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Abstract

A LDP is proved for the inviscid shell model of turbulence. As the viscosity coefficient ν converges
to 0 and the noise intensity is multiplied by

p
ν , we prove that some shell models of turbulence

with a multiplicative stochastic perturbation driven by a H-valued Brownian motion satisfy a
LDP in C ([0, T], V ) for the topology of uniform convergence on [0, T], but where V is endowed
with a topology weaker than the natural one. The initial condition has to belong to V and the
proof is based on the weak convergence of a family of stochastic control equations. The rate
function is described in terms of the solution to the inviscid equation.
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1 Introduction

Shell models, from E.B. Gledzer, K. Ohkitani, M. Yamada, are simplified Fourier systems with re-
spect to the Navier-Stokes ones, where the interaction between different modes is preserved only
between nearest neighbors. These are some of the most interesting examples of artificial models of
fluid dynamics that capture some properties of turbulent fluids like power law decays of structure
functions.

There is an extended literature on shell models. We refer to K. Ohkitani and M. Yamada [25],
V. S. Lvov, E. Podivilov, A. Pomyalov, I. Procaccia and D. Vandembroucq [21], L. Biferale [3] and
the references therein. However, these papers are mainly dedicated to the numerical approach and
pertain to the finite dimensional case. In a recent work by P. Constantin, B. Levant and E. S. Titi
[11], some results of regularity, attractors and inertial manifolds are proved for deterministic infinite
dimensional shells models. In [12] these authors have proved some regularity results for the inviscid
case. The infinite-dimensional stochastic version of shell models have been studied by D. Barbato,
M. Barsanti, H. Bessaih and F. Flandoli in [1] in the case of an additive random perturbation. Well-
posedeness and apriori estimates were obtained, as well as the existence of an invariant measure.
Some balance laws have been investigated and preliminary results about the structure functions
have been presented.

The more general formulation involving a multiplicative noise reads as follows

du(t) + [νAu(t) + B(u(t), u(t))] d t = σ(t, u(t)) dWt , u(0) = ξ.

driven by a Hilbert space-valued Brownian motion W . It involves some similar bilinear operator B
with antisymmetric properties and some linear "second order" (Laplace) operator A which is regu-
larizing and multiplied by some non negative coefficient ν which stands for the viscosity in the usual
hydro-dynamical models. The shell models are adimensional and the bilinear term is better behaved
than that in the Navier Stokes equation. Existence, uniqueness and several properties were studied
in [1] in the case on an additive noise and in [10] for a multiplicative noise in the "regular" case of
a non-zero viscosity coefficient which was taken constant.

Several recent papers have studied a Large Deviation Principle (LDP) for the distribution of the
solution to a hydro-dynamical stochastic evolution equation: S. Sritharan and P. Sundar [27] for
the 2D Navier Stokes equation, J. Duan and A. Millet [16] for the Boussinesq model, where the
Navier Stokes equation is coupled with a similar nonlinear equation describing the temperature
evolution, U. Manna, S. Sritharan and P. Sundar [22] for shell models of turbulence, I. Chueshov and
A. Millet [10] for a wide class of hydro-dynamical equations including the 2D Bénard magneto-hydro
dynamical and 3D α-Leray Navier Stokes models, A.Du, J. Duan and H. Gao [15] for two layer quasi-
geostrophic flows modeled by coupled equations with a bi-Laplacian. All the above papers consider
an equation with a given (fixed) positive viscosity coefficient and study exponential concentration
to a deterministic model when the noise intensity is multiplied by a coefficient

p
ε which converges

to 0. All these papers deal with a multiplicative noise and use the weak convergence approach of
LDP, based on the Laplace principle, developed by P. Dupuis and R. Ellis in [17]. This approach
has shown to be successful in several other infinite-dimensional cases (see e.g. [4], [5], [20]) and
differ from that used to get LDP in finer topologies for quasi-linear SPDEs, such as [26], [9], [7],
[8]. For hydro-dynamical models, the LDP was proven in the natural space of trajectories, that is
C ([0, T], H) ∩ L2([0, T], V ), where roughly speaking, H is L2 and V = Dom(A

1
2 ) is the Sobolev

space H2
1 with proper periodicity or boundary conditions. The initial condition ξ only belongs to H.
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The aim of this paper is different. Indeed, the asymptotics we are interested in have a physical
meaning, namely the viscosity coefficient ν converges to 0. Thus the limit equation, which corre-
sponds to the inviscid case, is much more difficult to deal with, since the regularizing effect of the
operator A does not help anymore. Thus, in order to get existence, uniqueness and apriori estimates
to the inviscid equation, we need to start from some more regular initial condition ξ ∈ V , to impose
that (B(u, u), Au) = 0 for all u regular enough (this identity would be true in the case on the 2D
Navier Stokes equation under proper periodicity properties); note that this equation is satisfied in
the GOY and Sabra shell models of turbulence under a suitable relation on the coefficients a, b and
µ stated below. Furthermore, some more conditions on the diffusion coefficient are required as well.
The intensity of the noise has to be multiplied by

p
ν for the convergence to hold.

The technique is again that of the weak convergence. One proves that given a family (hν) of random
elements of the RKHS of W which converges weakly to h, the corresponding family of stochastic con-
trol equations, deduced from the original ones by shifting the noise by hνp

ν
, converges in distribution

to the limit inviscid equation where the Gaussian noise W has been replaced by h. Some apriori
control of the solution to such equations has to be proven uniformly in ν > 0 for "small enough"
ν . Existence and uniqueness as well as apriori bounds have to be obtained for the inviscid limit
equation. Some upper bounds of time increments have to be proven for the inviscid equation and
the stochastic model with a small viscosity coefficient; they are similar to that in [16] and [10]. The
LDP can be shown in C ([0, T], V ) for the topology of uniform convergence on [0, T], but where
V is endowed with a weaker topology, namely that induced by the H norm. More generally, under
some slight extra assumption on the diffusion coefficient σ, the LDP is proved in C ([0, T], V ) where
V is endowed with the norm ‖ · ‖α := |Aα(·)|H for 0 ≤ α ≤ 1

4
. The natural case α = 1

2
is out of reach

because the inviscid limit equation is much more irregular. Indeed, it is an abstract equivalent of
the Euler equation. The case α = 0 corresponds to H and then no more condition on σ is required.
The case α = 1

4
is that of an interpolation space which plays a crucial role in the 2D Navier Stokes

equation. Note that in the different context of a scalar equation, M. Mariani [23] has also proved
a LDP for a stochastic PDE when a coefficient ε in front of a deterministic operator converges to 0
and the intensity of the Gaussian noise is multiplied by

p
ε. However, the physical model and the

technique used in [23] are completely different from ours.

The paper is organized as follows. Section 2 gives a precise description of the model and proves
apriori bounds for the norms in C ([0, T], H) and L2([0, T], V ) of the stochastic control equations
uniformly in the viscosity coefficient ν ∈]0,ν0] for small enough ν0. Section 3 is mainly devoted to
prove existence, uniqueness of the solution to the deterministic inviscid equation with an external
multiplicative impulse driven by an element of the RKHS of W , as well as apriori bounds of the
solution in C ([0, T], V ) when the initial condition belong to V and under reinforced assumptions
on σ. Under these extra assumptions, we are able to improve the apriori estimates of the solution
and establish them in C ([0, T], V ) and L2([0, T], Dom(A)). Finally the weak convergence and
compactness of the level sets of the rate function are proven in section 4; they imply the LDP in
C ([0, T], V ) where V is endowed with the weaker norm associated with Aα for any value of α with
0≤ α≤ 1

4
.

The LDP for the 2D Navier Stokes equation as the viscosity coefficient converges to 0 will be studied
in a forthcoming paper.

We will denote by C a constant which may change from one line to the next, and C(M) a constant
depending on M .
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2 Description of the model

2.1 GOY and Sabra shell models

Let H be the set of all sequences u = (u1, u2, . . .) of complex numbers such that
∑

n |un|2 <∞. We
consider H as a real Hilbert space endowed with the inner product (·, ·) and the norm | · | of the form

(u, v) = Re
∑

n≥1

unv∗n, |u|2 =
∑

n≥1

|un|2, (2.1)

where v∗n denotes the complex conjugate of vn. Let k0 > 0, µ > 1 and for every n≥ 1, set kn = k0µ
n.

Let A : Dom(A)⊂ H → H be the non-bounded linear operator defined by

(Au)n = k2
nun, n= 1,2, . . . , Dom(A) =

n

u ∈ H :
∑

n≥1

k4
n|un|2 <∞

o

.

The operator A is clearly self-adjoint, strictly positive definite since (Au, u) ≥ k2
0|u|

2 for u ∈ Dom(A).
For any α > 0, set

Hα = Dom(Aα) = {u ∈ H :
∑

n≥1

k4α
n |un|2 <+∞}, ‖u‖2α =

∑

n≥1

k4α
n |un|2 for u ∈Hα. (2.2)

LetH0 = H,

V := Dom(A
1
2 ) =

n

u ∈ H :
∑

n≥1

k2
n|un|2 <+∞

o

; also set H =H 1
4
, ‖u‖H = ‖u‖ 1

4
.

Then V (as each of the spacesHα) is a Hilbert space for the scalar product (u, v)V = Re(
∑

n k2
n un v∗n),

u, v ∈ V and the associated norm is denoted by

‖u‖2 =
∑

n≥1

k2
n |un|2. (2.3)

The adjoint of V with respect to the H scalar product is V ′ = {(un) ∈ CN :
∑

n≥1 k−2
n |un|2 < +∞}

and V ⊂ H ⊂ V ′ is a Gelfand triple. Let 〈u , v〉 = Re
�
∑

n≥1 un v∗n
�

denote the duality between u ∈ V
and v ∈ V ′. Clearly for 0≤ α < β , u ∈H β and v ∈ V we have

‖u‖2α ≤ k4(α−β)
0 ‖u‖2β , and ‖v‖2H ≤ |v| ‖v‖, (2.4)

where the last inequality is proved by the Cauchy-Schwarz inequality.

Set u−1 = u0 = 0, let a, b be real numbers and B : H×V → H (or B : V×H → H) denote the bilinear
operator defined by

[B(u, v)]n =−i
�

akn+1u∗n+1v∗n+2+ bknu∗n−1v∗n+1− akn−1u∗n−1v∗n−2− bkn−1u∗n−2v∗n−1

�

(2.5)

for n= 1,2, . . . in the GOY shell-model (see, e.g., [25]) or

[B(u, v)]n =−i
�

akn+1u∗n+1 vn+2+ bknu∗n−1vn+1+ akn−1un−1vn−2+ bkn−1un−2vn−1

�

, (2.6)

in the Sabra shell model introduced in [21].
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Note that B can be extended as a bilinear operator from H×H to V ′ and that there exists a constant
C > 0 such that given u, v ∈ H and w ∈ V we have

|〈B(u, v) , w〉|+ |
�

B(u, w) , v
�

|+ |
�

B(w, u) , v
�

| ≤ C |u| |v| ‖w‖. (2.7)

An easy computation proves that for u, v ∈ H and w ∈ V (resp. v, w ∈ H and u ∈ V ),

〈B(u, v) , w〉=−
�

B(u, w) , v
�

(resp.
�

B(u, v) , w
�

=−
�

B(u, w) , v
�

). (2.8)

Furthermore, B : V × V → V and B :H ×H → H; indeed, for u, v ∈ V (resp. u, v ∈H ) we have

‖B(u, v)‖2 =
∑

n≥1

k2
n |B(u, v)n|2 ≤ C ‖u‖2 sup

n
k2

n|vn|2 ≤ C ‖u‖2 ‖v‖2, (2.9)

|B(u, v)| ≤ C ‖u‖H ‖v‖H .

