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Abstract

We establish a large deviation principle for the largest eigenvalue of a rank one deformation
of a matrix from the GUE or GOE. As a corollary, we get another proof of the phenomenon,
well-known in learning theory and finance, that the largest eigenvalue separates from the
bulk when the perturbation is large enough.
A large part of the paper is devoted to an auxiliary result on the continuity of spherical
integrals in the case when one of the matrix is of rank one, as studied in (12).
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1 Introduction

We consider in this paper rank one deformations of matrices from Gaussian ensembles, that is
matrices which can be written WN + AN , with WN from the Gaussian Orthogonal (or Unitary)
Ensemble and AN rank one deterministic, real symmetric if WN is from the GOE and Hermitian
if WN is from the GUE.

Since the fifties, the classical Gaussian ensembles (see Mehta (19)) have been extensively stud-
ied. Various results for the global regime were established (Wigner semicircle law (22), large
deviations for the spectral measure (5)...); the statistics of the spacings between eigenvalues
were investigated for example in (8; 7), as well as the behaviour of extremal eigenvalues (Tracy-
Widom distribution (21)). In the meantime, people got interested in the universality of some of
these results. In this context, it is natural to look at various deformations of these ensembles,
for example the rank one deformations we are interested in.

This so-called “deformed Wigner ensemble” was studied in (16) and (6), where the authors
focused mainly on the problem of the local spacings and in (20) and (11), where they studied
the behaviour of the largest eigenvalue. In this framework, our goal in this paper will be to
establish a large deviation principle for the largest eigenvalue of XN = WN + AN , that we
denote in the sequel by x∗

N . Note that our result can also be seen as a generalization of the
result established in (4) for the largest eigenvalue of a matrix distributed according to the GOE.
If we denote by θ the unique non zero eigenvalue of AN , the joint law of the eigenvalues x1, . . . , xN

of XN = WN + AN is given by

Qθ
N (dx1, . . . , dxN ) =

1

Zβ,θ
N

∏

i<j

|xi − xj|βIβ
N (θ,XN )e−

N
2

PN
i=1 x2

i dx1 . . . dxN , (1)

where Iβ
N is the spherical integral defined by

Iβ
N (θ,XN ) :=

∫

eNtr(UXN U∗AN )dmβ
N (U) =

∫

eNθ(UXN U∗)11dmβ
N (U),

with mβ
N the Haar probability measure on ON the orthogonal group of size N if β = 1, on the

unitary group UN if β = 2 and Zβ,θ
N is a normalizing constant. The fact that the joint law of

the eigenvalues of XN and that Iβ
N (θ,XN ) depend on AN only through its non zero eigenvalue

θ comes from the unitary invariance respectively of the law of WN and of the Haar measure mβ
N .

Our main result is the following

Theorem 1.1. For β = 1 or 2, if θ > 0, then under Qθ
N , the largest eigenvalue x∗

N =
max{x1, . . . , xN} satisfies a large deviation principle in the scale N, with good rate function

Kβ
θ defined as follows:

• If θ 6

√

β
2 ,

Kβ
θ (x) =















+∞, if x <
√

2β
∫ x

√
2β

√

z2 − 2β dz, if
√

2β 6 x 6 θ + β
2θ

,

Mβ
θ (x), if x > θ + β

2θ
,
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with Mβ
θ (x) =

1

2

∫ x

√
2β

√

z2 − 2β dz − θx +
1

4
x2 +

β

4
− β

4
log

β

2
+

1

2
θ2.

• If θ >

√

β
2 ,

Kβ
θ (x) =

{

+∞, if x <
√

2β

Lβ
θ (x), if x >

√
2β,

with Lβ
θ (x) =

1

2

∫ x

θ+ β
2θ

√

z2 − 2βdz − θ

(

x −
(

θ +
β

2θ

))

+
1

4

(

x −
(

θ +
β

2θ

))2

.

One can see in particular that Kβ
θ differs from the rate function for the deviations of the largest

eigenvalue of the non-deformed model that was obtained in (4).

Note that in the case when θ < 0, similar results would hold for the smallest eigenvalue of the
deformed ensemble. We let the precise statement to the reader and assume in the sequel that
θ > 0.

Remark 1.2. Let us mention that, although we did not investigate this point in full details, very
similar results can be obtained with our techniques in the case of sample covariance matrices
for the so-called “single spike model” that is matrices of the form XX∗, where X is a p ×
n matrix, whose column vectors are iid Gaussian (real or complex) with a covariance matrix
diag(a, 1, 1, . . . , 1), with a single spike a > 1 (see below for references).

We have to mention an important corollary of Theorem 1.1 :

Corollary 1.3. For β = 1 or 2, under Qθ
N , x∗

N converges almost surely to the edge of the support

of the semicircle law σβ as long as θ 6 θc :=
√

β
2 and separates from the support when θ > θc.

In this case, it converges to θ + β
2θ

.

This allows us to give a new proof, via large deviations, to this known phenomena which is
crucial for applications to finance and learning theory (cf. for example (15; 18)).
On the mathematical level, this kind of phase transition has been pointed out and proved by
several authors in the case of non-white sample covariance matrices (cf. for example (3) for
the complete analysis in the complex Gaussian case, (10), (9) for more general models, (17) for
statistical applications to PCA).

