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1 Introduction

We are dealing with an Lp-theory of parabolic stochastic partial differential equations (SPDEs)
of the types

du = (aijuxixj + biuxi + cu+ f) dt+ (σikuxi + νku+ gk) dwk
t (1.1)

du = (Di(aijuxj + b̄iu+ f̄ i) + biuxi + cu+ f) dt+ (σikuxi + νku+ gk) dwk
t (1.2)

considered for t > 0 and x ∈ G. Here wk
t are independent one-dimensional Wiener processes

and G is a bounded domain in Rd.

In this article we assume that the equations have the ”degeneracy α” near ∂G : ∃δ0,K > 0 such
that for any λ ∈ Rd,

δ0ρ
2α(x)|λ|2 ≤ (aij(t, x)− αij(t, x))λiλj ≤ Kρ2α(x)|λ|2 (1.3)

where ρ(x) := dist(x, ∂G) and αij := 1
2

∑
k σ

ikσjk. Note that if α = 0 then the equations are
uniformly nondegenerate. In this case, unique solvability of the equations in appropriate Banach
spaces has been widely studied in many articles. See, for instance, [3], [4], [5], [8], [10], [14], [15]
and [17].

Our motivation of considering SPDEs with such degeneracy comes from several articles related to
PDEs with different types of degeneracies. We refer to [16], [19] and [20] for degenerate elliptic
equations. For parabolic PDEs we refer to [1], [18] (and references therein), where interior
Schauder estimates for equations with the degeneracy α < 1/2 were established.

An Lp-theory of equation (1.1) with the degeneracy α = 1 can be found in [12]. In this article,
we extend the results in [12]. We prove the unique solvability of equations (1.1) and (1.2)
with arbitrary degeneracy α ∈ [1,∞) in appropriate Sobolev spaces. Also we give some Hölder
estimates of the solutions.

One of main applications of the theory of SPDEs is a nonlinear filtering problem. Consider a
pair of diffusion processes (Xt, Yt) ∈ Rd × Rd1−d,

dXt = ρα(Xt)b(t,Xt, Yt)dt+ ρα(Xt)r(t,Xt, Yt)dWt, X(0) = X0

dYt = B(t,Xt, Yt)dt+R(t, Yt)dWt, Y (0) = Y0,

where Wt is d1-dimensional Wiener process and b, r, B,R are Lipschitz continuous matrices.
The nonlinear filtering problem is computing the conditional density πt of Xt given by the
observations {Ys : s ≤ t}. It was shown in [8] that when α = 0, there exists a conditional density
πt and πt satisfies a SPDE of type (1.1). Based on our Lp-theory, one can easily construct the
corresponding results when α ≥ 1. The motivations of considering the case α > 0 were discussed
at length in [12]. We only mention that usually the process Xt evolves in a bounded region
due to, for instance, mechanical restrictions, and therefore the above model is suitable when the
process Xt stays in the bounded domain. Note that since ρα (α ≥ 1) is Lipschitz continuous
in Rd (ρ(x) := 0 if x 6∈ G), by the unique solvability of the above SDE, if X0 is in G then the
process Xt never cross the boundary of G.

Here are notations used in the article. As usual Rd stands for the Euclidean space of points
x = (x1, ..., xd) and Br(x) := {y ∈ Rd : |x−y| < r}. For i = 1, ..., d, multi-indices β = (β1, ..., βd),
βi ∈ {0, 1, 2, ...}, and functions u(x) we set

uxi = ∂u/∂xi = Diu, Dβu = Dβ1
1 · ... ·Dβd

d u, |β| = β1 + ...+ βd.
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We also use the notation Dm for a partial derivative of order m with respect to x.

The author is sincerely grateful to the referee for giving several useful comments.

2 Main results

Let (Ω,F , P ) be a complete probability space, and {Ft, t ≥ 0} be an increasing filtration of σ-
fields Ft ⊂ F , each of which contains all (F , P )-null sets. By P we denote the predictable σ-field
generated by {Ft, t ≥ 0} and we assume that on Ω we are given independent one-dimensional
Wiener processes w1

t , w
2
t , ..., each of which is a Wiener process relative to {Ft, t ≥ 0}.

Choose and fix a smooth function ψ such that ψ(x) ∼ ρ(x) (see (2.9)). We rewrite equations
(1.1) and (1.2) in the following forms.

du = (ψ2αaijuxixj + ψαbiuxi + cu+ f) dt

+ (ψασikuxi + νku+ gk) dwk
t , (2.4)

and
du = (Di(ψ2αaijuxj + ψαb̄iu+ f̄ i) + ψαbiuxi + cu+ f) dt

+ (ψασikuxi + νku+ gk) dwk
t , (2.5)

Here, i and j go from 1 to d, and k runs through {1, 2, ...}. The coefficients aij , b̄i, bi, c, σik, νk

and the free terms f̄ i, f, gk are random functions depending on t and x. Throughout the article,
for functions defined on Ω× [0, T ]×G, the argument ω ∈ Ω will be omitted.

To describe the assumptions of f̄ i, f and g we use Sobolev spaces introduced in [8], [9] and [13].
If θ ∈ R and n is a nonnegative integer, then

Hn
p = Hn

p (Rd) = {u : u,Du, ...,Dnu ∈ Lp},

Lp,θ(G) := H0
p,θ(G) = Lp(G, ρθ−ddx),

Hn
p,θ(G) := {u : u, ρux, ..., ρ

nDnu ∈ Lp,θ(G)}. (2.6)

In general, by Hγ
p = Hγ

p (Rd) = (1−∆)−γ/2Lp we denote the space of Bessel potential. We define

‖u‖Hγ
p

= ‖(1−∆)γ/2u‖Lp .

The space Hγ
p,θ(G) is defined as the set of all distributions u on G such that

‖u‖p
Hγ

p,θ(G)
:=

∞∑
n=−∞

enθ‖ζ−n(en·)u(en·)‖p
Hγ

p
<∞, (2.7)

where {ζn : n ∈ Z} is a sequence of smooth functions such that

|Dmζn(x)| ≤ N(m)emn,
∑

n

ζn ≥ const > 0, (2.8)

ζn ∈ C∞0 (Gn), Gn := {x ∈ G : e−n−1 < ρ(x) < e−n+1}.
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If Gn is empty set, then we put ζn = 0. One can construct the function ζn, for instance, by
mollifying the indicator function of Gn. It is known that up to equivalent norms the space
Hγ

p,θ(G) and its norm are independent of {ζn} (see Lemma 2.1(iv)).

We also use the above notations for `2-valued functions g = (g1, g2, ...). We define

‖g‖Hγ
p

= ‖g‖Hγ
p (`2) = ‖|(1−∆)γ/2g|`2‖Lp .

‖g‖Hγ
p,θ(G) =

∞∑
n=−∞

enθ‖ζ−n(en·)g(en·)‖p
Hγ

p
.

Fix a smooth function ψ in G such that

sup
x
|ρ(x)mDm+1ψ(x)| <∞,

ρ(x) ≤ Nψ(x) ≤ Nρ(x), ∀x ∈ G. (2.9)

For instance one can take ψ(x) =
∑

n e
−nζn(x).