For u, v in either H, H or V , let B(u) := B(u, u). The anti-symmetry property (2.8) implies that
|〈B(u1) − B(u2) , u1 − u2〉V | = |〈B(u1 − u2), u2〉V | for u1, u2 ∈ V and |〈B(u1) − B(u2) , u1 − u2〉| =
|〈B(u1− u2), u2〉| for u1 ∈ H and u2 ∈ V . Hence there exist positive constants C̄1 and C̄2 such that

|〈B(u1)− B(u2) , u1− u2〉V | ≤ C̄1 ‖u1− u2‖2 ‖u2‖,∀u1, u2 ∈ V, (2.10)

|〈B(u1)− B(u2) , u1− u2〉| ≤ C̄2 |u1− u2|2 ‖u2‖,∀u1 ∈ H,∀u2 ∈ V . (2.11)

Finally, since B is bilinear, Cauchy-Schwarz’s inequality yields for any α ∈ [0, 1
2
], u, v ∈ V :

�

�

�

AαB(u)− AαB(v) , Aα(u− v)
�

�

�≤
�

�

�

AαB(u− v, u) + AαB(v, u− v) , Aα(u− v)
�

�

�

≤ C‖u− v‖2α (‖u‖+ ‖v‖). (2.12)

In the GOY shell model, B is defined by (2.5); for any u ∈ V , Au ∈ V ′ we have

〈B(u, u), Au〉= Re
�

− i
∑

n≥1

u∗n u∗n+1 u∗n+2µ
3n+1

�

k3
0(a+ bµ2− aµ4− bµ4).

Since µ 6= 1,
a(1+µ2) + bµ2 = 0 if and only if 〈B(u, u) , Au〉= 0,∀u ∈ V. (2.13)

On the other hand, in the Sabra shell model, B is defined by (2.6) and one has for u ∈ V ,

〈B(u, u) , Au〉= k3
0Re
�

− i
∑

n≥1

µ3n+1
h

(a+ bµ2)u∗n u∗n+1 un+2+ (a+ b)µ4un un+1 u∗n+2

i�

.

Thus (B(u, u), Au) = 0 for every u ∈ V if and only if a+ bµ2 = (a+ b)µ4 and again µ 6= 1 shows that
(2.13) holds true.

2.2 Stochastic driving force

Let Q be a linear positive operator in the Hilbert space H which is trace class, and hence compact.
Let H0 =Q

1
2 H; then H0 is a Hilbert space with the scalar product

(φ,ψ)0 = (Q
− 1

2φ,Q−
1
2ψ), ∀φ,ψ ∈ H0,

2555



together with the induced norm | · |0 =
p

(·, ·)0. The embedding i : H0 → H is Hilbert-Schmidt
and hence compact, and moreover, i i∗ = Q. Let LQ ≡ LQ(H0, H) be the space of linear operators

S : H0 7→ H such that SQ
1
2 is a Hilbert-Schmidt operator from H to H. The norm in the space LQ is

defined by |S|2LQ
= t r(SQS∗), where S∗ is the adjoint operator of S. The LQ-norm can be also written

in the form
|S|2LQ

= t r([SQ1/2][SQ1/2]∗) =
∑

k≥1

|SQ1/2ψk|2 =
∑

k≥1

|[SQ1/2]∗ψk|2 (2.14)

for any orthonormal basis {ψk} in H, for example (ψk)n = δk
n.

Let W (t) be a Wiener process defined on a filtered probability space (Ω,F , (Ft),P), taking values in
H and with covariance operator Q. This means that W is Gaussian, has independent time increments
and that for s, t ≥ 0, f , g ∈ H,

E(W (s), f ) = 0 and E(W (s), f )(W (t), g) =
�

s ∧ t) (Q f , g).

Let β j be standard (scalar) mutually independent Wiener processes, {e j} be an orthonormal basis in
H consisting of eigen-elements of Q, with Qe j = q je j . Then W has the following representation

W (t) = lim
n→∞

Wn(t) in L2(Ω; H) with Wn(t) =
∑

1≤ j≤n

q1/2
j β j(t)e j , (2.15)

and Trace(Q) =
∑

j≥1 q j . For details concerning this Wiener process see e.g. [13].

Given a viscosity coefficient ν > 0, consider the following stochastic shell model

dtu(t) +
�

νAu(t) + B(u(t))
�

d t =
p
ν σν(t, u(t)) dW (t), (2.16)

where the noise intensity σν : [0, T] × V → LQ(H0, H) of the stochastic perturbation is properly
normalized by the square root of the viscosity coefficient ν . We assume thatσν satisfies the following
growth and Lipschitz conditions:

Condition (C1): σν ∈ C
�

[0, T]× V ; LQ(H0, H)
�

, and there exist non negative constants Ki and Li
such that for every t ∈ [0, T] and u, v ∈ V:
(i) |σν(t, u)|2LQ

≤ K0+ K1|u|2+ K2‖u‖2,

(ii) |σν(t, u)−σν(t, v)|2LQ
≤ L1|u− v|2+ L2‖u− v‖2.

For technical reasons, in order to prove a large deviation principle for the distribution of the solution
to (2.16) as the viscosity coefficient ν converges to 0, we will need some precise estimates on the
solution of the equation deduced from (2.16) by shifting the Brownian W by some random element
of its RKHS. This cannot be deduced from similar ones on u by means of a Girsanov transformation
since the Girsanov density is not uniformly bounded when the intensity of the noise tends to zero
(see e.g. [16] or [10]).

To describe a set of admissible random shifts, we introduce the class A as the set of H0−valued

(Ft)−predictable stochastic processes h such that
∫ T

0
|h(s)|20ds <∞, a.s. For fixed M > 0, let

SM =
n

h ∈ L2(0, T ; H0) :

∫ T

0

|h(s)|20ds ≤ M
o

.
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The set SM , endowed with the following weak topology, is a Polish (complete separable metric) space

(see e.g. [5]): d1(h, k) =
∑∞

k=1
1
2k

�

�

∫ T

0

�

h(s)− k(s), ẽk(s)
�

0ds
�

�, where {ẽk(s)}∞k=1 is an orthonormal
basis for L2([0, T], H0). For M > 0 set

AM = {h ∈A : h(ω) ∈ SM , a.s.}. (2.17)

In order to define the stochastic control equation, we introduce for ν ≥ 0 a family of intensity
coefficients σ̃ν of a random element h ∈ AM for some M > 0. The case ν = 0 will be that of an
inviscid limit "deterministic" equation with no stochastic integral and which can be dealt with for
fixed ω. We assume that for any ν ≥ 0 the coefficient σ̃ν satisfies the following condition:

Condition (C2): σ̃ν ∈ C
�

[0, T]×V ; L(H0, H)
�

and there exist constants K̃H , K̃i , and L̃ j , for i = 0,1
and j = 1,2 such that:

|σ̃ν(t, u)|2L(H0,H) ≤ K̃0+ K̃1|u|2+ ν K̃H ‖u‖2H , ∀t ∈ [0, T], ∀u ∈ V, (2.18)

|σ̃ν(t, u)− σ̃ν(t, v)|2L(H0,H) ≤ L̃1|u− v|2+ ν L̃2‖u− v‖2, ∀t ∈ [0, T], ∀u, v ∈ V, (2.19)

whereH =H 1
4

is defined by (2.2) and | · |L(H0,H) denotes the (operator) norm in the space L(H0, H) of

all bounded linear operators from H0 into H. Note that if ν = 0 the previous growth and Lipschitz on
σ̃0(t, .) can be stated for u, v ∈ H.

Remark 2.1. Unlike (C1) the hypotheses concerning the control intensity coefficient σ̃ν involve a
weaker topology (we deal with the operator norm | · |L(H0,H) instead of the trace class norm | · |LQ

).
However we require in (2.18) a stronger bound (in the interpolation space H ). One can see that
the noise intensity

p
ν σν satisfies Condition (C2) provided that in Condition (C1), we replace point

(i) by |σν(t, u)|2LQ
≤ K0+ K1|u|2+ KH ‖u‖2H . Thus the class of intensities satisfying both Conditions

(C1) and (C2) when multiplied by
p
ν is wider than that those coefficients which satisfy condition

(C1) with K2 = 0.

Let M > 0, h ∈AM , ξ an H-valued random variable independent of W and ν > 0. Under Conditions
(C1) and (C2) we consider the nonlinear SPDE

duνh(t) +
�

ν Auνh(t) + B
�

uνh(t)
��

d t =
p
ν σν(t, uνh(t)) dW (t) + σ̃ν(t, uνh(t))h(t) d t, (2.20)

with initial condition uνh(0) = ξ. Using [10], Theorem 3.1, we know that for every T > 0 and ν > 0
there exists K̄ν2 := K̄2(ν , T, M) > 0 such that if hν ∈ AM , E|ξ|4 < +∞ and 0 ≤ K2 < K̄ν2 , equation
(2.20) has a unique solution uνh ∈ C ([0, T], H)∩ L2([0, T], V ) which satisfies:

(uνh , v)− (ξ, v) +

∫ t

0

�

ν〈uνh(s), Av〉+ 〈B(uνh(s)), v〉
�

ds

=

∫ t

0

�p
ν σν(s, uνh(s)) dW (s) , v

�

+

∫ t

0

�

σ̃ν(s, uνh(s))h(s) , v
�

ds

a.s. for all v ∈ Dom(A) and t ∈ [0, T]. Note that uνh is a weak solution from the analytical point
of view, but a strong one from the probabilistic point of view, that is written in terms of the given
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Brownian motion W . Furthermore, if K2 ∈ [0, K̄ν2 [ and L2 ∈ [0,2[, there exists a constant Cν :=
C(Ki , L j , K̃i , K̃H , T, M ,ν) such that

E
�

sup
0≤t≤T

|uνh(t)|
4+

∫ T

0

‖uνh(t)‖
2 d t +

∫ T

0

‖uνh(t)‖
4
H d t

�

≤ Cν (1+E|ξ|4). (2.21)

The following proposition proves that K̄ν2 can be chosen independent of ν and that a proper for-
mulation of upper estimates of the H, H and V norms of the solution uνh to (2.20) can be proved
uniformly in h ∈AM and in ν ∈ (0,ν0] for some constant ν0 > 0.

