} <o [EntyzAl (f) + Ent voay, ()] (3.2)

l/A2

Now, let s(L, N) be the maximum of the logarithmic-Sobolev constant for the zero-range
process in volumes A with |A| < L and less that N particles, i.e. s(L,N) is the smallest

constant such that
Entl’X(f) < S<L7 N)EVX(\/?J \/?)
for all f >0, |A| < L and n < N. Then, by (3.2),

N [EntV}\V[-\ﬁM](f)] < s(L,N)WwY EVZAI(\/?,\/?)—I—EViv—ﬁAl(\/?a\/?)
= S(L7N>8V/]\V(\/?7\/?>' (3'3)

Identity (3.1) and inequality (3.3) suggest to estimate s(L, N) by induction on L. The
hardest thing is to make appropriate estimates on the term Ent,~ (v [fMa,]). Note that
this term is the entropy of a function depending only on the number of particles in A;.

3.2 Step 2: logarithmic Sobolev inequality for the distribution of
the number of particles in A,

Let

7 (n) = ~(n) = vy [fia, = nl.
~7(+) is a probability measure on {0, 1, ..., N} that is reversible for the birth and death process
with generator

y(n+1)
v(n)

(n—1)

P - - e 3a)

Ap(n) = A1 (p(n+1) —p(n)) +
] |

and Dirichlet form

D(p,0) = = (0, A®) 127 = Y _[v(n) Ay(n = D](p(n) — ¢(n — 1))

n=1

Logarithmic Sobolev inequalities for birth and death processes are studied in [8]. The non-
trivial proof that conditions in [8] are satisfied by v(n), leads to the following result.
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Proposition 3.1 The Markov chain with generator (3.4) has a logarithmic Sobolev constant
proportional to N, i.e. there exists a constant C > 0 such that for all ¢ > 0

Ent, (¢0) < CND(V/B, V/5).

We now apply Proposition 3.1 to the second summand of the r.h.s. of (3.1), and we
obtain

2

Bty (v /17, ]) < ONZ ) st = ] [\ T8, =l = A i, == 1

n) Ay(n—1) N N )

=ON INAL ,=nj—v fin =n—1])", (3.5

Z Nfiml—n1vVA[f|nA1—n—u(A[’A | = vnlf i )", (3.5)
where we have used the inequality (v/z — \/—) < xx\};) L x,y > 0.

3.3 Step 3: study of the term vy [f|7,, = n] — vy [f|Tx, = n — 1]

One of the key points in the proof of Theorem 2.1 consists in finding the “right” representa-
tion for the discrete gradient vy [f|77,, = n] — vy [f|7x, = n — 1], that appears in the r.h.s.
of (3.5).

Proposition 3.2 For every f and everyn =1,2,..., N we have
A1l =] = [l =n—1] = 20D N IS e, )0, |7, =m 1
1 1 V(n) nlL = Yy’=y 1
YyEA2
A S D h()e(ny) [Ty, =n—1] |, (3.6)
TEAY
yEAg
where 41
h(n) = n :
cn+1)

Moreover, by exchanging the roles of Ay and As, the r.h.s. of (3.6) can be equivalently written
as, for everyn —0,1,...,N —1,

(N —n) 1 _
TN nr D L | | 2 Pmeli)dnd s, =
o

+ oy | £ hiny)e(n)

TEAY
yEAg

ﬁAl =n . (37)
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The representations (3.6) and (3.7) will be used for n > & and n < & respectively. For
convenience, we rewrite (3.6) and (3.7) as

VA Lf i, = n] — v [T, = n— 1] = A(n) + B(n), (3.8)
where
7%)1) iw]\\f [Z;ﬁ!gﬁé h(n2)e(ny)Oya fTa, = n — 1] for n > %
A(n) = (3.9)
_v(szfji;fpl) (N—nl+1)LV1]\V [Zﬁﬁ; h(ny)c(Ne) Oy f T, = n] for n < %,
and
v(vzn)l ~v [ﬁ ZreAé h(1.)c(ny) Ny, =N — 1] for n > %

(3.10)
__a9N—-n)
Y(N—n+1) (N— n+1

F. 2 seem hny)e(ine)

[

B(n) := [

M, :n] for n <

Thus, our next aim is to get estimates on the two terms in the r.h.s. of (3.8). It is useful
to stress that the two terms are qualitatively different. Estimates on A(n) are essentially
insensitive to the precise form of ¢(-). Indeed, the dependence of A(n) on L and N is of the
same order as in the case ¢(n) = An, i.e. the case of independent particles. Quite differently,
the term B(n) vanishes in the case of independent particles, since, in that case, the term
ZzeAl h(n.)c(ny) is a.s. constant with respect to v}’ [y, = n — 1]. Thus, B(n) somewhat

depends on interaction between particles. Note that our model is not necessarily a “small
perturbation” of a system of independent particles; there is no small parameter in the model
that guarantees that B(n) is small enough. Essentially all technical results of this paper are
concerned with estimating B(n).

3.4 Step 4: estimates on A(n)
The following proposition gives the key estimate on A(n).

Proposition 3.3 There is a constant C' > 0 such that

A¥(n) < CTL(VA [f 174, :n]\/yf\v[fmAl :n—l])
%8"%["%:””(\/?’ VI + 8v§[-\ﬁA1=n](\/?7 V)

Remark 3.4 Let us try so see where we are now. Let us ignore, for the moment the term
B(n), i.e. let us pretend that B(n) = 0. Thus, by (3.8) and Proposition 3.3 we would have
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CL?
WA f s, = 1) = N [fli, =n —1))" < S (WY [f17s, = 0] V oy [T, = n — 1))

2§$55228umehn—ﬂ(y[f,w[f)+_8 Hm\,n V/— V/_ 311

Inserting (3.11) into (3.5) we get, for some possibly different constant C,

Bt (3 (f17x,)) < CL2E,y (VE VD), (312)

where we have used the obvious identity:

A Eutis VTV = e (VIAVD. (3.13)

that holds for any o-field G. Inequality (3.12), together with (3.1) and (3.3) yields
s(2L,N) < s(L,N) + CL*. (3.14)

Thus, if we can show that
sup s(2, N) < +o0, (3.15)
N

(see Proposition 3.7 next) then we would have

sups(L, N) < CL?
N

for some C' > 0, i.e. we get the exact order of growth of s(L, N). In all this, however, we
have totally ignored the contribution of B(n).

3.5 Step 5: preliminary analysis of B(n)

We confine ourselves to the analysis of B(n) for n > & 5, since the case n < 5 is identical.
Consider the covariance that appears in the r.h.s. of the ﬁrst formula of (3 10). By elementary

properties of the covariance and the fact that v} [-[7,,] = l/Al ® I/A o ', we get

v | £ h(n)e(ny)| Ty, =n—1] = v [Z h(ns)va "t [f, > C(ny)”

TEAY TEA yEA2
yEAQ

+vy, [1//]\\; nHf Z h(n ] vy [Z c(ny)] . (3.16)
TEAL yEA2

It follows by Conditions (LG) and (M) (see (2.4)) that, for some constant C' > 0, h(n,) < C
and c(n,) < Cn,. Thus, a simple estimate on the two summands in (3.16), yields, for some
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2
20y — o
B*(n) < % E,//J\\/';nﬂ szl[f]a Z ()| +
yEA2
2 2
LISV

Thus, our next aim is to estimate the two covariances in (3.17).

3.6 Estimates on B(n): entropy inequality and estimates on mo-
ment generating functions

By (3.17), estimating B?(n) consists in estimating two covariances. In general, covariances
can be estimated by the following entropy inequality, that holds for every probability measure
v (see [1], Section 1.2.2):

vif,gl =viflg—rg))] < @logu [et(g*”[g])] + %Enty(f% (3.18)

where f > 0 and ¢ > 0 is arbitrary. Since in (3.17) we need to estimate the square of a
covariance, we write (3.18) with —¢ in place of g, and obtain

Wlf,gll < @ log (v [e16=0] v [~ 6=9]) 1~ B, ) (3.19)

Therefore, we first get estimates on the moment generating functions v [eit(g_”[gl)} , and then
optimize (3.19) over ¢ > 0.

Note that the covariances in (3.17) involve functions of 7, or n,. In next two proposi-
tions we write A for A; and Ay, and denote by N the number of particles in A. Their proof
can be found in [3].

Proposition 3.5 Let x € A. Then there is a constant Ay, depending on L = |A| such that
for every N >0 and t € [—1,1]

N [et("’(nz)_”mc("m”)] < AN (3.20)

and
N [etN(h(nz)fu}\V[h(nz)])} < A, A (NEHVIH) (3.21)

Using (3.18), (3.19) and (3.21) and optimizing over ¢t > 0, we get estimates on the covariances
appearing in (3.17).

Proposition 3.6 There exists a constant C, depending on L = |A| such that the following
mequalities hold:

vy [f,ZC(nm)] < CLNvy[f]Ent,y (f), (3.22)

TEA
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< CoN WA 1] + Entyy ()] (3.23)

vy [f,zh(m)

TEA

Inserting these new estimates in (3.17) we obtain, for some possibly different C,

2

B*(n) < %VA [fs, =n —1] (N Et [Entyj\"—"ﬂ(f)]

(3.24)
+ﬂﬂL<vmrw4HWMWm%mD>
In order to simplify (3.24), we use Proposition 7.5, which gives
n cn-h o Cn (3.25)

C(N-n+1)~ ~(n) ~ N—-n+1
for some C > 0. It follows that

72(n—1)]\7—n—|—1< C? <7(n—1)C’3
72 (n) n? " N—-n+17 ~(n) n

and
Pn- 1) (N —nt1)? _ C?

72 (n) n? n’

Thus, (3.24) implies, for some C, > 0 depending on L, recalling also that n > %

() Ay — 1) : (N
N i = WV A i, =1 ) S Gl =D (AU =~

T [Bntyy e (0] 0 [Bntg ()] ). (3:26)

2

Now, we bound the two terms

Ent -1 (f) and Ent,~-nii(f)

VAo

by, respectively,
S(Nv L)nyzl(\/?, \/?) and s(N, L>8y1]\‘]2*"+1(\/?7 \/?)7

and insert these estimates in (3.6). What comes out is then used to estimate (3.5), after
having obtained the corresponding estimates for n < % Recalling the estimates for A(n),
straightforward computations yield

Ent,x (v [£17a,)) < Cr&u (VI V/F) + Covd [f] + Cus(N, L)Ex (VN F), (327)

for some C', > 0 depending on L. Inequality (3.27), together with (3.3), gives, for a possibly
different constant Cr > 0

Ent,y (f) < CLEN (VI A F) + CLv [f) + Crs(N, L)E, v (v F, /1) (3.28)
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To deal with the term vy [f] in (3.28) we use the following well known argument. Set
f=KF- V,{V[\/f])z By Rothaus inequality (see [1], Lemma 4.3.8)

Ent,x (f) < Ent,x (f) + 20 [v/f, /1.

