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1 Introduction

Our approach is based on Backward Stochastic Differential Equations (in short BSDE’s) which
were first introduced by Bismut [5] in 1973 as equation for the adjoint process in the stochastic
version of Pontryagin maximum principle. Pardoux and Peng [14] generalized the notion in
1990 and were the first to consider general BSDE’s and to solve the question of existence and
uniqueness in the non-linear case. Since then BSDE’s have been widely used in stochastic control
and especially in mathematical finance, as any pricing problem by replication can be written in
terms of linear BSDEs, or non-linear BSDEs when portfolios constraints are taken into account
as in El Karoui, Peng and Quenez [6].

The main motivation to introduce the non-linear BSDE’s was to give a probabilistic interpreta-
tion (Feynman-Kac’s formula) for the solutions of semilinear parabolic PDE’s. This result was
first obtained by Peng in [16], see also Pardoux and Peng [15] by considering the viscosity and
classical solutions of such PDE’s. Later, Barles and Lesigne [2] studied the relation between
BSDE’s and solutions of semi-linear PDE’s in Soblev spaces. More recently Bally and Matoussi
[3] studied semilinear stochastic PDEs and backward doubly SDE in Sobolev space and their
probabilistic method is based on stochastic flow.

The reflected BSDE’s was introduced by the five authors El Karoui, Kapoudjian, Pardoux, Peng
and Quenez in [7], the setting of those equations is the following: let us consider moreover an
adapted stochastic process L := (Lt)t 6 T which stands for a barrier. A solution for the reflected
BSDE associated with (ξ, g, L) is a triple of adapted stochastic processes (Yt, Zt, Kt)t 6 T such
that 




Yt = ξ +

∫ T

t

g(s, ω, Ys, Zs)ds + KT − Kt −
∫ T

t

ZsdBs, ∀ t ∈ [0, T ],

Yt > Lt and

∫ T

0
(Yt − Lt)dKt = 0.

The process K is continuous, increasing and its role is to push upward Y in order to keep it
above the barrier L. The requirement

∫ T

0 (Yt − Lt)dKt = 0 means that the action of K is made
with a minimal energy.

The development of reflected BSDE’s (see for example [7], [10], [9]) has been especially moti-
vated by pricing American contingent claim by replication, especially in constrained markets.
Actually it has been shown by El Karoui, Pardoux and Quenez [8] that the price of an American
contingent claim (St)t 6 T whose strike is γ in a standard complete financial market is Y0 where
(Yt, πt, Kt)t 6 T is the solution of the following reflected BSDE

{ −dYt = b(t, Yt, πt)dt + dKt − πtdWt, YT = (ST − γ)+,

Yt > (St − γ)+ and
∫ T

0 (Yt − (St − γ)+)dKt = 0

for an appropriate choice of the function b. The process π allows to construct a replication
strategy and K is a consumption process that could have the buyer of the option. In a standard
financial market the function b(t, ω, y, z) = rty + zθt where θt is the risk premium and rt the
spot rate to invest or borrow. Now when the market is constrained i.e. the interest rates are
not the same whether we borrow or invest money then the function b(t, ω, y, z) = rty + zθt −
(Rt − rt)(y− (z.σ−1

t .1))− where Rt (resp. rt) is the spot rate to borrow (resp. invest) and σ the
volatility.
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Partial Differential Equations with obstacles and their connections with optimal control problems
have been studied by Bensoussan and Lions [4]. They study such equations in the point of view
of variational inequalities. In a recent paper, Bally, Caballero, El Karoui and Fernandez [1]
studied the the following semilinear PDE with obstacle

(∂t + L)u + f(t, x, u, σ∗∇u) + ν = 0, u > h, uT = g,

where h is the obstacle. The solution of such equation is a pair (u, ν) where u is a function in
L2([0, T ],H) and ν is a positive measure concentrated on the set {u = h}. The authors proved
the uniqueness and existence for the solution to this PDE when the coefficient f is Lipschitz and
linear increasing on (y, z), and gave the probabilistic interpretation (Feynman-Kac formula) for
u and ∇u by the solution (Y, Z) of the reflected BSDE (in short RBSDE). They prove also the
natural relation between Reflected BSDE’s and variational inequalities and prove uniqueness of
the solution for such variational problem by using the relation between the increasing process
K and the measure ν. This is also a point of view in this paper.

On the other hand, Pardoux [13] studied the solution of a BSDE with a coefficient f(t, ω, y, z),
which satisfies only monotonicity, continuous and general increasing conditions on y, and a
Lipschitz condition on z, i.e. for some continuous, increasing function ϕ : R+ → R+, and real
numbers µ ∈ R, k > 0, ∀t ∈ [0, T ], ∀y, y′ ∈ R

n, ∀z, z′ ∈ R
n×d,

|f(t, y, 0)| 6 |f(t, 0, 0)| + ϕ(|y|), a.s.; (1)
〈
y − y′, f(t, y, z) − f(t, y′, z)

〉
6 µ

∣∣y − y′
∣∣2 , a.s.;∣∣f(t, y, z) − f(t, y, z′)

∣∣ 6 k
∣∣z − z′

∣∣ , a.s..

In the same paper, he also considered the PDE whose coefficient f satisfies the monotonicity
condition (1), proved the existence of a viscosity solution u to this PDE and gave its probabilistic
interpretation via the solution of the corresponding BSDE. More recently, Lepeltier, Matoussi
and Xu [12] proved the existence and uniqueness of the solution for the reflected BSDE under
the monotonicity condition.

In our paper, we study the Sobolev solutions of the PDE and also the PDE with continuous ob-
stacle under the monotonicity condition (1). Using penalization method, we prove the existence
of the solution and give the probabilistic interpretation of the solution u and ∇u (resp.(u,∇u, ν))
by the solution (Y, Z) of backward SDE (resp. the solution (Y, Z, K) of reflected backward SDE).
Furthermore we use equivalence norm results and a stochastic test function to pass from the
solution of PDE’s to the one of BSDE’s in order to get the uniqueness of the solution.

Our paper is organized as following: in section 2, we present the basic assumptions and the
definitions of the solutions for PDE and PDE with obstacle, then in section 3, we recall some
useful results from [3]. We will prove the main results for PDE and PDE with continuous barrier
under monotonicity condition in section 4 and 5 respectively. Finally, we prove an analogue result
to Proposition 2.3 in [3] under the monotonicity condition, and we also give a priori estimates
for the solution of the reflected BSDE’s.

2 Notations and preliminaries

Let (Ω,F , P ) be a complete probability space, and B = (B1, B2, · · · , Bd)
∗ be a d-dimensional

Brownian motion defined on a finite interval [0, T ], 0 < T < +∞. Denote by {F t
s; t 6 s 6 T}
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the natural filtration generated by the Brownian motion B :

F t
s = σ{Bs − Bt; t 6 r 6 s} ∪ F0,

where F0 contains all P−null sets of F .

We will need the following spaces for studying BSDE or reflected BSDE. For any given n ∈ N:

• L2
n(F t

s) : the set of n-dimensional F t
s-measurable random variable ξ, such that E(|ξ|2) <

+∞.

• H2
n×m(t, T ) : the set of R

m×n-valued F t
s-predictable process ψ on the interval [t, T ], such

that E
∫ T

t
‖ψ(s)‖2 ds < +∞.

• S2
n(t, T ) : the set of n-dimensional F t

s-progressively measurable process ψ on the interval
[t, T ], such that E(supt 6 s 6 T ‖ψ(s)‖2) < +∞.

• A2(t, T ) :={K : Ω × [t, T ] → R, F t
s–progressively measurable increasing RCLL processes

with Kt = 0, E[(KT )2] < ∞ }.

Finally, we shall denote by P the σ-algebra of predictable sets on [0, T ] × Ω. In the real–
valued case, i.e., n = 1, these spaces will be simply denoted by L2(F t

s), H2(t, T ) and S2(t, T ),
respectively.

For the sake of the Sobolev solution of the PDE, the following notations are needed:

• Cm
b (Rd, Rn) : the set of Cm-functions f : R

d → R
n, whose partial derivatives of order less

that or equal to m, are bounded. (The functions themselves need not to be bounded)

• C
1,m
c ([0, T ] × R

d, Rn) : the set of continuous functions f : [0, T ] × R
d → R

n with compact
support, whose first partial derivative with respect to t and partial derivatives of order less
or equal to m with respect to x exist.

• ρ : R
d → R, the weight, is a continuous positive function which satisfies

∫
Rd ρ(x)dx < ∞.

• L2(Rd, ρ(x)dx) : the weighted L2-space with weight function ρ(x), endowed with the norm

‖u‖2
L2(Rd,ρ) =

∫

Rd

|u(x)|2 ρ(x)dx

We assume:

Assumption 2.1. g(·) ∈ L2(Rd, ρ(x)dx).

Assumption 2.2. f : [0, T ] × R
d × R

n×R
n×d → R

n is measurable in (t, x, y, z) and

∫ T

0

∫

Rd

|f(t, x, 0, 0)|2 ρ(x)dxdt < ∞.

Assumption 2.3. f satisfies increasing and monotonicity condition on y, for some continuous
increasing function ϕ : R+ → R+, real numbers k > 0, µ ∈ R such that ∀(t, x, y, y′, z, z′) ∈
[0, T ] × R

d × R
n × R

n × R
n×d × R

n×d
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(i) |f(t, x, y, z)| 6 |f(t, x, 0, z)| + ϕ(|y|),

(ii) |f(t, x, y, z) − f(t, x, y, z′)| 6 k |z − z′|,

(iii) 〈y − y′, f(t, x, y, z) − f(t, x, y′, z)〉 6 µ |y − y′|2,

(iv) y → f(t, x, y, z) is continuous.

For the PDE with obstacle, we consider that f satisfies assumptions 2.2 and 2.3, for n = 1.

Assumption 2.4. The obstacle function h ∈ C([0, T ]×R
d; R) satisfies the following conditions:

there exists κ ∈ R, β > 0, such that ∀(t, x) ∈ [0, T ] × R
d

(i) ϕ(eµth+(t, x)) ∈ L2(Rd; ρ(x)dx),
(ii) |h(t, x)| 6 κ(1 + |x|β),

here h+ is the positive part of h.

Assumption 2.5. b : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×d satisfy

b ∈ C2
b (Rd; Rd) and σ ∈ C3

b (Rd; Rd×d).

We first study the following PDE

{
(∂t + L)u + F (t, x, u,∇u) = 0, ∀ (t, x) ∈ [0, T ] × R

d

u(x, T ) = g(x), ∀x ∈ R
d

where F : [0, T ] × R
d × R

n × R
n×d → R, such that

F (t, x, u, p) = f(t, x, u, σ∗p)

and

L =
d∑

i=1

bi
∂

∂xi
+

1

2

d∑

i,j=1

ai,j
∂2

∂xi∂xj
,

a := σσ∗. Here σ∗ is the transposed matrix of σ.

In order to study the weak solution of the PDE, we introduce the following space

H := {u ∈ L2([0, T ] × R
d, ds ⊗ ρ(x)dx)

∣∣ σ∗∇u ∈ L2(([0, T ] × R
d, ds ⊗ ρ(x)dx)}

endowed with the norm

‖u‖2 :=

∫

Rd

∫ T

0
[|u(s, x)|2 + |(σ∗∇u)(s, x)|2]ρ(x)dsdx.

Definition 2.1. We say that u ∈ H is the weak solution of the PDE associated to (g, f), if

(i) ‖u‖2 < ∞,

(ii) for every φ ∈ C
1,∞
c ([0, T ] × R

d)

∫ T

t

(us, ∂tφ)ds+(u(t, ·), φ(t, ·))− (g(·), φ(·, T ))+

∫ T

t

E(us, φs)ds =

∫ T

t

(f(s, ·, us, σ
∗∇us), φs)ds.