Proposition 2.2. Fix M > 0, T > 0, σν and σ̃ν satisfy Conditions (C1)–(C2) and let the initial
condition ξ be such that E|ξ|4 < +∞. Then in any shell model where B is defined by (2.5) or (2.6),
there exist constants ν0 > 0, K̄2 and C̄(M) such that if 0 < ν ≤ ν0, 0 ≤ K2 < K̄2, L2 < 2 and h ∈ AM ,
the solution uνh to (2.20) satisfies:

E
�

sup
0≤t≤T

|uνh(t)|
4+ ν

∫ T

0

‖uνh(s)‖
2 ds+ ν

∫ T

0

‖uνh(s)‖
4
H ds

�

≤ C̄(M)
�

E|ξ|4+ 1
�

. (2.22)

Proof. For every N > 0, set τN = inf{t : |uνh(t)| ≥ N} ∧ T. Itô’s formula and the antisymmetry
relation in (2.8) yield that for t ∈ [0, T],

|uνh(t∧τN )|2 = |ξ|2+ 2
p
ν

∫ t∧τN

0

�

σν(s, uνh(s))dW (s), uνh(s)
�

− 2ν

∫ t∧τN

0

‖uνh(s)‖
2ds

+ 2

∫ t∧τN

0

�

σ̃ν(s, uνh(s))h(s), uνh(s)
�

ds+ ν

∫ t∧τN

0

|σν(s, uνh(s))|
2
LQ

ds, (2.23)

and using again Itô’s formula we have

|uνh(t ∧τN )|4+ 4ν

∫ t∧τN

0

|uνh(r)|
2 ‖uνh(r)‖

2 dr ≤ |ξ|4+ I(t) +
∑

1≤ j≤3

T j(t), (2.24)

where

I(t) = 4
p
ν
�

�

�

∫ t∧τN

0

�

σν(r, uνh(r)) dW (r), uνh(r) |u
ν
h(r)|

2�
�

�

�,

T1(t) = 4

∫ t∧τN

0

|(σ̃ν(r, uνh(r))h(r) , uνh(r))| |u
ν
h(r)|

2dr,

T2(t) = 2ν

∫ t∧τN

0

|σν(r, uνh(r))|
2
LQ
|uνh(r)|

2dr,

T3(t) = 4ν

∫ t∧τN

0

|σ∗ν(s, uνh(r)) uνh(r)|
2
0 dr.

Since h ∈ AM , the Cauchy-Schwarz and Young inequalities and condition (C2) imply that for any
ε > 0,

T1(t)≤ 4

∫ t∧τN

0

�p

K̃0+
p

K̃1 |uνh(r)|+
p

ν K̃H k
− 1

2
0 ‖u

ν
h(r)‖

�

|h(r)|0 |uνh(r)|
3dr

2558



≤ 4
p

K̃0 M T + 4
�p

K̃0+
p

K̃1

�

∫ t∧τN

0

|h(r)|0 |uνh(r)|
4 ds

+ εν

∫ t

0

‖uνh(r)‖
2 |uνh(r)|

2 dr +
4 K̃H
ε k0

∫ t∧τN

0

|h(r)|20 |u
ν
h(r)|

4 dr. (2.25)

Using condition (C1) we deduce

T2(t) + T3(t)≤ 6ν

∫ t∧τN

0

�

K0+ K1 |uνh(r)|
2+ K2‖uνh(r)‖

2� |uνh(r)|
2 dr

≤ 6ν K0 T + 6ν (K0+ K1)

∫ t∧τN

0

|uνh(r)|
4 dr + 6ν K2

∫ t

0

‖uνh(r)‖
2 |uνh(r)|

2dr. (2.26)

Let K2 ≤
1
2

and 0< ε≤ 2− 3K2; set

ϕ(r) = 4
�p

K̃0+
p

K̃1

�

|h(r)|0+
4K̃H
εk0

|h(r)|20+ 6ν(K0+ K1).

Then a.s.
∫ T

0

ϕ(r) dr ≤ 4
�p

K̃0+
p

K̃1

�p
M T +

4K̃H
εk0

M + 6ν(K0+ K1) T := Φ (2.27)

and the inequalities (2.24)-(2.26) yield that for

X (t) = sup
r≤t
|uνh(r ∧τN )|4 , Y (t) = ν

∫ t

0

‖uνh(r ∧τN )‖2 |uνh(r ∧τN )|2 ds,

X (t) + (4− 6K2− ε)Y (t)≤ |ξ|4+
�

4
p

K̃0M T + 6νK0T
�

+ I(t) +

∫ t

0

ϕ(s)X (s) ds. (2.28)

The Burkholder-Davis-Gundy inequality, (C1), Cauchy-Schwarz and Young’s inequalities yield that
for t ∈ [0, T] and δ,κ > 0,

EI(t)≤ 12
p
ν E
�n

∫ t∧τN

0

�

K0+ K1 |uνh(s)|
2+ K2 ‖uνh(s)‖

2� |uνh(r)|
6ds
o

1
2
�

≤ 12
p
ν E
�

sup
0≤s≤t

|uνh(s ∧τN )|2
n

∫ t∧τN

0

�

K0+ K1 |uνh(s)|
2+ K2 ‖uνh(s)‖

2� |uνh(s)|
2ds
o

1
2
�

≤ δE(Y (t)) +
�36K2

δ
+κν

�

E(X (t)) +
36

κ

h

K0 T + (K0+ K1)

∫ t

0

E(X (s)) ds
i

. (2.29)

Thus we can apply Lemma 3.2 in [10] (see also Lemma 3.2 in [16]), and we deduce that for
0< ν ≤ ν0, K2 ≤

1
2
, ε= α= 1

2
, β = 36K2

δ
+κν0 ≤ 2−1 e−Φ, δ ≤ α2−1 e−Φ and γ= 36

κ
(K0+ K1),

E
�

X (T ) +αY (T )
�

≤ 2exp
�

Φ+ 2TγeΦ
�

h

4
p

K̃0 M T + 6ν0K0T +
36

κ
K0T +E(|ξ|4)

i

. (2.30)

Using the last inequality from (2.4), we deduce that for K2 small enough, C̄(M) independent of N
and ν ∈]0,ν0],

E
�

sup
0≤t≤T

|uνh(t ∧τN )|4+ ν
∫ τN

0

‖uνh(t)‖
4
H d t

�

≤ C̄(M)(1+E(|ξ|4)).
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As N →+∞, the monotone convergence theorem yields that for K̄2 small enough and ν ∈]0,ν0]

E
�

sup
0≤t≤T

|uνh(t)|
4+ ν

∫ T

0

‖uνh(t)‖
4
H d t

�

≤ C̄(M)(1+E(|ξ|4)).

This inequality and (2.30) with t instead of t ∧τN conclude the proof of (2.22) by a similar simpler
computation based on conditions (C1) and (C2).

3 Well posedeness, more a priori bounds and inviscid equation

The aim of this section is twofold. On one hand, we deal with the inviscid case ν = 0 for which the
PDE

du0
h(t) + B(u0

h(t)) d t = σ̃0(t, u0
h(t))h(t) d t , u0

h(0) = ξ (3.1)

can be solved for every ω. In order to prove that (3.1) has a unique solution in C ([0, T], V ) a.s., we
will need stronger assumptions on the constants µ, a, b defining B, the initial condition ξ and σ̃0.
The initial condition ξ has to belong to V and the coefficients a, b,µ have to be chosen such that
(B(u, u), Au) = 0 for u ∈ V (see (2.13)). On the other hand, under these assumptions and under
stronger assumptions on σν and σ̃ν , similar to that imposed on σ̃0, we will prove further properties
of uνh for a strictly positive viscosity coefficient ν .

Thus, suppose furthermore that for ν > 0 (resp. ν = 0), the map

σ̃ν : [0, T]× Dom(A)→ L(H0, V ) (resp. σ̃0 : [0, T]× V → L(H0, V ))

satisfies the following:

Condition (C3):There exist non negative constants K̃i and L̃ j , i = 0, 1,2, j = 1, 2 such that for
s ∈ [0, T] and for any u, v ∈ Dom(A) if ν > 0 (resp. for any u, v ∈ V if ν = 0),

|A
1
2 σ̃ν(s, u)|2L(H0,H) ≤ K̃0+ K̃1 ‖u‖2+ ν K̃2 |Au|2, (3.2)

and
|A

1
2 σ̃ν(s, u)− A

1
2 σ̃ν(s, v)|2L(H0,H) ≤ L̃1 ‖u− v‖2+ ν L̃2 |Au− Av|2. (3.3)

Theorem 3.1. Suppose that σ̃0 satisfies the conditions (C2) and (C3) and that the coefficients a, b,µ
defining B satisfy a(1+ µ2) + bµ2 = 0. Let ξ ∈ V be deterministic. For any M > 0 there exists C(M)
such that equation (3.1) has a unique solution in C ([0, T], V ) for any h ∈AM , and a.s. one has:

sup
h∈AM

sup
0≤t≤T

‖u0
h(t)‖ ≤ C(M)(1+ ‖ξ‖). (3.4)

Since equation (3.1) can be considered for any fixed ω, it suffices to check that the deterministic
equation (3.1) has a unique solution in C ([0, T], V ) for any h ∈ SM and that (3.4) holds. For any
m≥ 1, let Hm = span(ϕ1, · · · ,ϕm)⊂ Dom(A),

Pm : H → Hm denote the orthogonal projection from H onto Hm, (3.5)
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and finally let σ̃0,m = Pmσ̃0. Clearly Pm is a contraction of H and |σ̃0,m(t, u)|2L(H0,H) ≤
|σ̃0(t, u)|2L(H0,H). Set u0

m,h(0) = Pm ξ and consider the ODE on the m-dimensional space Hm defined
by

d
�

u0
m,h(t) , v

�

=
�

−
�

B(u0
m,h(t)) , v

�

+
�

σ̃0(t, u0
m,h(t))h(t) , v

��

d t (3.6)

for every v ∈ Hm.

Note that using (2.9) we deduce that the map u ∈ Hm 7→ 〈B(u) , v〉 is locally Lipschitz. Furthermore,
since there exists some constant C(m) such that ‖u‖ ∨ ‖u‖H ≤ C(m)|u| for u ∈ Hm, Condition (C2)
implies that the map u ∈ Hm 7→

�

(σ̃0,m(t, u)h(t) , ϕk) : 1 ≤ k ≤ m
�

, is globally Lipschitz from Hm
to Rm uniformly in t. Hence by a well-known result about existence and uniqueness of solutions
to ODEs, there exists a maximal solution u0

m,h =
∑m

k=1(u
0
m,h , ϕk

�

ϕk to (3.6), i.e., a (random) time
τ0

m,h ≤ T such that (3.6) holds for t < τ0
m,h and as t ↑ τ0

m,h < T , |u0
m,h(t)| → ∞. The following

lemma provides the (global) existence and uniqueness of approximate solutions as well as their
uniform a priori estimates. This is the main preliminary step in the proof of Theorem 3.1.