In the following lemma we collect some properties of Hγ
p,θ(G) (see [9] and [13] for detail). For

ν ∈ (0, 1], we denote

|u|C(X) = sup
X
|u(x)|, [u]Cν(X) = sup

x 6=y

|u(x)− u(y)|
|x− y|ν

.

Lemma 2.1. (i) Assume that γ − d/p = m+ ν for some m = 0, 1, ... and ν ∈ (0, 1]. Let i, j be
multi-indices such that |i| ≤ m, |j| = m. Then for any u ∈ Hγ

p,θ(G), we have

ψ|i|+θ/pDiu ∈ C(G), ψm+ν+θ/pDju ∈ Cν
loc(G),

|ψ|i|+θ/pDiu|C(G) + [ψm+ν+θ/pDju]Cν(G) ≤ N‖u‖Hγ
p,θ(G).

(ii) ψD,Dψ : Hγ
p,θ(G) → Hγ−1

p,θ (G) are bounded linear operators, and for any u ∈ Hγ
p,θ(G)

‖u‖Hγ
p,θ(G) ≤ N‖ψux‖Hγ−1

p,θ (G)
+N‖u‖

Hγ−1
p,θ (G)

≤ N‖u‖Hγ
p,θ(G), (2.10)

‖u‖Hγ
p,θ(G) ≤ N‖(ψu)x‖Hγ−1

p,θ (G)
+N‖u‖

Hγ−1
p,θ (G)

≤ N‖u‖Hγ
p,θ(G). (2.11)

(iii) For any ν, γ ∈ R, ψνHγ
p,θ(G) = Hγ

p,θ−pν(G) and

‖u‖Hγ
p,θ−pν(G) ≤ N‖ψ−νu‖Hγ

p,θ(G) ≤ N‖u‖Hγ
p,θ−pν(G).

(iv) Let {ξn} be a sequence of C∞0 (G) functions such that

|Dmξn| ≤ Nenm, supp ξn ⊂ {x ∈ G : e−n−k0 < ρ(x) < e−n+k0}

for some k0 > 0. Then for any u ∈ Hγ
p,θ(G)∑

n

‖ξ−n(enx)u(enx)‖p
Hγ

p,θ(G)
≤ N‖u‖p

Hγ
p,θ(G)

.

And, if in addition
∑

n ξn(x) ≥ δ > 0, then

‖u‖p
Hγ

p,θ(G)
≤ N

∑
n

‖ξ−n(enx)u(enx)‖p
Hγ

p,θ(G)
.
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Now we define stochastic Banach spaces. For any stopping time τ , denote |(0, τ ]] = {(ω, t) : 0 <
t ≤ τ(ω)},

Hγ
p(τ) = Lp( |(0, τ ]],P,Hγ

p ), Hγ
p,θ(G, τ) = Lp( |(0, τ ]],P,Hγ

p,θ(G)),

L...(...) = H0
...(...), Uγ

p = Lp(Ω,F0,H
γ−2/p
p ),

Uγ,α
p,θ (G) = ψ

− 2
p
(1−α)+1

Lp(Ω,F0,H
γ−2/p
p,θ (G)).

Definition 2.2. We write u ∈ H
γ+2,α
p,θ (G, τ) if u ∈ ψHγ+2

p,θ (G, τ), u(0, ·) ∈ Uγ+2,α
p,θ (G) and for

some f ∈ ψ−1+2αHγ
p,θ(G, τ), g ∈ ψ

αHγ+1
p,θ (G, τ, `2)

du = f dt+ gk dwk
t , (2.12)

in the sense of distribution. In other words, for any φ ∈ C∞0 (G), the equality

(u(t, ·), φ) = (u(0, ·), φ) +
∫ t

0
(f(s, ·), φ) ds+

∞∑
k=1

∫ t

0
(gk(s, ·), φ) dwk

s

holds for all t ≤ τ with probability 1. In this situation we also write f = Du, g = Su. Let

H
γ+2,α
p,θ,0 (G, τ) = H

γ+2,α
p,θ (G, τ) ∩ {u : u(0, ·) = 0}.

The norm in H
γ+2,α
p,θ (G, τ) is introduced by

‖u‖
Hγ+2,α

p,θ (G,τ)
= [|u|]

Hγ+2,α
p,θ (G,τ)

+ ‖u(0, ·)‖
Uγ+2,α

p,θ (G)
,

where

[|u|]
Hγ+2,α

p,θ (G,τ)
:= ‖ψ−1u‖Hγ

p,θ(G,τ) + ‖ψ1−2αDu‖Hγ
p,θ(G,τ) + ‖ψ−αSu‖Hγ+1

p,θ (G,τ)
,

‖u(0, ·)‖p

Uγ+2,α
p,θ (G)

= E‖ψ
2
p
(1−α)−1

u(0, ·)‖p

H
γ+2−2/p
p,θ (G)

.

Remark 2.3. Up to equivalent norms, the space H
γ+2,α
p,θ (G, τ) is independent of the choice of ψ,

and for instance the norm ‖ψ−1u‖Hγ+2
p,θ (G,τ)

can be replaced by ‖u‖Hγ+2
p,θ−p(G,τ)

. Also note that if

u ∈ ψHγ+2
p,θ (G, τ), then by Lemma 2.1

ψ2α∆u ∈ ψ−1+2αHγ
p,θ(G, τ), ψαDu ∈ ψαHγ+1

p,θ (G, τ).

Thus considering equation (2.4), we find that the spaces for Du and Su are defined naturally.

To state our assumptions on the coefficients, we take some notations from [2]. Denote ρ(x, y) =
ρG(x, y) = ρ(x) ∧ ρ(y). For δ ∈ (0, 1), and k = 0, 1, 2, ..., define

[f ](0)k = [f ](0)k,G = sup
x∈G

ρk(x)|Dkf(x)|,

[f ](0)k+δ = [f ](0)k+α,G = sup
x,y∈G
|β|=k

ρk+α(x, y)
|Dβf(x)−Dβf(y)|

|x− y|α
,
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|f |(0)k = |f |(0)k,G =
k∑

j=0

[f ](0)j,G, |f |(0)k+α = |f |(0)k+α,G = |f |(0)k,G + [f ](0)k+α,G.

By Dβf we mean either classical derivatives or Sobolev ones and in the latter case sup’s in the
above are understood as ess sup’s. We also use the same notations for `2-valued functions.

Fix a function δ0(τ) ≥ 0 defined on [0,∞) such that δ0(τ) > 0 unless τ ∈ {0, 1, 2, ...}. For τ ≥ 0
define

τ+ = τ + δ0(τ),

and fix some constants
δ0,K ∈ (0,∞), γ ∈ R.

Assumption 2.4. (i) For each x ∈ G, the coefficients aij(t, x), b̄i(t, x), bi(t, x) c(t, x), σik(t, x)
and νk(t, x) are predictable functions of (ω, t).