Using this inequality and replacing f by f in (3.28) we get, for a different C7,
Ent,y(f) < Crén (VI AP+ Cord [VFA/fl + Cos(N,L)E,w (v 1,/ ])
< D&y (VFVF) + Dis(N, L) (v F V) (3.29)
where, in the last line, we have used the Poincaré inequality (1.3). Therefore
s(2L, N) < Dy[s(L, N) + 1], (3.30)
that implies (2.6), provided we prove the following “basis step” for the induction.

Proposition 3.7
sups(2, N) < +o0
N

The proof of Proposition 3.7 is also given in Section 8. As we pointed out above, (3.30) gives
no indication on how s(L) = supy s(N, L) grows with L. The proof of the actual L*-growth
is given in [3].

. N J— _ J— _ .
4 Representation of vy’ [f|7,, = n] — v, [f|r, = n — 1]:
proof of Proposition 3.2
We begin with a simple consequence of reversibility

Lemma 4.1 Let A = Ay U Ay be a partition of A, N € N. Define y(n) := vy [y, =n| and
Teyf = Onyf + f. Then:

(1) N[ el
O [cmﬁlfyrf

ﬁAlzn—l} for any x € Ay and y € As
vy [f1(n, > 0)[7,, =n] =

vy [—C(i](:i)l)Tyzf T, = n] for any x,y € Ay

for any f € L'(vY) andn € {1,...,N}.
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Proof. Assume that y € Ay. We use first the detailed balance condition (2.3), then the
change of variables { — £ + d, — 0, to obtain

Dee,so Va1 = ELF(OL(Ey, =n)

VA s, = 1]
Do 1= €= 0+ 0, R (O1E,, =n)
VA [771\1 = n|

(n=1) N | clny
) YA [C(n 1 Tye

N [fl(nx > 0)[7y, = 77/} =

Mp, = n—l] iteel

vy [c(n b5 Tyef|TIa, = } ifx e,

Lemma 4.2 Let A = Ay U A, be a partition of A, N € N. Define y(n) := vy [y, = n] and
h:N—Rbyh(n):=Mn+1)/c(n+1). Then:
ﬁAl =n—- 1]) Y

(4.1)

v Lf s, = 0] = v [f [T, = n —1]

= M (V/]\V [C(ny) Z h(nx)ayxf

+ vy
ny(n) ey

fa C(Uy) Z h(nx>

TENA

ﬁAlzn—l

forany f € L*(vY), y € Ay andn € {1,...,N}.

Proof. We begin by writing

1 1
Vf\v[f\ml =n] = T Z V1]\V [nxaxyflﬁm = n} + n Z UJJ\V [nxTxyf‘ﬁAl = n] .

z€EA z€EA

By Lemma 4.1 we get

vy [nxaxyﬂﬁm - n} - 7(:(;)1)%]&\[ C(;(nj—)l) (e + 1)y fMa, =n — 1]
-1
- %Vﬁ\v [C(ny)h(nm)éya:f‘ﬁm =n- 1] ;
and similarly
y(n—1)

vA [e(n)h(ne) fliia, =n—1].

m:n_lb.

’//]\V [nxTxnyAl = ”} =
Thus

VA [f T, = 7l

+ V,{V
ny(n) e

cm)f S hin)

TEN

My, =n—1

o937



Letting f = 1 in this last formula we obtain

n = 1) x [cmy) S h(n.)

ny(n) i

ﬁAlzn—ll =1

that implies

ﬁm:n—l

=1 [c(ny)f S hn.)

TEA

ﬁAl:n_l]

= [, = 1 20 et 3 i

my(n) e
and, therefore,

VA Fa, =nl = vy [fliia, =1 —1]

_(n-1) (fov [C(ny) Z h(12)Oya f

+ VIJXV
ny(n) ey

My, =n—1

mlznq]).

fv C(le) Z h(%)

zEN|

Proof of Proposition 3.2. Equation (3.6) is obtained by (4.1) by averaging over y € As.
[

5 Bounds on A(n): proof of Proposition 3.3
Proof of Proposition 3.3. The Proposition is proved if we can show that for 1 < n < N/2

CL?
N —n

A’(n) < (V/]\V[fmm =n] V[T, =n— 1])

X [V(n _ 1) eu[]\\’[~\ﬁ,\1:n—1](\/?’ \/?) + 81/}\\’['\%1:”](\/?’ \/?)] ’

v(n)

while for n > N/2

C 2
A(m) < T Ry, =V R [y, = 1)

| e VIV + St - VE VD] 5)

v(n)
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We will prove only this last bound being the proof of the previous one identical. So assume
n > N/2 and notice that 0y, f = (Oyue/F)(VF + Tyev/[). By Cauchy-Schwartz inequality

2

1n—=1 y
{W[ > ()0

€A1, yEN2
< [%] By [Z ) (8 F) [n, = - 1]
SN [ S ) (VF 1T fin, = - 1]
€A1, yEA

x V/]\V[ Z c(ny) (f + 7ya f)

€A1, yEA2

Ty, =1 — 1] (5.2)

where a := ||h|| 100 ((2.4) implies boundedness of h). In order to bound the last factor in
(5.2) we observe that by Lemma 4.1

A Telmdrind i, = =1 = =2 (et s, =],

so that

Vj\v[ Z c(ny) (f + Tyaf)

€A1, yEN2

ﬁAlzn—ll

= 5 (A i, =01+ =2 e, =]

n—1
z€A1,yEA2 7(

n)nL o ,.—
T [, =]},

where the fact ¢(k) < ak (see (2.4)) has been used to obtain the last line. This implies that

Sa{(N—n—Fl)LVf\V [f|TA, =n—1] +

1n—1) y _
Yn—1)(N—-n+1)L yr,- e
Sa{ NESHY; Vp [f‘nAl—n—l]—Fl/A [f‘nAl—n]}

< By (VY [f]7a, = n — 1] VY [f]7is, = 7])
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where in last step we used Proposition 7.5. By plugging this bound in (5.2) we get

2

< By (V/]\V [f|ﬁA1 =n- 1} 22N [f‘ﬁ/h :n})

yn—1) y 2
X WVA [ Z c(ny) h(ne) (@;xﬁ)

€A1, yEN2

z€A1,yEA2

Ty, =N — 1] . (5.3)

Now we have to bound the last factor in the right hand side of (5.3). For z,y € Z the path
between x and y will be the sequence of nearest-neighbor integers v(x,y) = {20, 21, .., 2}
of Z such that for i = 1,...,r |z;1 — z;| = 1, for i # j z; # j, 20 = x and z, = y. Obviously,
for z,y € A, we have r = |y(z,y)| < 2L. Now let such a y(x,y) be given. Notice that if
ny > 1, we can write

aw\/_ = TZ ( 2kt 12k \/?) (77 - 527‘ + 5zk+1)'

1
k=0

By Jensen inequality, we obtain

<
[y

c(n,) (ayxf ) ) < 2Le(n,) (azmzk \/})2 (=62 + 0y )

0

>
Il

SO

%uﬁ[ S ) (0v/F)

rEA1,yEA2

27 - 1 Z ZVA [ 77y ) <Tzrzk+lazk+1zk \/?>2 n

rEN1,yEAg k=0

— 2a7 m- 1 Z ZVA [ 77y (Tyzk+1azk+1zk \/?>2 n

zEA1,yEA2 k=0

ﬁAl:n_l]

where again a = ||h|| ;0. By Lemma 4.1

V1]\V [C(Uy) <Tka+1azk+1zk \/?)2

ﬁAl:n_l]

Na, = n} if zp € Ay

n 2
'y?n(f)l) V/]\V [C(n2k+1 ) (a’«’k+12k \/7)

V/]\V [0(772%“) (8Zk+1zk \/7)2‘ ﬁAl =N - 1i| if Zk+1 € A2
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which implies

’7(71 — 1) N 2 B - B
ny(m) [Z ()01 (00/ ) [7a, = 1]
2 2
< Fa Z { Z V/]XV [C(nzk+1) (azk+1zk \/?) ﬁAl =n—1|+
zeA1,yeNs \ kizppi1€A
M N 2
")/(n) k:zI;IGAz . IC(UZIH—I) <8Zk+1z}€ \/?> nAl - 1] }
2aL?
22 5 a0 =)
i
r—y|=

By plugging this bound in (5.3) we get (5.1). ]

6 Rough estimates: proofs of Propositions 3.5 and 3.6

Proof of Proposition 3.5. We begin with the proof of (3.20). Denote by QY the set of
configurations having N particles in A. Then

Al = 2 T o

)’
J:EACnx ’

where Z} is a normalization factor. It is therefore easily checked that

N—-1
Z N-1

c(na)vx [{n}] = 2V A {n— 0.} (6.1)
for any x € A. Thus, for every function f,
N N
Vp [C(nax)zﬂ - ZN Vp [sz]a (62>
A
where o,f(n) = f(n+ 0,). Letting f = 1 in (6.2) we have Zg[]gl = v¥[c(n.)], and so we
rewrite (6.2) as
vy le(na) ] = vy le(na)lvy ™ [ow f]- (6.3)

Now, let t > 0, and define
p(t) = vy [e ]
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We now estimate o(t) by means of the so-called Herbst argument (see [1], Section 7.4.1). By
direct computation, Jensen’s inequality and (6.3), we have

| = v [t log v} [efen)]
0] =t fe(m) o [e"]

= AR (A ) o ). (6

te'(t) — p(t)logp(t) = tvy [c(n,

IA
<
>z
o)
—~
=
8

We now claim that, for every x € Aand 0 <t <1
}V/]\V’I [etc("”l)} — vy [etc("z)ﬂ < Optvd [etc(”z)] , (6.5)

for some constant C, depending on L but not on N. For the moment, let us accept (6.5), and
show how it is used to complete the proof. By (6.4), (6.5) and the fact that v} [c(n,)] < CN/L
we get

o' (t) — o(t) log p(t) < CLNt*p(t),
log (t)

for 0 <¢ <1 and some possibly different C'y. Equivalently, letting ¥ (t) = =57=,

'(t) < CpN. (6.6)
Observing that limgo () = v [c(n.)], by (6.6) and Gronwall lemma we have
(t) < vy [e(na)] + CLNE,

from which (3.20) easily follows, for ¢ > 0.
We now prove (6.5). We shall use repeatedly the inequality

e — e¥] < [z — gleller, (6.7)

which holds for z,y € R. Using (6.7) and the fact that, by condition (LG), ||c(n, + 1) —
c(M2)]|oo < a1, we have

}Vj\v_l [etc(nz—i—l)} . y/]\V—l [etc(nz)” < (Iltealtl//]\v_l [etc(nz)] ’

from which we have that (6.5) follows if we show
N [etc(”f)] N [etc("z)” < Crtvy [etc(”z)} : (6.8)

At this point we use the notion of stochastic order between probability measures. For two
probabilities 4 and v on a partially ordered space X, we say that v < p if [ fdv < [ fdu
for every integrable, increasing f. This is equivalent to the existence of a monotone coupling
of v and p, i.e. a probability P on X x X supported on {(x,y) € X x X : z < y}, having
marginals v and p respectively (see e.g. [6], Chapter 2).