Lemma 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied and fix M > 0. Then for every
h ∈AM equation (3.6) has a unique solution in C ([0, T], Hm). There exists some constant C(M) such
that for every h ∈AM ,

sup
m

sup
0≤t≤T

‖u0
m,h(t)‖

2 ≤ C(M) (1+ ‖ξ‖2) a.s. (3.7)

Proof. The proof is included for the sake of completeness; the arguments are similar to that in the
classical viscous framework. Let h ∈ AM and let u0

m,h(t) be the approximate maximal solution to
(3.6) described above. For every N > 0, set τN = inf{t : ‖u0

m,h(t)‖ ≥ N} ∧ T. Let Πm : H0 →
H0 denote the projection operator defined by Πmu =

∑m
k=1

�

u , ek
�

ek, where {ek, k ≥ 1} is the
orthonormal basis of H made by eigen-elements of the covariance operator Q and used in (2.15).

Since ϕk ∈ Dom(A) and V is a Hilbert space, Pm contracts the V norm and commutes with A. Thus,
using (C3) and (2.13), we deduce

‖u0
m,h(t ∧τN )‖2 ≤ ‖ξ‖2− 2

∫ t∧τN

0

�

B(u0
m,h(s)) , Au0

m,h(s)
�

ds

+ 2

∫ t∧τN

0

�

�A
1
2 Pmσ̃0,m(s, u0

m,h(s))h(s)
�

�‖u0
m,h(s)‖ ds

≤ |ξ‖2+ 2
p

K̃0M T + 2
�p

K̃0+
p

K̃1

�

∫ t∧τN

0

|h(s)|0 ‖u0
m,h(s)‖

2 ds.

Since the map ‖u0
m,h(.)‖ is bounded on [0,τN], Gronwall’s lemma implies that for every N > 0,

sup
m

sup
t≤τN

‖u0
m,h(t)‖

2 ≤
�

‖ξ‖2+ 2
p

K̃0M T
�

exp
�

2
p

M T
hp

K̃0+
p

K̃1

i�

. (3.8)

Let τ := limN τN ; as N →∞ in (3.8) we deduce

sup
m

sup
t≤τ
‖u0

m,h(t)‖
2 ≤
�

‖ξ‖2+ 2
p

K̃0M T
�

exp
�

2
p

M T
hp

K̃0+
p

K̃1

i�

. (3.9)

On the other hand, supt≤τ ‖u0
m,h(t)‖

2 = +∞ if τ < T , which contradicts the estimate (3.9) . Hence
τ= T a.s. and we get (3.7) which completes the proof of the Lemma.
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We now prove the main result of this section.

Proof of Theorem 3.1:
Step 1: Using the estimate (3.7) and the growth condition (2.18) we conclude that each component
of the sequence

�

(u0
m,h)n, n≥ 1

�

satisfies the following estimate

sup
m

sup
0≤t≤T

|(u0
m,h)n(t)|

2+
�

�

�

σ̃0(t, u0
m,h(t))h(t)

�

n

�

�≤ C a.s. ,∀n= 1,2, · · ·

for some constant C > 0 depending only on M ,‖ξ‖, T . Moreover, writing the equation (3.1) for the
GOY shell model in the componentwise form using (2.5) (the proof for the Sabra shell model using
(2.6), which is similar, is omitted), we obtain for n= 1,2, · · ·

(u0
m,h)n(t) =(Pmξ)n+ i

∫ t

0

(akn+1(u
0
m,h)

∗
n+1(s)(u

0
m,h)

∗
n+2(s) + bkn(u

0
m,h)

∗
n−1(s)(u

0
m,h)

∗
n+1(s)

− akn−1(u
0
m,h)

∗
n−1(s)(u

0
m,h)

∗
n−2(s)− bkn−1(u

0
m,h)

∗
n−2(s)(u

0
m,h)

∗
n−1(s))ds

+

∫ t

0

�

σ̃0(s, u0
m,h(s))h(s)

�

nds . (3.10)

Hence, we deduce that for every n≥ 1 there exists a constant Cn, independent of m, such that

‖(u0
m,h)n‖C1([0,T];C) ≤ Cn.

Applying the Ascoli-Arzelà theorem, we conclude that for every n there exists a subsequence (mn
k)k≥1

such that (u0
mn

k ,h)n converges uniformly to some (u0
h)n as k −→ ∞. By a diagonal procedure, we

may choose a sequence (mn
k)k≥1 independent of n such that (u0

m,h)n converges uniformly to some
(u0

h)n ∈ C ([0, T];C) for every n≥ 1; set

u0
h(t) = ((u

0
h)1, (u0

h)2, . . . ).

From the estimate (3.7), we have the weak star convergence in L∞(0, T ; V ) of some further subse-
quence of

�

u0
mn

k ,h : k ≥ 1). The weak limit belongs to L∞(0, T ; V ) and has clearly (u0
h)n as compo-

nents that belong to C ([0, T];C) for every integer n ≥ 1. Using the uniform convergence of each
component, it is easy to show, passing to the limit in the expression (3.10), that u0

h(t) satisfies the
weak form of the GOY shell model equation (3.1). Finally, since

u0
h(t) = ξ+

∫ t

0

�

− B(u0
h(s)) + σ̃0(s, u0

h(s))h(s)
�

ds,

is such that sup0≤s≤T ‖u0
h(s)‖<∞ a.s. and since for every s ∈ [0, T], by (2.9) and (3.2) we have a.s.

�

‖B(u0
h(s))‖+ ‖σ̃0(s, u0

h(s))h(s)‖
�

≤ C
�

1+ sup
0≤s≤T

‖u0
h(s)‖

2��1+ |h(s)|0
�

∈ L2([0, T]),

we deduce that u0
h ∈ C ([0, T], V ) a.s.

Step 2: To complete the proof of Theorem 3.1, we show that the solution u0
h to (3.1) is unique in

C ([0, T], V ). Let v ∈ C ([0, T], V ) be another solution to (3.1) and set

τN = inf{t ≥ 0 : ‖u0
h(t)‖ ≥ N} ∧ inf{t ≥ 0 : ‖v(t)‖ ≥ N} ∧ T.
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Since ‖u0
h(.)‖ and ‖v(.)‖ are bounded on [0, T], we have τN → T as N →∞.

Set U = u0
h − v; equation (2.10) implies

�

�

�

A
1
2 B(u0

h(s))− A
1
2 B(v(s)), A

1
2 U(s)

�

�

�=
�

�

�

B(u0
h(s))− B(v(s)), AU(s)

�

�

�

≤ C̄1‖U(s)‖2 ‖v(s)‖.

On the other hand, the Lipschitz property (3.3) from condition (C3) for ν = 0 implies

�

�

�

A
1
2 σ̃0(s, u0

h(s))− A
1
2 σ̃0(s, v(s))

�

h(s)
�

�≤
p

L̃1‖u0
h(s)− v(s)‖ |h(s)|0.

Therefore,

‖U(t ∧τN )‖2 =
∫ t∧τN

0

n

− 2
�

A
1
2 B(u0

h(s))− A
1
2 B(v(s)), A

1
2 U(s)

�

+ 2
�

[A
1
2 σ̃0(s, u0

h(s))− A
1
2 σ̃0(s, v(s))]h(s), A

1
2 U(s)

�o

ds

≤ 2

∫ t

0

�

C̄1 N +
p

L1|h(s)|0
�

‖U(s ∧τN )‖2 ds,

and Gronwall’s lemma implies that (for almost every ω) sup0≤t≤T ‖U(t ∧τN )‖2 = 0 for every N . As
N →∞, we deduce that a.s. U(t) = 0 for every t, which concludes the proof. �

We now suppose that the diffusion coefficient σν satisfies the following condition (C4) which
strengthens (C1) in the way (C3) strengthens (C2), i.e.,

Condition (C4): There exist constants Ki and Li , i = 0, 1,2, j = 1, 2, such that for any ν > 0 and
u ∈ Dom(A),

|A
1
2σν(s, u)|2LQ

≤ K0+ K1‖u‖2+ K2|Au|2, (3.11)

|A
1
2σν(s, u)− A

1
2σν(s, v)|2LQ

≤ L1‖u− v‖2+ L2|Au− Av|2. (3.12)

Then for ν > 0, the existence result and apriori bounds of the solution to (2.20) proved in Proposi-
tion 2.2 can be improved as follows.

Proposition 3.3. Let ξ ∈ V , let the coefficients a, b,µ defining B be such that a(1+µ2)+ bµ2 = 0, σν
and σ̃ν satisfy the conditions (C1), (C2), (C3) and (C4). Then there exist positive constants K̄2 and ν0
such that for 0 < K2 < K̄2 and 0 < ν ≤ ν0, for every M > 0 there exists a constant C(M) such that for
any h ∈AM , the solution uνh to (2.20) belongs to C ([0, T], V ) almost surely and

sup
h∈AM

sup
0<ν≤ν0

E
�

sup
t∈[0,T]

‖uνh(t)‖
2+ ν

∫ T

0

|Auνh(t)|
2 d t
�

≤ C(M). (3.13)

Proof. Fix m≥ 1, let Pm be defined by (3.5) and let uνm,h(t) be the approximate maximal solution to
the (finite dimensional) evolution equation: uνm,h(0) = Pmξ and

duνm,h(t) =
�

− νPmAuνm,h(t)− PmB(uνm,h(t)) + Pmσ̃ν(t, uνm,h(t))h(t)
�

d t
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+Pm
p
ν σν(t, uνm,h)(t)dWm(t), (3.14)

where Wm is defined by (2.15). Proposition 3.3 in [10] proves that (3.14) has a unique solution
uνm,h ∈ C ([0, T], Pm(H)). For every N > 0, set

τN = inf{t : ‖uνm,h(t)‖ ≥ N} ∧ T.

Since Pm(H) ⊂ Dom(A), we may apply Itô’s formula to ‖uνm,h(t)‖
2. Let Πm : H0 → H0 be defined

by Πmu=
∑m

k=1

�

u, ek
�

ek for some orthonormal basis {ek, k ≥ 1} of H made by eigen-vectors of the
covariance operator Q; then we have:

‖uνm,h(t ∧τN )‖2 = ‖Pmξ‖2+ 2
p
ν

∫ t∧τN

0

�

A
1
2 Pmσν(s, uνm,h(s))dWm(s), A

1
2 uνm,h(s)

�

+ ν

∫ t∧τN

0

|Pmσν(s, uνm,h(s))Πm|2LQ
ds− 2

∫ t∧τN

0

�

A
1
2 B(uνm,h(s)) , A

1
2 uνm,h(s)

�

ds

− 2ν

∫ t∧τN

0

�

A
1
2 PmAuνm,h(s), A

1
2 uνm,h(s)

�

ds+ 2

∫ t∧τN

0

�

A
1
2 Pmσ̃ν(s, uνm,h(s))h(s), A

1
2 uνm,h(s)

�

ds.