(ii) For any x, t, ω and λ ∈ Rd,

δ0|λ|2 ≤ (aij(t, x)− αij(t, x))λiλj ≤ K|λ|2, (2.13)

where αij = 1
2

∑
k σ

ikσjk.

Assumption 2.5. For any ε > 0, there exists δ = δ(ε) > 0 such that

sup
ω,t

(|aij(t, x)− aij(t, y)|+ |σi(t, x)− σi(t, y)|`2) ≤ ε

whenever x, y ∈ G and |x− y| ≤ δ(ε)ρ(x, y).

Assumption 2.6. For any t > 0 and ω ∈ Ω,

|aij(t, ·)|(0)|γ|+ + |ψ1−αbi(t, ·)|(0)|γ|+ + |ψ2(1−α)c(t, ·)|(0)|γ|+

+|σi(t, ·)|(0)|γ+1|+ + |ψ1−αν(t, ·)|(0)|γ+1|+ ≤ K.

Remark 2.7. Assumption 2.5 is much weaker than uniform continuity of aij and σi. For instance,
let G = (0, 1) and a(t, x) = 2 + sin(lnx(1 − x)). Then one can easily check that a satisfies
Assumptions 2.5 and 2.6 for any γ ∈ R.

Here are our main results. From this point on we assume that

τ ≤ T, α ∈ [1,∞), p ∈ [2,∞).

Theorem 2.8. Let Assumptions 2.4, 2.5 and 2.6 be satisfied. Then

(i) for any f ∈ ψ−1+2αHγ
p,θ(G, τ), g ∈ ψαHγ+1

p,θ (G, τ) and u0 ∈ Uγ+2,α
p,θ (G), equation (2.4) with

initial data u0 admits a unique solution u (in the sense of distribution) in the class H
γ+2,α
p,θ (G, τ),

(ii) for this solution

‖u‖p

Hγ+2,α
p,θ (G,τ)

≤ N(‖ψ1−2αf‖p
Hγ

p,θ(G,τ)
+ ‖ψ−αg‖p

Hγ+1
p,θ (G,τ)

+ ‖u0‖p

Uγ+2,α
p,θ (G)

), (2.14)

where the constant N depends only on d, γ, p, θ, δ0,K and T .
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Note that in the following theorem Assumption 2.6 is not assumed.

Theorem 2.9. Let Assumptions 2.4 and 2.5 be satisfied, and

|ψ1−αb̄i|+ |ψ1−αbi|+ |ψ2(1−α)c|+ |ψ1−αν| ≤ K, ∀ω, t, x. (2.15)

Then
(i) for any f̄ i ∈ ψ2αLp,θ(G, τ), f ∈ ψ−1+2αH−1

p,θ(G, τ), g ∈ ψαLp,θ(G, τ) and u0 ∈ U1,α
p,θ (G),

equation (2.5) with initial data u0 admits a unique solution u (in the sense of distribution) in
the class H

1,α
p,θ (G, τ),

(ii) for this solution

‖u‖p

H1,α
p,θ (G,τ)

≤ N(‖ψ−2αf̄‖p
Lp,θ(G,τ) + ‖ψ1−2αf‖p

H−1
p,θ(G,τ)

+ ‖ψ−αg‖p
Lp,θ(G,τ) + ‖u0‖p

U1,α
p,θ (G)

), (2.16)

where the constant N depends only on d, γ, p, θ, δ0,K and T .

Now we state the regularity of the solutions in terms of Hölder continuity in time and space, both
inside the domain and near the boundary. The following results are immediate consequences of
Lemma 2.1, Remark 3.2 and Theorem 3.3.

Corollary 2.10. Let u ∈ H
γ+2,α
p,θ (G, τ) be the solution of Theorem 2.8 or Theorem 2.9. Let

2/p < µ < β < 1, γ + 2− β − d/p = m+ ν,

for some m = 0, 1, ..., ν ∈ (0, 1]. Then for any multi-indices i, j such that |i| ≤ m, |j| = m

E sup
0≤s<t≤τ

|ψ|i|−1+θ/pDi(u(t)− u(s))|pC(G)

|t− s|pµ/2−1
<∞, (2.17)

E sup
0≤s<t≤τ

[ψm+ν−1+θ/pDj(u(t)− u(s))]pCν(G)

|t− s|pµ/2−1
<∞. (2.18)

Remark 2.11. In particular, if γ ≥ −1 and

κ0 := 1− 2/p− d/p > 0,

then for any κ ∈ (0, κ0), we have

E sup
t≥0

sup
x,y∈G

|ψκ−1+θ/p(x)u(t, x)− ψκ−1+θ/p(y)u(t, y)|p

|x− y|κp
<∞, (2.19)

E sup
x∈G

sup
t6=s

|ψ−1+θ/p(x)(u(t, x)− u(s, x))|p

|t− s|κp/2
<∞. (2.20)

Indeed, to estimate the first term take β = κ0 − κ+ 2/p, then 1− β − d/p = ν = κ and (2.18)
implies (2.19). For the second estimate, take µ = κ+2/p and β = 1−d/p, then pµ/2−1 = κp/2
and (2.17) implies (2.20). Obviously (2.19) and (2.20) yield that if θ ≤ p,

E sup
t≥0

sup
x,y∈G

|u(t, x)− u(t, y)|p

|x− y|κp
+ E sup

x∈G
sup
t6=s

|(u(t, x)− u(s, x)|p

|t− s|κp/2
<∞.

Remark 2.12. The condition α ≥ 1 in the previous theorems is crucial in our proof. More
precisely, our scaling argument fails if α < 1. The case α < 1 will be treated differently
elsewhere under some additional conditions.
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3 Auxiliary Results

In this section, we introduce an embedding theorem and few results about partitions of unity
and point-wise multipliers.

A similar version of the following lemma can be found in [6] and [14].

Lemma 3.1. There exists a constant N = N(d, p, γ, |γ|+) such that

‖af‖Hγ
p,θ(G) ≤ N |a|(0)|γ|+‖f‖Hγ

p,θ(G). (3.21)

Proof. By Lemma 5.2 in [8],

‖af‖p
Hγ

p,θ(G)
≤ N

∑
n

enθ‖a(enx)ζ2
−n(enx)f(enx)‖p

Hγ
p

≤ N sup
n
|a(enx)ζ−n(enx)|B|γ|+

∑
n

enθ‖ζ−n(enx)f(enx)‖p
Hγ

p
,

where Bν is a natural Hölder’s norm in Rd. Therefore, it is enough to show

|a(enx)ζ−n(enx)|B|γ|+ ≤ N |a|(0)|γ|+. (3.22)

Let |γ|+ = m+ δ, δ ∈ [0, 1). Assume that δ = 0. Observe that

sup
n

sup
x
|Dk(ζ−n(enx))| <∞, ∀k > 0. (3.23)

If k ≤ m and enx ∈ suppζ−n(e·), then (since ρ(enx) ∼ en),

|enk(Dka)(enx)| ≤ Nρk(enx)|(Dka)(enx)| ≤ N |a|(0)|γ|+. (3.24)

Obviously, (3.23) and (3.24) prove (3.22). Next let δ 6= 0. To show

|Dma(enx)ζ−n(enx)−Dma(eny)ζ−n(en)| ≤ N |x− y|δ,∀x, y ∈ Rd,

we may assume that |x− y| ≤ e−4 and enx ∈ suppζ−n(e·). In this case, eny ∈ B̄e−4+n(enx) ⊂ G
and ρ(enx) ∼ ρ(enx, eny) ∼ en. Thus, due to (3.23),

|Dma(enx)ζ−n(enx)−Dma(eny)ζ−n(en)|

≤ N
∑
k≤m

ρk(enx, eny)|(Dka)(enx)− (Dka)(eny)||Dm−k(ζ−n(enx))|

+N
∑
k≤m

enk|(Dka)(eny)||Dm−k(ζ−n(enx))−Dm−k(ζ−n(eny))|

≤ N |a|(0)|γ|+(e−nδ|enx− eny|δ + |x− y|) ≤ N |x− y|δ.