(2)
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where (φ, ψ) =
∫

Rd φ(x)ψ(x)dx denotes the scalar product in L2(Rd, dx) and

E(ψ, φ) =

∫

Rd

((σ∗∇ψ)(σ∗∇φ) + φ∇((
1

2
σ∗∇σ + b)ψ))dx

is the energy of the system of our PDE which corresponds to the Dirichlet form associated to the
operator L when it is symmetric. Indeed E(ψ, φ) = −(φ,Lψ).

The probabilistic interpretation of the solution of PDE associated with g, f , which satisfy As-
sumption 2.1-2.3 was firstly studied by (Pardoux [13]), where the author proved the existence
of a viscosity solution to this PDE, and gave its probabilistic interpretation. In section 4, we
consider the weak solution to PDE (2) in Sobolev space, and give the proof of the existence and
uniqueness of the solution as well as the probabilistic interpretation.

In the second part of this article, we will consider the obstacle problem associated to the PDE
(2) with obstacle function h, where we restrict our study in the one dimensional case (n = 1).
Formulaly, The solution u is dominated by h, and verifies the equation in the following sense :
∀(t, x) ∈ [0, T ] × R

d

(i) (∂t + L)u + F (t, x, u,∇u) 6 0, on u(t, x) > h(t, x),

(ii) (∂t + L)u + F (t, x, u,∇u) = 0, on u(t, x) > h(t, x),

(iii) u(x, T ) = g(x) .

where L =
∑d

i=1 bi
∂

∂xi
+ 1

2

∑d
i,j=1 ai,j

∂2

∂xi∂xj
, a = σσ∗. In fact, we give the following formulation

of the PDE with obstacle.

Definition 2.2. We say that (u, ν) is the weak solution of the PDE with obstacle associated to
(g, f, h), if

(i) ‖u‖2 < ∞, u > h, and u(T, x) = g(x).

(ii) ν is a positive Radon measure such that
∫ T

0

∫
Rd ρ(x)dν(t, x) < ∞,

(iii) for every φ ∈ C
1,∞
c ([0, T ] × R

d)

∫ T

t

(us, ∂sφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds (3)

=

∫ T

t

(f(s, ·, us, σ
∗∇us), φs)ds +

∫ T

t

∫

Rd

φ(s, x)1{u=h}dν(x, s).

3 Stochastic flow and random test functions

Let (Xt,x
s )t 6 s 6 T be the solution of

{
dXt,x

s = b(s, Xt,x
s )ds + σ(s, Xt,x

s )dBs,

X
t,x
t = x,

where b : [0, T ] × R
d → R

d and σ : [0, T ] × R
d → R

d×d satisfy Assumption 2.5.
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So {Xt,x
s , x ∈ R

d, t 6 s 6 T} is the stochastic flow associated to the diffuse {Xt,x
s } and denote

by {X̂t,x
s , t 6 s 6 T} the inverse flow. It is known that x → X̂

t,x
s is differentiable (Ikeda and

Watanabe [? ]). We denote by J(Xt,x
s ) the determinant of the Jacobian matrix of X̂

t,x
s , which

is positive, and J(Xt,x
t ) = 1.

For φ ∈ C∞
c (Rd) we define a process φt : Ω × [0, T ] × R

d → R by

φt(s, x) := φ(X̂t,x
s )J(X̂t,x

s ).

Following Kunita (See [11]), we know that for v ∈ L2(Rd), the composition of v with the
stochastic flow is

(v ◦ Xt,·
s , φ) := (v, φt(s, ·)).

Indeed, by a change of variable, we have

(v ◦ Xt,·
s , φ) =

∫

Rd

v(y)φ(X̂t,y
s )J(X̂t,y

s )dy =

∫

Rd

v(Xt,x
s )φ(x)dx.

The main idea in Bally and Matoussi [3] and Bally et al. [1], is to use φt as a test function in

(2) and (3). The problem is that s → φt(s, x) is not differentiable so that
∫ T

t
(us, ∂sφ)ds has

no sense. However φt(s, x) is a semimartingale and they proved the following semimartingale
decomposition of φt(s, x):

Lemma 3.1. For every function φ ∈ C2
c(R

d),

φt(s, x) = φ(x) −
d∑

j=1

∫ s

t

(
d∑

i=1

∂

∂xi
(σij(x)φt(r, x))

)
dBj

r +

∫ s

t

L∗φt(r, x)dr, (4)

where L∗ is the adjoint operator of L. So

dφt(r, x) = −
d∑

j=1

(
d∑

i=1

∂

∂xi
(σij(x)φt(r, x))

)
dBj

r + L∗φt(r, x)dr, (5)

Then in (2) we may replace ∂sφds by the Itô stochastic integral with respect to dφt(s, x), and
have the following proposition which allows us to use φt as a test function. The proof will be
given in the appendix.

Proposition 3.1. Assume that assumptions 2.1, 2.2 and 2.3 hold. Let u ∈ H be a weak solution
of PDE (2), then for s ∈ [t, T ] and φ ∈ C2

c (Rd),

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx − (g(·), φt(T, ·)) + (u(s, ·), φt(s, ·)) −
∫ T

s

E(u(r, ·), φt(r, ·))dr

=

∫

Rd

∫ T

s

f(r, x, u(r, x), σ∗∇u(r, x))φt(r, x)drdx. a.s. (6)

Remark 3.1. Here φt(r, x) is R-valued. We consider that in (6), the equality holds for each
component of u.
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We need the result of equivalence of norms, which play important roles in existence proof for
PDE under monotonic conditions. The equivalence of functional norm and stochastic norm is
first proved by Barles and Lesigne [2] for ρ = 1. In Bally and Matoussi [3] proved the same result
for weighted integrable function by using probabilistic method. Let ρ be a weighted function,
we take ρ(x) := exp(F (x)), where F : R

d → R is a continuous function. Moreover, we assume
that there exists a constant R > 0, such that for |x| > R, F ∈ C2

b (Rd, R). For instant, we can
take ρ(x) = (1 + |x|)−q or ρ(x) = expα |x|, with q > d + 1, α ∈ R.

Proposition 3.2. Suppose that assumption 2.5 hold, then there exists two constants k1, k2 > 0,
such that for every t 6 s 6 T and φ ∈ L1(Rd, ρ(x)dx), we have

k2

∫

Rd

|φ(x)| ρ(x)dx 6

∫

Rd

E(
∣∣φ(Xt,x

s )
∣∣)ρ(x)dx 6 k1

∫

Rd

|φ(x)| ρ(x)dx, (7)

Moreover, for every ψ ∈ L1([0, T ] × R
d, dt ⊗ ρ(x)dx)

k2

∫

Rd

∫ T

t

|ψ(s, x)| ρ(x)dsdx 6

∫

Rd

∫ T

t

E(
∣∣ψ(s, Xt,x

s )
∣∣)ρ(x)dsdx (8)

6 k1

∫

Rd

∫ T

t

|ψ(s, x)| ρ(x)dsdx,

where the constants k1, k2 depend only on T , ρ and the bounds of the first (resp. first and
second) derivatives of b (resp. σ).

This proposition is easy to get from the follwing Lemma, see Lemma 5.1 in Bally and Matoussi
[3].

Lemma 3.2. There exist two constants c1 > 0 and c2 > 0 such that ∀x ∈ R
d, 0 6 t 6 T

c1 6 E

(
ρ(t, X̂0,x

t )J(X̂0,x
t )

ρ(x)

)
6 c2.

4 Sobolev’s Solutions for PDE’s under monotonicity condition

In this section we shall study the solution of the PDE whose coefficient f satisfies the mono-
tonicity condition. For this sake, we introduce the BSDE associated with (g, f): for t 6 s 6 T ,

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(r, Xt,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
s dBs. (9)

Thanks to the equivalence of the norms result (3.2), we know that g(Xt,x
T ) and f(s, Xt,x

s , 0, 0)
make sense in the BSDE (9). Moreover we have

g(Xt,x
T ) ∈ L2

n(FT ) and f(., Xt,x
. , 0, 0) ∈ H2

n(0, T ).

It follows from the results from Pardoux [13] that for each (t, x), there exists a unique pair
(Y t,x, Zt,x) ∈ S2(t, T ) × H2

n×d(t, T ) of {F t
s} progressively measurable processes, which solves

this BSDE(g, f).

The main result of this section is
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Theorem 4.1. Suppose that assumptions 2.1-2.3 and 2.4 hold. Then there exists a unique weak
solution u ∈ H of the PDE (2). Moreover we have the probabilistic interpretation of the solution:

u(t, x) = Y
t,x
t , (σ∗∇u)(t, x) = Z

t,x
t , dt ⊗ dx − a.e. (10)

and moreover Y
t,x
s = u(s, Xt,x

s ), Z
t,x
s = (σ∗∇u)(s, Xt,x

s ), dt ⊗ dP ⊗ dx-a.e. ∀s ∈ [t, T ].

Proof : We start to prove the existence result.

a) Existence : We prove the existence in three steps. By integration by parts formula, we
know that u solves (2) if and only if

û(t, x) = eµtu(t, x)

is a solution of the PDE(ĝ, f̂), where

ĝ(x) = eµT g(x) and f̂(t, x, y, z) = eµtf(t, x, e−µty, e−µtz) − µy. (11)

Then the coefficient f̂ satisfies the assumption 2.3 as f , except that 2.3-(iii) is replaced by

(y − y′)(f(t, x, y, z) − f(t, x, y′, z)) 6 0. (12)

In the first two steps, we consider the case where f does not depend on ∇u, and write f(t, x, y)
for f(t, x, y, v(t, x)), where v is in L2([0, T ] × R

d, dt ⊗ ρ(x)dx).

We assume first that f(t, x, y) satisfies the following assumption 2.3’: ∀(t, x, y, y′) ∈ [0, T ]×R
d×

R
n × R

n,

(i) |f(t, x, y)| 6 |f(t, x, 0)| + ϕ(|y|),

(ii) 〈y − y′, f(t, x, y) − f(t, x, y′)〉 6 0,

(iii) y → f(t, x, y) is continuous, ∀(t, x) ∈ [0, T ] × R
d.

Step 1 : Suppose that g(x), f(t, x, 0) are uniformly bounded, i.e. there exists a constant C,
such that

|g(x)| + sup
0 6 t 6 T

|f(t, x, 0)| 6 C (13)

where C as a constant which can be changed line by line.

Define fn(t, y) := (θn ∗ f(t, ·))(y) where θn : R
n → R+ is a sequence of smooth functions with

compact support, which approximate the Dirac distribution at 0, and satisfy
∫

θn(z)dz = 1. Let
{(Y n,t,x

s , Z
n,t,x
s ), t 6 s 6 T} be the solution of BSDE associated to (g(Xt,x

T ), fn), namely,

Y n,t,x
s = g(Xt,x

T ) +

∫ T

s

f(r, Xt,x
r , Y n,t,x

r )dr −
∫ T

s

Zn,t,x
r dBr, P-a.s.. (14)

Then for each n ∈ N, we have ∣∣Y n,t,x
s

∣∣ 6 eT C,
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and ∣∣fn(s, Xt,x
s , Y n,t,x

s )
∣∣2 6 2

∣∣fn(s, Xt,x
s , 0)

∣∣2 + 2ψ2(e
T
2

√
C)

where ψ(r) := supn sup|y| 6 r

∫
Rn ϕ(|y|)θn(y − z)dz. So there exists a constant C > 0, s.t.

sup
n

∫

Rd

E

∫ T

t

(
∣∣Y n,t,x

s

∣∣2 +
∣∣fn(s, Xt,x

s , Y n,t,x
s )

∣∣2 +
∣∣Zn,t,x

s

∣∣2)ρ(x)dsdx 6 C. (15)

Then let n → ∞ on the both sides of (14), we get that the limit (Y t,x
s , Z

t,x
s ) of (Y n,t,x

s , Z
n,t,x
s ),

satisfies

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(r, Xt,x
r , Y t,x

r )dr −
∫ T

s

Zt,x
r dBr, P-a.s.. (16)

Moreover we obtain from the estimate (15) that

∫

Rd

∫ T

t

E(
∣∣Y t,x

s

∣∣2 +
∣∣Zt,x

s

∣∣2)ρ(x)dsdx < ∞. (17)