As we will see, (6.8) would not be hard to prove if we had v ~! < v¥. Under assumptions
(LG) and (M) a slightly weaker fact holds, namely that there is a constant B > 0 independent
of N and L such that if N > N’ 4 BL then vy’ < v} (see [5], Lemma 4.4). In what follows,
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we may assume that N > BL. Indeed, in the case N < BL there is no real dependence on
N, and (3.20) can be proved by observing that

2
[ <1+ %I//]\V [c(me), e, OIS <1 4 Oy < O < (N
as 1 < N < BL ((3.20) is trivial for N = 0). For N > BL we use the rough inequality

}Vj\v_l [etc(nz)} . V1]\V [etc(nm)” < ’V/]\V—l [etc(nz)} /]Q/ 1-BL [etc(nz)”
+ ‘I//ZQ[ [etc("z)} y V1oL [etc(”z)} ‘ (6.9)

Denote by @ the probability measure on N* x N* that realizes a monotone coupling of VN !

and vy 7PL. In other words, Q has vy " and vy "% as marginals, and

QU &) : ne > & Ve € A} = 1. (6.10)
Using again (6.7)
|V/]\V_1 [etc(nx)} o V/]XV_l_BL [etc(nx)]‘ _ }Q [etc(nx) o etc(fx)H

< 1Q [|e(ne) — (&) el eEleieti)] (6.11)

Since, Q-a.s., 7, > & Vo € A and 7, = &, + BL, then necessarily n, < &, + BL Vo € A.
Thus, it follows that, for some C' > 0,

le(ne) — (&) £ CL Q-as.
Inserting this inequality in (6.11), we get, for ¢ < 1 and some Cf, > 0,
A [eheln)] — NTBE [t | < Oyt [ere)] (6.12)
With the same arguments, it is shown that
i [e'm)] — p I BE [etete)] | < Oty [efe)] (6.13)
In order to put together (6.12) and (6.13), we need to show that, for 0 < ¢ <1,
iVt [etc(”””)] < Crvy [ete("z)} : (6.14)

for some L-dependent C'f. By condition (LG) and (6.3) we have

€ta1

y{l\V—l [etc(nz)} < eta1y11XV—1 [etc(nﬁl)} _ N [C(nx)etcwz)] < C’LV,]\V [etC(nz)] 7

vy [e(n.)] ™

where, for the last step, we have used the facts that, for some ¢ > 0, v{[c(n,)] > €
c(n.) < e N v{-as. (for both inequalities we use (2.4)).

hIZ

and

The proof (3.20) is now completed for the case ¢t > 0. For t < 0, it is enough to observe
that our argument is insensitive to replacing c(-) with —c(-).
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We now prove (3.21) The idea is to use the fact that the tails of N(h(n,) — v¥[h(n.)])
are not thicker than those of ¢(n,) — v [c(n,)]. Similarly to (6.1), note that

ZN+1
A (o} = Zh (o + D0+ 61 (6.15)
which implies
N Z/]\V+1 N+1

Letting f =1 in (6.16) we obtain

Zott L

that, together with the previously obtained identity Zg; - v [e(n,)], yields
A
N+1
N
vp [h(ne)] = —s - (6.17)
Lvy e(n,)]
Thus
Ny +1 N+1 ‘
h(ng) — v [h(n,)]| = —
’ ( ) A [ ( )H C(nx + 1) LV1]\V+1[C<7]x)]
1 N+1
< e+ 1) |e(ne + 1) = ¥ e )] + e(ne + 1 I+1——}

N +1

< § [l + 1 = A el + e+ 1= FH| 09

where, in the last step, we use the fact that v} "'[c(1,)] > eN/L for some ¢ > 0. In (6.18) and
in what follows, the L-dependence of constants is omitted. For p > 0, let ¢(p) be obtained
by linear interpolation of ¢(n),n € N. Observe that, by (1.3) with f(n) = 7.,

A Mo, 1a) < CLPvy [e(n,)] < CLN

for some C, > 0 that depends on L. Thus, by Condition (LG)

N e
Ne — ZH S C1 V/]\V[nzanx] S C\/N, (619>

for some C' > 0, possibly depending on L. From (6.18) and (6.19) it follows that, for some
C>0

V¥ Telm)] — o(N/L)| < errl [

NIh(nz) = vi [h(no)]] < € +CVN. (6.20)

N
TNz i3

Moreover, from Condition (M) it follows that there is a constant C' > 0 such that

0= | = e~ v/ + ).
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Thus, for every M > 0 there exists C' > 0 such that
le(ne) = vi [e(no)]| < M = Nih(n,) = vy [h(n.)]| < CM +CVN. (6.21)

It follows that, for all M > 0

vy [N (h(na) = vy Th(na))) > CM + CVN| < [Jema) = v Te(ns)]| > M]
< v lelma) = v Te(ns)) > M)+ X v e(na)] - elni) > M. (6.22)

Note that (6.22) is trivially true for M < 0, so it holds for all M € R.
Now, take ¢ € (0, 1]. We have

+oo
vy [e“V(h("w)—Vf W"r”)} =t / vy [N(h(1:) — vy [h(na)]) > 2] dz

—00

< o[ et~ Retn) > 5 - VR e+

+ t/JrOO ey [I/IJ\V[C(UI)] —c(ng) > % = C\/N] dz

—00

+o0
— / HOMOVIN e ) — ¥ [e(,)] > M]dM

+oo
et [ O )] - ) > MM
— (CeCVN (V/z\v [ecm(nz)w% [c(nzm} ol [e—cac(nz)fu% [C(nz)])])

< QCQCt\/NGANt2

— Y

where, in the last step, we have used (3.20). This completes the proof for the case t € (0, 1].
For ¢t € [—1,0) we proceed similarly, after having replaced, in (6.22), N(h(n.) — vy [h(n.)])
with its opposite.

Proof of Proposition 3.6. We first prove inequality (3.22). Clearly, it is enough to show
that, for all x € A,

v [fse(ne)]” < CoNvR[f] Ent,x (),
for some Cf, > 0
By the entropy inequality (3.19) and (3.20) we have, for 0 <t < 1:

vy I, c(%)]2 < WN[fPA2N? + t%Enti/;\v(f). (6.23)
Set Ext ()
11 V/I;]
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Suppose, first, that t, < 1. Then if we insert ¢, in (6.23) we get
vx [fse(na)]” < 20X [fIALN Ent,y (f) + 2Nvy [ Ent, v (f) =: CoNvY [ Ent, (f). (6.25)
In the case t, > 1, we easily have
v Lfre(ne)]” < CuR[fPN? < Cu [fPN?E? = CNwy [f] Ent,x (). (6.26)

By (6.25) and (6.26) the conclusion follows.
Let us now prove (3.23). As before, by (3.19) and (3.21), for ¢ € (0, 1]:

2 N 2 QV/Z\V[f]Q 2 2,2 2 A12,4 2 2
N2 [ h(me)]” < =57 [log? A, + AN + AT Nt + = Bt (f). (6.27)

Here we set
o, Ent,y(f) v ir[f]
" NuY[f]
and proceed as in (6.25) and (6.26). [

7 Local limit theorems

The rest of the paper is devoted to the proofs of all technical results that have been used
in previous sections. For the sake of generality, we state and prove all results in dimension
d>1.

Using the language of statistical mechanics, having defined the canonical measure vy,
for p > 0 we consider the corresponding grand canonical measure

Meca, Alprvirl{e)] 2 i clna)l

where a(p) is chosen so that 11,(n,) = p, € A, and Z(«(p)) is the corresponding normaliza-
tion. Clearly p, is a product measure with marginals given by (1.2). Monotonicity and the
Inverse Function Theorem for analytic functions, guarantee that a(p) is well defined and it
is a analytic function of p € [0, +00). We state here without proof some direct consequences
of Conditions 2.1 and 2.2. The proofs of some of them can be found in [5].

Mp[{ﬁ}] — a(ﬂ)ﬁAVXA[{U}] _ 1 H O‘(IO)% (7.1)

Proposition 7.1

1. Let a*(p) := pi,[Ne, n2], then

2 2
0 < inf o (p) < sup o (p) < 400 (7.2)

p>0p p>0 P
2. Let a(p) be the function appearing in (7.1); then

a(p) a(p) (7.3)

0 < inf —= <sup —= < 400
p>0 P p>0 P
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7.1 Local limit theorems for the grand canonical measure

The next two results are a form of local limit theorems for the density of 77, under p,.
Define p}(n) := p,[Ms = n] for p > 0, n € N and A CC Z? The idea is to get a Poisson

approximation of pf/ M(n) for very small values of N/|A| and to use the uniform local limit
theorem (see Theorem 6.1 in [5]) for the other cases.

Lemma 7.2 For every Ny € N\ {0} there exist Ay > 0 such that
N™ A
sup [y - ] < Ao

, <
NEN\{0}, neN n. Al
n<N<Ny

for any A CcC Z°.
Proof. Let p:= N/|A| and assume, without loss of generality, that 0 € A. Notice that

1y [ = 7]
= o = g < o < 1) s 7y = e > 1 oy e > 1]

We begin by proving that
pp e, > 1] = 0(A1), (7.4)

uniformly in 0 < N < Nj.
Indeed

Mp[rgggnx > 1] = 1= (1= pplm > 1™,

and

+

1 Eal)t alp?X al)tap)? > ck)! alp)
tp [0 > 1] = Z(p) = c(k)! - Z(p) ;0 c(k+2)  Z(p) kZ:O c(k+2)! (k)

2

Since c(k)!/c(k + 2)! is uniformly bounded, we have pu,[no > 1] < Bia(p)* = O(|A|7?),
uniformly in 0 < N < Ny. Thus

(1= pplno > 1) = (1= 0(A)™ = o(AI™),

which establishes (7.4).