The lemma is proved.
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Remark 3.2. Let θ1 ≤ θ2. By Lemmas 2.1 and 3.1

‖u‖Hγ
p,θ2

(G) ≤ N‖ψ(θ2−θ1)/pu‖Hγ
p,θ1

(G) ≤ N‖u‖Hγ
p,θ1

(G).

Consequently, if α1 ≤ α2 then

‖u‖H
γ,α1
p,θ (G,τ) ≤ N‖u‖H

γ,α2
p,θ (G,τ).

The following results are due to Lototsky ([12]).

Theorem 3.3. (i) For any t ≤ T ,

‖ψ−1u‖p

Hγ+1
p,θ (G,t)

≤ N(d, γ, p, T )
∫ t

0
‖u‖p

Hγ+2,1
p,θ (G,s)

ds.

(ii) Let
2/p < µ < β < 1.

Then
E‖u‖p

Cµ/2−1/p([0,τ ],Hγ+2−β
p,θ−p (G))

≤ N(µ, β, d, γ, p, T )‖u‖p

Hγ+2,1
p,θ (G)

.

We choose and fix smooth functions ξn such that |Dmξn| ≤ N(m)enm, suppξn ⊂ (Gn−1 ∪Gn ∪
Gn+1) and ξn = 1 on the support of ζn.

Lemma 3.4. Let Assumptions 2.4(ii) and 2.5 be satisfied. By I we denote d×d identity matrix.
Define

aij
n (t, x) = e−2nαψ2α(enx)ξ2−n(enx)aij(e2n(1−α)t, enx) + (1− ξ2−n(enx))I,

σik
n (t, x) = e−nαψα(enx)ξ−n(enx)σik(e2n(1−α)t, enx).

Then

(i) For any λ ∈ Rd,

e−4αδ0|λ|2 ≤ (aij
n − 1/2σik

n σ
jk
n )λiλj ≤ e4αK|λ|2.

(ii) For any ε > 0, there exists δ = δ(ε) > 0 such that

sup
n

sup
ω,t

(|aij
n (t, x)− aij

n (t, y)|+ |σi
n(t, x)− σi

n(t, y)|) < ε,

whenever x, y ∈ Rd and |x− y| < δ.

(iii)
sup

n
sup
ω,t

(|aij
n (t, ·)|B|γ|+ + |σi

n|B|γ+1|+) <∞. (3.25)
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Proof. (i) is obvious and (3.25) follows from the same arguments as in the proof of Lemma 3.1.
Thus we only give a proof of the second assertion. Let δ ≤ e−4 and |x− y| < δ. Without loss of
generality, we assume that ξ−n(enx) 6= 0. Observe that

eny ∈ B̄ := B̄enδ(enx) ⊂ G, |enx− eny| ≤ δen ≤ N0δρ(enx, eny),

and for any z ∈ Benδ(enx) we have ρ(z) ∼ en. Thus,

|ξ−n(enx)− ξ−n(eny)| ≤ |x− y|en sup
z
|D(ξ−n)(z)| ≤ N1|x− y|,

|ψ2α(enx)− ψ2α(eny)| ≤ sup
z∈B

|Dψ2α(z)||enx− eny| ≤ Ne2nα|x− y|,

and
|e−2nαψ2α(enx)a(enx)ξ−n(enx)− e−2nαψ2α(eny)a(eny)ξ−n(eny)|

≤ e−2nαψ2α(enx)ξ−n(enx)|a(enx)− a(eny)|

+|a(eny)|e−2nαψ2α(enx)|ξ−n(enx)− ξ−n(eny)|

+|a(eny)ξ−n(eny)|e−2nα|ψ2α(enx)− ψ2α(eny)|

≤ N2(|a(enx)− a(eny)|+ δ + δ).

Note that the constant Ni are independent of x, y and n. So, if ε > 0 is given, then it is
enough to take δ > 0 such that (N1 + 2N2)δ < ε/2 and N2|a(t, x) − a(t, y)| ≤ ε/3 whenever
|x− y| < N0δρ(x, y).

We handle σi
n similarly. The lemma is proved.

The following lemma is taken from [13].

Lemma 3.5. Let {φk : k = 1, 2, ...} be a collection of C∞0 (G) functions such that for each m > 0

sup
x∈G

∑
k

ρm(x)|Dmφk(x)| ≤M(m) <∞.

Then there exists a constant N = N(d, γ,M) such that for any f ∈ Hγ
p,θ(G),∑

k

‖φkf‖p
Hγ

p,θ(G)
≤ N‖f‖p

Hγ
p,θ(G)

.

If in addition ∑
k

|φk(x)|p ≥ c > 0,

then
‖f‖p

Hγ
p,θ(G)

≤ N(d, γ,M, c)
∑

k

‖φkf‖p
Hγ

p,θ(G)
.
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4 Proof of Theorem 2.8

As usual, we may assume that τ ≡ T (see [8]). For a moment, we assume that bi = c = νk = 0.
Take aij

n and σik
n from Lemma 3.4. Denote

cn := e−2n(1−α), wk
t (n) := e−n(1−α)wk

e2n(1−α)t

Then for each n, wk
t (n) are independent one dimensional Wiener processes. By Theorem 5.1 in

[8], for any f ∈ Hγ
p(cnT ), g ∈ Hγ+1

p (cnT ) and u0 ∈ Uγ+2
p the equation

du = (aij
n uxixj + f)dt+ (σik

n uxi + gk)dwk
t (n) u(0, ·) = u0, (4.26)

has a unique solution u ∈ Hγ+2
p (cnT ) and u satisfies

‖u‖Hγ+2
p (cnT )

≤ N(‖f‖Hγ
p(cnT ) + ‖g‖Hγ+1

p (cnT )
+ ‖u0‖Uγ+2

p
), (4.27)

where the constant N depends only d, p, γ, δ0,K, cnT, |an|B|γ|+ , |σn|B|γ+1|+ and uniform continu-
ity of an, σn.

By Sn(f, g, u0) we denote the the solution of (4.26). Define

S̄n(f, g, u0)(t, x) = Sn(f, g, u0)(cnt, e−nx).