Notice that (Y t,x
t , Z

t,x
t ) are F t

t measurable, which implies they are deterministic. Define u(t, x) :=
Y

t,x
t , and v(t, x) := Z

t,x
t . By the flow property of X

s,x
r and by the uniqueness of the solution of

the BSDE (16), we have that Y
t,x
s = u(s, Xt,x

s ) and Z
t,x
s = v(s, Xt,x

s ).
The terminal condition g and f(., ., 0, 0) are not continuous in t and x, and assumed to belong in a
suitable weighted L2 space, so the solution u and for instance v are not in general continuous, and
are only defined a.e. in [0, T ]×R

d. So in order to give meaning to the expression u(s, Xt,x
s ) (resp.

v(s, Xt,x
s )), and following Bally and Matoussi [3], we apply a regularization procedure on the

final condition g and the coefficient f . Actually, according to Pardoux and Peng ([15], Theorem
3.2), if the coefficient (g, f) are smooth, then the PDE (2) admits a unique classical solution
u ∈ C1,2([0, T ] × R

d). Therefore the approximated expression u(s, Xt,x
s ) (resp. v(s, Xt,x

s )) has a
meaning and then pass to the limit in L2 spaces like us in Bally and Matoussi [3].
Now, the equivalence of norm result (8) and estimate (17) follow that u, v ∈ L2([0, T ]×R

d, dt⊗
ρ(x)dx). Finally, let F (r, x) = f(r, Xt,x

r , Y
t,x
r ), we know that F (s, x) ∈ L2([0, T ] × R

d, dt ⊗
ρ(x)dx), in view of

∫

Rd

∫ T

t

|F (s, x)|2 ρ(x)dsdx 6
1

k2

∫

Rd

∫ T

t

E
∣∣F (s, Xt,x

s )
∣∣2 ρ(x)dsdx

=
1

k2

∫

Rd

∫ T

t

E
∣∣f(s, Xt,x

s , Y t,x
s )

∣∣2 ρ(x)dsdx < ∞.

So that from theorem 2.1 in [3], we get that v = σ∗∇u and that u ∈ H solves the PDE associated
to (g, f) under the bounded assumption.

Step 2 : We assume g ∈ L2(Rd, ρ(x)dx), f satisfies the assumption 2.3’ and f(t, x, 0) ∈
L2([0, T ] × R

d, dt ⊗ ρ(x)dx). We approximate g and f by bounded functions as follows :

gn(x) = Πn(g(x)), (18)

fn(t, x, y) = f(t, x, y) − f(t, x, 0) + Πn(f(t, x, 0)),

where

Πn(y) :=
min(n, |y|)

|y| y.
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Clearly, the pair (gn, fn) satisfies the assumption (13) of step 1, and

gn → g in L2(Rd, ρ(x)dx), (19)

fn(t, x, 0) → f(t, x, 0) in L2([0, T ] × R
d, dt ⊗ ρ(x)dx).

Denote (Y n,t,x
s , Z

n,t,x
s ) ∈ S2

n(t, T ) × H2
n×d(t, T ) the solution of the BSDE(ξn, fn), where ξn =

gn(Xt,x
T ), i.e.

Y n,t,x
s = gn(Xt,x

T ) +

∫ T

s

fn(r, Xt,x
r , Y n,t,x

r )dr −
∫ T

s

Zn,t,x
r dBr.

Then from the results in step 1, un(t, x) = Y
n,t,x
t and un(t, x) ∈ H, is the weak solution of the

PDE(gn, fn), with

Y n,t,x
s = un(s, Xt,x

s ), Zn,t,x
s = (σ∗∇un)(s, Xt,x

s ), a.s. (20)

For m, n ∈ N, applying Itô’s formula to
∣∣∣Y m,t,x

s − Y
n,t,x
s

∣∣∣
2
, we get

E
∣∣Y m,t,x

s − Y n,t,x
s

∣∣2 + E

∫ T

s

∣∣Zm,t,x
r − Zn,t,x

r

∣∣2 dr 6 E
∣∣∣gm(Xt,x

T ) − gn(Xt,x
T )

∣∣∣
2

+ E

∫ T

s

∣∣Y m,t,x
r − Y n,t,x

r

∣∣2 dr + E

∫ T

s

∣∣fm(r, Xt,x
r , 0) − fn(r, Xt,x

r , 0)
∣∣2 dr.

(21)

From the equivalence of the norms (7) and (8), it follows
∫

Rd

E
∣∣Y m,t,x

s − Y n,t,x
s

∣∣2 ρ(x)dx 6

∫

Rd

E
∣∣∣gm(Xt,x

T ) − gn(Xt,x
T )

∣∣∣
2
ρ(x)dx

+

∫

Rd

E

∫ T

s

∣∣Y m,t,x
r − Y n,t,x

r

∣∣2 drρ(x)dx +

∫

Rd

E

∫ T

s

∣∣fm(r, Xt,x
r , 0) − fn(r, Xt,x

r , 0)
∣∣2 drρ(x)dx

6

∫

Rd

E

∫ T

s

∣∣Y m,t,x
r − Y n,t,x

r

∣∣2 drρ(x)dx + k1

∫

Rd

E |gm(x) − gn(x)|2 ρ(x)dx

+ k1

∫

Rd

∫ T

t

|fm(r, x, 0) − fn(r, x, 0)|2 ρ(x)drdx,

and by Gronwall’s inequality and (19), we get as m, n → ∞

sup
t 6 s 6 T

∫

Rd

E
∣∣Y m,t,x

s − Y n,t,x
s

∣∣2 ρ(x)dx → 0.

It follows immediately as m, n → ∞
∫

Rd

E

∫ T

s

∣∣Y m,t,x
r − Y n,t,x

r

∣∣2 ρ(x)drdx +

∫

Rd

E

∫ T

s

∣∣Zm,t,x
r − Zn,t,x

r

∣∣2 ρ(x)drdx → 0.

Using again the equivalence of the norms (8), we get:
∫ T

t

∫

Rd

|um(s, x) − un(s, x)|2 + |σ∗∇um(s, x) − σ∗∇un(s, x)|2 ρ(x)dxds

6
1

k2

∫ T

t

∫

Rd

E(
∣∣um(s, Xt,x

s ) − un(s, Xt,x
s )

∣∣2 +
∣∣σ∗∇um(s, Xt,x

s ) − σ∗∇un(s, Xt,x
s )

∣∣2)ρ(x)dsdx

=
1

k2

∫ T

t

∫

Rd

E(
∣∣Y m,t,x

s − Y n,t,x
s

∣∣2 +
∣∣Zm,t,x

s − Zn,t,x
s

∣∣2)ρ(x)dsdx → 0.
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as m, n → ∞, i.e. {un} is Cauchy sequence in H. Denote its limit as u, so u ∈ H, and satisfies
for every φ ∈ C

1,∞
c ([0, T ] × R

d),

∫ T

t

(us, ∂tφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds =

∫ T

t

(f(s, ·, us), φs)ds. (22)

On the other hand, (Y n,t,x
· , Z

n,t,x
· ) converges to (Y t,x

· , Z
t,x
· ) in S2

n(0, T ) × H2
n×d(0, T ), which is

the solution of the BSDE with parameters (g(Xt,x
T ), f); by the equivalence of the norms, we

deduce that
Y t,x

s = u(s, Xt,x
s ), Zt,x

s = σ∗∇u(s, Xt,x
s ), a.s. ∀s ∈ [t, T ],

specially Y
t,x
t = u(t, x), Z

t,x
t = σ∗∇u(t, x).

Now, it’s easy to the generalize the result to the case when f satisfies assumption 2.2 .

Step 3: In this step, we consider the case where f depends on ∇u. Assume that g, f satisfy
the assumptions 2.1 - 2.3, with assumption 2.3-(iii) replaced by (12). From the result in step
2, for any given n × d-matrix-valued function v ∈ L2([0, T ] × R

d, dt ⊗ ρ(x)dx), f(t, x, u, v(t, x))
satisfies the assumptions in step 2. So the PDE(g, f(t, x, u, v(t, x))) admits a unique solution
u ∈ H satisfying (i) and (ii) in the definition 2.1.

Set V
t,x
s = v(s, Xt,x

s ), then V
t,x
s ∈ H2

n×d(0, T ) in view of the equivalence of the norms. We

consider the following BSDE with solution (Y t,x
· , Z

t,x
· )

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(s, Xt,x
s , Y t,x

s , V t,x
s )ds −

∫ T

s

Zt,x
s dBs,

then Y
t,x
s = u(s, Xt,x

s ), Z
t,x
s = σ∗∇u(s, Xt,x

s ), a.s. ∀s ∈ [t, T ].

Now we can construct a mapping Ψ from H into itself. For any u ∈ H, u = Ψ(u) is the weak
solution of the PDE with parameters g(x) and f(t, x, u, σ∗∇u).

Symmetrically we introduce a mapping Φ from H2
n(t, T ) × H2

n×d(t, T ) into itself. For any
(U t,x, V t,x) ∈ H2

n(t, T )×H2
n×d(t, T ), (Y t,x, Zt,x) = Φ(U t,x, V t,x) is the solution of the BSDE with

parameters g(Xt,x
T ) and f(s, Xt,x

s , Y
t,x
s , V

t,x
s ). Set V

t,x
s = σ∗∇u(s, Xt,x

s ), then Y
t,x
s = u(s, Xt,x

s ),

Z
t,x
s = σ∗∇u(s, Xt,x

s ), a.s.a.e..

Let u1, u2 ∈ H, and u1 = Ψ(u1), u2 = Ψ(u2), we consider the difference △u := u1 − u2,
△u := u1 − u2. Set V

t,x,1
s := σ∗∇u1(s, X

t,x
s ), V

t,x,2
s := σ∗∇u2(s, X

t,x
s ). We denote by

(Y t,x,1, Zt,x,1)(resp. (Y t,x,2, Zt,x,2)) the solution of the BSDE with parameters g(Xt,x
T ) and

f(s, Xt,x
s , Y

t,x
s , V

t,x,1
s ) (resp. f(s, Xt,x

s , Y
t,x
s , V

t,x,2
s )); then for a.e. ∀s ∈ [t, T ],

Y t,x,1
s = u1(s, X

t,x
s ), Zt,x,1

s = σ∗∇u1(s, X
t,x
s ),

Y t,x,2
s = u2(s, X

t,x
s ), Zt,x,2

s = σ∗∇u2(s, X
t,x
s ),

Denote △Y
t,x
s := Y

t,x,1
s − Y

t,x,2
s , △Z

t,x
s := Z

t,x,1
s − Z

t,x,2
s , △V

t,x
s := V

t,x,1
s − V

t,x,2
s . By Itô’s

formula applied to eγtE
∣∣∣△Y

t,x
s

∣∣∣
2
, for some α and γ ∈ R, we have

eγtE
∣∣△Y t,x

s

∣∣2 + E

∫ T

s

eγs(γ
∣∣△Y t,x

r

∣∣2 +
∣∣△Zt,x

r

∣∣2)dr 6 E

∫ T

s

eγs(
k2

α

∣∣△Y t,x
r

∣∣2 + α
∣∣△V t,x

r

∣∣2)dr,
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Using the equivalence of the norms, we deduce that

∫

Rd

∫ T

t

eγs(γ |△u(s, x)|2 + |σ∗∇(△u)(s, x)|2)ρ(x)dsdx

6
1

k2

∫

Rd

∫ T

t

eγsE(γ
∣∣△Y t,x

r

∣∣2 +
∣∣△Zt,x

r

∣∣2)ρ(x)drdx

6
1

k2

∫

Rd

∫ T

s

eγsE(
k2

α

∣∣△Y t,x
r

∣∣2 + α
∣∣△V t,x

r

∣∣2)ρ(x)drdx

6
k1

k2

∫

Rd

∫ T

s

eγs(
k2

α
|△u(s, x)|2 + α |σ∗∇(△u)(s, x)|2)ρ(x)dsdx.