Now let
+oo

p = Zkup[no = /f)no < 1]

k=0
A trivial calculation shows that

_ Folo] = pplmo2 (o > DI _ p = ptplioL(mo > 1)

~_ Hplmol(mo < 1)]
fplno < 1] tolmo < 1] fplno < 1]

p
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Moreover

: f ka(p)t _ alp)® <= (k+2)a(p)

fip[noL(no > 1)] = Z(p) &= ek~ Z(p) = clk +2)]

and finally
~ p+O(A™? Ly
P A o+ O (7.5)
Observe that for any n € {0,...,|A[}, we have
_ AN~
— < — — n
I [m n‘ max ), < 1} ( )P =) (7.6)

This comes from the fact that the random variables {n, : € A}, under the probability
measure fi,[-| maxzer 1, < 1], are Bernoulli independent random variables with mean p.
The remaining part of the proof follows the classical argument of approximation of the
binomial distribution with the Poisson distribution. Using (7.5) and (7.6), after some simple
calculations we get

= ‘A| ~ Al—n
up[mzn‘rgggnx < 1] — (n p(1—p)™

A [N vouarn] [ Xvoun]

~ nl(IA[ =)t L]A] [A]
Al
— IV OUA ) L= T+ 0l1A)
AJ(Al = 1) (Al —n+D) [, N LN L
x e {1 RALE! )] e N 0>

uniformly in 0 < N < Ny and 0 < n < N. This proves that there exist positive constants v,
and Bs such that if A CC Z? is such that |A] > v; then

N/l N
pA (n) n‘ €

< Bs
Al

uniformly in N € N\ {0} with N < Ny and n € N with n < N. The general case follows
easily because the set of n € N, N € N\ {0} and A CC Z? such that n < N < Ny, |[A| < vy
and 0 € A is finite.

Proposition 7.3 For any py > 0, there exist finite positive constants Ay, ng and vy such
that:
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_ (n—pl|ap? A
sup [\/a2(p)[Alp (n) — —m=e 2o | < ——2 (7.7)
I
for any p < po and any A CC Z% such that o®(p)|A| > ng;
2.
sup |\ (n) — = SN | < 28 79)
o>po A ~ VA

neN
for any A CC Z¢ such that |A| > vy.
Proof. This is a special case of the Local Limit Theorem for y, (see Theorem 6.1 in [5]). m

We conclude this section with a bound on the tail of p§ which will be used in the regimes
not covered by Lemma 7.2 or Proposition 7.3.

Lemma 7.4 There exists a positive constant Ag such that
pIAL_ _pi(n 1) _ AoplAl
A+ 1) = i) ntl

for anyn € N\ {0}, A CC Z? and p > 0.

Proof. Notice that

Piln+1) = p,[ny =n+1] = Zupnx, My =n+1)]

xGA

and, by the change of variable £ := o — §™:

N1y = n+1)] = Z ol = olo1(0p = n+l) = Z tolna = oloz1(Gx = n+l,0, > 0)

o€ A1
T §_+>5x e
=3l =+ NG+ DIE =n) = Y plma “””A[ q e, + 11E, =)
= = Hollla =
a(p)(&+1). = met1
=Yl = =218 =n) = alp)p, | =n
This means that ) .
alp Nae + _
A 1) = ——1(7, = : 7.9
hin ) = 1S, | 1 =) (79)
By (2.4) we know that there exists a positive constant By such that
Bo_lngf)gBo for any k € N\ {0}.
Thus, by plugging these bounds in (7.9), we get
a(p)Alpi(n) _ Boa(p)|Alpi (n)
— == < 1) <
By(n+1) Spantl) s n+1 ’
from which the conclusion follows. |
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7.2 (Gaussian estimates for the canonical measure

In this section we will prove some Gaussian bounds on v [fj,, = -], when the volumes |A|
and |A’| are of the same order (typically it will be |A’|/|A| = 1/2). These bounds are volume
dependent (see Proposition 7.8 below) and so are of limited utility. However they will be
used to prove Proposition 7.9 which, in turn, is used in Section 8 to regularize vy [, = |
and prove Gaussian uniform estimates on it.

Assume A’ C A cC Z¢, N € N\{0} and consider the probability measure on {0, 1,..., N}

Ni— P <n)p7\\A/(N —n)
Vp [77/\/:”]: pﬁ(N)

Notice that v{ [y, = -] does not depend on p > 0 (and depends on A and A’ only through
|A| and |A’|). Indeed a simple computation shows that

DI (/=N o LEaw=N-n)
o€Qpr [ enr cloe)! £=€€Qa7 ] en\ar e(€y)!

Zn:O ZUGQA’ II )! ZEGQA\A’ HyeA\A/ c(&y)!

wen’ (02

NS
for any n € {0,1,..., N}. A particular case is when A’ C A CC Z%is such that |A/] = [A\A/].

In this case we define

N(pY— N[m ] — pﬁ/(”)pi\A/(N —n) P ()ph(N —n)
Vi (n) ==vy My =n] = pﬁ(N) = pﬁ’\(N)

(7.10)

We begin by proving a simple result on the decay of the tails of v¥'.

Proposition 7.5 There exist a positive constant Ay such that for every A CC Z¢ such that
|A| > 2 and every N € N\ {0}

N—n <fyf\v(n—|—1) <A0(N—n)

, 711
N T RS )
for anyn €{0,...,N —1}.
Proof. Let A’ C A be a non empty lattice set. Then by (7.10)
A(n+1) Ph(n+1)pi (N —n—1)
7 (n) Ph(m)pip (N —n)
and (7.11) follows from Lemma 7.4. u

Next we prove Gaussian bounds on 4. This is a very technical argument. We begin
with the case |A] = 2.

Lemma 7.6 Assume that |A| = 2, and define N := [N/2] for N € N\ {0}. There ezist a
positive constant Aq such that

_ (n71\7)2

A v
<o) < Zoe T (7.12)

1 Ag(n—N)?
—Ag(nN)”

—¢
ApVN
uniformly in N € N\ {0} andn € {0,1,...,N}.
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Proof. We split the proof in several steps for clarity purpose.

Step 1. There exists A; > 0 such that for any N € N\ {0},

N—TL A1
log 7y (n — 1) —log 3 (n) < — AN TN (7.13)
for any n € {1,...,N — 1} and
n—N A
log 73 (n +1) — log 7 (n) < ——— + 5 (7.14)

for any n € {N,...,N —1}.

Proof of Step 1. Assumen € {N,..., N—1}, the other case will follow by a symmetry
argument since 7Y (n) = v (N — n). By (7.10) we obtain, in the case |A| = 2, that
Whn+1) (N —n)

wn)  odn+1)

Ifn+1— (N —n) < kg, where kg is the constant which appears in Condition 2.2, then by
Condition 2.1 and (2.4) there exist a constant By > 0 such that
¢(N —n) _q_ cn+1) —¢(N —n) <14 le(n+1) — ¢(N —n)| <14 arko By
c(n+1) c(n+1) c(n+1)] n+1

and, since log(1 4+ z) <z and n > N, there exist a constant By > 0 such that

alkngl < B2

n+1 — N’

log 1A (n + 1) —log 7y (n) <

Since n + 1 — (N —n) < ko we have that n — N < (ko — 1)/2, which implies (n — N)/N <
(ko — 1)/N. Thus )
B2 BQ ]{30—]_ n—N Bg n—N

A - — < — — =
N =N N N — N N

and so B ¥
log 7N (n +1) —log N (n) < =2 "~
og vy (n+1) OgvA(n)_N I

in this case. Assume now that n +1 — (N —n) > ko; more precisely assume that rky <
n+1—(N—n)<(r+1)ky for some r € N\ {0}. Then

log vy (n +1) —log vy (n) = logc(N — n) —log c(n + 1)
= Z log (N —n + ko(s — 1)) —logc(N —n + kos)] + loge(n — N + kor) — log c(n + 1).
s=1

(7.15)
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For any s € {1,2,...,r}, by Condition 2.2 and the fact that log(1 — z) < —z, we obtain

(N —n+kos) —c(N —n+ko(s—1))

C
log ¢(N —n-+ko(s—1))~log (N —n-+kos) = log |1 — (N —n + kos)
_c(N—n—l—k:os)—c(N—n—i-ko(S—1))<_ a2

< .
- c¢(N —n+ kys) = o(N —n+kps)

By (2.4) we know that ¢(N — n + kos) < a1(N — n + kos) and because N — n + ks <
N —n+kor <n-+1 we get

az
1 N —n+ky(s—1)) —1 N —n+kys) < —————. 7.16
08 e = -+ hals = 1)) = g (N = n -+ Fos) < 2 (7.16)
Furthermore by Condition 2.1 and the fact that log(1 — z) < —z we obtain
1) —¢(N — k
logc¢(N —n + kor) —loge(n+ 1) =log |1 — cn+1) 0(701(+ 0 n+ ko)
< c(n+1)—c(N—n—|—k0r)<\c(n+1)—c(N—n—i—k07’)|< a
- c(n+1) - c(n+1) ~c(n+1)

and by (2.4) we have that there exists By > 0 such that ¢(n+1) > B;'(n +1). Thus, since
n+1> N, we have

2a1 B
loge(N —n + kor) —loge(n+ 1) < a]1v 3 (7.17)

By plugging the bounds (7.17) and (7.16) into (7.15) we obtain

2a1 B
log 7N (n+1) — log AN (n) < —— 22 174 1
0g vy (n+1) —log vy, (n) < al(n+1)+ N (7.18)

Recalling that (r +1)kg > n+1— (N —n) =2n — N + 1 and ky > 1, we have rky >
n+1—(N—-n)=2n— N and

r 2n — N >2n—N>n—N

which together with (7.18) completes the proof of (7.14).

Step 2. There exists A > 0 such that if N € N\ {0} then,

N — A
log 7Y (n — 1) — log 73 (n) > —Ay =" — 22 (7.19)

for any n € {[N/4],..., N — 1} and

log ’yf\v(n +1) —log ”yf\v(n) > —Ay—n— — = (7.20)

for any n € {N,...,[3N/4]}.
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Proof of Step 2. Assume n € {N,...,|3N/4]}, the other case again will follow by
symmetry as in Step 1. Notice that

log vy (n 4+ 1) —log vy (n) = log¢(N —n) —logc(n + 1)
2n—N+1
= Z logc(N —n+s—1) —loge(N —n+s)]. (7.21)

s=1

Moreover

N — —¢(N — 1
bgc@v“”’*s“l)—10gCUV——n—FS)=10g{1——6( nts)—cN-nts )}

¢(N—n+s)
> log 1_|c(N—n+s)—c(N—n+5—1)| ;
¢(N—n+s)
by Condition 2.1 and (2.4) there exist B; > 0 such that
|c(N—n+s)—c(N—n+s—1)|< B < B <431
¢(N—n+s) “"N-n+s N-n— N’

where we used the fact that n < 3N/4; thus

loge(N—n+s—1)—loge(N —n+s)

|e(N—n+s)—c(N—n+s—1)| 4B,
>1 1— >1 1——].
_og{ ¢(N—n+s) =08 N

Since log(1 — z) > —2x, for x € [0,1/2], then
4B,
1 1—-—) > —-8B|N
og( N ) z 1

for N > ny :=8B;. Thus

8B
loge(N—n+s—1)—loge(N —n+s) > -~

By plugging this bound into (7.21) we obtain

o2n— N +1 - N 8B
log vy (n+1) —log vy (n) > —831% > —16B,—— !