The organisation of the paper is as follows : as we can see in (1) above, the expression of the

joint law Qθ
N of the eigenvalues involves the spherical integrals Iβ

N in the case when one of the
matrices is of rank one. We got the asymptotics of this quantity in (12) but we will need a
precise continuity result of these spherical integrals to which Section 2 is devoted. In Section 3,
we prove Theorem 1.1. Finally, in a very short Section 4, we show how to derive Corollary 1.3
from this Large Deviation Principle.
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2 Continuity of spherical integrals

The question we want to address in this section is the continuity, in a topology to be prescribed,
of Iβ

N (θ,BN ), in its second argument BN . The matrix BN is supposed to be symmetric if β = 1
and Hermitian if β = 2. Due to invariance property of the Haar measure, we can always assume
that BN is real diagonal.

We denote by λ1(BN ), . . . , λN (BN ) the eigenvalues of BN in decreasing order and we let

ν̂BN
:=

1

N

N
∑

i=2

δλi(BN ); d is the Dudley distance defined on probability measures by

d(µ, ν) = sup

{∣

∣

∣

∣

∫

fdµ −
∫

fdν

∣

∣

∣

∣

; |f(x)| ∨
∣

∣

∣

∣

f(x) − f(y)

x − y

∣

∣

∣

∣

6 1,∀x 6= y

}

.

The following continuity property holds

Proposition 2.1. For β = 1 or 2, for any θ > 0 and any κ > 0, there exists a function gκ : R+ →
R+ going to zero at zero such that, for any δ > 0 and N large enough, if BN and B′

N are two
sequences of real diagonal matrices such that d(ν̂BN

, ν̂B′

N
) 6 N−κ and |λ1(BN ) − λ1(B

′
N )| 6 δ,

with sup ‖BN‖∞ < ∞ then

∣

∣

∣

∣

1

N
log Iβ

N (θ,BN ) − 1

N
log Iβ

N (θ,B′
N )

∣

∣

∣

∣

6 gκ(δ).

Remark 2.2. According to Theorem 6 of (12), we know that, for some values of θ, the limit of
1
N

log Iβ
N (θ,BN ) as N goes to infinity depends not only on the limiting spectral measure of BN

but also on the limit of λ1(BN ). Therefore 1
N

log Iβ
N (θ,BN ) cannot be continuous in the spectral

measure of BN but we have also to localize λ1(BN ). That is precisely the content of Proposition
2.1 above. We also refer the reader to the remarks made in (12) on point (3) of Lemma 14
therein.

A key step to show Proposition 2.1 is to get an equivalent as explicit as possible of
1
N

log Iβ
N (θ,BN ). This is given by

Lemma 2.3. If BN has spectral radius uniformly bounded in N , then for any δ > 0, for N large
enough,

∣

∣

∣

∣

∣

1

N
log Iβ

N (θ,BN ) −
(

θvN − β

2N

N
∑

i=1

log

(

1 +
2θ

β
vN − 2θ

β
λi(BN )

)

)∣

∣

∣

∣

∣

6 δ,

where vN is the unique solution in

[

λN (BN ) − β

2θ
, λ1(BN ) − β

2θ

]c

of the equation

β

2θ

1

N

N
∑

i=1

1

vN + β
2θ

− λi(BN )
= 1.
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This lemma can be regarded as a generalization to any value of θ of the second point of Lemma
14 in (12).
The remaining of this section is devoted to its proof. For the sake of simplicity, we prove in full
details the case β = 1 and leave to the reader the changes to the other cases.

2.1 Some preliminary inequalities

Notation and remarks.

• We denote by λ1 > . . . > λN the eigenvalues of BN in decreasing order.

• For ξ ∈]0, 1/2[, we define

KN (ξ) := {j ∈ {1, . . . ,N}/λj ∈ (λ1 − N−ξ, λ1]},

and we denote by j0 the cardinality of KN (ξ).

• The eigenvalues λ1 > . . . > λN being fixed, we can see that the function x 7→ 1

N

N
∑

i=1

1

x − λi

is strictly decreasing taking negative values on (−∞, λN ) and strictly decreasing taking
positive values on (λ1,∞). Therefore, vN as introduced in Lemma 2.3, is well defined and

we can define similarly ṽN as the unique solution in

[

λN (BN ) − 1

2θ
, λ1(BN ) − 1

2θ

]c

of the

equation

1

N

1

2θ

N
∑

i=j0+1

1

ṽN + 1
2θ

− λi

= 1.

Moreover, if θ > 0, one can easily see that vN + 1
2θ

and ṽN + 1
2θ

both lie in (λ1,∞).

• E and V denotes respectively the expectation and the variance under the standard Gaussian
measure on RN .

• As 1 + 2θvN − 2θλ1 > 0, we can define the probability measure on RN given by

PN (dg1, . . . , dgN ) = (2π)−
N
2

N
∏

i=1

[

√

1 + 2θvN − 2θλi e−
1
2
(1+2θvN−2θλi)g

2
i dgi

]

.

We denote by EPN
and VPN

respectively the expectation and the variance under PN .

• Similarly, we define the probability measure on RN−j0 given by

P̃N (dgj0+1, . . . , dgN ) = (2π)−
N−j0

2

N
∏

i=j0+1

[

√

1 + 2θṽN − 2θλi e−
1
2
(1+2θṽN−2θλi)g2

i dgi

]

.

We denote by EP̃N
and VP̃N

respectively the expectation and the variance under P̃N .
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Before going to the proof of Lemma 2.3, we enumerate hereafter some inequalities on the quan-
tities we have just introduced, that will be useful further.

Fact 2.4. Let θ > 0. We have the following inequalities :

1. For i > j0 + 1, vN +
1

2θ
− λi > N−ξ and ṽN +

1

2θ
− λi > N−ξ.

2. vN +
1

2θ
− λ1 >

j0

2θN
− N−ξ and ∀i, vN +

1

2θ
− λi >

1

2θN
.