Set α = k2

2k1
, γ = 1 +

2k2

1

k2

2

k2, then we get

∫

Rd

∫ T

t

eγs(|△u(s, x)|2 + |σ∗∇(△u)(s, x)|2)ρ(x)dsdx

6
1

2

∫

Rd

∫ T

t

eγs |σ∗∇(△u)(s, x)|2 ρ(x)dsdx,

6
1

2

∫

Rd

∫ T

t

eγs(|△u(s, x)|2 + |σ∗∇(△u)(s, x)|2)ρ(x)dsdx.

Consequently, Ψ is a strict contraction on H equipped with the norm

‖u‖2
γ :=

∫

Rd

∫ T

t

eγs(|u(s, x)|2 + |σ∗∇u(s, x)|2)ρ(x)dsdx.

So Ψ has fixed point u ∈ H which is the solution of the PDE (2) associated to (g, f). Moreover,
for t 6 s 6 T ,

Y t,x
s = u(s, Xt,x

s ), Zt,x
s = σ∗∇u(s, Xt,x

s ), .a.e.

and specially Y
t,x
t = u(t, x), Zt,x

t = σ∗∇u(t, x), a.e.

b) Uniqueness : Let u1 and u2 ∈ H be two solutions of the PDE(g, f). From Proposition
3.1, for φ ∈ C2

c (Rd) and i = 1, 2

∫

Rd

∫ T

s

ui(r, x)dφt(r, x)dx + (ui(s, ·), φt(s, ·)) − (g(·), φt(·, T )) −
∫ T

s

E(ui(r, ·), φt(r, ·))dr

=

∫ T

s

∫

Rd

φt(r, x)f(r, x, ui(r, x), σ∗∇ui(r, x))drdx. (23)

By (4), we get

∫

Rd

∫ T

s

uidφt(r, x)dx =

∫ T

s

(

∫

Rd

(σ∗∇ui)(r, x)φt(r, x)dx)dBr

+

∫ T

s

∫

Rd

(
(σ∗∇ui)(σ∗∇φr) + φ∇((

1

2
σ∗∇σ + b)ui

r)

)
dxdr.
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We substitute this in (23), and get

∫

Rd

ui(s, x)φt(s, x)dx = (g(·), φt(·, T )) −
∫ T

s

∫

Rd

(σ∗∇ui)(r, x)φt(r, x)dxdBr

+

∫ T

s

∫

Rd

φt(r, x)f(r, x, ui(r, x), σ∗∇ui(r, x))drdx.

Then by the change of variable y = X̂
t,x
r , we obtain

∫

Rd

ui(s, Xt,y
s )φ(y)dy =

∫

Rd

g(Xt,y
T )φ(y)dy +

∫ T

s

∫

Rd

φ(y)f(s, Xt,y
s , ui(s, Xt,y

s ), σ∗∇ui(s, Xt,y
s ))dyds

−
∫ T

s

∫

Rd

(σ∗∇ui)(r, Xt,y
r )φ(y)dydBr.

Since φ is arbitrary, we can prove this result for ρ(y)dy almost every y. So
(ui(s, Xt,y

s ), (σ∗∇ui)(s, Xt,y
s )) solves the BSDE(g(Xt,y

T ), f), i.e. ρ(y)dy a.s., we have

ui(s, Xt,y
s ) = g(Xt,y

T ) +

∫ T

s

f(s, Xt,y
s , ui(s, Xt,y

s ), σ∗∇ui(s, Xt,y
s ))ds −

∫ T

s

(σ∗∇ui)(r, Xt,y
r )dBr.

Then by the uniqueness of the BSDE, we know u1(s, Xt,y
s ) = u2(s, Xt,x

s ) and (σ∗∇u1)(s, Xt,y
s ) =

(σ∗∇u2)(s, Xt,y
s ). Taking s = t we deduce that u1(t, y) = u2(t, y), dt ⊗ dy-a.s. 2

5 Sobolev’s solution for PDE with obstacle under monotonicity
condition

In this section we study the PDE with obstacle associated with (g, f, h), which satisfy the
assumptions 2.1-2.4 for n = 1. We will prove the existence and uniqueness of a weak solution to
the obstacle problem. We will restrict our study to the case when ϕ is polynomial increasing in
y, i.e.

Assumption 5.1. We assume that for some κ1 ∈ R, β1 > 0,∀y ∈ R,

|ϕ(y)| 6 κ1(1 + |y|β1).

For the sake of PDE with obstacle, we introduce the reflected BSDE associated with (g, f, h),
like in El Karoui et al. [7]:





Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(r, Xt,x
r , Y t,x

r , Zt,x
r )dr + K

t,x
T − K

t,x
t −

∫ T

s

Zt,x
s dBs, P -a.s ∀ s ∈ [t, T ]

Y t,x
s > Lt,x

s , P -a.s
∫ T

t

(Y t,x
s − Lt,x

s )dKt,x
s = 0, P -a.s.

(24)
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where L
t,x
s = h(s, Xt,x

s ) is a continuous process. Moreover following Lepeltier et al [12], we shall
need to estimate

E[ sup
t 6 s 6 T

ϕ2(eµt(Lt,x
s )+)] = E[ sup

t 6 s 6 T

ϕ2(eµth(s, Xt,x
s )+)]

6 Ce2β1µT E[ sup
t 6 s 6 T

(1 +
∣∣Xt,x

s

∣∣2β1β
)]

6 C(1 + |x|2β1β),

where C is a constant which can be changed line by line. By assumption 2.4-(ii), with same
techniques we get for x ∈ R, E[supt 6 s 6 T ϕ2((Lt,x

s )+)] < +∞. Thanks to the assumption 2.1
and 2.2, by the equivalence of norms 7 and 8, we have

g(Xt,x
T ) ∈ L2(FT ) and f(s, Xt,x

s , 0, 0) ∈ H2(0, T ).

By the existence and uniqueness theorem for the RBSDE in [12], for each (t, x), there exists a
unique triple (Y t,x, Zt,x, Kt,x) ∈ S2(t, T )×H2

d(t, T )×A2(t, T ) of {F t
s} progressively measurable

processes, which is the solution of the reflected BSDE with parameters (g(Xt,x
T ), f(s, Xt,x

s , y, z),

h(s, Xt,x
s ))We shall give the probabilistic interpretation for the solution of PDE with obstacle

(3).

The main result of this section is

Theorem 5.1. Assume that assumptions 2.1-2.5 hold and ρ(x) = (1 + |x|)−p with p > γ where
γ = β1β + β + d + 1. There exists a pair (u, ν), which is the solution of the PDE with obstacle
(3) associated to (g, f, h) i.e. (u, ν) satisfies Definition 2.2-(i) -(iii). Moreover the solution is
given by: u(t, x) = Y

t,x
t , a.e. where (Y t,x

s , Z
t,x
s , K

t,x
s )t 6 s 6 T is the solution of RBSDE (24), and

Y t,x
s = u(s, Xt,x

s ), Zt,x
s = (σ∗∇u)(s, Xt,x

s ). (25)

Moreover, we have for every measurable bounded and positive functions φ and ψ,

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)1{u=h}(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x

s , a.s..

(26)
If (u, ν) is another solution of the PDE (3) such that ν satisfies (26) with some K instead of K,
where K is a continuous process in A2

F (t, T ), then u = u and ν = ν.

Remark 5.1. The expression (26) gives us the probabilistic interpretation (Feymamn-Kac’s
formula) for the measure ν via the increasing process Kt,x of the RBSDE. This formula was
first introduced in Bally et al. [1], where the authors prove (26) when f is Lipschitz on y and
z uniformly in (t, ω). Here we generalize their result to the case when f is monotonic in y and
Lipschitz in z.

Proof. As in the proof of theorem 4.1 in section 4, we first notice that (u, ν) solves (3) if and
only if

(û(t, x), dν̂(t, x)) = (eµtu(t, x), eµtdν(t, x))

is the solution of the PDE with obstacle (ĝ, f̂ , ĥ), where ĝ, f̂ are defined as in (12) with

ĥ(t, x) = eµth(t, x).
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Then the coefficient f̂ satisfies the same assumptions in assumption 2.3 with (iii) replaced by
(12), which means that f is decreasing on y in the 1-dimensional case. The obstacle ĥ still
satisfies assumption 2.4, for µ = 0. In the following we will use (g, f, h) instead of (ĝ, f̂ , ĥ), and
suppose that (g, f, h) satisfies assumption 2.1, 2.2, 2.4, 2.5 and 2.3 with (iii) replaced by (12).

a) Existence : The existence of a solution will be proved in 4 steps. From step 1 to step 3,
we suppose that f does not depend on ∇u, satisfies assumption 2.3’ for n = 1, and f(t, x, 0) ∈
L2([0, T ] × R

d, dt ⊗ ρ(x)dx). In the step 4, we study the case when f depend on ∇u.

Step 1 : Suppose g(x), f(t, x, 0), h+(t, x) uniformly bounded i.e. that there exists a constant
C such that

|g(x)| + sup
0 6 t 6 T

|f(t, x, 0)| + sup
0 6 t 6 T

h+(t, x) 6 C.

We will use the penalization method. For n ∈ N, we consider for all s ∈ [t, T ],

Y n,t,x
s = g(Xt,x

T ) +

∫ T

s

f(r, Xt,x
r , Y n,t,x

r )dr + n

∫ T

s

(Y n,t,x
r − h(r, Xt,x

r ))−dr −
∫ T

s

Zn,t,x
r dBr.

From Theorem 4.1 in section 3, we know that un(t, x) := Y
n,t,x
t , is solution of the PDE(g, fn),

where fn(t, x, y, x) = f(t, x, y, z) + n(y − h(t, x))−, i.e. for every φ ∈ C
1,∞
c ([0, T ] × R

d)

∫ T

t

(un
s , ∂sφ)ds + (un(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(un
s , φs)ds

=

∫ T

t

(f(s, ·, un
s ), φs)ds + n

∫ T

t

((un − h)−(s, ·), φs)ds.

Moreover
Y n,t,x

s = un(s, Xt,x
s ), Zn,t,x

s = σ∗∇un(s, Xt,x
s ), (27)

Set K
n,t,x
s = n

∫ s

t

(Y n,t,x
r − h(r, Xt,x

r ))−dr. Then by (27), we have that K
n,t,x
s = n

∫ s

t

(un −
h)−(r, Xt,x

r )dr.

Following the estimates and convergence results for (Y n,t,x, Zn,t,x) in the step 1 of the proof of
Theorem 2.2 in [12], for m, n ∈ N, we have,as m, n → ∞

E

∫ T

t

∣∣Y n,t,x
s − Y m,t,x

s

∣∣2 ds + E

∫ T

t

∣∣Zn,t,x
s − Zm,t,x

s

∣∣2 ds + E sup
t 6 s 6 T

∣∣Kn,t,x
s − Km,t,x

s

∣∣2 → 0,

and

sup
n

E

∫ T

0
(
∣∣Y n,t,x

s

∣∣2 +
∣∣Zn,t,x

s

∣∣2 + (Kn,t,x
T )2) 6 C.

By the equivalence of the norms (8), we get

∫

Rd

∫ T

t

ρ(x)(|un(s, x) − um(s, x)|2 + |σ∗∇un(s, x) − σ∗∇um(s, x)|2)dsdx

6
1

k2

∫

Rd

ρ(x)E

∫ T

t

(
∣∣Y n,t,x

s − Y m,t,x
s

∣∣2 +
∣∣Zn,t,x

s − Zm,t,x
s

∣∣2)dsdx → 0.

Thus (un) is a Cauchy sequence in H, and the limit u = limn→∞ un belongs to H.
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Denote νn(dt, dx) = n(un − h)−(t, x)dtdx and πn(dt, dx) = ρ(x)νn(dt, dx), then by (7)

πn([0, T ] × R
d) =

∫

Rd

∫ T

0
ρ(x)νn(dt, dx) =

∫

Rd

∫ T

0
ρ(x)n(un − h)−(t, x)dtdx

6
1

k2

∫

Rd

ρ(x)E
∣∣∣Kn,0,x

T

∣∣∣ dx 6 C

∫

Rd

ρ(x)dx < ∞.