Since the functions ϕk are eigen-functions of A, we have A
1
2 Pm = PmA

1
2 and hence

�

A
1
2 PmAuνm,h(s), A

1
2 uνm,h(s)

�

= |Auνm,h(s)|
2. Furthermore, Pm contracts the H and the V norms, and for

u ∈ Dom(A),
�

B(u), Au
�

= 0 by (2.13). Hence for 0 < ε = 1
2
(2− K2) < 1, using Cauchy-Schwarz’s

inequality and the conditions (C3) and (C4) on the coefficients σν and σ̃ν , we deduce

‖uνm,h(t ∧τN )‖2+ εν
∫ t∧τN

0

�

�Auνm,h(s)|
2 ds ≤ ‖ξ‖2+ ν

∫ t∧τN

0

�

K0+ K1‖uνm,h(s)‖
2� ds

+ 2
p
ν

∫ t∧τN

0

�

A
1
2 Pmσν(s, uνm,h(s))dWm(s), A

1
2 uνm,h(s)

�

+ 2

∫ t∧τN

0

nhp

K̃0+
�p

K̃0+
p

K̃1

�

‖uνm,h(s)‖
2
i

|h(s)|0+
K̃2

ε
|h(s)|20‖u

ν
m,h(s)‖

2
o

ds.

For any t ∈ [0, T] set

I(t) = sup
0≤s≤t

�

�

�2
p
ν

∫ s∧τN

0

�

A
1
2 Pmσν(r, uνm,h(r))dWm(r) , A

1
2 uνm,h(r)

�

�

�

�,

X (t) = sup
0≤s≤t

‖uνm,h(s ∧τN )‖2, Y (t) =

∫ t∧τN

0

|Auνm,h(r)|
2 dr,

ϕ(t) = 2
�p

K̃0+
p

K̃1

�

|h(t)|0+ νK1+
K̃2

ε
|h(t)|20.

Then almost surely,
∫ T

0
ϕ(t) d t ≤ νK1T+2

�

p

K̃0+
p

K̃1
�p

M T+ K̃2

ε
M := C . The Burkholder-Davis-

Gundy inequality, conditions (C1) – (C4), Cauchy-Schwarz and Young’s inequalities yield that for
t ∈ [0, T] and β > 0,

EI(t) ≤ 6
p
ν E
n

∫ t∧τN

0

�

�A
1
2σν(s, uνm,h(r)) Πm|2LQ

‖uνm,h(s)‖
2ds
o

1
2
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≤ β E
�

sup
0≤s≤t∧τN

‖um,h(s)‖2
�

+
9νK1

β
E
∫ t∧τN

0

‖um,h(s)‖2 ds

+
9νK0

β
T +

9νK2

β
E
∫ t∧τN

0

|Auνm,h(s)|
2ds.

Set Z = ‖ξ‖2+ν0K0T+2
p

K̃0T M , α= εν , β = 2−1e−C , K2 < 2−2e−2C(9+2−3e−2C)−1; the previous
inequality implies that the bounded function X satisfies a.s. the inequality

X (t) +αY (t)≤ Z + I(t) +

∫ t

0

ϕ(s)X (s) ds.

Furthermore, I(t) is non decreasing, such that for 0 < ν ≤ ν0, δ = 9νK2

β
≤ α2−1e−C and γ = 9ν0

a
K1,

one has

EI(t)≤ βEX (t) + γE
∫ t

0

X (s) ds+δY (t) +
9ν0

β
K0T.

Lemma 3.2 from [10] implies that for K2 and ν0 small enough, there exists a constant C(M , T )
which does not depend on m and N , and such that for 0< ν ≤ ν0, m≥ 1 and h ∈AM :

sup
N>0

sup
m≥1
E
h

sup
0≤t≤τN

‖uνm,h(t)‖
2+ ν

∫ τN

0

|Auνm,h(t)|
2 d t
i

<∞.

Then, letting N →∞ and using the monotone convergence theorem, we deduce that

sup
m≥1

sup
h∈AM

E
h

sup
0≤t≤T

‖uνm,h(t)‖
2+ ν

∫ T

0

|Auνm,h(t)|
2 d t
i

<∞. (3.15)

Then using classical arguments we prove the existence of a subsequence of (uνm,h, m ≥ 1)
which converges weakly in L2([0, T] × Ω, V ) ∩ L4([0, T] × Ω,H ) and converges weak-star in
L4(Ω, L∞([0, T], H)) to the solution uνh to equation (2.20) (see e.g. [10], proof of Theorem 3.1). In
order to complete the proof, it suffices to extract a further subsequence of (uνm,h, m ≥ 1) which
is weak-star convergent to the same limit uνh in L2(Ω, L∞([0, T], V )) and converges weakly in
L2(Ω× [0, T], Dom(A)); this is a straightforward consequence of (3.15). Then as m→∞ in (3.15),
we conclude the proof of (3.13).

4 Large deviations

We will prove a large deviation principle using a weak convergence approach [4; 5], based on
variational representations of infinite dimensional Wiener processes. Let σ : [0, T]× V → LQ and
for every ν > 0 let σ̄ν : [0, T]× Dom(A)→ LQ satisfy the following condition:

Condition (C5):
(i) There exist a positive constant γ and non negative constants C̄, K̄0, K̄1 and L̄1 such that for all
u, v ∈ V and s, t ∈ [0, T]:

|σ(t, u)|2LQ
≤ K̄0+ K̄1 |u|2,

�

�A
1
2σ(t, u)

�

�

2
LQ
≤ K̄0+ K̄1 ‖u‖2,
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|σ(t, u)−σ(t, v)|2LQ
≤ L̄1 |u− v|2,

�

�A
1
2σ(t, u)− A

1
2σ(t, v)

�

�

2
LQ
≤ L̄1 ‖u− v‖2,

�

�σ(t, u)−σ(s, u)
�

�

LQ
≤ C (1+ ‖u‖) |t − s|γ.

(ii) There exist a positive constant γ and non negative constants C̄, K̄0, K̄H , K̄2 and L̄2 such that for
ν > 0, s, t ∈ [0, T] and u, v ∈ Dom(A),

|σ̄ν(t, u)|2LQ
≤
�

K̄0+ K̄H ‖u‖2H
�

,
�

�A
1
2 σ̄ν(t, u)

�

�

2
LQ
≤
�

K̄0+ K̄2 |Au|2
�

,

|σ̄ν(t, u)− σ̄ν(t, v)|2LQ
≤ L̄2 ‖u− v‖2,

�

�A
1
2 σ̄ν(t, u)− A

1
2 σ̄ν(t, v)

�

�

2
LQ
≤ L̄2 |Au− Av|2,

�

�σ̄ν(t, u)− σ̄ν(t, u)
�

�

LQ
≤ C̄ (1+ ‖u‖) |t − s|γ.

Set
σν = σ̃ν = σ+

p
νσ̄ν for ν > 0, and σ̃0 = σ. (4.1)

Then for 0≤ ν ≤ ν1, the coefficients σν and σ̃ν satisfy the conditions (C1)-(C4) with

K0 = K̃0 = 4K̄0, K1 = K̃1 = 2K̄1, L1 = L̃1 = 2 L̄1, K̃2 = 2K̄2, K̃H = 2K̄H ,

K2 = 2
�

K̄2 ∨
�

K̄H k4α−2
0

��

ν1, L2 = 2 L̄2ν1 and L̃2 = 2 L̄2. (4.2)

Proposition 3.3 and Theorem 3.1 prove that for some ν0 ∈]0,ν1], K̄2 and L̄2 small enough, 0< ν ≤
ν0 (resp. ν = 0), ξ ∈ V and hν ∈ AM , the following equation has a unique solution uνhν (resp. u0

h)

in C (0, T], V ): uνhν (0) = u0
h(0) = ξ, and

duνhν (t) +
�

νAuνhν (t) + B(uνhν (t))
�

d t =
p
ν σν(t, uνhν (t)) dW (t) + σ̃ν(t, uνhν (t))hν(t)d t, (4.3)

du0
h(t) + B(u0

h(t)) d t = σ(t, u0
h(t))h(t) d t. (4.4)

Recall that for any α≥ 0,Hα has been defined in (2.2) and is endowed with the norm ‖ · ‖α defined
in (2.2). When 0 ≤ α ≤ 1

4
, as ν → 0 we will establish a Large Deviation Principle (LDP) in the set

C ([0, T], V ) for the uniform convergence in time when V is endowed with the norm ‖ · ‖α for the
family of distributions of the solutions uν to the evolution equation: uν(0) = ξ ∈ V ,

duν(t) +
�

νAuν(t) + B(uν(t))
�

d t =
p
νσν(t, uν(t)) dW (t), (4.5)

whose existence and uniqueness in C ([0, T], V ) follows from Propositions 2.2 and 3.3. Unlike in
[27], [16], [22] and [10], the large deviations principle is not obtained in the natural space, which
is here C ([0, T], V ) under the assumptions (C5), because the lack of viscosity does not allow to
prove that u0

h(t) ∈ Dom(A) for almost every t.

To obtain the LDP in the best possible space with the weak convergence approach, we need an extra
condition, which is part of condition (C5) when α= 0, that is whenHα = H.

Condition (C6): Let α ∈ [0, 1
4
]; there exists a constant L3 such that for u, v ∈Hα and t ∈ [0,1],

�

�Aασ(t, u)− Aασ(t, v)|LQ
≤ L3 ‖u− v‖α. (4.6)
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LetB denote the Borel σ−field of the Polish space

X =C ([0, T], V ) endowed with the norm ‖u‖X =: sup
0≤t≤T

‖u(t)‖α, (4.7)

where ‖ · ‖
α

is defined by (2.2). We at first recall some classical definitions; by convention the
infimum over an empty set is +∞.

Definition 4.1. The random family (uν) is said to satisfy a large deviation principle on X with the
good rate function I if the following conditions hold:
I is a good rate function. The function I :X → [0,∞] is such that for each M ∈ [0,∞[ the level set
{φ ∈ X : I(φ)≤ M} is a compact subset of X .
For A∈B , set I(A) = infu∈A I(u).
Large deviation upper bound. For each closed subset F of X :

lim sup
ν→0

ν logP(uν ∈ F)≤−I(F).

Large deviation lower bound. For each open subset G of X :

lim inf
ν→0

ν logP(uν ∈ G)≥−I(G).

Let C0 = {
∫ .

0
h(s)ds : h ∈ L2([0, T], H0)} ⊂ C ([0, T], H0). Given ξ ∈ V define G 0

ξ
:C ([0, T], H0)→

X by G 0
ξ
(g) = u0

h for g =
∫ .

0
h(s)ds ∈ C0 and u0

h is the solution to the (inviscid) control equation

(4.4) with initial condition ξ, and G 0
ξ
(g) = 0 otherwise. The following theorem is the main result

of this section.