3. ṽN 6 vN 6 λ1 6 ṽN +
1

2θ
6 vN +

1

2θ
.

4. For any δ > 0, for any ξ ∈ (0, 1/2), for any ε > 0, there exists N0 such that for any

N > N0 such that j0 6 δN1− ξ

2 , |vN − ṽN | 6 ε.

Proof :

1. As mentionned in the remarks above, vN + 1
2θ

> λ1. For i > j0 + 1, λi 6 λ1 −N−ξ so that
vN + 1

2θ
> λ1 > λi + N−ξ. The same holds for ṽN .

2. We have the following inequality

j0
1

vN + 1
2θ

− (λ1 − N−ξ)
6

j0
∑

i=1

1

vN + 1
2θ

− λi

6 2θN,

where the right inequality comes from the fact that
∑N

i=1
1

vN+ 1
2θ

−λi
= 2θN and for all i,

vN + 1
2θ

−λi > 0 and the left one is inherited from the definition of j0. Putting the leftmost
and rightmost terms together, we get the first inequality announced in point (2) above.
The second one is even simpler : we have that

∑N
i=1

1
vN+ 1

2θ
−λi

= 2θN wand each term is

positive so that any of them is smaller than 2θN.

3. Suppose that vN < ṽN , then for all i > j0 + 1, vN + 1
2θ

− λi < ṽN + 1
2θ

− λi

2θN =

N
∑

i=j0+1

1

ṽN + 1
2θ

− λi

<

N
∑

i=j0+1

1

vN + 1
2θ

− λi

,

but the rightmost term is smaller or equal to 2θN. Therefore, ṽN 6 vN .

The λi’s being in decreasing order, we get that 2θ =
1

N

N
∑

i=1

1

vN + 1
2θ

− λi

6
1

vN + 1
2θ

− λ1
,

this gives vN +
1

2θ
6 λ1 +

1

2θ
, i.e. vN 6 λ1.

4. Let ε > 0, δ > 0 and ξ ∈ (0, 1/2) be fixed. From (3), we have that

0 6 vN − ṽN 6 vN +
1

2θ
− λ1
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If vN + 1
2θ

− λ1 6 ε, then |vN − ṽN | 6 ε.
Otherwise, we can write, thanks to (3), that

N
∑

i=j0+1

1

ṽN + 1
2θ

− λi

−
N
∑

i=j0+1

1

vN + 1
2θ

− λi

> (vN − ṽN )

N
∑

i=j0+1

1

(vN + 1
2θ

− λi)2
.

From Cauchy-Schwarz inequality, we get

j0
∑

i=1

1

vN + 1
2θ

− λi

> (vN − ṽN )
1

N − j0





N
∑

i=j0+1

1

vN + 1
2θ

− λi





2

.

Therefore,

|vN − ṽN | 6
(N − j0)yN

(2θN − yN )2
with yN =

j0
∑

i=1

1

vN + 1
2θ

− λi

.

Now, we are in the case when vN + 1
2θ

− λ1 > ε, so that yN 6
j0
ε
. For N such that

j0 6 δN1− ξ

2 ,

|vN − ṽN | 6
(N − j0)δN

1− ξ
2

ε(2θN − δN1− ξ

2 )2
6 ε,

where the last inequality holds for N large enough. 2

2.2 Proof of Lemma 2.3

We first prove the upper bound: the starting point will be the same as in (12). It is a well
known fact that the first column vector of a random orthogonal matrix distributed according to
the Haar measure on ON has the same law as a standard Gaussian vector in RN divided by its
Euclidian norm. Therefore, we can write

IN (θ,BN ) = E

(

exp

{

Nθ

∑N
i=1 λig

2
i

∑N
i=1 g2

i

})

.

From concentration for the norm of a Gaussian vector (cf. (12) for details), we get that, for any
κ such that 0 < κ < 1/2,

1 6
IN (θ,BN )

E

(

1AN (κ) exp

{

Nθ
PN

i=1 λig
2
i

PN
i=1 g2

i

}) 6 δ(κ,N), (2)

where AN (κ) =
{∣

∣

∣

‖g‖2

N
− 1
∣

∣

∣
6 N−κ

}

and δ(κ,N) goes to one at infinity for any 0 < κ < 1/2.

From there, we have

IN (θ,BN ) 6 δ(κ,N)eNθvN +N1−κθ(M+vN )E

[

1AN (κ) exp

{

θ

N
∑

i=1

λig
2
i − θvN

N
∑

i=1

g2
i

}]

6 δ(κ,N)eNθvN +N1−κθ(M+vN )
N
∏

i=1

[

√

1 + 2θvN − 2θλi

]−1
,
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where M is the uniform bound on the spectral radius of BN and we use that PN (AN (κ)) 6 1.
Therefore, for any δ > 0, we get that for N large enough,

1

N
log IN (θ,BN ) 6 θvN − 1

2

N
∑

i=1

log (1 + 2θvN − 2θλi) + δ.

For the proof of the lower bound, we have to treat two distinct cases. In both cases, the
starting point, inherited from (2), is the following:

IN (θ,BN ) > δ(κ,N)eNθvN −N1−κθ(M+vN )E

[

1AN (κ) exp

{

θ

N
∑

i=1

λig
2
i − θvN

N
∑

i=1

g2
i

}]

,

but our startegy will be different according to whether there is a lot of eigenvalues at the
vicinity of the largest eigenvalue λ1 or not, that is according to the size of j0 defined above.

For κ ∈]0, 1/2[ fixed, we choose in the sequel ξ such that 0 < ξ 6
1
2 − κ.