It follows that
sup

n
πn([0, T ] × R

d) < ∞. (28)

In the same way like in the existence proof step 2 of theorem 14 in [1], we can prove that
πn([0, T ] × R

d) is bounded and then πn is tight. So we may pass to a subsequence and get
πn → π where π is a positive measure. Define ν = ρ−1π; ν is a positive measure such that∫ T

0

∫
Rd ρ(x)dν(t, x) < ∞, and so we have for φ ∈ C

1,∞
c ([0, T ] × R

d) with compact support in x,

∫

Rd

∫ T

t

φdνn =

∫

Rd

∫ T

t

φ

ρ
dπn →

∫

Rd

∫ T

t

φ

ρ
dπ =

∫

Rd

∫ T

t

φdν.

Now passing to the limit in the PDE(g, fn), we check that (u, ν) satisfies the PDE with obstacle
(g, f, h), i.e. for every φ ∈ C

1,∞
c ([0, T ] × R

d), we have

∫ T

t

(us, ∂sφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds

=

∫ T

t

(f(s, ·, us), φs)ds +

∫ T

t

∫

Rd

φ(s, x)1{u=h}(s, x)dν(x, s). (29)

The last is to prove that ν satisfies the probabilistic interpretation (26). Since Kn,t,x converges
to Kt,x uniformly in t, the measure dKn,t,x → dKt,x weakly in probability.

Fix two continuous functions φ, ψ : [0, T ] × R
d → R

+ which have compact support in x and a
continuous function with compact support θ : R

d → R
+, we have

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)θ(x)dν(s, x)

= lim
n→∞

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)θ(x)n(un − h)−(t, x)dtdx

= lim
n→∞

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )θ(Xt,x

s )n(un − h)−(t, Xt,x
s )dtdx

= lim
n→∞

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )θ(Xt,x

s )dKn,t,x
s dx

=

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )θ(Xt,x

s )dKt,x
s dx.

We take θ = θR to be the regularization of the indicator function of the ball of radius R and
pass to the limit with R → ∞, it follows that

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x

s dx. (30)
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Since (Y n,t,x
s , Z

n,t,x
s , K

n,t,x
s ) converges to (Y t,x

s , Z
t,x
s , K

t,x
s ) as n → ∞ in S2(t, T )×H2(t, T ) ×

A2(t, T ), and (Y t,x
s , Z

t,x
s , K

t,x
s ) is the solution of RBSDE(g(Xt,x

T ), f, h), then we have

∫ T

t

(Y t,x
s − Lt,x

s )dKt,x
s =

∫ T

t

(u − h)(t, Xt,x
s )dKt,x

s = 0, a.s.

it follows that dK
t,x
s = 1{u=h}(s, X

t,x
s )dK

t,x
s . In (30), setting ψ = 1{u=h} yields

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )1{u=h}(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )dν(s, x), a.s.

Note that the family of functions A(ω) = {(s, x) → φ(s, X̂t,x
s ) : φ ∈ C∞

c } is an algebra which
separates the points (because x → X̂

t,x
s is a bijection). Given a compact set G, A(ω) is dense in

C([0, T ] × G). It follows that J(X̂t,x
s )1{u=h}(s, x)dν(s, x) = J(X̂t,x

s )dν(s, x) for almost every ω.

While J(X̂t,x
s ) > 0 for almost every ω, we get dν(s, x) = 1{u=h}(s, x)dν(s, x), and (26) follows.

Then we get easily that Y
t,x
s = u(s, Xt,x

s ) and Z
t,x
s = σ∗∇u(s, Xt,x

s ), in view of the convergence
results for (Y n,t,x

s , Z
n,t,x
s ) and the equivalence of the norms. So u(s, Xt,x

s ) = Y
t,x
s > h(t, x).

Specially for s = t, we have u(t, x) > h(t, x)

Step 2 : As in the proof of the RBSDE in Theorem 2.2 in [12], step 2, we relax the bounded
condition on the barrier h in step 1, and prove the existence of the solution under assumption
2.4.

Similarly to step 2 in the proof of theorem 2.2 in [12], after some transformation, we know that
it is sufficient to prove the existence of the solution for the PDE with obstacle (g, f, h), where
(g, f, h) satisfies

g(x), f(t, x, 0) 6 0.

Let h(t, x) satisfy assumption 2.4 for µ = 0, i.e. ∀(t, x) ∈ [0, T ]×, Rd

ϕ(h(t, x)+) ∈ L2(Rd; ρ(x)dx),

and
|h(t, x)| 6 κ(1 + |x|β).

Set
hn(t, x) = h(t, x) ∧ n,

then the function hn(t, x) are continuous, sup0 6 t 6 T h+
n (t, x) 6 n, and hn(s, Xt,x

s ) → h(s, Xt,x
s )

in S2
F (t, T ), in view of Dini’s theorem and dominated convergence theorem.

We consider the PDE with obstacle associated with (g, f, hn). By the results of step 1, there
exists (un, νn), which is the solution of the PDE with obstacle associated to (g, f, hn), where

un ∈ H and νn is a positive measure such that
∫ T

0

∫
Rd ρ(x)dνn(t, x) < ∞. Moreover





Y n,t,x
s = un(s, Xt,x

s ), Zn,t,x
s = σ∗∇un(s, Xt,x

s ),
∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)1{un=hn}(s, x)dνn(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKn,t,x

s dx,

(31)
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Here (Y n,t,x, Zn,t,x, Kn,t,x) is the solution of the RBSDE(g(Xt,x
T ), f, hn). Thanks to proposition

6.1 in Appendix, and the bounded assumption of g and f , we know that

E
[ ∫ T

t

( ∣∣Y n,t,x
s

∣∣2 +
∣∣Zn,t,x

s

∣∣2 )
ds + (Kn,0,x

T )2
]

6 C
(
1 + E

[
ϕ2( sup

0 6 t 6 T

h+(t, X0,x
t )

)
+ sup

0 6 t 6 T

(h+(t, X0,x
t ))2

])

6 C(1 + |x|2β1β + |x|2β).

(32)

By the Lemma 2.3 in [12], Y
n,t,x
s → Y

t,x
s in S2(0, T ), Z

n,t,x
s → Z

t,x
s in H2

d(0, T ) and K
n,t,x
s → K

t,x
s

in A2(0, T ), as n → ∞. Moreover (Y t,x
s , Z

t,x
s , K

t,x
s ) is the solution of RBSDE(g(Xt,x

T ), f, h).

By the convergence result of (Y n,t,x
s , Z

n,t,x
s ) and the equivalence of the norms (8), we get

∫

Rd

ρ(x)

∫ T

t

(|un(t, x) − um(t, x)|2 + |σ∗∇un(s, x) − σ∗∇um(s, x)|2)dsdx

6
1

k2

∫

Rd

ρ(x)E

∫ T

t

(
∣∣Y n,t,x

s − Y m,t,x
s

∣∣2 +
∣∣Zn,t,x

s − Zm,t,x
s

∣∣2)dsdx → 0.

So {un} is a Cauchy sequence in H, and admits a limit u ∈ H. Moreover Y
t,x
s = u(s, Xt,x

s ), Zt,x
s =

σ∗∇u(s, Xt,x
s ). In particular u(t, x) = Y

t,x
t > h(t, x).

Set πn = ρνn, like in step 1, we first need to prove that πn([0, T ] × R
d) is uniformly bounded.

In (31), let φ = ρ, ψ = 1, then we have

∫

Rd

∫ T

0
ρ(X̂0,x

s )J(X̂0,x
s )dνn(s, x) =

∫

Rd

∫ T

0
ρ(x)dKn,0,x

s dx.

Recall Lemma 3.2: there exist two constants c1 > 0 and c2 > 0 such that ∀x ∈ R
d, 0 6 t 6 T

c1 6 E

(
ρ(t, X̂0,x

t )J(X̂0,x
t )

ρ(x)

)
6 c2.
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Applying Hölder’s inequality and Schwartz’s inequality, we have

πn([0, T ] × R
d)

=

∫

Rd

∫ T

0
ρ(x)νn(dt, dx)

=

∫

Rd

∫ T

0

ρ
1

2 (x)

ρ
1

2 (t, X̂0,x
t )J

1

2 (X̂0,x
t )

ρ
1

2 (x)ρ
1

2 (t, X̂0,x
t )J

1

2 (X̂0,x
t )νn(dt, dx)

6 E[

(∫

Rd

∫ T

0

ρ(x)

ρ(t, X̂0,x
t )J(X̂0,x

t )
ρ(x)νn(dt, dx)

) 1

2
(∫

Rd

∫ T

0
ρ(t, X̂0,x

t )J(X̂0,x
t )νn(dt, dx)

) 1

2

]

6

(
E

∫

Rd

∫ T

0

ρ(x)

ρ(t, X̂0,x
t )J(X̂0,x

t )
ρ(x)νn(dt, dx)

) 1

2
(

E

∫

Rd

∫ T

0
ρ(t, X̂0,x

t )J(X̂0,x
t )νn(dt, dx)

) 1

2

=

(∫

Rd

∫ T

0
E

(
ρ(x)

ρ(t, X̂0,x
t )J(X̂0,x

t )

)
ρ(x)νn(dt, dx)

) 1

2
(∫

Rd

E

∫ T

0
dK

n,0,x
t ρ(x)dx

) 1

2

6

(
1

c1

∫

Rd

∫ T

0
ρ(x)νn(dt, dx)

) 1

2
(∫

Rd

ρ(x)E[Kn,0,x
T ]dx

) 1

2

.

So by (32) and (7), we get

sup
n

πn([0, T ] × R
d) 6 C

∫

Rd

ρ(x)E[Kn,0,x
T ]dx (33)

6 C

∫

Rd

ρ(x)(1 + |x|β1β + |x|β)dx < ∞.

Using the same arguments as in step 1, we deduce that πn is tight. So we may pass to a
subsequence and get πn → π where π is a positive measure.

Define ν = ρ−1π, then ν is a positive measure such that
∫ T

0

∫
Rd ρ(x)dν(t, x) < ∞. Then for

φ ∈ C([0, T ] × R
d) with compact support in x, we have as n → ∞,

∫ T

t

∫
φdνn =

∫ T

t

∫
φ

ρ
dπn →

∫ T

t

∫
φ

ρ
dπ =

∫ T

t

∫
φdν.

Now passing to the limit in the PDE(g, f, hn), we check that (u, ν) satisfies the PDE with
obstacle associated to (g, f, h), i.e. for every φ ∈ C

1,∞
c ([0, T ] × R

d)

∫ T

t

(us, ∂sφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds

=

∫ T

t

(f(s, ·, us), φs)ds +

∫ T

t

∫

Rd

φ(s, x)1{u=h}dν(x, s). (34)

Then we will check if the probabilistic interpretation (26) still holds. Fix two continuous func-
tions φ, ψ : [0, T ]×R

d → R
+ which have compact support in x. With the convergence result of
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Kn,t,x, which implies dKn,t,x → dKt,x weakly in probability, in the same way as step 1, passing
to the limit in (31) we have

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x

s dx

Since (Y t,x
s , Z

t,x
s , K

t,x
s ) is the solution of RBSDE(g(Xt,x

T ), f, h), then by the integral condition,

we deduce the dK
t,x
s = 1{u=h}(s, X

t,x
s )dK

t,x
s . In (35), setting ψ = 1{u=h} yields

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )1{u=h}(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )dν(s, x).

With the same arguments, we get that dν(s, x) = 1{u=h}(s, x)dν(s, x), and (26)holds for ν and
K.

Step 3 : Now we will relax the bounded condition on g(x) and f(t, x, 0). Then for m, n ∈ N, let

gm,n(x) = (g(x) ∧ n) ∨ (−m),

fm,n(t, x, y) = f(t, x, y) − f(t, x, 0) + (f(t, x, 0) ∧ n) ∨ (−m).