N N’
which completes the proof of (7.20) in the case N > n;. The general case is obtained by a
a finiteness argument.

Step 3. There exist A3 > 0 such that for any N € N\ {0},

N 72
Ya (1 _(n=N)
7/]/\\\[(<N)) < Asze AN (7.22)

for any n € {0,..., N}.
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Proof of Step 3. Assume that n € {N +1,...,N}. By (7.14) there exists B; > 0
such that

n—1 n—1 _

. B, k—N

log 74 (n) —log vy (N) = > [log 7y (k+ 1) —log A (k)] <> (Wl - BN ) . (7.23)
k=N

Using the fact that n — N < N/2, and some elementary computation we obtain

nz_f &_k—N <B1(n—7 1 nilk n—N)(n—N—l)
<« \ N BlN - N BN BlN
k=N k=1
)2 N )2
B NP N NP
2 BN BN BN

which plugged into (7.23) implies (7.22) forn € {N+1,...,N}. The casen € {0,...,N—1}
is again obtained by symmetry, while the case n = N is trivial.

Step 4. There exist Ny > 0 and Ay > 0 such that if N € N\ {0} then

N .
i) 1, e-m?
> 4 .24
YV(N) ~ A46 Yoo (7.24)

for any n € {[N/4],...,|3N/4]}.

Proof of Step 4. Assume that n € {N+1,...,[3N/4]}. By (7.20) there exists B; > 0
such that

n—1 n—1 =
1 k—N
log v (n) —1 1 (k+1) —logyY (k)] > -B — ).
og7a (n) — log i (N , [log ' (k + og7a (k)] > 12 <N+ ¥ )
k=N k=N
_ (7.25)
Using the fact that 0 < n — N < N/2, and some elementary computation we obtain
n—1 - - n—N-1 - -
k—N n—N 1 1 (n=N)(n—N-=-1)
— < — k< —
SRS REE DIEEEE

which plugged into (7.25) implies (7.24) for n € {N +1,...,|3N/4]}. The general case can
be obtained again by symmetry.

Step 5. There exists A5 > 0 such that if N € N\ {0} then

OB S (7.26)

W)~ A
for any n € {0,...,[N/4] —1}U{|3N/4] +1,...,N}.




Proof of Step 5. Observe that n € {0,...,[N/4] =1} U{[3N/4] +1,..., N} implies
In — N| > N/8. Thus to proof (7.26) we have only to show that the ratio vy (n)/vY (N) is
bounded from below by a negative exponential of N. Assume that n € {|3N/4|+1,...,N}.
Then

N(n) AN (3N/A)) Wk +1)
NN T H N0 (7.27)

By (7.24) there exists By > 0 such that

=[3N/4]

W (BN/A]) 1 sy

W) T B
But |[3N/4] — N| < N, thus
WBN/AD 1 gy
) > B, . (7.28)

In order to bound the product factor in the right hand side of (7.27), notice that by Propo-
sition 7.5 there exists By > 0 such that
VY (k+1) S N —k
W) = Balk+ 1)

for any k € {1,..., N — 1}, thus

n—1
> [logyy (k) —log vy (k +1)]
k=|3N/4]
n—1
< (n-— L3N/4J)long—|— > [log(k+1) —log(N — k)]
=[3N/4]
n—1
2k+1—N 2n—-1)+1—-N
< Nlog B, + Z WSNlongjL(n—L?)N/ZLJ) ( N—)3N/4
k=|3N/4]
-1
< NlogBy + N——— < N(log By + 4
which implies
H ’YA (k+1) > (o BN,
K [3N/4] 7A<k)

By plugging this bound and (7.28) into (7.27), we get (7.26).

Step 6. There exists Ag > 0 such that if N € N\ {0}, then,

<V(N) < \;1—%. (7.29)

AG\/_
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Proof of Step 6. By (7.22), (7.24) and (7.26) we obtain B; > 0 such that for any
N e N\ {0}

for any n € {0,..., N}. By summing for n € {0,..., N} we have

iv: Bl(n Al < 1 < B Ze_ BN
>~ N(N) = 1 )

n—0 YA

Thus we are done if we can show that, for any By > 0, there exists B3 > 0 such that
_ (n=N)* 2
Z ¢ BN < ByV/N (7.30)
n=0

for any N € N\ {0}. An elementary computation gives

N

(n=N)?2 al (n—N)? il (n—N)?
T D Dl D I
n=0 n=0 n:N

N . 2 “+o0o _ 2 N
g/ e B R dx+/ e BT drp1=144/"
_ N BQ

o0

that proves the upper bound in (7.30). The proof of the lower bound is similar.

Conclusion By (7.22), (7.24), (7.26) and (7.29) we get (7.12). u

We now prove an iterative procedure that allow us to extend the Gaussian bounds of
Lemma 7.6, from |A| = 2 to a generic A CC Z<.

Lemma 7.7 Let N C A CC Z% be such that 2 < |N| < |A] and N € N\ {0}; assume
AN = AN UA, with A\N Ay =0, A, # 0 for any i € {1,2} and A" :== A\ N = A] U AJ with
NN Ay =0; define A; := A, UA! for any i € {1,2}. Then

kAn

vy [y = 7] Z Va [, = Z Vi, M, = h]’/f\\g_k[ﬁ/vz =n—h (7.31)
h=0V[n—(N—F)]

for anyn €{0,1,...,N}.
Proof. For N € N\ {0} and n € {0,1,..., N}, by definition of conditional probability

N

i [y =n] = foVWA'IUA'Q =n] = Z V/]\V[ﬁA’luA/Q =n, T, = k|
k=0
N

Z nA’UA’ =nlm,, = BIZN Ma, = K. (7.32)
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But

v [Maron, = nla, = Kl = Z vy [ay = By T, =n = hi7,, = K]

kAn

= Y [y =h Ty =n—hliy, =k] (7.33)
h=0V[n—(N—k)]

and

V/]\V[ﬁzvl =h, My, =n—h, = k| = Vi, Ma, = h}V/]\V;k[ﬁAg =n—hj.
By plugging this identity into (7.33) and (7.33) into (7.32) we get (7.31). n
Proposition 7.8 Let A’ C A CC Z* be such that |N'| = |[A\ N'| and define, for any N €
N\ {0}, N :=[N/2]; then there exist a positive constant Ay such that for any N € N\ {0}

1 Ao(n—N)2 Ay _m=m)?
—e N <% < ——e AN 7.34
AV < 5 (739

for anyn €{0,1,...,N}.

Proof. We will prove the result by induction on |A|. The case |A| = 2 has been proved in
Lemma 7.6, so assume that (7.34) has been proved for any A CC Z? such that |A| = 2v and
v < vy where v,v9 € N\ {0}. We now show that (7.34) holds for any A CC Z% such that
|A| = 2(vo + 1).

Let A CC Z< be such that |A| = 2(vg + 1). Then take A’ C A such that |A’'| = vy + 1,
furthermore there exist A, A, € A" and AY,A] € A\ A’ such that the following holds:
N =ANUAN, AN Ay, =0, A, #0 for any ¢ € {1,2}; A\ A = AT UAS with A{N A =
|A1| and |Ag| are even, where A; := A, U AY for any ¢ € {1,2}. For instance it suffices to
take disjoint nonempty lattice sets A7, Ay, AY,AJ C A such that A’ = Aj UA, and A\ A =
AT UAS, with [A}] = [AY] = |A]] = |AS] = (vo + 1)/2 if vy is odd, and |A}] = [AY| = vy/2,
|AL| = |AS| = (vo/2) + 1 if vy is even. Thus by Lemma 7.7

kAn

v [ = 1] Z Up [, = Z Vi, Ma, = h]VIJxVQ_k[ﬁA’Q =n—hl, (7.35)
h=0V[n—(N—Fk)]

where A; := A, UAY, for i € {1,2}. Since |A;] < 2vp, and rewriting (7.35) as

N kAn
Wm = Wk D>, RO =), (7.36)
P h=0V[n—(N—Fk)]
we can use the inductive assumption (7.34) on ~§ (-) = uﬁl[ﬁAi = ] and fy/]\\;_k(-) =

I//]\V;k[ﬁ/\é =] to bound ~Y.
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First of all notice that because 7§, (0) =~%,(0) = 1 then

N kAn

SNk D A (=)
k=0 h=0V[n—(N—k)]
N-1 kAn
=2 (078, () + X (NN () + D> (k) > Ak () (n—h). (7.37)
k=1 h=0V[n—(N—k)]

Then, by (7.36) and the inductive assumption there exists By > 0 such that

kAn

DD AT D)

h=0V[n—(N—k)]

cm 3 Hﬁe}(p (_{<h£;1§>2+ [n-ﬁ&é%%)}?})

o (h—k)?* [n—h—(N-k)] })

S S
<B ). mep( { Bk B(N—h)

h=—0o0

forany k € {1,..., N—1}. It is elementary to show, by comparison with the similar property
of the normal density, that there exists By > 0 such that

(h = Y’ [n—h—(JV—k)P}) Sf_i_exp (_%)
N 2

Blh;owkm—k) p< { Bk | B(N—F

Thus by (7.37) and again the inductive assumption

N kAn
Sk > Ak (= h)
k=0 h=0V[n—(N—k)]

< AR (0074, (n) + 78 (N, (n) + —]2\_[6 BNy (k) < Sme BN < S—e RN

which completes the upper bound in (7.34).