• First case : N is such that j0 > δN1− ξ

2 .
In this case, the situation is very similar to what happens with a small θ, we therefore follow
the proof of (12). Indeed, we write

E

[

1AN (κ) exp

{

θ
N
∑

i=1

λig
2
i − θvN

N
∑

i=1

g2
i

}]

=
N
∏

i=1

[

√

1 + 2θvN − 2θλi

]−1
PN (AN (κ)),

and show that, for N large enough, PN (AN (κ)) > 1/2.
An easy computation gives that

VPN

[

1

N
‖g‖2

]

=
2

N2

N
∑

i=1

1

(1 + 2θvN − 2θλi)2

and our goal is to show that this variance decreases fast enough.
From (2) in Fact 2.4, we have

vN +
1

2θ
− λi > vN +

1

2θ
− λ1 >

j0

2θN
− N−ξ

>
δ

2θ
N− ξ

2 − N−ξ
>

δ

2θ
N−ξ.

This gives that

VPN

[

1

N
‖g‖2

]

6
2

N2δ2
N2ξN 6

2

δ2
N2ξ−1

Therefore, by Chebichev inequality,

PN (AN (κ)c) 6
2

δ2
N2κ+2ξ−1

6
1

2
,

where the last inequality holds for N large enough with our choice of ξ.
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• Second case : N is such that j0 6 δN1− ξ

2 .
The strategy will be a bit different : separating the eigenvalues of BN that are in KN (ξ) and
the others, we get

IN (θ,BN ) > eNθṽN−N1−κθ(M+ṽN ) E

(

1| 1
N
‖g‖2−1|6N−κ exp

{

θ
N
∑

i=1

λig
2
i − θṽN

N
∑

i=1

g2
i

})

> eNθṽN−N1−κθ(M+ṽN ) E



1˛

˛

˛

1
N

PN
i=j0+1 g2

i −1
˛

˛

˛
6N−κ

2

exp







θ
N
∑

i=j0+1

λig
2
i − θṽN

N
∑

i=j0+1

g2
i











E

(

1˛

˛

˛

1
N

Pj0
i=1 g2

i

˛

˛

˛
6N−κ

2

exp

{

θ

j0
∑

i=1

λig
2
i − θṽN

j0
∑

i=1

g2
i

})

.

The first term will be treated similarly to what we made in the first case. We can easily check

that EP̃N





1

N

N
∑

i=j0+1

g2
i



 = 1 and VarP̃N





1

N

N
∑

i=j0+1

g2
i



 =
2

N2

N
∑

i=j0+1

1

(1 + 2θṽN − 2θλi)2
.

From (1) in Fact 2.4, we get that VP̃N





1

N

N
∑

i=j0+1

g2
i



 6
1

2θ2N2
N2ξN 6

1

2θ2
N2ξ−1. Therefore

P̃N





∣

∣

∣

∣

∣

∣

1

N

N
∑

i=j0+1

g2
i − 1

∣

∣

∣

∣

∣

∣

>
N−κ

2



 6
2

θ2
N2κ+2ξ−1,

which goes to zero with our choice of ξ.
This gives that for N large enough,

E



1˛

˛

˛

1
N

PN
i=j0+1 g2

i −1
˛

˛

˛
6N−κ

2

exp







θ

N
∑

i=j0+1

λig
2
i − θṽN

N
∑

i=j0+1

g2
i









 >
1

2

N
∏

i=j0+1

1√
1 + 2θṽN − 2θλi

.

(3)

We now go to the last term. From (3) in Fact 2.4, we have that ṽN 6 λ1, so that for any i 6 j0,
λi − ṽN > −N−ξ. Therefore,

exp

{

θ

[

j0
∑

i=1

(λi − ṽN )g2
i

]}

> exp
(

−θN−ξj0

)

> exp
(

−θδN1− 3ξ

2

)

,

so that

E

(

1˛

˛

˛

1
N

Pj0
i=1 g2

i

˛

˛

˛
6N−κ

2

exp

{

θ

j0
∑

i=1

λig
2
i − θṽN

j0
∑

i=1

g2
i

})

> P

(∣

∣

∣

∣

∣

1

N

j0
∑

i=1

g2
i

∣

∣

∣

∣

∣

6
N−κ

2

)

· exp
(

−θδN1− 3ξ
2

)

>
1

2
. exp

(

−θδN1− 3ξ

2

)

, (4)

where the last inequality is again obtained through Chebichev inequality.
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Putting together (3) and (4), we get that for N large enough

θṽN − 1

2N

N
∑

i=j0+1

log(1 + 2θṽN − 2θλi) −
δ

4
6

1

N
log IN (θ,BN ).

The last step is now to prove that, for N large enough,

∣

∣

∣

∣

∣

∣

(

θvN − 1

2N

N
∑

i=1

log(1 + 2θvN − 2θλi)

)

−



θṽN − 1

2N

N
∑

i=j0+1

log(1 + 2θṽN − 2θλi)





∣

∣

∣

∣

∣

∣

6
δ

2
.

(5)

On one side, we have that

∣

∣

∣

∣

∣

∣



θvN − 1

2N

N
∑

i=j0+1

log(1 + 2θvN − 2θλi)



−



θṽN − 1

2N

N
∑

i=j0+1

log(1 + 2θṽN − 2θλi)





∣

∣

∣

∣

∣

∣

6 |vN − ṽN |



θ +
1

2N

N
∑

i=j0+1

1

ṽN + 1
2θ

− λi



 6
δ

4
,

where we use (4) in Fact 2.4, with N large enough and ε = δ
2θ

.