So gm,n(x) and fm,n(t, x, 0) are bounded and for fixed m ∈ N, as n → ∞, we have

gm,n(x) → gm(x) in L2(Rd, ρ(x)dx),

fm,n(t, x, 0) → fm(t, x, 0) in L2([0, T ]×R
d, dt ⊗ ρ(x)dx),

where

gm(x) = g(x) ∨ (−m),

fm(t, x, y) = f(t, x, y) − f(t, x, 0) + f(t, x, 0) ∨ (−m).

Then as m → ∞, we have

gm(x) → g(x) in L2(Rd, ρ(x)dx),

fm(t, x, 0) → f(t, x, 0) in L2([0, T ]×R
d, dt ⊗ ρ(x)dx),

in view of assumption 2.1 and f(t, x, 0) ∈ L2([0, T ] × R
d, dt ⊗ ρ(x)dx).

Now we consider the PDE with obstacle associated to (gm,n, fm,n, h). By step 2,
there exists a (um,n, νm,n) which is the solution of the PDE with obstacle associated to
(gm,n, fm,n, h). In particular the representation formulas (25) and (26) are satisfied. Denote
by (Y m,n,t,x, Zm,n,t,x, Km,n,t,x) the solution of the RBSDE (gm,n(Xt,x

T ), fm,n, h).

Recall the convergence results in step 3 of theorem 2.2 in [12], we know that for fixed m ∈ N, as
n → ∞, (Y m,n,t,x

s , Z
m,n,t,x
s , K

m,n,t,x
s ) → (Y m,t,x

s , Z
m,t,x
s , K

m,t,x
s ) in S2(0, T )×H2

d(0, T )×A2(0, T ),
and that (Y m,t,x

s , Z
m,t,x
s , K

m,t,x
s ) is the solution of RBSDE(gm(Xt,x

T ), fm, h).

By Itô’s formula, we have for n, p ∈ N,

E

∫ T

t

(
∣∣Y m,n,t,x

s − Y m,p,t,x
s

∣∣2 +
∣∣Zm,n,t,x

s − Zm,p,t,x
s

∣∣2)ds

6 CE
∣∣∣gm,n(Xt,x

T ) − gm,p(X
t,x
T )

∣∣∣
2
+ CE

∫ T

t

∣∣fm,n(s, Xt,x
s , 0) − fm,p(s, X

t,x
s , 0)

∣∣2 ds,
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so by the equivalence of the norms (7) and (8), it follows that as n → ∞,

∫

Rd

∫ T

t

ρ(x)(|um,n(t, x) − um,p(t, x)|2 + |σ∗∇um,n(s, x) − σ∗∇um,p(s, x)|2)dsdx

6
Ck1

k2

∫

Rd

ρ(x) |gm,n(x) − gm,p(x)|2 dx +
Ck1

k2

∫

Rd

∫ T

t

ρ(x) |fm,n(s, x, 0) − fm,p(s, x, 0)|2 dsdx → 0.

i.e. for each fixed m ∈ N, {um,n} is a Cauchy sequence in H, and admits a limit um ∈
H. Moreover Y

m,t,x
s = um(s, Xt,x

s ), Zm,t,x
s = σ∗∇um(s, Xt,x

s ), a.s., in particular um(t, x) =
Y

m,t,x
t > h(t, x).

Then we find the measure νm by the sequence {νm,n}. Set πm,n = ρνm,n, by proposition 6.1 in
Appendix, we have for each m, n ∈ N, 0 6 t 6 T

E(
∣∣∣Km,n,t,x

T

∣∣∣
2
) 6 CE[g2

m,n(Xt,x
T ) +

∫ T

0
f2

m,n(s, Xt,x
s , 0, 0)ds + ϕ2( sup

t 6 s 6 T

(h+(s, Xt,x
s )))

+ sup
t 6 s 6 T

(h+(s, Xt,x
s ))2 + 1 + ϕ2(2T )]

6 CE[g(Xt,x
T )2 +

∫ T

0
f2(s, Xt,x

s , 0, 0)ds + ϕ2( sup
0 6 s 6 T

(h+(s, Xt,x
s )))

+ sup
0 6 s 6 T

(h+(s, Xt,x
s ))2 + 1 + ϕ2(2T )]

6 C(1 + |x|2β1β + |x|2β). (35)

By the same way as in step 2, we deduce that for each fixed m ∈ N, πm,n is tight, we may pass to a
subsequence and get πm,n → πm where πm is a positive measure. If we define νm = ρ−1πm, then

νm is a positive measure such that
∫ T

0

∫
Rd ρ(x)dνm(t, x) < ∞. So we have for all φ ∈ C([0, T ]×R

d)
with compact support in x,

∫ T

t

∫
φdνm,n =

∫ T

t

∫
φ

ρ
dπm,n →

∫ T

t

∫
φ

ρ
dπm =

∫ T

t

∫
φdνm.

Now for each fixed m ∈ N, let n → ∞, in the PDE(gm,n, fm,n, h), we check that (um, νm)
satisfies the PDE with obstacle associated to (gm, fm, h), and by the weak convergence result of
dKm,n,t,x, we have easily that the probabilistic interpretation (26) holds for νm and Km.

Then let m → ∞, by the convergence results in step 4 of theorem 2.2 in [12], we apply the
same method as before. We deduce that limm→∞ um = u is in H and Y

t,x
s = u(s, Xt,x

s ), Zt,x
s =

σ∗∇u(s, Xt,x
s ), a.s., where (Y t,x, Zt,x, Kt,x) is the solution of the RBSDE(g, f, h), in particular,

setting s = t, u(t, x) = Y
t,x
t > h(t, x).

From (35), it follows that

E[(Km,t,x
T )2] 6 C(1 + |x|2ββ1 + |x|2β).

By the same arguments, we can find the measure ν by the sequence {νm}, which satisfies that
for all φ and ψ with compact support,

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)1{u=h}(s, x)dν(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x

s dx.
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Finally we find a solution (u, ν) to the PDE with obstacle (g, f, h), when f does not depend on
∇u. So for every φ ∈ C

1,∞
c ([0, T ] × R

d)

∫ T

t

(us, ∂sφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds

=

∫ T

t

(f(s, ·, us), φs)ds +

∫ T

t

∫

Rd

φ(s, x)1{u=h}dν(x, s). (36)

Step 4 : Finally we study the case when f depends on ∇u, and satisfies a Lipschitz condition
on ∇u. We construct a mapping Ψ from H into itself. For some u ∈ H, define

u = Ψ(u),

where (u, ν) is a weak solution of the PDE with obstacle (g, f(t, x, u, σ∇u), h). Then by this map-
ping, we denote a sequence {un} in H, beginning with a function v0 ∈ L2([0, T ]×R

d, dt⊗ρ(x)dx).
Since f(t, x, u, v0(t, x)) satisfies the assumptions of step 3, the PDE(g, f(t, x, u, v0(t, x)), h) ad-
mits a solution (u1, v1) ∈ H. For n ∈ N, set un(t, x) = Ψ(un−1(t, x)).

Symmetrically we introduce a mapping Φ from H2(t, T ) × H2
d(t, T ) into itself. For V t,x,0 =

v0(s, Xt,x
s )), then V

t,x
s ∈ H2

d(t, T ) in view of the equivalence of the norms. Set

(Y t,x,n, Zt,x,n) = Φ(Y t,x,n−1, Zt,x,n−1),

where (Y t,x,n, Zt,x,n, Kt,x,n)is the solution of the RBSDE with parameters g(Xt,x
T ),

f(s, Xt,x
s , Y

t,x
s , Z

t,x,n−1
s ) and h(s, Xt,x

s ).Then Y
t,x,n
s = un(s, Xt,x

s ), Z
t,x,n
s = σ∗∇un(s, Xt,x

s ) a.s.
and

∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)1{u=h}(s, x)dνn(s, x) =

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x,n

s dx.

Set ũn(t, x) := un(t, x) − un−1(t, x). To deal with the difference ũn, we need the difference
of the corresponding BSDE, denote Ỹ

t,x,n
s := Y

t,x,n
s − Y

t,x,n−1
s , Z̃

t,x,n
s := Z

t,x,n
s − Z

t,x,n−1
s ,

K̃
t,x,n
s := K

t,x,n
s − K

t,x,n−1
s . It follows from Itô’s formula, for some α, γ ∈ R,

eγtE
∣∣∣Ỹ t,x,n

s

∣∣∣
2

+ E

∫ T

s

eγr(γ
∣∣∣Ỹ t,x,n

r

∣∣∣
2
+

∣∣∣Z̃t,x,n
r

∣∣∣
2
)dr

6 E

∫ T

s

eγr(
k2

α

∣∣∣Ỹ t,x,n
r

∣∣∣
2
+ α

∣∣∣Z̃t,x,n−1
r

∣∣∣
2
)dr,

since

∫ T

s

eγrỸ t,x,n
r dK̃t,x,n

r

=

∫ T

s

eγr(Y t,x,n
s − h(r, Xt,x

r ))dKt,x,n +

∫ T

s

eγr(Y t,x,n−1
s − h(r, Xt,x

r ))dKt,x,n−1

−
∫ T

s

eγr(Y t,x,n
s − h(r, Xt,x

r ))dKt,x,n−1 +

∫ T

s

eγr(Y t,x,n−1
s − h(r, Xt,x

r ))dKt,x,n

6 0.

1057



then by the equivalence of the norms, for γ = 1 +
2k2

1

k2

2

k2, we have

∫

Rd

∫ T

t

eγs(|ũn(s, x)|2 + |σ∗∇(ũn)(s, x)|2)ρ(x)dsdx

6 (
1

2
)n−1

∫

Rd

∫ T

t

eγs(|ũ2(s, x)|2 + |σ∗∇(ũ2)(s, x)|2)ρ(x)dsdx

6 (
1

2
)n−1(‖u1(s, x)‖2

γ + ‖u2(s, x)‖2
γ).

where ‖u‖2
γ :=

∫
Rd

∫ T

t
eγs(|u(s, x)|2 + |σ∗∇u(s, x)|2)ρ(x)dsdx, which is equivalent to the norm

‖·‖ of H. So {un} is a Cauchy sequence in H, it admits a limit u in H, which is the solution to
the PDE with obstacle (2). Then consider σ∗∇u as a known function by the result of step 3, we

know that there exists a positive measure ν such that
∫ T

0

∫
Rd ρ(x)dν(t, x) < ∞, and for every

φ ∈ C
1,∞
c ([0, T ] × R

d),
∫ T

t

(us, ∂sφ)ds + (u(t, ·), φ(t, ·)) − (g(·), φ(·, T )) +

∫ T

t

E(us, φs)ds

=

∫ T

t

(f(s, ·, us, σ
∗∇us), φs)ds +

∫ T

t

∫

Rd

φ(s, x)1{u=h}dν(x, s). (37)

Moreover, for t 6 s 6 T ,

Y t,x
s = u(s, Xt,x

s ), Zt,x
s = σ∗∇u(s, Xt,x

s ), a.s.a.e.,

and
∫

Rd

∫ T

t

φ(s, X̂t,x
s )J(X̂t,x

s )ψ(s, x)1{u=h}(s, x)dν(s, x)

=

∫

Rd

∫ T

t

φ(s, x)ψ(s, Xt,x
s )dKt,x

s .

b) Uniqueness : Set (u, ν) to be another solution of the PDE with obstacle (3) associated to
(g, f, h); with ν verifies (26) for an increasing process K. We fix φ : R

d → R, a smooth function in
C2

c (Rd) with compact support and denote φt(s, x) = φ(X̂t,x
s )J(X̂t,x

s ). From proposition 3.1, one
may use φt(s, x) as a test function in the PDE(g, f, h) with ∂sφ(s, x)ds replaced by a stochastic
integral with respect to the semimartingale φt(s, x). Then we get, for t 6 s 6 T

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx + (u(s, ·), φt(s, ·)) − (g(·), φt(·, T )) +

∫ T

s

E(ur, φr)dr (38)

=

∫ T

s

∫

Rd

f(r, x, u(r, x), σ∗∇u(r, x))φt(r, ·)dr +

∫ T

s

∫

Rd

φt(r, x)1{u=h}dν(x, r).