Notice that if n € {0,...,[N/4] =1} U{[3N/4| +1,...,N} then |n — N| > N/8. Thus
in this case in order to prove the lower bound in (7.34) we have to show that vy (n) can
be bounded from below by a negative exponential of N. This is easy to show; in fact by

the inductive assumption there exists By > 0 such that 73 (t) > e ' for any i € {1,2},
se€ N\ {0} and t € {1,...,s}. So, by (7.37),

N—-1 kAn
YA () = WO, (n) + 8 (Nas () + > (k) > k(e (e = h)
k=1 h=0V[n—(N—k)]
N-1
> OBV 4 (N)e BV 4 B 30 4N (k) = B,
k=1
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for any N € N\ {0} and n € {0,...,N}.
Assume now that n € {[N/4],..., [3N/4]}. By symmetry, without loss of generality, we
may assume n € {N,...,[3N/4]}. In this case, by (7.36),

N = N () B S A (A LN G O (7.38)
k=[N/4] h=0V[n—(N—k)]

By the inductive assumption there exists By > 0 such that

_ 1 (h—k/2)*> [n—h—(N—k)/2?
F (AN —h) > —————— (—B { + ;
T, (W), (0 —h) = Bg\/@ FPATTUT w2 (N —k)/2
(7.39)
and an elementary calculation shows that
1 —k/2)? —h—(N—-k)/2]?
sa e e )
B3/ (50)
1 (n—N/2)2) 1 ( (h — kn/N)? )
= — -B -B . (7.40
B, \/g P < N2 ) g o P TPV = RE/2N) (7.40)
Thus we have only to show that there exists B3 > 0 such that
kAn
1 < (h — kn/N)? > 1
Z ————exp | —B» > — (7.41)
h=0V[n—(N—k)] B2 (N;—Nk)k (N = k)k/(2N) Bs

for any N € N\ {0}, and n € {N,...,|3N/4]}. In fact assume that (7.41) holds; then by
(7.40), (7.39) and (7.38) there exists By > 0 such that

[3N/4]

1 (n-N)?
N -B - N
Ya (n) > —e VN E Ya (k)
BiVN k= TN/A]
1 B, (=2 [N/4]-1 N N Y k)
> —e PN 1— E vy (k) + E Ya (K
ByV N k=0 13N/4)+1

But we just proved that there exists B; > 0 such that v (n) > e 5V for any N € N\ {0}
and n € {0,...,N}. Thus

[N/4]-1 N

Ne BN 1
>odmr Y W< <y
k=0 [3N/4]+1

for N large enough. This proves that

V)2
1 2B, =N

—e ,
2B,V N

959

7 (n) >



for any N € N\ {0} large enough and n € {N,...,|3N/4]}; the case of small N is controlled
by a finiteness argument.

It remains to prove (7.41), which is an elementary but tedious calculation: first of all
observe that if N € N\ {0}, k € {[N/4],...,|3N/4]} and n € {N,...,|[3N/4]}, then

(k A )_k_n_k kAan 1N _ (1 1 >£2 4 1NN
YWEN T\ T TN) T kv N) T8 \sN TN/ T o

Furthermore, since

3 N

then
kn OVin—(N—-k)] 1 N E N
—(N—k)]-==k < —— ] =—=.
A e ”{ kn Nf= s\ N 7

This implies
kAn

| (h— kn/N)?
2 Ba/ (N — Wk 2N) T (_32 (N - k)k‘/(2N))

h=0V[n—(N—Fk)]

& 1 (h — kn/N)?
> 2 Bay/(N = k)k/(2N) P (_32 (N — k‘)k/(QN))

h=[kn/N

1 wn . (h=kn/N)?
= B (N Bk /nm/m =P ( PN IR/ )) o
_ \/z{q) (mmm - kn/N}) e (mwn/m - kn/m)}
By VIV = R)k/2N) VIV=RE/eN) ) [

1 r 22
O(z) := E/ e 2 dz.

Notice that, since k € {[N/4],...,|3N/4]}, it is easy to show that

where

[(kAn)—kn/N] _ VN ([kn/N]—kn/N) L1

(N—k)k T 6v/2 V(N = k)k/(2N) ~ 16v3VN

2N

Thus

. (muk Am) = Im/N]) e (mukn/m - kn/N))
VIN = R)F/@N) VIN = E)R/N)
VN 1 1

R RGN RI AR

which proves (7.41) and completes the proof of the lower bound in (7.34). n
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7.3 Further estimates on the grand canonical measure

The next result is a uniform estimate on yu,[7, = p|A|], see (7.42) below, and will be used
in Section 8. If ¢(k) = k the result can be obtained elementarily from the Stirling Formula.
The general case is more difficult.

Proposition 7.9

0< inf VEWN/IADAPYM(NY < sup VERV/ADAPY M (N) < 400 (7.42)

NGy PSR

Proof. Fix py > 0 and consider five different cases.

Small density case. There exists Ny > 0 such that

0< inf 2(N/IADAY™M(N) < sup Va2 (N/AD[A]pY ™M (V) < +oo
No<N<po|A| No<N<po|A|
Acczé Acczd

Proof of small density case. By point 1. of Proposition 7.3 there exist positive
constants By and ng such that:

O

\/_' o?(N/|A]IA]

uniformly in N € N\ {0} and A cC Z? such that N/|A| < py and o?(N/|A])|A| > ny.
Because of (7.2) there exists B; > 0 such that o?(N/|A|)|A| > B{'N for any N € N\ {0}
and A CC Z%. So take Ny := ngBj, then, for any N > Ny, o*(N/|A|)|A| > ng, and therefore

we have.
1 B
AT ™ (¥ < DB
w/02 N/]A\ |A \/_
where A CC Z% is such that N/|A| < pg. Taking N large enough, namely N > N :=
[Ny V (87 B2By)| we have:

\ 2 JADARY M (v

1 1
a2(N/IAD)[Alpy ™M (V) — ‘<
IR M) - | < 5
which means ] 5
N/IAD Ay ™M(V) <
= < VARSI < s
for any N > Ny and any A CC Z? such that N/|A| < py.
Very small density case. For any fixed Ny € N\ {0}
N/|A\ N/IAI
0<}\r[1<fN a2(N/|A])|Alpy g sup a?(N/|A])|Alpy ) < 400
Acczd ACCZd
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Proof of very small density case. By Lemma 7.2 there exists By > 0 such that for
any A CC Z¢

o?(N/|A])
< B, —|A|

a2 (NJIADIA[pY ™M (N) - 02<N/]\VA!!>|A\N N

uniformly in N € N\ {0} with N < Ny. Because of (7.2) there exists B; > 0 such that
By'N < ¢*(N/|A])|A| < B1N, so we may write

NN+1/2 /'NB:B /B NN+1/2 /N BB
e N — X2 < VR(N/ADA[pY M (V) < e =
VBN A N A

Now taking vy large enough it easy to show that

0< inf  o2(NJIADAPY M (N sup a2(N/IADA[pY™M(V) < +oc.

0<N<No 0<N<N
ACCZ?, |A|>v1 ACCZe, |A|>v1

The general case follows again by a finiteness argument.

Normal density case. There exist vy > 0 such that

0< inf VENADARYMN) < sup VoV ADARYM(N) < +oo
vo<|Al<pg ' N vo<|A|<p0 N
Accz? Accz

Proof of normal density case. By point 2. of Proposition 7.3 there exist positive
constants Bs and v4 such that:

1 < B3
V2m| VA

uniformly in N € N\ {0} and A CC Z¢ such that N/|A| > py. Now it is easy to show that
there exists vy > 0 such that for any A CC Z% with |A| > vy and any N € N\ {0} such that

N > polAl 5
< Vo (N/IANIAIPY () < o

a2(N/|AD[A[pY ™ (N) —

Large density case. For any fixed vy € N\ {0}

0< inf 2(N/IADApY ™M (V) < sup a2(N/IAD[Alpy™(N) < +oo
NeN\{0}, AcCz? NeN\{0}, Aczd
0<|A|<wo 0<|A]<wo
(7.43)
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Proof of large density case. In this case no local limit theorem is applicable. Instead
we will use the Gaussian estimates of Section 7.2. For any fixed py > 0, by point 2. of
Proposition 7.3 there exist positive constants B; and v; such that:

1 B
o2(N/[AD[AJpy ™M (N) - ‘< !
VTR M) - | <
uniformly in N € N\ {0} and A cC Z? such that N/|A| > py. Taking |A| large enough,
namely |A| > vy := 87 B? we have:

02 N/\A] \A N/IAI

1 1
<
\/ 2T ’ 2V 27
which means

1 3
<
2v2m 2V/2m
for any A CC Z< such that |[A] > vy, and any N € N\ {0} such that N > pg|A|. Now

take A’ C A CC Z% such that vy/2 < || < vy and |A \ A’| = |A’]; notice that in this case
|A| = 2|A’|. By Lemma 7.8 there exists a By > 0, possibly depending on vy, such that

By

o2 (N/IADIA[p ™M (V) < (7.44)

1 _
——— < W(N) <
BZ\/N /YA()

uniformly in N € N\ {0}. By definition of 7%

1 p%/|A/‘(N>2 - B2

BN - py™(N) T VN

1.€.
V/|N V /|
M) v e o Bk M)
— <p,/ " (N) < —
ByV'N VN
uniformly in N € N\ {0}; but |[A] = 2|A’| > v, and N/|AN'| > N/2|A'| = N/|A| > po, and
therefore we can use (7.44) to get
1 N/INL 72 3B;
2 — pA (N> S 3 =
B2/ (NJIADIAIN 22/ (NJIADIAIN
and by using (7.2) we conclude that there exist a Bj, possibly depending on vy, such that

1 I By
= / (N> S vl
Byy/N A VN

for any N € N\ {0} and A’ C Z¢ such that vy/2 < |A’| < vy. From this inequality, using
again (7.2), we get immediately a constant B, > 0, possibly depending on vs, such that

1
B Va2 (N/ADApY™(N) < B,

for any A CC Z? such that |A] > vy/2 and any N € N\ {0} such that N > po|A|. B
iterating the above procedure a finite number of times we get (7.43). |
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8 One dimensional L.S.I.: proof of Proposition 3.1

In this section we prove Proposition 3.1, a logarithmic Sobolev inequality for a particular one
dimensional birth and death process. Furthermore we will see that Proposition 3.1 implies
Proposition 3.7.

8.1 A general result

Next result is Proposition A.5. in [2]. We report it only for completeness.

Let {v : N € N\ {0}} be a family of positive probability on Z. Assume that for any
N € N\ {0} the probability 4" is supported on {0,..., N}. It is elementary to check that

N is reversible with respect to the continuous time birth and death process with rates

Ny Y (nt]) W —1)
a’(n) = —x—~— AU
N (n) N (n)
for any N € N\ {0}. The Dirichlet form of this Markov process may be written as

N1 for birth vV (n) = N1 for death.

N

> BN AN (= DIf(n = 1) = f()]*

n=1
Proposition 8.1 Assume that there exist a positive constant Aqg such thal for any N €
N\ {0} we can find N € {0,..., N} such that A;* N < N — N < AN and

N 1 _n=N _
7 (]Z}+ )Se Son forallne {N+1,...,N} (8.1)
N (n)
N _
YW (n—1)  _n-n -
<e 4N foralln €{0,...,N —1 8.2
=0 { ) (82
1 Ag(n—N)?
N _Aotn—V)7
n) > —e N for allm € {0,..., N} 8.3
7" (n) AT { } (8.3)
Then there exists a positive constant Ay such that for any positive function f on {0,..., N}

Buty (f) € AN Y0V () AN (= DIV = 1) = /TP

for any N € N\ {0}.