From (1) in Fact 2.4, we have that 1
N

6 1+2θvN −2θλi and from (2), vN 6 λ1 6 M, where M is
the uniform bound on the spectral radius of BN , so that 1+ 2θvN − 2θλi 6 1+ 2θM. Therefore,
for N large enough,

∣

∣

∣

∣

∣

1

2N

j0
∑

i=1

log(1 + 2θvN − 2θλi)

∣

∣

∣

∣

∣

6
1

2N
j0 log N

6
1

2N
δN1− ξ

2 log N 6
δ

4
.

This concludes the proof of Lemma 2.3. 2

2.3 Proof of Proposition 2.1

Let κ > 0 be fixed and (BN )N∈N and (B′
N )N∈N two sequences of matrices. We denote by

λ1 > . . . > λN and λ′
1 > . . . > λ′

N the eigenvalues of BN and B′
N respectively, both in decreasing

order.
We assume that d(ν̂BN

, ν̂B′

N
) 6 N−κ and |λ1 − λ′

1| 6 δ for N large enough and that there exists
M such that supN ‖BN‖∞ < M and supN ‖B′

N‖∞ < M.

We introduce also the following notations: HBN
(z) =

1

N

N
∑

i=1

1

z − λi
and HB′

N
(z) =

1

N

N
∑

i=1

1

z − λ′
i

.
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• First case : N and θ are such that 2θ ∈ HBN
((λ1 + 2δ,+∞)) ∩ HB′

N
((λ′

1 + 2δ,+∞)).

In this frame work, continuity has been established in Lemma 14 of (12). It comes from Lemma
2.3 and the fact that, for any λ ∈ ∪N0>0 ∩N>N0 (supp ν̂BN

∩ supp ν̂B′

N
), z 7→ (z − λ)−1 is con-

tinuous bounded (with a norm independent of δ) on ∪N0>0∩N>N0 ((λ1+2δ,+∞)∩(λ′
1+2δ,+∞)).

• Second case : N and θ are such that 2θ /∈ HBN
((λ1+2δ,+∞)) and 2θ /∈ HB′

N
((λ′

1+2δ,+∞)).

In this case, 2θ /∈ HBN
((λ1 + 2δ,+∞)) ⇒ vN + 1

2θ
∈ (λ1, λ1 + 2δ) and similarly v′N + 1

2θ
∈

(λ′
1, λ

′
1 + 2δ) so that

|vN − v′N | 6 3δ.

Thanks to Lemma 2.3, we know that it is enough to study

∆N :=

∣

∣

∣

∣

∣

1

N

N
∑

i=1

log

(

vN +
1

2θ
− λi

)

− 1

N

N
∑

i=1

log

(

v′N +
1

2θ
− λ′

i

)

∣

∣

∣

∣

∣

.

As d(ν̂BN
, ν̂B′

N
) 6 N−κ, we proceed as in the proof of Lemma 5.1 in (14) and define a permutation

σN that allows to put in pairs all but (N1−κ ∧Nδ) of the λi’s with a corresponding λ′
σN (i) which

lies at a distance less than δ from λi.
As in (14), we denote by J0 the set of indices i such that we have such a pairing. Then we have

∆N 6
1

N

∑

i∈J0

max

(

1

vN + 1
2θ

− λi

,
1

v′N + 1
2θ

− λ′
σN (i)

)

(|vN − v′N | + |λi − λ′
σN (i)|)

+
1

N

∑

i∈J c
0

∣

∣

∣

∣

log

(

vN +
1

2θ
− λi

)

− log

(

v′N +
1

2θ
− λ′

i

)∣

∣

∣

∣

6

(

1

N

N
∑

i=1

1

vN + 1
2θ

− λi

+
1

N

N
∑

i=1

1

v′N + 1
2θ

− λ′
σN (i)

)

4δ

+
1

N

∑

i∈J c
0

∣

∣

∣

∣

log

(

vN +
1

2θ
− λi

)

− log

(

v′N +
1

2θ
− λ′

i

)∣

∣

∣

∣

6 16θδ +
2

N
[N1−κ ∧ Nδ]

[

| log(2Nθ)| ∨ log

(

2M +
1

2θ

)]

,

where we used once again that

1

2Nθ
6 vN +

1

2θ
− λi 6 2M +

1

2θ

so that we get the required continuity in this second case.

• Third case : N and θ are such that 2θ ∈ HBN
((λ1 +2δ,+∞)) and 2θ /∈ HB′

N
((λ′

1 +2δ,+∞)).

In this case, we proceed exactly as in the second case. The only point is that establishing that
vN cannot be far from v′N will be a bit more involved. We address this point in detail.

1141



On one side we have from Fact 2.4 that

λ′
1 6 v′N +

1

2θ
6 λ′

1 + 2δ. (6)

On the other side, as |λ1 − λ′
1| 6 δ, λ′

1 + 2δ is greater than λ1 and the map BN 7→ HBN
is

continuous outside the support of all the spectral measures so that

∣

∣

∣
HB′

N
(λ′

1 + 2δ) − HBN
(λ′

1 + 2δ)
∣

∣

∣
6 C(δ),

with the function C going to zero at zero.

Furthermore, HB′

N
is decreasing on (λ′

1,+∞) so that HB′

N
(λ′

1 + 2δ) < 2θ, yielding

HBN
(λ′

1 + 2δ) 6 2θ + C(δ),

and HBN
being decreasing

HBN
(λ1 + 3δ) 6 2θ + C(δ) = HBN

(

vN +
1

2θ

)

+ C(δ),

what implies

λ1 6 vN +
1

2θ
6 λ1 + 3δ + K(δ),

with the function K going to zero at zero. and, together with (6) this gives that

|vN − v′N | 6 5δ + K(δ).