Theorem 4.2. Let α ∈ [0, 1
4
], suppose that the constants a, b,µ defining B are such that a(1+ µ2) +

bµ2 = 0, let ξ ∈ V , and let σν and σ̃ν be defined for ν > 0 by (4.1) with coefficients σ and σ̄ν
satisfying the conditions (C5) and (C6) for this value of α. Then the solution (uν)ν>0 to (4.5) with
initial condition ξ satisfies a large deviation principle in X := C ([0, T], V ) endowed with the norm
‖u‖X =: sup0≤t≤T ‖u(t)‖α, with the good rate function

I(u) = inf
{h∈L2(0,T ;H0): u=G 0

ξ
(
∫ .

0
h(s)ds)}

n1

2

∫ T

0

|h(s)|20 ds
o

. (4.8)

We at first prove the following technical lemma, which studies time increments of the solution to
the stochastic control problem (4.3) which extends both (4.5) and (4.4).

To state this lemma, we need the following notations. For every integer n, let ψn : [0, T]→ [0, T]
denote a measurable map such that: s ≤ ψn(s) ≤

�

s+ c2−n) ∧ T for some positive constant c and
for every s ∈ [0, T]. Given N > 0, hν ∈AM , for t ∈ [0, T] and ν ∈ [0,ν0], let

GνN (t) =
n

ω :
�

sup
0≤s≤t

‖uνh(s)(ω)‖
2
�

∨
�

∫ t

0

|Auνh(s)(ω)|
2ds
�

≤ N
o

.

Lemma 4.3. Let a, b,µ satisfy the condition a(1+ µ2) + bµ2 = 0. Let ν0, M , N be positive constants,
σ and σ̄ν satisfy condition (C5), σν and σ̃ν be defined by (4.1) for ν ∈ [0,ν0]. For every ν ∈]0,ν0],
let ξ ∈ L4(Ω; H) ∩ L2(Ω; V ), hν ∈ AM and let uνhν (t) denote solution to (4.3). For ν = 0, let ξ ∈ V ,
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h ∈ AM , let u0
h(t) denote be solution to (4.4). Then there exists a positive constant C (depending on

Ki , K̃i , Li , L̃i , T, M , N ,ν0) such that:

In(hν ,ν) := E
h

1GνN (T )

∫ T

0

‖uνhν (s)− uνhν (ψn(s))‖2 ds
i

≤ C 2−
n
2 for 0< ν ≤ ν0, (4.9)

In(h, 0) := 1G0
N (T )

∫ T

0

‖u0
h(s)− u0

h(ψn(s))‖2 ds ≤ C 2−n a.s. for ν = 0. (4.10)

Proof. For ν > 0, the proof is close to that of Lemma 4.2 in [16]. Let ν ∈]0,ν0], h ∈ AM ,; for any
s ∈ [0, T], Itô’s formula yields

‖uνhν (ψn(s))− uνhν (s)‖
2 = 2

∫ ψn(s)

s

�

A
�

uνhν (r)− uνhν (s)
�

, duνhν (r)) + ν

∫ ψn(s)

s

|A
1
2σ(r, uνhν (r))|

2
LQ

dr.

Therefore In(hν ,ν) =
∑

1≤i≤5 In,i(hν ,ν), where

In,1(hν ,ν) = 2
p
ν E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

�

A
1
2σν(r, uνhν (r))dW (r) , A

1
2
�

uνhν (r)− uνhν (s)
��

�

,

In,2(hν ,ν) = ν E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

|A
1
2σν(r, uνhν (r))|

2
LQ

dr
�

,

In,3(hν ,ν) =−2E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s




A
1
2 B(uνhν (r)) , A

1
2
�

uνhν (r)− uνhν (s)
��

dr
�

,

In,4(hν ,ν) =−2ν E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s




A
3
2 uνhν (r) , A

1
2
�

uνhν (r)− uνhν (s)
��

dr
�

,

In,5(hν ,ν) = 2E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

�

A
1
2 σ̃ν(r, uνhν (r))hν(r) , A

1
2
�

uνhν (r)− uνhν (s)
��

dr
�

.

Clearly GνN (T ) ⊂ GνN (r) for r ∈ [0, T]. Furthermore, ‖uνh(r)‖
2 ∨ ‖uνh(s)‖

2 ≤ N on GνN (r) for 0 ≤ s ≤
r ≤ T .

The Burkholder-Davis-Gundy inequality and (C5) yield for 0< ν ≤ ν0

|In,1(hν ,ν)| ≤ 6
p
ν

∫ T

0

ds E
�

∫ ψn(s)

s

�

�A
1
2σν(r, uνhν (r))

�

�

2
LQ

1GνN (r)
‖uνhν (r)− uνhν (s)‖

2 dr
�

1
2

≤ 6
p

2ν0N

∫ T

0

ds E
�

∫ ψn(s)

s

�

K0+ K1 ‖uνhν (r)‖
2+ K2 |Auνhν (r)|

2� dr
�

1
2 .

The Cauchy-Schwarz inequality and Fubini theorem as well as (3.13), which holds uniformly in
ν ∈]0,ν0] for small enough fixed ν0 > 0, imply

|In,1(hν ,ν)| ≤ 6
p

2ν0N T
h

E
∫ T

0

�

K0+ K1 ‖uνhν (r)‖
2+ K2|Auνhν (r)|

2�
�

∫ r

(r−c2−n)∨0

ds
�

dr
i

1
2

≤ C1

p
N 2−

n
2 (4.11)
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for some constant C1 depending only on Ki , i = 0,1, 2, L j , j = 1,2, M , ν0 and T . The property (C5)
and Fubini’s theorem imply that for 0< ν ≤ ν0,

|In,2(hν ,ν)| ≤ ν E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

�

K0+ K1‖uνhν (r)‖
2+ K2|Auνhν (r)|

2�dr
�

≤ ν0E
∫ T

0

�

K0+ K1 ‖uνhν (r)‖
2+ K2|Auνhν (r)|

2� c2−n dr ≤ C12−n (4.12)

for some constant C1 as above. Since



B(u), Au
�

= 0 and ‖B(u)‖ ≤ C‖u‖2 for u ∈ V by (2.9), we
deduce that

|In,3(hν ,ν)| ≤ 2E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

dr
�

A
1
2 B(uνhν (r)) , A

1
2 uνhν (s)

�

�

≤ 2CE
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

‖uνhν (r)‖
2 ‖uνh(s)‖ dr

�

≤ 2C N
3
2 T22−n. (4.13)

Using Cauchy-Schwarz’s inequality and (3.13) we deduce that

In,4(hν ,ν) ≤ 2ν E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

dr
�

− |Auνhν (r)|
2+ |Auνhν (r)| |Auνhν (s)|

�

�

≤
ν

2
E
�

∫ T

0

ds |Auνhν (s)|
2

∫ ψn(s)

s

dr
�

≤ C12−n (4.14)

for some constant C1 as above. Finally, Cauchy-Schwarz’s inequality, Fubini’s theorem, (C5) and the
definition ofAM yield

|In,5(hν ,ν)| ≤ 2 E
�

1GνN (T )

∫ T

0

ds

∫ ψn(s)

s

dr

�

K̃0+ K̃1‖uνhν (r)‖
2+ ν K̃2|Auνhν (r)|

2�
1
2 |hν(r)|0 ‖uνhν (r)− uνhν (s)‖

�

≤ 4
p

N E
�

1GνN (T )
�

K̃0+ K̃1N
�

1
2

∫ T

0

|hν(r)|0
�

∫ r

(r−c2−n)∨0

ds
�

dr
�

+ 4
p

NE
�

1GνN (T )

p

ν0K̃2

∫ T

0

|Auνhν (r)| |hν(r)|0
�

∫ r

(r−c2−n)∨0

ds
�

dr
�

≤ 4
p

N
hp

M T
�

K̃0+ K̃1N
�

1
2 +
�

ν0 K̃2 N M
�

1
2

i

c T2−n ≤ C(ν0, N , M , T )2−n. (4.15)

Collecting the upper estimates from (4.11)-(4.15), we conclude the proof of (4.9) for 0< ν ≤ ν0.

Let h ∈AM ; a similar argument for ν = 0 yields for almost every ω

1G0
N (T )

∫ T

0

∫ T

0

‖u0
h(ψn(s))− u0

h(s)‖
2 ds ≤

∑

j=1,2

In, j(h, 0),

with

In,1(h, 0) = −2 1G0
N (T )

∫ T

0

ds

∫ ψn(s)

s




A
1
2 B(u0

h(r)) , A
1
2
�

u0
h(r)− u0

h(s)
��

dr,
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In,2(h, 0) = 2 1G0
N (T )

∫ T

0

ds

∫ ψn(s)

s

�

A
1
2 σ̃0(r, uνh(r))h(r) , A

1
2
�

uνh(r)− uνh(s)
��

dr.

An argument similar to that which gives (4.13) proves

|In,1(h, 0)| ≤ C(T, N)2−n. (4.16)

Cauchy-Schwarz’s inequality and (C5) imply

|In,2(h, 0)| ≤ 2 1G0
N (T )

∫ T

0

ds

∫ ψn(s)

s

dr
�

K̃0+ K̃1‖u0
h(r)‖

2�
1
2 |h(r)|0 ‖u0

h(r)− u0
h(s)‖

≤ 4
p

N
�

K̃0+ K̃1N
�

1
2

∫ T

0

|h(r)|0
�

∫ r

(r−c2−n)∨0

ds
�

dr ≤ C(N , M , T )2−n. (4.17)

The inequalities (4.16) and (4.17) conclude the proof of (4.10).

Now we return to the setting of Theorem 4.2. Let ν0 ∈]0,ν1] be defined by Theorem 2.2 and
Proposition 3.3, (hν , 0< ν ≤ ν0) be a family of random elements taking values in the setAM defined
by (2.17). Let uνhν be the solution of the corresponding stochastic control equation (4.3) with initial

condition uνhν (0) = ξ ∈ V . Note that uνhν = G
ν
ξ

�p
ν
�

W. +
1p
ν

∫ .

0
hν(s)ds

�

�

due to the uniqueness
of the solution. The following proposition establishes the weak convergence of the family (uνhν ) as
ν → 0. Its proof is similar to that of Proposition 4.5 in [10]; see also Proposition 3.3 in [16].

Proposition 4.4. Let a, b,µ be such that a(1+ µ2) + bµ2 = 0. Let α ∈ [0, 1
4
], σ and σ̄ν satisfy the

conditions (C5) and (C6) for this value of α, σν and σ̃ν be defined by (4.1). Let ξ be F0-measurable
such that E

�

|ξ|4H + ‖ξ‖
2� < ∞, and let hν converge to h in distribution as random elements taking

values in AM , where this set is defined by (2.17) and endowed with the weak topology of the space
L2(0, T ; H0). Then as ν → 0, the solution uνhν of (4.3) converges in distribution in X (defined by

(4.7)) to the solution u0
h of (4.4). That is, as ν → 0, the process G νξ

�p
ν
�

W. +
1p
ν

∫ .