Proof. The proof follows closely the proof of Proposition A.5 in [2]. By Proposition A.1
of [2] we have to bound from above By(N) := By (N) V By (N) uniformly in N € N\ {0},
where

. B n . ; N-1 1
Bol= (Z” “‘”) os () (Z R AN (T 1>>

+ ._ su = N o ; - 1
By (N) = HE{NHP . (ZV (k)>1 8 <22VZHN(’€)> 2. YN(K) ANk —1) |

""" k=N+1

and take A; := supy Bo(N)/N. We divide these bounds in several steps.
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Step 1. There exists B; > 0 such that for any N € N\ {0}

BN _
ZVNU?)Sn_lNVN(n) forany n e {N +1,...,N} (8.4)
k=n
- BN .
ZvN(k:) < & 1_ nny(n) for any n € {0,..., N — 1}. (8.5)
k=0

Proof of step 1. Forn € {N +1,..., N}, by a simple telescopic argument and (8.1)
we obtain:

N N —
k=n v (TL) k=n+1 h=n v (h) k=n-+1
N _ +o00 _
_(k=n)(n—N) _k(n—N) 1
S 1 + Z (& AN S Z e AN = ﬁ’ (86)
k=n+1 k=0 1 —e 4N

ne€{N+1,...,N}. Because N — N < AN, it easy to check that
1 ~ 24 N
“n—N’

2|2

_n_
1 —¢e 40N

By plugging this bound into (8.6) we obtain (8.4). Using the same argument and (8.2) we
obtain (8.5).

Step 2. There exists By > 0 such that for any N € N\ {0}

1 BN 1 _
E < — foranyne {N+1,... N} (8.7)
N — N AN
S (k) T = Nt (n)
N-1 N
1 BN 1 -
< —= f 0,...,N—1}. .
kgn TE SN ) or any n € {0, ..., } (8.8)

Proof of step 2. Forn € {N +1,...,N}, by the same telescopic argument used in
step 1. and (8.1) we obtain:

n n n-l nl’_y h_|_ n 1 h—N
hkﬁ
> - (k =2 =g +1= S TR
k=N+1 k=N+1 h=k k=N+1
n—1
_ (n=k)(k—=N) _(k—N) _k(n—=N) 1
<D e AT o4l< Z o +1< B
k=N-+1 k=N+1 1—e 4oV

and we can conclude as in step 1.
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Step 3. There exist By > 0 such that for any n € {0,..., N} with |n — N| > VN

1 %
> AN(k) > —e (8.9)
k=n BS

n 1 2
SN 2 e T (8.10)
k=0 3

for any N € N\ {0}.

Proof of step 3. Assume that n € {0,..., N} is such that n > N + \/ﬁ, the case
n < N — VN is similar. Because AN < N — N < AyN, it is easy to find ng € N\ {0}
depending only on Ay such that N + [V/N] < N — [V/N] for any N > ny. We can assume
N > ng because for the case N € {1,...,n0} (8.9) follows by a finiteness argument. Assume
that n € {N 4+ [VN],...,N — [V'N]}; by condition (8.3) and some simple bounds,

= N 1 al Ag(k—N)? 1 V] Ag(k—RN)?
Ya (k) > —=> e ¥ > _ e N
; * AO N; A()\/N ;
ZI_VN]+16_%M> 1 _M

— = —€ y
Ao\/ﬁ AO

from which (8.9) follows.
Assume now that n € {N — [VVN]+1,...,N}. Then, again by condition (8.3),

Z N(k)) > 1 XN: _ Ag(k—N)? S 1 _Ag(n=M)2 S 1 Ag(n=m)?
v = e N > _e 7 > . =
' AU\/N Ao\/ﬁ

Ag(N—[VN]-N)?
e N _ 24p(n—N)?

> e v . (811)
AN

Note that
Ne)

\7 2
(N —[VN]=N)? > (N - N)> = 3(N - N)VN > %_3A0N3/2 > %
0 0

by taking N > ng and ng large enough. By plugging this bound into (8.11) we get (8.9) in
this case also.

We can now conclude the proof of the proposition. We will bound from above

+ = su 3 N 0 ; y 1

""" k=N+1
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the bound of By (N) being similar. If n € {N +1,..., N + |V N|} by (8.3) we obtain

- 1 - 1 = e~ A2
< < AO N e N
N N _ — N —
kzﬁ-f—l YV (k) AN (k= 1) kzml YN (k) kZNH
— _ 2
< AoV N(n — N)e™5 < AgNeo,

while because Z,]::n N(k) <1 and —xlogz < 1 for any z € [0, 1],

al 1
Nk log | ———— .
(Z7 “) g(z,?inw(k)) =
This implies

oy _ z 1 -

=N+1

forany n € {N+1,...,N+ [VN|}.
Assume now n € {N + |[VN| +1,...,N}. By (8.4), (8.9) and (8.7) we obtain

N N 1 n
<Z” <k>) log(zﬁznwm) Z SN A

S 35

< BlBQ (n N> |:10g Bg + —=

< BlBQA (log B3 + A(]N)

IA 2‘

By the previous bound and (8.12) we have that Bf (N) < A;N for any N € N\ {0}. n

8.2 Proof of Proposition 3.1

Recall that for any A’ ¢ A CC Z¢ such that |A| = 2|A’| and any N € N\ {0} we defined
VY = vl @y =+). We have to show that any f:{0,...,N} - R,

Ent,w(f)<A0NnyA n) AN (n— D[V Ff(n—1) = /f(n)]? (8.13)

n=1

The assumptions of Proposition 8.1 are too strong to be fulfilled by v = 4. In particular,
while assumption (8.3) holds, as we will see a fortiori, assumptions (8.1) and (8.2) may not
be fulfilled in general (the case |A| = 2 may be instructive to see this). So following [2],
for any € € (0,1/4), we consider a regularization 35 of 4&. This regularization will be
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equivalent to vy for any e € (0,1/4), so by the comparison criterion in Theorem 3.4.3 of [1]
we can replace vY with 7y in (8.13). Finally we will prove that there exists ey € (0,1/4)
~N,e

such that vV := 5, fulfills the hypothesis of Proposition 8.1.
~ Assume N € N\ {0}, n € {0,...,N} and A CC Z and define Iy, := [N, (1 —€)N]NZ,

N = [N/2],

—HN(k
Z/J\Vve = ZkEIN,e e~ X
ZkeIN,e 'Y}\V(k)

N px{\A'l(n)pE\]Y*n)/lA’|<N _ n)
)= | T T ) |
A A

and

zy0
D) ifndly,.

It easy to check that ﬁf\ve is a probability density supported on {0,..., N}. Now we show
that 73 is equivalent to vy .

{ L e~HY(™W ifp ¢ Iy,

Lemma 8.2 For any fized € € (0,1/4) there exists a positive constant Ao such that

1 N N
— < inf jjé E(n) < sup j],\}e(n) < A (8.14)
Ao T Nem\{0},Accz? 71 (n) T Nem\{o}, acczd Ty (n)

ne{0,...N} ne{0,...,N}

Proof. Fix e € (0,1/4), since vY (n)/7y“(n) = 1 for any n ¢ Iy., we have to bound the
ratio v (n) /7y “(n) for n € Iy, only. So assume that n € Iy, and define

n/|A’ N—n)/|A
Ny o PR N — )
pa (n) = /[N )
Yo% (n)
so that N( )
Ta N,e
~]$,€ =2\ i (n).
Yy (1)
But

_ygN ’YN(k)
zNe = Z’“wa,e e I (k) Zkem,e so?AV(k)
A

B ZkEIN,e NG Zke[m (k)

which implies

A ()
A (n) 2 kely., 'Yf\v(k)ifAAV(k)
AVJJAV’E(”) Zkelm NG

Therefore

i Pam) W) o er(n)
n,meln ¢ (pfxv(m) - ?iv’%n) T nmely,. (,Df\v(m)’

for any n € Iy, N € N\ {0} and A CC Z? with |A| even. Furthermore notice that

n/|A N—n)/|A
eNn)  p™M )p N (N — )

e (m) /W g )p Y= IV (N )
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By Proposition 7.9 there exists C; > 0

Cr\ a*(n/[NN)a>(N = n)[IN]) = /W) pl=™ V(N — )

o (m/ |\ )o?((N = m)/|A')
- Cl\/ 70/ [N (N = m)/INT)

L o2 (m/INDo(N = m)/|n]) _ g™ m)pd™ (N — )

for any n € {0,...,N}, N € N\ {0}, A’ cC Z%. So (8.14) is proved if we can show that

Lo Om/v)a* (N —m)/v) wp  Cm[v)a* (N —m)/v)
0< ﬁ’,:ﬁ% o2(n/v)o?((N = n)/v) = ]G”Zi%g} 20 (N =m)fo) =

Indeed, by (7.2), there exists a constant Cs > 0 such that

m(N —m) < a*(m/v)o?((N —m)/v) < Com(N —m)
Con(N —n) = o?(n/v)o?((N —n)/v) — n(N —n)

for any n,m € {0,..., N}, N,v € N\ {0} and a trivial calculation shows that

m(N —m) 1
de(l =€) < n(N —n) = 4e(1 —€)

for any n,m € Iy.. n

The rest of the paper is devoted to prove that conditions (8.1), (8.2) and (8.3) hold for

V¥ and some €, € (0,1/4). We begin by showing the exponential decay of the tails of 73 .

Lemma 8.3 There exists €y € (0,1/4) such that

~N, €0
’ 1 1

77ANN(:: +1) < = for anyn € [(1 —e)N,N — 1] N Z; (8.15)
Ta (n) 2

~N,eo
: -1 1

% <~ foranyn€[l,eN]NZ; (8.16)
Ya ' (n) 2

for any N € N\ {0} and any A CC Z with |A| > 2.
Proof. Because 73 °(n) = vY(n) for n ¢ Iy, the lemma is a trivial consequence of

Proposition 7.5. L]

Lemma 8.4 For any ¢ € (0,1/4) there exists a positive constant Ag such that for any
N eN\ {0}, Accz?

— N - N _
o< HY(n+1)— HY(n) < Aon _ for any n € Iy, such that n > N, (8.17)
AN N ’

n—N

- N
" < Y- 1) - HY (n) ngnN

AoN

for anyn € Iy, such thatn < N. (8.18)

969



Proof. Define v := |A’| = |A|/2. An elementary computation gives

n/|A N—n)/|N
oy N — )

o/ e/ M (N )
+2vlog Z(N /v) —vlog Z(n/v) —vlog Z((N — n)/v) — Nlog a(N /v).