From now on, without loss of generality, we assume that∑
n

ζ2
−n(x) = 1, ∀x ∈ G.

Remember the fact that a function v satisfies

dv = f dt+ gk dwk
t , t ≤ T

if and only if vc(t, x) := v(c2t, cx) (c > 0) satisfies

dvc = c2f(c2t, cx) dt+ cg(c2t, cx)d(c−1wk
c2t), t ≤ c−2T.

It follows that if u ∈ H
γ+2,α
p,θ (G,T ) is a solution of equation (2.4), then vn(t, x) :=

(ζ−nu)(c−1
n t, enx) satisfies

dvn = (aij
n vnxixj +Anu+ fn)dt+ (σik

n vnxi +Bk
nu+ gk

n)dwk
t (n),

where
Anu(t, x) := −2aij

n e
2nuxi(c−1

n t, enx)ζ−nxj (enx)

−aij
n e

2nu(c−1
n t, enx)ζ−nxixj (enx),

Bk
nu(t, x) := −σik

n e
nu(c−1

n t, enx)ζ−nxi(enx),

fn(t, x) := e2n(1−α)f(e2n(1−α)t, enx)ζ−n(enx),

gk
n(t, x) := en(1−α)g(e2n(1−α)t, enx)ζ−n(enx), (4.28)

u0n := u0(enx)ζ−n(enx).
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Consequently,

vn(t, x) := (ζ−nu)(c−1
n t, enx) = Sn(Anu+ fn, Bnu+ gn, u0n)

and
u =

∑
n

ζ−n(ζ−nu) =
∑

n

ζ−nS̄n(Anu+ fn, Bnu+ gn, u0n). (4.29)

To proceed further, we need the following lemma.

Lemma 4.1. Fix f ∈ ψ−1+2αHγ
p,θ(G,T ), g ∈ ψαHγ+1

p,θ (G,T ) and u0 ∈ Uγ+2
p,θ (G). Then a suffi-

ciently high power of the operator

R : u→
∑

n

ζ−nS̄n(Anu+ fn, Bnu+ gn, u0n) (4.30)

is a contraction in H
γ+2,α
p,θ (G,T ) ∩ {u : u(0, ·) = u0}, and the unique solution u ∈ H

γ+2,α
p,θ (G,T )

of (4.29) satisfies the estimate (2.14).

Proof. For simplicity, we use the notations Sn and S̄n instead of Sn(Anu + fn, Bnu + gn, u0n)
and S̄n(Anu+ fn, Bnu+ gn, u0n), respectively.

Note that ζnζm = 0 if |n−m| > 1. By Lemmas 3.5 and 3.1,

‖Ru‖p

Hγ+2,α
p,θ (G,T )

≤ N
∑

n

‖ζ−nRu‖p

Hγ+2,α
p,θ (G,T )

≤ N
∑

n

‖ζ−nS̄n‖p

Hγ+2,α
p,θ (G,T )

. (4.31)

By definition,

‖ζ−nS̄n‖p

Hγ+2,α
p,θ (G,T )

= ‖ψ−1ζ−nS̄n‖p

Hγ+2
p,θ (G,T )

+ ‖ψ1−2αD(ζ−nS̄n)‖p
Hγ

p,θ(G,T )

+‖ψ−αS(ζ−nS̄n)‖p

Hγ+1
p,θ (G,T )

+ ‖ζ−nu0‖p

Uγ+2,α
p,θ (G)

.

Remember that ‖u(e±1x)‖Hν ∼ ‖u(x)‖Hν and supn |ζ−n(enx)|Bν <∞ for each ν > 0. Thus (cf.
Lemma 5.2 in [8]),∑

n

‖ζ−nS̄n‖p

Hγ+2
p,θ−p(G,T )

≤ N
∑

n

en(θ−p)‖ζ−n(enx)S̄n(t, enx)‖p

Hγ+2
p (T )

≤ N
∑

n

en(θ−p+2−2α)‖Sn(t, x)‖p

Hγ+2
p (cnT )

. (4.32)

By writing the equation for ζ−n(enx)Sn, we find that v̄n := ζ−nS̄n satisfies

dv̄n = D(ζ−nS̄n) dt+ S(ζ−nS̄n) dwk
t

= [ψ2αaij v̄nxixj − 2ψ2αaij(S̄nζ−nxi)xj + ψ2αaijS̄nζ−nxixj

−2ψ2αaijuxiζ−nxjζ−n − ψ2αaijuζ−nxixjζ−n + ζ2
−nf ] dt

+[ψασikv̄nxi − ψασikS̄nζ−nxi − ψασikuζ−nxiζ−n + ζ2
−ng] dw

k
t .
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Thus, by Lemmas 2.1 and 3.1, ∑
n

‖ψ1−2αD(ζ−nS̄n)‖p
Hγ

p,θ(G,T )

≤ N
∑

n

‖ψ(ζ−nS̄n)xx‖p
Hγ

p,θ(G,T )
+N

∑
n

‖ψ(S̄nζ−nx)x‖p
Hγ

p,θ(G,T )

+N
∑

n

‖ψ−1S̄nψ
2ζ−nxx‖p

Hγ
p,θ(G,T )

+N
∑

n

‖uxψζ−nx‖p
Hγ

p,θ(G,T )

+N
∑

n

‖ψ−1uψ2ζ−nxx‖p
Hγ

p,θ(G,T )
+N

∑
n

‖ψ1−2αfζ−n‖p
Hγ

p,θ(G,T )

≤ N
∑

n

‖ζ−nS̄n‖p

Hγ+2
p,θ−p(G,T )

+N
∑

n

‖S̄nζ−nx‖p

Hγ+1
p,θ (G,T )

+‖ψ−1u‖p

Hγ+1
p,θ (G,T )

+N‖ψ1−2αf‖p
Hγ

p,θ(G,T )
.

Here, ∑
n

‖ζ−nxS̄n‖p

Hγ+1
p,θ (G,T )

=
∑
n,m

em(θ−p)‖S̄n(emx)emζ−nx(emx)ζ−m(emx)‖p

Hγ+1
p (T )

≤ N
∑

n

en(θ−p)‖S̄n(t, x)(enx)‖p

Hγ+2
p (T )

= N
∑

n

en(θ−p+2−2α)‖Sn(t, x)‖p

Hγ+2
p (cnT )

.