By (5) in Lemma 3.1, we have
∫

Rd

∫ T

s

udrφt(r, x)dx =

∫ T

s

(

∫

Rd

(σ∗∇u)(r, x)φt(r, x)dx)dBr

+

∫ T

s

∫

Rd

(
(σ∗∇u)(σ∗∇φr) + φt∇((

1

2
σ∗∇σ + b)u)

)
dxdr.
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Substitute this equality in (38), we get
∫

Rd

u(s, x)φt(s, x)dx = (g(·), φt(·, T )) −
∫ T

s

(

∫

Rd

(σ∗∇u)(r, x)φt(r, x)dx)dBr

+

∫

Rd

∫ T

s

f(r, x, u(r, x), σ∗∇u(r, x))φt(s, ·)dr +

∫ T

s

∫

Rd

φt(r, x)1{u=h}dν(x, r).

Then by changing of variable y = X̂
t,x
r and applying (26) for ν, we obtain

∫

Rd

u(s, Xt,y
s )φ(y)dy

=

∫

Rd

g(Xt,y
T )φ(y)dy +

∫ T

s

φ(y)f(s, Xt,y
s , u(s, Xt,y

s ), σ∗∇u(s, Xt,y
s )ds

+

∫ T

s

∫

Rd

φ(y)1{u=h}(r, X
t,y
s )dK

t,y
r dy −

∫ T

s

(

∫

Rd

(σ∗∇u)(r, Xt,y
r )φ(y)dy)dBr.

Since φ is arbitrary, we can prove that for ρ(y)dy almost every y,
(u(s, Xt,y

s ), (σ∗∇u)(s, Xt,y
s ), K̂t,x

s ) solves the RBSDE(g(Xt,y
T ), f, h). Here K̂

t,x
s =∫ s

t
1{u=h}(r, X

t,y
r )dK

t,y
r . Then by the uniqueness of the solution of the reflected BSDE,

we know u(s, Xt,y
s ) = Y

t,y
s = u(s, Xt,x

s ), (σ∗∇u)(s, Xt,y
s ) = Z

t,y
s = (σ∗∇u)(s, Xt,y

s ) and
K̂

t,y
s = K

t,y
s . Taking s = t we deduce that u(t, y) = u(t, y), ρ(y)dy-a.s. and by the probabilistic

interpretation (26), we obtain
∫ T

s

∫
φt(r, x)1{u=h}(r, x)dν(x, r) =

∫ T

s

∫
φt(r, x)1{u=h}(r, x)dν(x, r).

So 1{u=h}(r, x)dν(x, r) = 1{u=h}(r, x)dν(x, r). 2

6 Appendix

6.1 Proof of proposition 3.1

First we consider the case when f does not depend on z and satisfies assumption 2.3’. As in step
2 of the proof of theorem 4.1, we approximate g and f as in (18), then gn → g in L2(Rd, ρ(x)dx)
and fn(t, x, 0) → f(t, x, 0) in L2([0, T ] × R

d, dt ⊗ ρ(x)dx), as n → ∞.

Since for each n ∈ N, |gn| 6 n and |fn(t, x, 0)| 6 n, by the result of the step 1 of theorem 4.1,
the PDE(gn, fn) admits the weak solution un ∈ H and sup0 6 t 6 T |un(t, x)| 6 Cn. So we know

|fn(t, x, un(t, x))|2 6 |fn(t, x, 0)|2 + ϕ( sup
0 6 t 6 T

|un(t, x)|) 6 Cn.

Set Fn(t, x) := fn(t, x, un(t, x)), then Fn(t, x) ∈ L2([0, T ] × R
n, dt ⊗ ρ(x)dx).

From proposition 2.3 in Bally and Matoussi [3], for φ ∈ C2
c (Rd), we get, for t 6 s 6 T

∫

Rd

∫ T

s

un(r, x)dφt(r, x)dx + (un(s, ·), φt(s, ·)) − (gn(·), φt(·, T )) +

∫ T

s

E(un(r, ·), φt(r, ·))dr

=

∫

Rd

∫ T

s

f(r, x, un(r, x))φt(r, x)drdx +

∫

Rd

∫ T

s

(fn(r, x, 0) − f(r, x, 0))φt(r, x)drdx.

(39)
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By step 2, we know that as n → ∞, un → u in H, where u is a weak solution of the PDE(g, f),
i.e.

un → u in L2([0, T ] × R
d, dt ⊗ ρ(x)dx),

σ∗∇un → ∇u in L2([0, T ] × R
d, dt ⊗ ρ(x)dx).

Then there exists a function u∗ in L2([0, T ] × R
d, dt ⊗ ρ(x)dx), such that for a subsequence

of {un}, |unk
| 6 |u∗| and unk

→ u, dt ⊗ dx-a.e. Thanks to assumption 2.3’-(iii), we have
that f(r, x, un(r, x)) → f(r, x, u(r, x)), dt ⊗ dx-a.e. Now, for all compact support function
φ ∈ C2

c (Rd), the second term in the right hand side of (39) converge to 0 as n → ∞ and it is not
hard to prove by using the dominated convergence theorem the term in the left hand side of (39)

converges. Thus, we conclude that limn→∞

∫
Rd

∫ T

s
f(r, x, un(r, x))φt(r, x)drdx exists. Moreover

by the monotonocity condition of f and the same arguments as in step 2 of the proof of theorem
4.1, we get for all compact support function φ ∈ C2

c (Rd)

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx + (u(s, ·), φt(s, ·)) − (g(·), φt(·, T )) +

∫ T

s

E(u(r, ·), φt(r, ·))dr

=

∫

Rd

∫ T

s

f(r, x, u(r, x))φt(r, x)drdx .

Now we consider the case when f depends on ∇u and satisfies the assumption 2.3 with (iii)
replaced by (12). Like in the step 3 of the proof of theorem 4.1, we construct a mapping Ψ
from H into itself. Then by this mapping, we define a sequence {un} in H, beginning with
a matrix-valued function v0 ∈ L2([0, T ] × R

n×d, dt ⊗ ρ(x)dx). Since f(t, x, u, v0(t, x)) satisfies
the assumptions of step 2, the PDE(g, f(t, x, u, v0(t, x))) admits a unique solution u1 ∈ H. For
n ∈ N, denote

un(t, x) = Ψ(un−1(t, x)),

i.e. un is the weak solution of the PDE(g, f(t, x, u, σ∗∇un−1(t, x))). Set ũn(t, x) := un(t, x) −
un−1(t, x). In order to estimate the difference, we introduce the corresponding BSDE(g, fn)
for n = 1, where fn(t, x, u) = f(t, x, u,∇un−1(t, x)). So we have Y

n,t,x
s = un(s, Xt,x

s ), Zn,t,x
s =

σ∇un(s, Xt,x
s ). Then we apply the Itô’s formula to |Ỹ n,t,x|2, where Ỹ

n,t,x
s := Y

n,t,x
s − Y

n−1,t,x
s .

With the equivalence of the norms, similarly as in step 3, for γ = 1 +
2k2

1

k2

2

k2, we have

∫

Rd

∫ T

t

eγs(|ũn(s, x)|2 + |σ∗∇(ũn)(s, x)|2)ρ(x)dsdx

6 (
1

2
)n−1

∫

Rd

∫ T

t

eγs(|ũ2(s, x)|2 + |σ∗∇(ũ2)(s, x)|2)ρ(x)dsdx

6 (
1

2
)n−1(‖u1(s, x)‖2

γ + ‖u2(s, x)‖2
γ).

where ‖u‖2
γ :=

∫
Rd

∫ T

t
eγs(|u(s, x)|2 + |σ∗∇u(s, x)|2)ρ(x)dsdx, which is equivalent to the norm

‖·‖ of H. So {un} is a Cauchy sequence in H, it admits a limit u in H, and by the fixed point
theorem, u is a solution of the PDE(g, f).
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Then for each n ∈ N, we have for φ ∈ C2
c (Rd)

∫

Rd

∫ T

s

un(r, x)dφt(r, x)dx + (un(s, ·), φt(s, ·)) − (g(·), φt(·, T )) +

∫ T

s

E(un(r, ·), φr(r, ·))dr

=

∫

Rd

∫ T

s

f(r, x, un(r, x), σ∗∇un−1(r, x))φt(r, x)drdx

=

∫

Rd

∫ T

s

f(r, x, un(r, x), σ∗∇u(r, x))φt(r, x)drdx

+

∫

Rd

∫ T

s

[f(r, x, un(r, x), σ∗∇un−1(r, x)) − f(r, x, un(r, x), σ∗∇u(r, x))]φt(r, x)drdx.

Noticing that f is Lipschitz in z, we get

|f(r, x, un(r, x), σ∗∇un−1(r, x)) − f(r, x, un(r, x), σ∗∇u(r, x))| 6 k |σ∗∇un−1(r, x) − σ∗∇u(r, x)| .

So the last term of the right side converges to 0, since {σ∗∇un} converges to σ∗∇u in L2([0, T ]×
R

d, dt⊗ ρ(x)dx). Now we are in the same situation as in the first part of proof, and in the same
way, we deduce that the following holds: for φ ∈ C2

c (Rd)

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx + (u(s, ·), φt(s, ·)) − (g(·), φt(·, T )) +

∫ T

s

E(u(r, ·), φt(r, ·))dr

=

∫

Rd

∫ T

s

f(r, x, u(r, x), σ∗∇u(r, x))φt(r, x)drdx, dt ⊗ dx, a.s..

Now if f satisfies assumption 2.3, we know that u is solution of the PDE(g, f) if and only if
û = eµtu is solution of the PDE(ĝ, f̂), where

ĝ(x) = eµT g(x), f̂(t, x, y, x) = eµtf(t, x, e−µty, e−µtz) − µy,

and f̂ satisfies assumption 2.3-(iii) replaced by (12). So we know now: for φ ∈ C2
c (Rd),

∫

Rd

∫ T

s

û(r, x)dφt(r, x)dx + (û(s, ·), φt(s, ·)) − (ĝ(·), φt(·, T )) +

∫ T

s

E(û(r, ·), φt(r, ·))dr

=

∫

Rd

∫ T

s

f̂(r, x, û(r, x),∇û(r, x))φt(r, x)drdx, dt ⊗ dx, a.s..

Notice that d(eµru(r, x)) = µeµru(r, x)dr + eµrd(u(r, x)), so by the integration by parts formula
(for stochastic process), we get

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx

=

∫

Rd

∫ T

s

e−µrû(r, x)dφt(r, x)dxdr

= e−µT (ĝ(·), φt(·, T )) − e−µs(û(s, ·), φt(s, ·)) + µ

∫ T

s

e−µr

∫

Rd

û(r, x)φt(r, x)dxdr

−
∫ T

s

∫

Rd

e−µrφt(r, x)[Lû(r, x) + f̂(r, x, û(r, x),∇û(r, x))]drdx.
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Using (11), we get that for φ ∈ C2
c (Rd),

∫

Rd

∫ T

s

u(r, x)dφt(r, x)dx = (g(·), φt(·, T )) − (u(s, ·), φt(s, ·)) −
∫ T

s

∫

Rd

φt(r, x)Lu(r, x)drdx

+

∫ T

s

∫

Rd

φt(r, x)f(r, x, u(r, x),∇u(r, x))drdx

= (g(·), φt(·, T )) − (u(s, ·), φt(s, ·)) −
∫ T

s

E(u(r, ·), φt(r, ·))dr

+

∫ T

s

∫

Rd

φt(r, x)f(r, x, u(r, x),∇u(r, x))drdx,

and finally, the result follows. 2

6.2 Some a priori estimates

In this subsection, we consider the non-markovian Reflected BSDE associated to (ξ, f, L) :





Yt = ξ +

∫ T

t

f(t, Ys, Zs)ds + KT − Kt −
∫ T

t

ZsdBs,

Yt > Lt,
∫ T

0
(Ys − Ls)dKs = 0

under the following assumptions :

(H1) a final condition ξ ∈ L2(FT ),

(H2) a coefficient f : Ω× [0, T ]×R×R
d → R, which is such that for some continuous increasing

function ϕ : R+ −→ R+, a real numbers µ and C > 0:

(i) f(·, y, z) is progressively measurable, ∀(y, z) ∈ R × R
d;

(ii) |f(t, y, 0)| 6 |f(t, 0, 0)| + ϕ(|y|), ∀(t, y) ∈ [0, T ] × R, a.s.;

(iii) E
∫ T

0 |f(t, 0, 0)|2 dt < ∞;
(iv) |f(t, y, z) − f(t, y, z′)| 6 C |z − z′| , ∀(t, y) ∈ [0, T ] × R, z, z′ ∈ R

d, a.s.
(v) (y − y′)(f(t, y, z) − f(t, y′, z)) 6 µ(y − y′)2, ∀(t, z) ∈ [0, T ] × R

d, y, y′ ∈ R, a.s.
(vi) y → f(t, y, z) is continuous, ∀(t, z) ∈ [0, T ] × R

d, a.s.