Now the same estimates as in the second case above lead to the same conclusion. This gives
Proposition 2.1. 2

3 Large deviations for x
∗
N

The goal of this section is to prove the large deviation principle for x∗
N , the largest eigenvalue of

a matrix from the deformed Gaussian ensemble, announced in the introduction in Theorem 1.1.

A first step will be to prove the following

Proposition 3.1. For β = 1 or 2 and θ > 0, if we define

Pθ
N (dx1, . . . , dxN ) =

1

Zβ
N

∏

i<j

|xi − xj|βIβ
N (θ,XN )e−

N
2

PN
i=1 x2

i dx1 . . . dxN , (7)

with Zβ
N the normalizing constant in the case θ = 0, and we let

F β
θ (x) :=

{

+∞, if x <
√

2β

−β
2 + β

2 log β
2 − Φβ(x, σβ) − Iβ

σβ
(x, θ), otherwise,
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where σβ denotes the semicircle law whose density on R is given by
1

βπ
1[−

√
2β,

√
2β]

√

2β − t2dt,

for µ ∈ P(R) and x ∈ R,

Φβ(x, µ) = β

∫

log |x − y|dµ(y) − 1

2
x2,

and Iβ
µ (x, θ) = lim

N→∞
1

N
log Iβ

N (θ,BN ), where BN has limiting spectral measure µ and limiting

largest eigenvalue x, then we have the following large deviations bounds :

1. there exists a function fθ : R+ → R+ going to infinity at infinity such that for all N

Pθ
N

(

max
i=1...N

|xi| > M

)

6 e−Nfθ(M).

2. For any x, for any M such that |x| < M,

lim
δ↓0

lim sup
N→∞

1

N
log Pθ

N (x 6 x∗
N 6 x + δ,max

1...N
|xi| 6 M) 6 −F β

θ (x)

3. For any x,

lim
δ↓0

lim inf
N→∞

1

N
log Pθ

N (x 6 x∗
N 6 x + δ) > −F β

θ (x)

Remark 3.2. The function Iβ
µ (x, θ) = lim

N→∞
1

N
log Iβ

N (θ,BN ) is well defined by virtue of Theo-

rem 6 in (12) (an explicit expression for it will be given in Section 3.2 below).

3.1 Proof of Proposition 3.1

• We first prove the “exponential tightness” property (1).

It is more convenient to rewrite (7) as

Pθ
N (dx1, . . . , dxN ) =

e
N
2

θ2

Zβ
N

∏

i<j

|xi − xj |βe−
N
2
tr(XN−AN )2dx1 . . . dxN .

Now, a well known inequality (see for example Lemma 2.3 in (2)) gives that

tr(XN − AN )2 > min
π

N
∑

i=1

|xk − aπ(k)|2,

where the minimum is taken over all permutations π of {1, . . . ,N}. But all ak’s are zero, except
one of them, let’s say a1, which is equal to θ. As the law of the xj ’s in invariant by permutations,
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we can assume that π−1
∗ (1) = 1, where π∗ is the permutation for which the minimum is reached.

Therefore

tr(XN − AN )2 > (x1 − θ)2 +
N
∑

i=2

x2
j .

We can now use the very same estimates as in Lemma 6.3 in (4) to get (1). More precisely, we
can write

|(x − θ) + θ − xj |βe−
x2

j

2 6 e
(x−θ)2

4 ,

for x large enough, so that, for M large enough,

Pθ
N

(

max
i=1...N

|xi| > M

)

6 NPθ
N (|x1| > M) 6

Zβ
N−1

Zβ
N

e−
1
4
N(M−θ)2+ N

2
θ2

.

From Selberg formula (cf for example proof of Proposition 3.1 in (5)), we can show that

1

N
log

Zβ
N−1

Zβ
N

−−−−→
N→∞

C. This concludes the proof of (1).

• For all x <
√

2β,

lim
N→∞

1

N
log Pθ

N(x∗
N 6 x) = −∞. (8)

Indeed, we know from Theorem 1.1 in (5) that the spectral measure of WN satisfies a large
deviation principle in the scale N2 with a good rate function whose unique minimizer is the
semicircle law σβ. We can check that adding a deterministic matrix of bounded rank (uniformly
in N) does not affect the spectral measure in this scale so that the spectral measure of XN

satisfies the same large deviation principle.
Therefore, if we let x <

√
2β, f ∈ Cb(R) such that f(y) = 0 if y 6 x but

∫

fdσβ > 0 and if we
consider the closed set F := {µ/

∫

fdµ = 0}, we have that

Qθ
N(x∗

N 6 x) 6 Qθ
N

(

1

N

N
∑

i=1

f(xi) = 0

)

6 Qθ
N (µ̂N ∈ F ),

where µ̂N := 1
N

∑N
i=1 δxi

is the spectral measure of XN . As σβ /∈ F ,

lim sup
N→∞

1

N2
log Qθ

N (x∗
N 6 x) < 0.

Furthermore, as we saw above,
1

N
log

Zβ
N−1

Zβ
N

−−−−→
N→∞

C, the same holds for Pθ
N and we immedi-

ately deduce what gives immediately (8).

• Let now x >
√

2β and δ > 0.
Let M > |x| and δ small enough so that M > |x+δ|. One important remark is that, by invariance
by permutation, we have,

Pθ
N (x 6 x∗

N 6 x + δ, max
i=1...N

|xi| 6 M) 6 NPθ
N(x 6 x1 6 x + δ, x1 > max

i=2...N
xi, max

i=1...N
|xi| 6 M).