HY (n) :=log =nloga(n/v) + (N —n)loga((N —n)/v)

This formula shows that it is possible to extend the function HY : {0,..., N} — R to a real
function, HY : [0, N] — R by defining

HY(z) := zlog a(z/v) + (N — z) log a( (N — z)/v) .
+2vlog Z(N /v) —vlog Z(z/v) —vlog Z((N — z)/v) — Nloga(N /v)

for any = € [0, N]. A direct calculation gives

T —loga(z/v) + (o/v)[o'(z/v) alz/v)] ~ ogal(N ~ 2)/v)
(N =) /o] o (N =)o) [ (N =) /0)] ~ 2" (w0) Z (/o) + Z'((N ~) ) Z((N =) /0).
Since
oy d=alp)t R ka(p) T o/ (p) = kalp)t o/ (p)pZ(p)
20 = G O T T a2 e T a)

we obtain
dHY
= log a(x/v) —log a((N — z)/v).
x

Differentiating this identity and using again equation (1.3) of [5], we obtain

2HN 1 1

a2 2(zjo)e (N —2)/0)

which, again with (7.2), implies that there exist a positive constant B; such that for any

z € (0,N)
1 /1 1 PHY 11
— | - < <B|- .
Bl(x+N—x)_ dz? — 1<x+N—x>

Assume now that « € [V, (1 — €)N]. Then the previous inequality yields
1 1 1\ _&HY 11
— [ —F+ =) < <B|(=+—
By <N(1—6)+N)_ dz? — 1(N+€N)
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it follows that, if € > 0 is small enough, there exists a positive constant Bs(¢€) such that
17 < d*HY < %
BoN — dx? T N

for any N € N\ {0}, A cC Z? Integrating this inequality with respect to x from N to

y € [N, (1 — €)N], we obtain
— N N — N
Y {VSdHA SB2y _N
BQN d’y

Now take n € Iy, such that n > N and integrate the previous inequality with respect to y
from n to n + 1 to obtain

n—N n+1-N

BN < HY(n+1)—HY(n) < BQT.
Equation (8.17) now follows because (n+1—N)/N < 2(n— N)/N for any n > N. Equation
(8.18) can be obtained in a similar way. u

By Lemma 8.3 and Lemma 8.4 follows easily

Corollary 8.5 Define N := [N/2]. There exists ¢g € (0,1/4) and a positive constant Ay
such that for any N € N\ {0} and A cC Z4

~N,eo N,
) 1 =N _

%ge o forallne{N+1,...,N} (8.19)
Yo

=1 - v

/\Nmﬁge AoN forallne{0,...,N —1}. (8.20)
Yo

In order to use Proposition 8.1 it remains to prove the Gaussian lower bound (8.3) for
Av’j\v’so. In fact the lower bound obtained in Proposition 7.8 is not useful, because it is not

uniform in |A|. The proof is almost the same as the proof of Lemma 7.6

Lemma 8.6 Define N := [N/2] for N € N\ {0}. There exist ¢y € (0,1/4) and a positive
constant Ay such that

1 _Ag(n—N)? ~N.e AO _(n=N)?
—¢ N <AV (n) < ——e AN | 8.21
AoV =TS (82

uniformly in N € N\ {0} andn € {0,1,...,N}.

Proof. We split the proof in several steps for clarity purpose.

Step 1. There exist A; > 0 such that for any N € N\ {0},

~AVseo (7L—N)2
ZQT% < Aje” mN (8.22)
Ta’

for any n € {0,..., N}.
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Proof of Step 1. Assume that n € {N+1,..., N}, by (8.19) we get B; > 0 such that

n—1 n—1
k—

log ¥ (n) — log¥n (N [long“ +1) — log7n " (k) } < -
k=

2 I

. (8.23
BN )

2
-
>l

Using the fact that n — N < N/2, and some elementary computation we obtain

[y

n—

E—
By

k>(n—N)(n—N—l)_(n—N)Z_n—N>(n—N)Z_ 1
- BN BN BiN — BN 2By’

~ n-N-1 S = = - =
— >
N g

k=1

ol
2

which plugged into (8.23) implies (8.22) for n € {N+1,...,N—1}. Thecasen € {0,..., N}
is similar while that case n = N is trivial.

Step 2. There exists A, > 0 such that if N € N\ {0} then

~N,eg _
¥y % (n) Iy, mem?
T 1 > ety (8.24)
YA (N) Ay

for any n € In.,.

Proof of Step 2. Fixn € Iy, and assume that n > N. By (8.17) we get B; > 0 such

that
n—1 n—1 k N

log 7y (n) —log ¥y °(N) = [longEO(kﬂL 1) - 10g7N€°(k)] >-B1 ) ——— (3.25)
k=N k=N

but, using the fact that 0 <n— N < N /2, and some elementary computation we obtain

"*k-N i ~N)n-N-1) (=N n-N _(n-Ny
N £ N N N =T N

2 |

k=N

which plugged into (8.25) implies (8.24) for n > N. The case n < N is similar while the
case n = NN is trivial.

Step 3. There exists A3 > 0 such that if N € N\ {0} then

iN ““(n) 1 (n—N)2
L i (8.26)
TON) T As

for any n € {0,..., N} \ Ing-
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Proof of Step 3. Observe that n € {0,..., N}\ Iy, and ¢ € (0,1/4) implies [n—N| >
N/8. Thus to prove (8.26) we have only to show that the ratio 75" (n)/An °(N) is bounded
from below by a negative exponential of N. Assume that n € {[(1—¢€;)N|+1,..., N}; then

) AN = @)N)) H WOk +1)

~N,e ~ € — ~N,e (827)
WON) T RO i )
By (8.24) there exists By > 0 such that
FVO([(1 - €)N)) - ie_Bm(l—eNg)NJ—m?
WewW) B |
But B B B B
(1 —€)N]—N|=|(1-€)N]-—N<(1-€)N-N<N,
SO N
W1 =N | 1 g
W) B
and because N < N,
~N,eg
1 —¢€)N
Ta (}]5 WN]) 5 L mv, (8.28)
T (V) Bl

In order to bound the product factor in the right hand side of (8.27), notice that by Propo-
sition 7.5 there exists By > 0 such that
N €0 o
(k+1) - N—k

a“f“(k) " Ba(k+ 1)

for any k € {1,..., N —1}. Thus

> [log?iv (k) —log 7y (k + 1)]
k=[(1—co) N
n—1
< l0—NDlogBt Y [oglk+ 1)~ log(N — k)
k=|(1—eo)N|
n—1 d
< — — -
< Nlog Bs + Z k+1— (N —k)] ze(}{/rle}:’iﬂ) - log =
k=|(1—€0)N|
n—1
2k+1—- N 20n—1)+1—-N
§N10g32+ Z ﬂSNlog32+(n_L(1_60)NJ) g\f—(i—e)N
k=[(1—c0) N ’
< NlogBy+ N———— < N(log By + ¢; !
< og by + N—3N/4_ (og 2—|—€0)

which implies
n—1 ~ €
H N O(k + ) 6—(long+eal)N.
_ ’iN HONE
k=[(1—eo)N] A
By plugging this bound and (8.28) into (8.27), we get (8.26).
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Step 4. There exists A4 > 0 such that if N € N\ {0} and A CC Z<, then,

Ay
VN’

< AVO(N) < (8.29)

A4\/_

Proof of Step 4. By (8.22), (8.24) and (8.26) we obtain B; > 0 such that for any
N e N\ {0}

nom2 e (n=R)?
1m0 g -0
B; T ()

for any n € {0,..., N}. By summing for n € {0,..., N} we have

_(n=N)?

N 1 _ By( N)2 N
L1n—=N)™ .
> 5 = aNeo S 1y e PN

n=0 1 A n=0

Thus we are done if we can show that, for any By > 0, there exists Bs > 0 such that

= N
‘g—_ <3 e ¥ < BN (8.30)

n=0

for any N € N\ {0}. An elementary computation gives

al (n—N)? al (n—N)? (n—N)?
E eiB? N SE eiBQ N —|—E eiBQ N
n=0 n=0 n*]\_/'
N 2 +OO N2 \ 7
_p. (@=N) _p. (@=N) TN
§/ e B x dx+/ e BR dr+1=1+4/—.
oo N B,

This proves the upper bound in (8.30), the proof of the lower one is similar.

Conclusion By (8.22), (8.24), (8.26) and (8.29) we get (8.21). n
We can now prove Proposition 3.1

Proof of Proposition 3.1. By Lemma 8.2 vy and %]XVG are equivalent measures for any
N € N\{0}, A cC Z% and € € (0,1/4) so by the comparison criterion in Theorem 3.4.3 of [1],
in the proof we can replace 7Y with 1. By Corollary 8.5 there exists ¢, € (0, 1/4) such that
V¢ satisfy conditions (8.1) and (8.2) of Proposition 8.1 uniformly in A CC Z%. Furthermore
by Lemma 8.6 condition (8.3) too holds for %1\\/6 and we can apply Proposition 8.1 to ﬁf\ve |

Finally, we prove Proposition 3.7

Proof of Proposition 3.7. We may assume d = 1 and A = {0, 1}. In this case v} () =
€0, = &) = 1(& = N — &)7N (€). Thus Ent,x(f) = Ent.x (f> for any f: Q) — R,
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where f(n) := f(n, N —n), for any n € N. For the same reason

81/1]\\/(\/?7 \/?)
— %Z’Y]AV(H){C(H) [\/f(n— ILLN—n+1)— \/?(H,N—n)r

+c¢(N —n) [\/?(n—i—l,N—n—l)—\/?(n,N—n)r}

RN {C(n) Vit -1 =T e ) VT - /o] }
- nf;vfx (n)c(n) [ﬁm - ﬁm)r ", (ﬁ, ﬁ) |

Recall now the definition of the Dirichlet form D(y, ¢) defined just before Proposition 3.1,

namely
N

D(p,90) = Y [ (n) Avx (n = 1)] [p(n — 1) — p(n)]*.

n=1
We claim that there exists a constant By > 0 such that for any ¢ : N — R and any
N € N\ {0} we have

ND(p,¢) < BoD(, ¢). (8.31)

In this case we will have by Proposition 3.1

Ent, (f) = Ent.y (F) < BIND (\/}N \/}N) < B,D <\/}~ \/}N) = ey (VIVT),

which is (2.6) in the present case. Thus we have to verify (8.31). Observe that

D(p, ) = > _ 7 (n)e(n) [p(n — 1) — o(n)]?

=30 e ) Ao (= Dl el — 1) - (o)l

n=1

Since, by (7.10), Y (n) /7Y (n —1) = ¢(N —n+1)/c(n) we get

Dp, ) =Y _[e(n) Ve(N —n+ 1] [y () Ax (n = D] [p(n — 1) — p(n)]*.

n=1

Then (8.31) follows by observing that by (2.4) there exists a constant By > 0 such that
c(n)Ve(N—n+1)>By'[nV(N—n+1)] > B;'N/2, for any n € {1,...,N}. u
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