0
hν(s)ds

�

�

converges in distribution to G 0
ξ

�

∫ .

0
h(s)ds

�

in C ([0, T], V ) for the topology of uniform convergence on
[0, T] where V is endowed with the norm ‖ · ‖α.

Proof. SinceAM is a Polish space (complete separable metric space), by the Skorokhod representa-
tion theorem, we can construct processes (h̃ν , h̃, W̃ ) such that the joint distribution of (h̃ν , W̃ ) is the
same as that of (hν , W ), the distribution of h̃ coincides with that of h, and h̃ν → h̃, a.s., in the (weak)
topology of SM . Hence a.s. for every t ∈ [0, T],

∫ t

0
h̃ν(s)ds−

∫ t

0
h̃(s)ds → 0 weakly in H0. To ease

notations, we will write (h̃ν , h̃, W̃ ) = (hν , h, W ). Let Uν = uνhν − u0
h ∈ C ([0, T], V ); then Uν(0) = 0

and

dUν(t) =−
�

νAuνhν (t) + B(uνhν (t))− B(u0
h(t))

�

d t +
�

σ(t, uνhν (t))hν(t)−σ(t, u0
h(t))h(t)

�

d t

+
p
ν σν(t, uνhν (t)) dW (t) +

p
ν σ̄ν(t, uνhν (t))hν(t) d t. (4.18)

On any finite time interval [0, t] with t ≤ T , Itô’s formula, yields for ν > 0 and α ∈ [0, 1
2
]:

‖Uν(t)‖2α =−2ν

∫ t

0

�

A1+αuνhν (s), AαUν(s)
�

ds− 2

∫ t

0




Aα
�

B(uνhν (s))− B(u0
h(s))

�

, AαUν(s)
�

ds
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+ 2
p
ν

∫ t

0

�

Aασν(s, uνhν (s))dW (s) , AαUν(s)
�

+ ν

∫ t

0

|Aασν(s, uνhν (s))|
2
LQ

ds

+ 2
p
ν

∫ t

0

�

Aασ̄ν(s, uνhν (s))hν(s) , AαUν(s)
�

ds

+ 2

∫ t

0

�

Aα
�

σ(s, uνhν (s))hν(s)−σ(s, u0
h(s))h(s)

�

, AαUν(s)
�

ds.

Furthermore,
�

Aασ̄ν(s, uνhν (s))hν(s) , AαUν(s)
�

=
�

σ̄ν(s, uνhν (s))hν(s) , A2αUν(s)
�

. Cauchy-Schwarz’s

inequality, conditions (C5) and (C6), (2.12) and (2.4) yield since α ∈ [0, 1
4
]

‖Uν(t)‖2α ≤ 2ν

∫ t

0

�

�A
1
2
+2αuνhν (s)

�

�

�

‖uνhν (s)‖+ ‖u
0
h(s)‖

�

ds

+ 2C

∫ t

0

‖Uν(s)‖2α
�

‖uνhν (s)‖+ ‖u
0
h(s)‖

�

ds+ 2
p
ν

∫ t

0

�

σν(s, uνhν (s))dW (s) , A2αUν(s)
�

+ ν

∫ t

0

�

K0+ K1‖uνhν (s)‖
2+ K2|Auνhν (s)|

2� ds

+ 2
p
ν

∫ t

0

hp

K̃0+ k
− 1

2
0

p

K̃H ‖uνhν (s)‖
i

|hν(s)|0 k4α−1
0

�

‖uνhν (s)‖+ ‖u
0
h(s)‖

�

ds

+ 2

∫ t

0

�

Aα
�

σ(s, uνhν (s))−σ(s, u0
h(s))

�

hν(s) , AαUν(s)
�

ds

+ 2

∫ t

0

�

Aασ(s, u0
h(s))

�

hν(s)− h0(s)
�

, AαUν(s)
�

ds

≤ 2

∫ t

0

‖Uν(s)‖2α
�

C‖uνhν (s)‖
2+ C‖u0

h(s)‖
2+ L3|hν(s)|0

�

ds+
∑

1≤ j≤5

T j(t,ν), (4.19)

where using again the fact that α≤ 1
4
, we have

T1(t,ν) = 2ν sup
s≤t

�

‖uνhν (s)‖+ ‖u
0
h(s)‖

�

∫ t

0

|Auνhν (s)| ds,

T2(t,ν) = 2
p
ν

∫ t

0

�

σν(s, uνhν (s))dW (s) , A2αUν(s)
�

,

T3(t,ν) = ν

∫ t

0

�

K0+ K1‖uνhν (s)‖
2+ K2|Auνhν (s)|

2� ds,

T4(t,ν) = 2
p
ν k2α−1

0

∫ t

0

hp

K̃0+ k
− 1

2
0

p

K̃H ‖uνhν (s)‖
i

|hν(s)|0
�

‖uνhν (s)‖+ ‖u
0
h(s)‖

�

ds,

T5(t,ν) = 2

∫ t

0

�

σ(s, u0
h(s))

�

hν(s)− h(s)
�

, A2αUν(s)
�

ds.

We want to show that as ν → 0, supt∈[0,T] ‖Uν(s)‖α→ 0 in probability, which implies that uνhν → u0
h

2571



in distribution in X . Fix N > 0 and for t ∈ [0, T] let

GN (t) =
n

sup
0≤s≤t

‖u0
h(s)‖

2 ≤ N
o

,

GN ,ν(t) = GN (t)∩
n

sup
0≤s≤t

‖uνhν (s)‖
2 ≤ N

o

∩
n

ν

∫ t

0

|Auhν (s)|
2ds ≤ N

o

.

The proof consists in two steps.
Step 1: For ν0 > 0 given by Proposition 3.3 and Theorem 3.1, we have

sup
0<ν≤ν0

sup
h,hν∈AM

P(GN ,ν(T )
c)→ 0 as N →+∞.

Indeed, for ν ∈]0,ν0], h, hν ∈ AM , the Markov inequality and the a priori estimates (3.4) and
(3.13), which holds uniformly in ν ∈]0,ν0], imply that for 0< ν ≤ ν0,

P(GN ,ν(T )
c)≤

1

N
sup

h,hν∈AM

E
�

sup
0≤s≤T

‖u0
h(s)‖

2+ sup
0≤s≤T

‖uνhν (s)|
2+ ν

∫ T

0

|Auνhν (s)|
2 ds
�

≤ C
�

1+E|ξ|4+E‖ξ‖2
�

N−1, (4.20)

for some constant C depending on T and M , but independent of N and ν .

Step 2: Fix N > 0, let h, hν ∈ AM be such that hν → h a.s. in the weak topology of L2(0, T ; H0) as
ν → 0. Then one has:

lim
ν→0
E
h

1GN ,ν (T ) sup
0≤t≤T

‖Uν(t)|2α
i

= 0. (4.21)

Indeed, (4.19) and Gronwall’s lemma imply that on GN ,ν(T ), one has for 0< ν ≤ ν0:

sup
0≤t≤T

‖Uν(t)‖2α ≤ exp
�

4NC + 2L3

p
M T
�
∑

1≤ j≤5

sup
0≤t≤T

T j(t,ν) . (4.22)

Cauchy-Schwarz’s inequality implies that for some constant C(N , T ) independent on ν:

E
�

1GN ,ν (T ) sup
0≤t≤T

|T1(t,ν)|
�

≤ 4
p

T N
p
ν E
�

1GN ,ν (T )

n

∫ T

0

|Auνhν (s)|
2 ds
o

1
2
�

≤ C(N , T )
p
ν . (4.23)

Since the sets GN ,ν(.) decrease, the Burkholder-Davis-Gundy inequality, α ≤ 1
4
, the inequality (2.4)

and (C5) imply that for some constant C(N , T ) independent of ν:

E
�

1GN ,ν (T ) sup
0≤t≤T

|T2(t,ν)|
�

≤ 6
p
ν E
n

∫ T

0

1GN ,ν (s) k
4(2α− 1

2
)

0 ‖Uν(s)‖2 |σν(s, uνhν (s))|
2
LQ

ds
o

1
2

≤ 6
p
νk

2(2α− 1
2
)

0 E
n

∫ T

0

1GN ,ν (s)4N (K0+ K1‖uνhν (s)‖
2+ K2|Auνhν (s)|

2)ds
o

1
2 ≤ C(T, N)

p
ν . (4.24)

The Cauchy-Schwarz inequality implies

E
�

1GN ,ν (T ) sup
0≤t≤T

|T4(t,ν)|
�

≤
p
ν C(N , M , T ). (4.25)
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The definition of GN ,ν(T ) implies that

E
�

1GN ,ν (T ) sup
0≤t≤T

|T3(t,ν)|
�

≤ C T N ν . (4.26)

The inequalities (4.22) - (4.26) show that the proof of (4.21) reduces to check that

lim
ν→0
E
�

1GN ,ν (T ) sup
0≤t≤T

|T5(t,ν)|
�

= 0 . (4.27)

In further estimates we use Lemma 4.3 with ψn = s̄n, where s̄n is the step function defined by
s̄n = kT2−n for (k− 1)T2−n ≤ s < kT2−n. For any n, N ≥ 1, if we set tk = kT2−n for 0 ≤ k ≤ 2n,
we obviously have

E
�

1GN ,ν (T ) sup
0≤t≤T

|T5(t,ν)|
�

≤ 2
∑

1≤i≤4

T̃i(N , n,ν) + 2 E
�

T̄5(N , n,ν)
�

, (4.28)

where

T̃1(N , n,ν) =E
h

1GN ,ν (T ) sup
0≤t≤T

�

�

�

∫ t

0

�

σ(s, u0
h(s))

�

hν(s)− h(s)
�

, A2α�Uν(s)− Uν(s̄n)
�

�

ds
�

�

�

i

,

T̃2(N , n,ν) =E
h

1GN ,ν (T )

× sup
0≤t≤T

�

�

�

∫ t

0

�

[σ(s, u0
h(s))−σ(s̄n, u0

h(s))](hν(s)− h(s)) , A2αUν(s̄n)
�

ds
�

�

�

i

,

T̃3(N , n,ν) =E
h

1GN ,ν (T )

× sup
0≤t≤T

�

�

�

∫ t

0

�

�

σ(s̄n, u0
h(s))−σ(s̄n, u0

h(s̄n))
��

hν(s)− h(s)
�

, A2αUν(s̄n)
�

ds
�

�

�

i

,

T̃4(N , n,ν) =E
h

1GN ,ν (T ) sup
1≤k≤2n

sup
tk−1≤t≤tk

�

�

�

�

σ(tk, u0
h(tk))

∫ t

tk−1

(hν(s)− h(s))ds , A2αUν(tk)
�
�

�

�

i

,

T̄5(N , n,ν) =1GN ,ν (T )

∑

1≤k≤2n

�

�

�

�

σ(tk, u0
h(tk))

∫ tk

tk−1

�

hν(s)− h(s)
�

ds , A2αUν(tk)
�
�

�

�.