We estimate
∑

n ‖ψ−αS(ζ−nS̄n)‖p

Hγ+1
p,θ (G,T )

similarly, and conclude that

‖Ru‖p

Hγ+2,α
p,θ (G,T )

≤ N‖ψ−1u‖p

Hγ+1
p,θ (G,T )

+N‖ψ1−2αf‖p
Hγ

p,θ(G,T )

+‖ψ−αg‖p

Hγ+1
p,θ (G,T )

+ ‖u0‖p

Uγ+2
p,θ (G)

+
∑

n

en(θ−p+2−2α)‖Sn(t, x)‖p

Hγ+2
p (cnT )

. (4.33)

Since G is bounded, we may assume that ζ−n = 0 for all n > 1. For each n ≤ 0, we have

cnT := e−2n(1−α)T ≤ T. (4.34)

Thus by (4.27), there exists a constant N independent of n (due to Lemma 3.4 and (4.34)) such
that for each n ≤ 0,

‖Sn(t, x)‖p

Hγ+2
p (cnT )

≤ N‖Anu+ fn‖p
Hγ

p(cnT )

+N‖Bnu+ gn‖p

Hγ+1
p (cnT )

+N‖u0n‖p

Uγ+2
p

.
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Also, by Lemma 2.1, ∑
n≤0

en(θ−p+2−2α)(‖Anu‖p
Hγ

p(cnT )
+ ‖Bnu‖p

Hγ+1
p (cnT )

)

=
∑
n≤0

en(θ−p)‖(Anu)(cnt, x)|pHγ
p(T )

+ ‖(Bnu)(cnt, x)‖p

Hγ+1
p (T )

≤ N
∑
n≤0

enθ‖ux(enx)enζ−nx(enx)‖p
Hγ

p(T )

+N
∑
n≤0

en(θ−p)‖u(enx)e2nζ−nxx(enx)‖p
Hγ

p(T )

+N
∑
n≤0

en(θ−p)‖u(enx)enζ−nx(enx)‖p

Hγ+1
p (T )

≤ N‖ux‖p
Hγ

p,θ(G,T )
+N‖u‖p

Hγ+1
p,θ−p(G,T )

≤ N‖ψ−1u‖p

Hγ+1
p,θ (G,T )

.

Similarly, ∑
n≤0

en(θ−p+2−2α)(‖fn‖p
Hγ

p(cnT )
+ ‖gn‖p

Hγ+1
p (cnT )

)

≤ N
∑
n≤0

en(θ+p(1−2α))‖f(t, enx)ζ−n(enx)‖p
Hγ

p(T )

+N
∑
n≤0

en(θ−pα)‖g(t, enx)ζ−n(enx)‖p

Hγ+1
p (T )

≤ N‖ψ1−2αf‖p
Hγ

p,θ(G,T )
+N‖ψ−αg‖p

Hγ+1
p,θ (G,T )

,

and ∑
n

e
n(θ+p( 2

p
(1−α)−1))‖u0(enx)ζ−n(enx)‖p

Uγ+2
p

≤ N‖u0‖p

Uγ+2
p,θ (G)

.

Hence, coming back to (4.33), we get

‖Ru‖p

Hγ+2,α
p,θ (G,τ)

≤ N(‖ψ−1u‖p

Hγ+1
p (T )

+ ‖ψ1−2αf‖p
Hγ

p(T )

+ ‖ψ−αg‖p

Hγ+1
p (T )

+ ‖u0‖p

Uγ+2
p,θ (G)

). (4.35)

Note that H̄
γ+2,α
p,θ (G,T ) := H

γ+2,α
p,θ (G,T ) ∩ {u : u(0, ·) = u0} is a complete Banach space and

contains R0 (thus not empty), where

R0 :=
∑

n

ζ−nS̄n(fn, gn, u0n).

By (4.35) and Theorem 3.3, for any u, v ∈ H̄
γ+2,α
p,θ (G,T ),

Ru−Rv =
∑

n

ζ−nS̄n(An(u− v), Bn(u− v), 0),
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‖Ru−Rv‖
Hγ+2,α

p,θ (G,T )
≤ N‖ψ−1(u− v)‖p

Hγ+1
p,θ (G,T )

≤ N

∫ T

0
‖u− v‖p

Hγ+2,α
p,θ (G,s)

ds. (4.36)

(4.36) shows that there exists m0 > 0 such that Rm is a contraction in H̄
γ+2,α
p,θ (G,T ), and all

the assertions of the lemma follow from this and (4.35). For more technical details, we refer to
the proof of Theorem 6.4 in [8]. The lemma is proved.

Let u be the solution of (4.29). We will show that u satisfies equation (2.4). Obviously u(0, ·) =
u0, and (by definition) for some f0 ∈ ψ−1+2αHγ

p,θ(G,T ) and g0 ∈ ψαHγ+1
p,θ (G,T )

du = f0 dt+ gk
0 dw

k
t .

Observe that u satisfies equation (2.4) with f̄ := f0 − ψ2αaijuxixj and ḡk := gk
0 − ψασikuxi

instead of f and gk, respectively. By the above arguments (see (4.29))

u =
∑

n

ζ−nS̄n(Anu+ f̄n, Bnu+ ḡn, u0n),

where f̄n, ḡn, u0n are defined from f̄ , ḡ, u0 as in (4.28). Also,

0 =
∑

n

ζ−nS̄n(f̃n, g̃n, 0), (4.37)

where f̃ = f − f̄ , g̃ = g − ḡ and f̃n, g̃n are defined as before.

Define the operators Ān and B̄n such that

Ānu = 2aijψ2αuxiζ−nxj − aijψ2αuζ−nxixj ,

B̄nu = ψασikuζ−nxi .

From (4.37),
0 = D

∑
n

ζ−nS̄n(f̃n, g̃n, 0) = f̃ −
∑

n

ĀnS̄n(f̃n, g̃n, 0),

0 = S
∑

n

ζ−nS̄n(f̃n, g̃n, 0) = g̃ −
∑

n

B̄nS̄n(f̃n, g̃n, 0).

Therefore, to show f̃ = g̃k = 0, we only need to prove that a sufficiently high power of the
operator

R̄ : (f, g) → (
∑

n

ĀnS̄n(fn, gn, 0),
∑

n

B̄nS̄n(fn, gn, 0))

is a contraction in Fγ,α
p,θ (G,T ) := ψ−1+2αHγ

p,θ(G,T )× ψαHγ+1
p,θ (G,T ).

By Lemma 3.5,

‖
∑

n

ψζ−nxS̄nx‖p
Hγ

p,θ(G,T )
≤ N

∑
m,n

|m−n|≤1

‖ψζ2
−mζ−nxS̄nx‖p

Hγ
p,θ(G,T )
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= N
∑
m,n

|m−n|≤1

‖ψζ−nx(S̄nζ
2
−m)x − 2ψ−1S̄nζ−mψ

2ζ−mxζ−nx‖p
Hγ

p,θ(G,T )

≤ N
∑
m,n

|m−n|≤1

‖ψ−1ζ−mS̄n‖p

Hγ+1
p,θ (G,T )

≤ N

∫ T

0

∑
m,n

|m−n|≤1

‖ζ−mS̄n‖p

Hγ+2,α
p,θ (G,s)

ds.

As in the proof of Lemma 4.1 (see (4.31) and (4.35)),∑
m,n

|m−n|≤1

‖ζ−mS̄n‖p

Hγ+2,α
p,θ (G,s)

≤ N‖ψ1−2αf‖p
Hγ

p,θ(G,s)
+N‖ψ−αg‖p

Hγ+1
p,θ (G,s)

.