We introduce now the following notations :
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• π̂N :=
1

N − 1

N
∑

i=2

δxi
,

• PN−1
N is the measure on RN−1 such that, for each Borel set E, we have

PN−1
N (λ ∈ E) = P0

N−1

(

√

1 − 1

N
λ ∈ E

)

.

With these notations, we have

B := Pθ
N (x 6 x∗

N 6 x + δ, max
i=1...N

|xi| 6 M)

6

∫ x+δ

x

dx1

∫

[−M,M ]N−1

e(N−1)Φβ (x1,π̂N ).Cβ
N .Iβ

N (θ,XN ).dP0
N−1(x2, . . . , xN ),

where Cβ
N := N

Zβ
N−1

Zβ
N

.

(

1 − 1

N

)β
N(N−1)

4

.

Let 0 < κ < 1
4 , we have

B 6 Cβ
N .

∫ x+δ

x

dx1

∫

π̂N∈B(σβ ,N−κ),
maxi=2...N xi6x1

e(N−1)Φβ (x1,π̂N )Iβ
N (θ,XN ).dPN−1

N (x2, . . . , xN )

+ (2M)N eNMθCβ
NPN−1

N (π̂N /∈ B(σβ,N−κ)), (9)

where B(σβ, N−κ) is the ball of size N−κ centered at σβ, for the Dudley distance (defined at
the very beginning of Section 2).

We first show that the second term is exponentially negligible. We have

PN−1
N (π̂N /∈ B(σβ, N−κ)) 6 PN−1

N (‖FN−1 − Fβ‖∞ > N−κ),

where FN−1 and Fβ are respectively the (cumulative) distribution function of π̂N and σβ.
We know from the result of Bai in (1) that

‖EN−1
N FN−1 − Fβ‖ = O(N− 1

4 ),

where EN−1
N is the expectation under PN−1

N , so that

PN−1
N (‖FN−1 − Fβ‖∞ > N−κ) 6 PN−1

N

(

‖FN−1 − EN−1
N FN−1‖∞ >

N−κ

2

)

.

But, by a result of concentration of (13) (see Theorem 1.1), we have that there exists a constant
C > 0 such that for all N ∈ N,

PN−1
N (‖FN−1 − EN−1

N FN−1‖∞ > N−κ) 6 e−CN2−2κ

,

so that

lim sup
N→∞

1

N
log PN−1

N (π̂N /∈ B(σβ,N−κ)) = −∞.
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We can now come back to the first term in (9). The same computation as in the proof of
Proposition 3.1 in (5), based on Selberg formula, gives that

1

N
log Cβ

N −−−−→
N→∞

−β

2
log

β

2
+

β

2
.

Applying Proposition 2.1 together with Theorem 6 of (12), we can conclude that

lim sup
N→∞

1

N
log Pθ

N (x 6 x∗
N 6 x+δ,max

1...N
|xi| 6 M) 6 −β

2
log

β

2
+

β

2
+ sup

z∈[x,x+δ]
[Φβ(z, σβ)+Iβ

σβ
(z, θ)].

One can easily see that z 7→ Φβ(z, σβ) is continuous on (
√

2β,+∞) and the continuity of Iβ
σβ

(., θ)
will be shown in the proof of Lemma 3.4 below. We therefore get the upper bound :

lim sup
δ↓0

lim sup
N→∞

1

N
log Pθ

N(x 6 x∗
N 6 x+δ,max

1...N
|xi| 6 M) 6 −β

2
log

β

2
+

β

2
+Φβ(x, σβ)+Iβ

σβ
(x, θ).

• We now conclude the proof of Proposition 3.1 by showing the lower bound (3). We proceed
as in (4). Let y > x > r >

√
2β. Then,

Pθ
N(y > x∗

N > x) > Pθ
N (x1 ∈ [x, y], max

i=2...N
|xi| 6 r)

> Cβ
N exp






(N − 1) inf

z∈[x,y]
µ∈Br(σβ ,N−κ)

(Φβ(z, µ) + Iµ(z, θ) − gκ(x − y))







.PN−1
N (π̂N ∈ Br(σβ,N−κ)),

where Br(σβ, N−κ) = B(σβ, N−κ) ∩ P([−r, r]), with P([−r, r]) the set of probability measure
whose support is included in [−r, r] and gκ going to zero at zero by virtue of Proposition 2.1.
We proceed as for the upper bound to show that PN−1

N (π̂N ∈ Br(σβ,N−κ)) is going to 1.

Knowing the asymptotics of Cβ
N , we get

lim inf
N→∞

Pθ
N (y > x∗

N > x) > −β

2
log

β

2
+

β

2
+ inf

z∈[x,y]
(Φβ(z, σβ) + Iβ

σβ
(z, θ) − gκ(x − y)).

We let now y decrease to x. Φβ(., σβ) and Iβ
σβ

(., θ) are continuous on (
√

2β,+∞) (see Lemma
3.4 below) so that we have the required lower bound

lim inf
y→x

lim inf
N→∞

Pθ
N (y > x∗

N > x) > −β

2
log

β

2
+

β

2
+ Φβ(x, σβ) + Iβ

σβ
(x, θ).

This concludes the proof of Proposition 3.1. 2

3.2 Proof of Theorem 1.1

We first introduce a few notations that will be useful.
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Definition 3.3. For µ a compactly supported measure, we define Hµ its Hilbert transform by

Hµ : R \ co(supp µ) → R

z 7→
∫

1

z − λ
dµ(λ).

with co(supp µ) the convex enveloppe of the support of µ.
It is easy to check that Hµ is injective, therefore we can define its inverse Gµ defined on the
image of Hµ such that Gµ(Hµ(z)) = z. The R-transform Rµ is then given, for z 6= 0, by
Rµ(z) = Gµ(z)− 1

z
. Moreover, one can check that l := limz→0 Rµ(z) exists and we let Rµ(0) = l,

so that Rµ is continuous at 0.