(H3) a barrier (Lt)0 6 t 6 T , which is a continuous progressively measurable real-valued process,
satisfying

E[ϕ2( sup
0 6 t 6 T

(eµtL+
t ))] < ∞,

and (L+
t )0 6 t 6 T ∈ S2(0, T ), LT 6 ξ, a.s.

We shall give an a priori estimate of the solution (Y, Z, K) with respect to the terminal condition
ξ, the coefficient f and the barrier L. Unlike the Lipshitz case, we have in addition the term
Eϕ2(sup0 6 t 6 T (L+

t )) and a constant, which only depends on ϕ, µ, k and T :
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Proposition 6.1. There exists a constant C, which only depends on T , µ and k, such that

E
[

sup
0 6 t 6 T

|Yt|2 +

∫ T

0
|Zs|2 ds + |KT |2

]
6 CE

[
ξ2 +

∫ T

0
f2(t, 0, 0)dt + ϕ2( sup

0 6 t 6 T

(L+
t ))

]

+ CE[ sup
0 6 t 6 T

(L+
t )2 + 1 + ϕ2(2T )].

Proof. Applying Itô’s formula to |Yt|2, and taking expectation, then

E[|Yt|2 +

∫ T

t

|Zs|2 ds] = E[|ξ|2 + 2

∫ T

t

Ysf(s, Ys, Zs)ds + 2

∫ T

t

LsdKs

6 E[|ξ|2 + 2

∫ T

t

Ysf(s, 0, 0)ds + 2

∫ T

t

(µ |Ys|2 + k |Ys| |Zs|)ds + 2

∫ T

t

LsdKs].

It follows that

E[|Yt|2 +
1

2

∫ T

t

|Zs|2 ds] 6 E[|ξ|2 + 2

∫ T

t

f2(s, 0, 0)ds + (2µ + 1 + 2k2)

∫ T

t

|Ys|2 ds + 2

∫ T

t

LsdKs].

Then by Gronwall’s inequality, we have

E |Yt|2 6 CE[|ξ|2 +

∫ T

0
f2(s, 0, 0)ds +

∫ T

0
LsdKs], (40)

then

E

∫ T

0
|Zs|2 ds 6 CE[|ξ|2 +

∫ T

0
f2(s, 0, 0)ds +

∫ T

0
LsdKs], (41)

where C is a constant only depends on µ, k and T , in the following this constant can be changed
line by line.

Now we estimate K by approximation. By the existence of the solution, theorem 2.2 in Lepeltier
et al. [12], we take the process Z as a known process. Without losing generality we write f(t, y)
for f(t, y, Zt), here f(t, 0) = f(t, 0, Zt) is a process in H2(0, T ). Set

ξm,n = (ξ ∨ (−n)) ∧ m,

fm,n(t, y) = f(t, y) − f(t, 0) + (f(t, 0) ∨ (−n)) ∧ m.

For m, n ∈ N, ξm,n and sup0 6 t 6 T fm,n(t, 0) are uniformly bounded. Consider the
RBSDE(ξm,n, fm,n, L),

Y
m,n
t = ξm,n +

∫ T

t

fm,n(t, Y m,n
s )ds + K

m,n
T − K

m,n
t −

∫ T

t

Zm,n
s dBs,

Y
m,n
t > Lt,

∫ T

0
(Y m,n

s − Ls)dKm,n
s = 0.

if we recall the transform in step 2 of the proof of theorem 2.2 in Lepeltier et al. [12], since ξm,n,
fm,n(t, 0) 6 m, we know that (Y m,n

t , Z
m,n
t , K

m,n
t ) is the solution of this RBSDE, if and only if

(Y m,n′, Zm,n′, Km,n′) is the solution of RBSDE(ξm,n′, fm,n′, L′), where

(Y m,n′
t , Z

m,n′
t , K

m,n′
t ) = (Y m,n

t + m(t − 2(T ∨ 1)), Zm,n
t , K

m,n
t )
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and

ξm,n′ = ξm,n + 2mT − m(T ∨ 1),

fm,n′(t, y) = fm,n(t, y − m(t − 2(T ∨ 1))) − m,

L′
t = Lt + m(t − 2(T ∨ 1)).

Without losing generality we set T > 1. Then ξm,n′ 6 0 and fm,n′(t, 0) 6 0. Since
(Y m,n′, Zm,n′, Km,n′) is the solution of RBSDE(ξm,n′, fm,n′, L′), then we have

K
m,n′
T = Y

m,n′
0 − ξm,n′ −

∫ T

0
fm,n′(s, Y m,n′

s , Zs)ds +

∫ T

0
Zm,n′

s dBs,

which follows

E[(Km,n′
T )2] 6 4E[

∣∣Y m,n′
0

∣∣2 +
∣∣ξm,n′

∣∣2 + (

∫ T

0
fm,n′(s, Y m,n′

s )ds)2 +

∫ T

0

∣∣Zm,n′
s

∣∣2 ds]. (42)

Applying Itô’s formula to |Y m,n|2, like (40) and (41), we have

E |Y m,n
t |2 + E

∫ T

t

|Zm,n
s |2 ds 6 CE[|ξm,n|2 +

∫ T

t

(fm,n(s, 0))2ds +

∫ T

t

LsdKm,n
s ].

So

∣∣Y m,n′
0

∣∣2 +

∫ T

0

∣∣Zm,n′
s

∣∣2 ds = 2 |Y m,n
0 |2 + 8m2T 2 + E

∫ T

0
|Zm,n

s |2 ds

6 CE[|ξm,n|2 +

∫ T

0
(fm,n(s, 0)ds)2 +

∫ T

0
LsdKm,n

s ] + 8m2T 2.

For the third term on the right side of (42), from Lemma 2.3 in Lepeltier et al. [12], we remember
that

(

∫ T

0
fm,n′(s, Y m,n′

s )ds)2 6 max{(
∫ T

0
fm,n′(s, Ỹ m,n

s )ds)2, (

∫ T

0
fm,n′(s, Y

m,n
s )ds)2}, (43)

where (Ỹ m,n, Z̃m,n) is the solution the following BSDE

Ỹ
m,n
t = ξm,n′ +

∫ T

0
fm,n′(s, Ỹ m,n

s )ds −
∫ T

0
Z̃m,n

s dBs, (44)

and
Y

m,n
s = ess sup

τ∈Tt,T

E[(L
′

τ )
+1{τ<T} + (ξm,n)+1{τ=T}|Ft] = ess sup

τ∈Tt,T

E[(L
′

τ )
+|Ft].

From (44), and proposition 2.2 in Pardoux [13], we have

E(

∫ T

0
fm,n′(s, Ỹ m,n

s )ds)2 6 CE[
∣∣ξm,n′

∣∣2 + (

∫ T

0
fm,n′(s, 0)ds)2]

6 CE[|ξm,n|2 +

∫ T

0
(fm,n(s, 0))2ds] + Cϕ2(2mT ) + Cm2.
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For the other term in (43), with sup0 6 t 6 T Y
m,n
s = sup0 6 t 6 T (L′

t)
+, we get

E(

∫ T

0
fm,n′(s, Y

m,n
s )ds)2 6 E[

∫ T

0
2(fm,n′(s, 0))2ds + 2Tϕ2( sup

0 6 t 6 T

(L′
t)

+]

6 E[4

∫ T

0
fm,n(s, 0)2ds + 2Tϕ2( sup

0 6 t 6 T

(Lt)
+)] + 2m2T + 4Tϕ2(2mT ).

Consequently, we deduce that

E[(Km,n
T )2] = E[(Km,n′

T )2]

6 CE[|ξm,n|2 +

∫ T

0
(fm,n(s, 0))2ds +

∫ T

t

LsdKm,n
s + ϕ2( sup

0 6 t 6 T

(Lt)
+) + m2 + ϕ2(2mT )]

6 CE[|ξ|2 +

∫ T

0
(f(s, 0, Zs))

2ds + ϕ2( sup
0 6 t 6 T

(Lt)
+) + sup

0 6 t 6 T

((Lt)
+)2] +

1

2
E[(Km,n

T )2]

+C(m2 + ϕ2(2mT )).

Moreover using (41) and the fact that f is Lipschitz on z, it follows that

E[(Km,n
T )2] 6 CE[|ξ|2 +

∫ T

0
(f(s, 0, 0))2ds + ϕ2( sup

0 6 t 6 T

(Lt)
+) + sup

0 6 t 6 T

((Lt)
+)2 (45)

+

∫ T

0
LsdKs] + C(m2 + ϕ2(2mT )).

Let m → ∞, then

E[|ξm,n − ξn|2] → 0, E

∫ T

0
|fm,n(t, 0) − fn(t, 0)|2 → 0,

where ξn = ξ ∨ (−n) and fn(t, y) = f(t, y) − f(t, 0) + f(t, 0) ∨ (−n).

Thanks to the convergence result of step 3 of the proof for theorem 2.2 in [12], we know that
(Y m,n, Zm,n, Km,n) → (Y n, Zn, Kn) in S2(0, T ) × H2

d(0, T ) × A2(0, T ), where (Y n, Zn, Kn) is

the soultion of the RBSDE(ξn, fn, L). Moreover K
m,n
T ց Kn

T in L2(FT ), so we have Kn
T 6 K

1,n
T ,

which implies for each n ∈ N,

E[(Kn
T )2] 6 E[(K1,n

T )2] (46)

Then, letting n → ∞, by the convergence result in step 4, since

E[|ξn − ξ|2] → 0, E

∫ T

0
|fn(t, 0) − f(t, 0)|2 → 0,

the sequence (Y n, Zn, Kn) → (Y, Z, K) in S2(0, T )×H2
d(0, T )×A2(0, T ), where (Y, Z, K) is the
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solution of the RBSDE(ξ, f, L). From (46), and (45) for m = 1, we get

E[(KT )2] 6 CE[|ξ|2 +

∫ T

0
(f(s, 0, 0))2ds + ϕ2( sup

0 6 t 6 T

(Lt)
+) + sup

0 6 t 6 T

((Lt)
+)2

+

∫ T

0
LsdKs] + C(1 + ϕ2(2T ))

6 CE[|ξ|2 +

∫ T

0
(f(s, 0, 0))2ds + ϕ2( sup

0 6 t 6 T

(Lt)
+) + sup

0 6 t 6 T

((Lt)
+)2]

+
1

2
E[(KT )2] + C(1 + ϕ2(2T )).

Then it follows that for each t ∈ [0, T ],

E[|Yt|2 +

∫ T

0
|Zs|2 ds + (KT )2] 6 CE[|ξ|2 +

∫ T

0
(f(s, 0, 0))2ds + ϕ2( sup

0 6 t 6 T

(Lt)
+)

+ sup
0 6 t 6 T

((Lt)
+)2] + C(1 + ϕ2(2T )).

Finally we get the result, by applying BDG inequality. 2
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