We estimate other terms in
∑

n ĀnS̄n and
∑

n B̄nS̄n similarly (actually much easily) and get

‖R̄(f, g)‖p
Fγ

p,θ(G,T )
≤ N

∫ T

0
‖(f, g)‖p

Fγ
p,θ(G,s)

ds.

This shows that a sufficiently high power of R̄ is a contraction and f̄ = f, ḡ = g.

For general case (previously we assumed that bi = c = νk = 0), having the method of continuity
in mind, we only show that (2.14) holds true given that a solution u ∈ H

γ+2,α
p,θ (G,T ) already

exists. Let ū ∈ H
γ+2,α
p,θ (G,T ) be the solution of

dū = ψ2α∆ū dt, ū(0, ·) = u0.

Then
‖ū‖p

Hγ+2,α
p,θ (G,T )

≤ N‖u0‖p

Uγ+2
p,θ (G)

.

Thus by considering u− ū, as usual, we may assume that u0 = 0.

By the previous results (when bi = c = νk = 0),

‖u‖p

Hγ+2,α
p,θ (G,T )

≤ N(‖ψ1−2αf̃‖p
Hγ

p,θ(G,T )
+ ‖ψ−αg̃‖p

Hγ+1
p,θ (G,T )

),

where
f̃ = ψαbiuxi + cu+ f, g̃ik = νku+ gk.

By Lemma 3.1,
‖ψ1−2αf̃‖p

Hγ
p,θ(G,T )

+ ‖ψ−αg̃‖p

Hγ+1
p,θ (G,T )

≤ N‖ψ1−2αf‖p
Hγ

p,θ(G,T )
+N‖ψ−αg‖p

Hγ+1
p,θ (G,T )

+N‖ψ−1u‖p

Hγ+1
p,θ (G,T )

.

Thus, by Theorem 3.3 for each t ≤ T ,

‖u‖p

Hγ+2,α
p,θ (G,T )

≤ N‖ψ1−2αf‖p
Hγ

p,θ(G,T )

+N‖ψ−αg‖p

Hγ+1
p,θ (G,T )

+
∫ t

0
‖u‖p

Hγ+2,α
p,θ (G,s)

ds.

This and Gronwall’s inequality lead to (2.14). The theorem is proved.

578



5 Proof of Theorems 2.9

Consider the operators

L0u := ψ2α∆u = Di(ψ2αuxi)− 2αψ2α−1ψxiuxi ,

L1u := Di(ψ2αaijuxj + b̄iu) + biuxi + cu, Λk
1u : ψασikuxi + νku.

One can easily check that the coefficients of the operators Lλ := (1−λ)L0 +λL1 and Λλ := λΛ1

satisfy Assumptions 2.4, 2.5 and (2.15). Also note that

‖ψ1−2αf̄ i
x‖H−1

p,θ(G) ≤ N‖f̄ i‖Lp,θ−2pα(G) ≤ N‖ψ−2αf̄ i‖Lp,θ(G).

By Theorem 2.8, the equation

du = (L0u+ f̄ i
xi + f)dt+ (Λk

0u+ gk)dwk
t

has a unique solution u ∈ H
1,α
p,θ (G, τ). Thus by the method of continuity, we only need to prove

that the estimate (2.16) holds true given that a solution u ∈ H
1,α
p,θ (G, τ) of equation (2.5) already

exists.

Again without loss of generality we assume that τ ≡ T and ζ−n = 0 for all n > 0. Also as in the
proof of Theorem 2.8, we assume that u0 = 0.

Step 1. We will show that there exists a constant ε0 = ε0(d, p, δ0,K) > 0 such that the theorem
holds true if T ≤ ε0 ≤ 1. As before, denote cn := e−2n(1−α). By Lemma 2.1,

‖ψ−1u‖p
H1

p,θ(G,T )
≤ N

∑
n≤0

en(θ−p)‖u(enx)ζ−n(enx)‖p
H1

p(T )

= N
∑
n≤0

en(θ−p+2−2α)‖u(e2n(1−α)t, enx)ζ−n(enx)‖p
H1

p(cnT )
. (5.38)

Denote vn(t, x) = u(e2n(1−α)t, enx)ζ−n(enx). Then vn satisfies

dvn = (Di(aij
n vnxj + b̄invn + f̄ i

n) + bnvnxi + cnvn + fn) dt

+ (σik
n vnxi + νk

nvn + gk
n) dwk

t (n), (5.39)

where aij
n , σik

n , w
k
t (n) are defined as before and

b̄in(t, x) = en−2nαψα(enx)ξ−n(enx)b̄i(c−1
n t, enx),

bin(t, x) = en−2nαψα(enx)ξ−n(enx)bi(c−1
n t, enx),

cn(t, x) = e2n(1−α)c(c−1
n t, enx)ξ−n(enx),

νk
n(t, x) = en(1−α)νk(c−1

n t, enx)ξ−n(enx),

f̄ i
n(t, x) = −aij

n e
nζ−nxj (enx)u(c−1

n t, enx) + en−2nαf̄ i(c−1
n t, enx)ζ−n(enx),

gk
n(t, x) = −σik

n u(c
−1
n t, enx)enζ−nxi(enx) + en(1−α)gk(c−1

n t, enx)ζ−n(enx),
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fn(t, x) = −enaij
n uxj (c−1

n t, enx)enζ−nxi(enx)

+b̄nu(c−1
n t, enx)enζ−nxi(enx) + en−2nαf̄ i(c−1

n t, enx)enζ−nxi(enx)

−binenζ−nxi(enx)u(c−1
n t, enx) + e2n(1−α)f(c−1

n t, enx)ζ−n(enx).

Note that ψ(enx) ∼ en on the support of ξ−n(enx). It follows from (2.15) that

sup
n

sup
ω,t,x

(|b̄in|+ bin|+ |cn|+ |νn|) <∞.

By Theorem 2.12 in [4],

‖vn‖p
H1

p(cnT )
≤ N(‖f̄n‖p

Lp(cnT ) +N‖fn‖p

H−1
p (cnT )

+ ‖gn‖p
Lp(cnT )). (5.40)

Actually, due to the term −enaij
n uxj (c−1

n t, enx)enζ−nxi(enx) of fn, (5.40) only yields

‖ψ−1u‖p
H1

p,θ(G,T )
≤ N‖ψ−1u‖p

H1
p,θ(G,T )

+ ....

Of course, this estimate is useless unless N < 1. The following argument below is to avoid
estimating ‖enaij

n uxj (c−1
n t, enx)enζ−nxi(enx)‖H−1

p (cnT ).

Denote
f̃n(t, x) = −enaij

n uxj (c−1
n t, enx)enζ−nxi(enx) ∈ Lp(cnT ).