Lemma 3.4. F β
θ is lower semicontinuous with compact level sets.

Proof. We know from Theorem 6 in (12) that

Iβ
µ (x, θ) = θv(x, θ) − β

2

∫

log

(

1 +
2θ

β
v(x, θ) − 2θ

β
λ

)

dµ(λ),

with v(x, θ) :=

{

Rµ

(

2θ
β

)

, if Hµ(x) >
2θ
β

,

x − β
2θ

, otherwise,
.

Therefore, we have to check that Iβ
σβ

(x, θ) is continuous at x∗ satisfying Hσβ
(x∗) = 2θ

β
for a θ

such that x∗ >
√

2β. From Definition 3.3, we see that v(., θ) is continuous at x∗. Moreover as
x∗ >

√
2β, it is outside the support of σβ and x 7→

∫

log (x − λ) dσβ(λ) is continuous at x∗.

Therefore F β
θ is continuous on (

√
2β,+∞) and lower semi-continuous on R.

Moreover, we can check that, for x large enough, Iβ
σβ

(x, θ) 6 θx, so that F β
θ (x) ∼+∞

1
2x2, its

level sets are therefore compact.

We now go to the proof of Theorem 1.1. If we define Lβ
θ (x) := F β

θ (x) − infx∈R F β
θ (x), then Lβ

θ

is a good rate function and a direct consequence of Proposition 3.1 is that, for

Zβ,θ
N =

∫

. . .

∫

∏

i<j

|xi − xj |βIβ
N (θ,XN )e−

N
2

PN
i=1 x2

i dx1 . . . dxN ,

we have that lim
N→∞

1

N
log

Zβ,θ
N

Zβ
N

= inf
x∈R

F β
θ (x) so that, under Qθ

N , x∗ satisfies a large deviation

principle with good rate function Lβ
θ .

To conclude the proof, we have to study the function F β
θ and show that Lβ

θ coincide with the

function Kβ
θ as defined in Theorem 1.1.

We recall that, for x >
√

2β, we have

F β
θ (x) = −β

2
+

β

2
log

β

2
− β

∫

log |x − y|dσβ(y) +
1

2
x2 − Iβ

σβ
(x, θ),

where
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Relying for example on the proof of Lemma 2.7 in (5), we have that

− β

2
+

β

2
log

β

2
− β

∫

log |x − y|dσβ(y) +
1

2
x2 =

∫ x

√
2β

√

z2 − 2βdz, (10)

so that

F β
θ (x) =

∫ x

√
2β

√

z2 − 2βdz − Iβ
σβ

(x, θ). (11)

From Lemma 2.7 in (5), we also get that

Hσβ
(x) =

1

β
(x −

√

x2 − 2β) for x >
√

2β, (12)

from which we deduce that lim
x→

√
2β

Hσβ
(x) =

√
2β

β
=

√

2

β
and Hσβ

is decreasing.

• If θ >

√

β
2 , then for all x >

√
2β, Hσβ

(x) >
2θ

β
and

Iβ
σβ

(x, θ) = θx − β

2
− β

2
log

(

2θ

β

)

− β

2

∫

log |x − y|dσβ(y) := Sθ(x),

so that from (10) and (11), we get that

F β
θ (x) =

1

2

∫ x

√
2β

√

z2 − 2βdz − θx +
1

4
x2 +

β

4
− β

2
log

β

2
+

β

2
log θ.

Differentiating this function on (
√

2β,+∞), we see that it is decreasing on (
√

2β, θ + β
2θ

) and

then increasing so that its infimum is reached at θ + β
2θ

. This gives immediately in this case

that Kβ
θ (x) = F β

θ (x) − infx F β
θ (x) = Lβ

θ (x), as defined in Theorem 1.1..

• If θ 6

√

β
2 , then we can check that on

[√
2β, θ + β

2θ

]

, we have Hσβ
(x) >

2θ

β
and

Iβ
σβ

(x, θ) =
β

2

∫ 2θ
β

0
Rσβ

(u)du. Moreover, from (12), we get that the inverse of Hσβ
is given by

Gσβ
(x) = β

2 x + 1
x

so that Rσβ
(x) = β

2x and Iβ
σβ

(x, θ) = 1
2θ2.

In this case, F β
θ (x) =

∫ x

√
2β

√

z2 − 2βdz − 1

2
θ2, which is increasing.

For x > θ + β
2θ

,Hσβ
(x) 6

2θ

β
, so that Iβ

σβ
(x, θ) = Sθ(x) as above.

Therefore, F β
θ is increasing on

[√
2β, θ + β

2θ

]

and on
[

θ + β
2θ

,+∞
)

and is lower-semicontinuous

so that its infimum is reached at
√

2β and is equal to −1
2θ2.

Therefore, Kβ
θ (x) =

∫ x

√
2β

√

z2 − 2βdz on [
√

2β, θ + β
2θ

] and coincides with Mβ
θ (x) on

[

θ + β
2θ

,+∞
)

. This concludes the proof of Theorem 1.1.. 2
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4 Proof of Corollary 1.3

In the proof of Theorem 1.1. above, we saw that Kβ
θ is increasing on [

√
2β,+∞) if θ 6

√

β
2 , so

that in this case its infimum is reached at
√

2β.

We also saw that, differentiating F β
θ on (

√
2β,+∞), we got that when θ >

√

β
2 , it reaches its

minimum at θ + β
2θ

. This is enough to conclude. 2
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