By Theorem 5.1 in [8], the equation

du = (∆u+ f̃n)dt, u(0, ·) = 0

has a unique solution un ∈ H2
p(cnT ), and (see Theorems 7.1 and 7.2 in [8])

‖un‖p
H1

p(cnT )
≤ N(T )‖f̃n‖p

Lp(cnT ), (5.41)

where N(T ) is independent of n (since cnT ≤ T ), and N(T ) ↓ 0 as T → 0.

v̂n := vn − un satisfies (5.39) with

ˆ̄fn := f̄n + b̄nun + (aij
n − δij)unxi ,

f̂n := fn − f̃n + bnunx + cnun, ĝn := gn + σiunxi + νun

instead of f̄n, fn and gn, respectively. Thus by Theorem 2.12 in [4], there exists a constant N
depending only on d, p, δ0 and K (remember cnT ≤ T ≤ 1) such that

‖v̂n‖p
H1

p(cnT )
≤ N(‖ ˆ̄fn‖p

Lp(cnT ) + ‖f̂n‖p

H−1
p (cnT )

+ ‖ĝn‖p
Lp(cnT )). (5.42)

Consequently,

‖vn‖p
H1

p(cnT )
≤ N(‖ ˆ̄fn‖p

Lp(cnT ) + ‖f̂n‖p

H−1
p (cnT )

+ ‖ĝn‖p
Lp(cnT ) + ‖un‖H1

p(cnT ))

≤ N(T )‖enux(c−1
n t, enx)enζ−nx(enx)‖p

Lp(cnT )
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+N‖enζ−nx(enx)u(c−1
n t, enx)‖p

Lp(cnT )

+N‖en(1−2α)f̄(c−1
n t, enx)[ζ−n(enx) + enζ−nx(enx)]‖p

Lp(cnT )

+N‖e2n(1−α)f(c−1
n t, enx)ζ−n(enx)‖p

H−1
p (cnT )

+N‖en(1−α)g(c−1
n t, enx)ζ−n(enx)‖p

Lp(cnT ).

Coming back to (5.38), by Lemma 2.1, we get

‖ψ−1u‖p
H1

p,θ(G,T )
≤ N‖ψ−1u‖p

Lp,θ(G,T ) +N‖ψ−2αf̄‖p
Lp,θ(G,T )

+N‖ψ1−2αf‖p

H−1
p,θ(G,T )

+N‖ψ−αg‖p
Lp,θ(G,T ) +NN(T )‖ψ−1u‖p

H1
p,θ(G,T )

.

Now fix ε0 such that NN(T ) ≤ 1/2 for each T ≤ ε0, then by Theorem 3.3 for each t ≤ T

‖u‖p

H1,α
p,θ (G,t)

≤ N

∫ t

0
‖u‖p

H1,α
p,θ (G,s)

ds

+N(‖ψ−2αf̄‖p
Lp,θ(G,T ) + ‖ψ1−2αf‖p

H−1
p,θ(G,T )

+ ‖ψ−αg‖p
Lp,θ(G,T )).

Gronwall’s inequality leads to (2.16).

Step 2. Consider the case T > ε0. To proceed further, we need the following lemma.

Lemma 5.1. Let τ ≤ T be a stopping time. Let u ∈ H
γ+2,α
p,θ,0 (τ), and

du(t) = f(t)dt+ gk(t)dwk
t .

Then there exists a unique ũ ∈ H
γ+2,α
p,θ,0 (T ) such that ũ(t) = u(t) for t ≤ τ(a.s) and, on (0, T ),

dũ = (ψ2α∆ũ(t) + f̃(t))dt+ gkIt≤τdw
k
t , (5.43)

where f̃ = (f(t)− ψ2α∆u(t))It≤τ . Furthermore,

‖ũ‖
Hγ+2,α

p,θ (G,T )
≤ N‖u‖

Hγ+2,α
p,θ (G,τ)

, (5.44)

where N is independent of u and τ .

Proof. Note that f̃ ∈ ψ−1+2αHγ
p,θ(G,T ) and gIt≤τ ∈ ψαHγ+1

p,θ (G,T ), so that, by Theorem 2.8,
equation (5.43) has a unique solution ũ ∈ H

γ+2,α
p,θ,0 (G,T ) and (5.44) holds. To show that ũ(t) =

u(t) for t ≤ τ , notice that, for t ≤ τ , the function v(t) = ũ(t)− u(t) satisfies the equation

dv = ψ2α∆v dt, v(0, ·) = 0.

Theorem 2.8 shows that v(t) = 0 for t ≤ τ (a.e).
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Now, to complete the proof, we repeat the arguments in [5]. Take an integer M ≥ 2 such that
T/M ≤ ε0, and denote tm = Tm/M . Assume that, for m = 1, 2, ...,M −1, we have the estimate
(2.16) with tm in place of τ (and N depending only on d, p, δ0,K and T ). We are going to use
the induction on m. Let um ∈ H

1,α
p,θ,0 be the continuation of u on [tm, T ], which exists by Lemma

5.1 with γ = −1 and τ = tm. Denote vm := u− um, then (a.s) for any t ∈ [tm, T ], φ ∈ C∞0 (G)
(since dum = ψ2α∆umdt on [tm, T ] and vm(tm, ·) = 0)

(vm(t), φ) = −
∫ t

tm

(ψ2αaijvmxj + ψαb̄ivm + f̄ i
m, φxi)(s)ds

+
∫ t

tm

(ψαbivmxi + cvm + fm, φ)(s)ds+
∫ t

tm

(ψασikvmxi + νkvm + gk
m, φ)(s)dwk

s ,

where
f̄ i

m = ψ2α(aij − δij)umxj + ψαb̄ium + f̄ i,

fm = ψαbiumxi + cum + f, gk
m = ψασikumxi + νkum + gk.

Next instead of random processes on [0, T ] we consider processes given on [tm, T ] and, in a
natural way, introduce spaces H

γ,α
p,θ (G, [tm, T ]), Lp,θ(G, [tm, t]), Hγ

p,θ(G, [tm, T ]). Then we get a
counterpart of the result of step 1 and conclude that

E

∫ tm+1

tm

‖ψ−1(u− um)(s)‖p
H1

p,θ(G)
ds

≤ NE

∫ tm+1

tm

‖ψ−2αf̄ i
m(s)‖p

Lp,θ(G) ds

+NE
∫ tm+1

tm

‖ψ1−2αfm(s)‖p

H−1
p,θ(G)

+ ‖ψ−αgm(s)‖p
Lp,θ(G)ds.

Thus by the induction hypothesis,

E

∫ tm+1

0
‖ψ−1u(s)‖p

H1
p,θ(G)

ds ≤ NE

∫ T

0
‖ψ−1um(s)‖p

H1
p,θ(G)

ds

+NE
∫ tm+1

tm

‖ψ−1(u− um)(s)‖p
H1

p,θ(G)
ds

≤ N(‖ψ−2αf̄ i‖p
Lp,θ(G,tm+1) + ‖ψ1−2αf‖p

H−1
p,θ(G,tm+1)

+ ‖ψαg‖p
Lp,θ(G,tm+1)).

We see that the induction goes through and thus the theorem is proved.
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[20] M.I. Vǐsik and V.V. Grušin, Boundary value problems for elliptic equations which are
degenerate on the boundary of the domain, Math. USSR Sb., 9 (1969), 423-454.

584


	Introduction
	Main results
	Auxiliary Results
	Proof of Theorem 2.8
	Proof of Theorems 2.9
	References