Using the Cauchy-Schwarz and Young inequalities, (C5), (2.4), (4.9) and (4.10) in Lemma 4.3 with
ψn(s) = s̄n, we deduce that for some constant C̄1 := C(T, M , N) independent of ν ∈]0,ν0],

T̃1(N , n,ν)≤ k4α−1
0 E

h

1GN ,ν (T )

∫ T

0

�

K̄0+ K̄1|u0
h(s)|

2�
1
2 |hν(s)− h(s)|0



Uν(s)− Uν(s̄n)


 ds
i

≤ k4α−1
0

�

E
h

1GN ,ν (T )

∫ T

0

2
�

‖uνhν (s)− uνhν (s̄n)‖2+ ‖u0
h(s)− u0

h(s̄n)‖2
	

ds
i�

1
2

×
Æ

K̄0+ k−2
0 K̄1N

�

E
∫ T

0

2
�

|hν(s)|20+ |h(s)|
2
0

�

ds
�

1
2 ≤ C̄1 2−

n
4 . (4.29)

A similar computation based on (C5) and (4.10) from Lemma 4.3 yields for some constant C̄3 :=
C(T, M , N) and any ν ∈]0,ν0]

T̃3(N , n,ν)≤
Æ

2Nk−2
0 L1

�

E
h

1GN ,ν (T )

∫ T

0

‖u0
h(s)− u0

h(s̄n)‖2 ds
i�

1
2
�

E
∫ T

0

|hν(s)− h(s)|20 ds
�

1
2
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≤ C̄3 2−
n
4 . (4.30)

The Hölder regularity (C5) imposed on σ(., u) and the Cauchy-Schwarz inequality imply that

T̃2(N , n,ν)≤ C
p

N2−nγE
�

1GN ,ν (T )

∫ T

0

�

1+ ‖u0
h(s)‖

�

|hν(s)− h(s)|0ds
�

≤ C̄22−nγ (4.31)

for some constant C̄2 = C(T, M , N). Using Cauchy-Schwarz’s inequality and (C5) we deduce for
C̄4 = C(T, N , M) and any ν ∈]0,ν0]

T̃4(N , n,ν)≤ E
h

1GN ,ν (T ) sup
1≤k≤2n

�

K̄0+ K̄1|u0
h(tk)|2

�
1
2

∫ tk

tk−1

|hν(s)− h(s)|0 ds ‖Uν(tk)‖ k4α−1
0

i

≤ C(N) E
�

sup
1≤k≤2n

∫ tk

tk−1

�

|hν(s)|0+ |h(s)|0
�

ds
�

≤ C̄4 2−
n
2 . (4.32)

Finally, note that the weak convergence of hν to h implies that as ν → 0, for any a, b ∈ [0, T], a < b,

the integral
∫ b

a
hν(s)ds →

∫ b

a
h(s)ds in the weak topology of H0. Therefore, since the operator

σ(tk, u0
h(tk)) is compact from H0 to H, we deduce that for every k,

�

�

�σ(tk, u0
h(tk))

�

∫ tk

tk−1

hν(s)ds−
∫ tk

tk−1

h(s)ds
�
�

�

�

H
→ 0 as ν → 0.

Hence a.s. for fixed n as ν → 0, T̄5(N , n,ν) → 0 while T̄5(N , n,ν) ≤ C(K̄0, K̄1, N , n, M). The
dominated convergence theorem proves that E(T̄5(N , n,ν))→ 0 as ν → 0 for any fixed n, N .

This convergence and (4.28)–(4.32) complete the proof of (4.27). Indeed, they imply that for any
fixed N ≥ 1 and any integer n≥ 1

limsup
ν→0
E
h

1GN ,ν (T ) sup
0≤t≤T

|T5(t,ν)|
i

≤ CN ,T,M 2−n( 1
4
∧γ).

for some constant C(N , T, M) independent of n. Since n is arbitrary, this yields for any integer N ≥ 1
the convergence property (4.27) holds. By the Markov inequality, we have for any δ > 0

P
�

sup
0≤t≤T

‖Uν(t)‖α > δ
�

≤ P(GN ,ν(T )
c) +

1

δ2E
�

1GN ,ν (T ) sup
0≤t≤T

‖Uν(t)‖2α
�

.

Finally, (4.20) and (4.21) yield that for any integer N ≥ 1,

lim sup
ν→0
P
�

sup
0≤t≤T

‖Uν(t)‖α > δ)≤ C(T, M ,δ)N−1,

for some constant C(T, M ,δ) which does not depend on N . Letting N →+∞ concludes the proof of
the proposition.

The following compactness result is the second ingredient which allows to transfer the LDP fromp
νW to uν . Its proof is similar to that of Proposition 4.4 and easier; it will be sketched (see also
[16], Proposition 4.4).
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Proposition 4.5. Suppose that the constants a, b,µ defining B satisfy the condition a(1+µ2)+bµ2 = 0,
σ satisfies the conditions (C5) and (C6) and let α ∈ [0, 1

4
]. Fix M > 0, ξ ∈ V and let KM = {u0

h : h ∈
SM}, where u0

h is the unique solution in C ([0, T], V ) of the deterministic control equation (4.4). Then
KM is a compact subset of X =C ([0, T], V ) endowed with the norm ‖u‖X = sup0≤t≤T ‖u(t)‖α.

Proof. To ease notation, we skip the superscript 0 which refers to the inviscid case. By Theorem 3.1,
KM ⊂C ([0, T], V ). Let {un} be a sequence in KM , corresponding to solutions of (4.4) with controls
{hn} in SM :

dun(t) + B(un(t))d t = σ(t, un(t))hn(t)d t, un(0) = ξ.

Since SM is a bounded closed subset in the Hilbert space L2(0, T ; H0), it is weakly compact. So
there exists a subsequence of {hn}, still denoted as {hn}, which converges weakly to a limit h ∈
L2(0, T ; H0). Note that in fact h ∈ SM as SM is closed. We now show that the corresponding
subsequence of solutions, still denoted as {un}, converges in X to u which is the solution of the
following “limit” equation

du(t) + B(u(t))d t = σ(t, u(t))h(t)d t, u(0) = ξ.

Note that we know from Theorem 3.1 that u ∈ C ([0, T], V ), and that one only needs to check that
the convergence of un to u holds uniformly in time for the weaker ‖ · ‖α norm on V . To ease notation
we will often drop the time parameters s, t, ... in the equations and integrals. Let Un = un−u; using
(2.12) and (C6), we deduce that for t ∈ [0, T],

‖Un(t)‖2α =−2

∫ t

0

�

AαB(un(s))− AαB(u(s)) , AαUn(s)
�

ds

+ 2

∫ t

0

n�

Aα
�

σ(s, un(s))−σ(s, u(s))
�

hn(s) , AαUn(s)
�

+
�

Aασ(s, u(s))
�

hn(s)− h(s)
�

, AαUn(s)
�

o

ds

≤ 2C

∫ t

0

‖Un(s)‖2α
�

‖un(s)‖+ ‖u(s)‖
�

ds+ 2L3

∫ t

0

‖Un(s)‖2α|hn(s)|0 ds

+ 2

∫ t

0

�

σ(s, u(s)) [hn(s)− h(s)] , A2αUn(s)
�

ds. (4.33)

The inequality (3.4) implies that there exists a finite positive constant C̃ such that

sup
n

sup
0≤t≤T

�

‖u(t)‖2+ ‖un(t)‖2
�

= C̃ . (4.34)

Thus Gronwall’s lemma implies that

sup
0≤t≤T

‖Un(t)‖2α ≤ exp
�

2CC̃ + 2L3

p
M T
�

�
∑

1≤i≤5

I i
n,N , (4.35)

where, as in the proof of Proposition 4.4, we have:

I1
n,N =

∫ T

0

�

�

�

σ(s, u(s)) [hn(s)− h(s)] , A2αUn(s)− A2αUn(s̄N )
�

�

� ds,
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I2
n,N =

∫ T

0

�

�

�

�

�

σ(s, u(s))−σ(s̄N , u(s))
�

[hn(s)− h(s)] , A2αUn(s̄N )
�
�

�

� ds,

I3
n,N =

∫ T

0

�

�

�

�

�

σ(s̄N , u(s))−σ(s̄N , u(s̄N ))
�

[hn(s)− h(s)] , A2αUn(s̄N )
�
�

�

� ds,

I4
n,N = sup

1≤k≤2N
sup

tk−1≤t≤tk

�

�

�

�

σ(tk, u(tk))

∫ t

tk−1

(hn(s)− h(s))ds , A2αUn(tk)
�
�

�

�,

I5
n,N =

∑

1≤k≤2N

�

�

�

�

σ(tk, u(tk))

∫ tk

tk−1

[hn(s)− h(s)] ds , A2αUn(tk)
�
�

�

�.

The Cauchy-Schwarz inequality, (4.34), (C5) and (4.10) imply that for some constants Ci , i =
0, · · · , 4, which depend on k0, K̄i , L̄1, C̃ , M and T , but do not depend on n and N ,

I1
n,N ≤ C0

�

∫ T

0

�

‖un(s)− un(s̄N )‖2+ ‖u(s)− u(s̄N )‖2
�

ds
�

1
2
�

∫ T

0

|hn(s)− h(s)|20ds
�

1
2

≤ C1 2−
N
2 , (4.36)

I3
n,N ≤ C0

�

∫ T

0

‖u(s)− u(s̄N )‖2ds
�

1
2 2
p

M ≤ C3 2−
N
2 , (4.37)

I4
n,N ≤ C0 2−

N
2

�

1+ sup
0≤t≤T

‖u(t)‖
�

sup
0≤t≤T

�

‖u(t)‖+ ‖un(t)‖
�

2
p

M ≤ C4 2−
N
2 . (4.38)

Furthermore, the Hölder regularity of σ(., u) from condition (C5) implies that

I2
n,N ≤C̄2−Nγ sup

0≤t≤T

�

‖u(t)‖+ ‖un(t)‖
�

×
∫ T

0

(1+ ‖u(s)‖)(|h(s)|0+ |hn(s)|0) ds ≤ C2 2−Nγ. (4.39)

For fixed N and k = 1, · · · , 2N , as n → ∞, the weak convergence of hn to h implies that of
∫ tk

tk−1
(hn(s)−h(s))ds to 0 weakly in H0. Since σ(tk, u(tk)) is a compact operator, we deduce that for

fixed k the sequence σ(tk, u(tk))
∫ tk

tk−1
(hn(s)−h(s))ds converges to 0 strongly in H as n→∞. Since

supn,k ‖Un(tk)‖ ≤ 2
p

C̃ , we have limn I5
n,N = 0. Thus (4.35)–(4.39) yield for every integer N ≥ 1

limsup
n→∞

sup
t≤T
‖Un(t)‖2α ≤ C2−N( 1

2
∧γ).

Since N is arbitrary, we deduce that sup0≤t≤T ‖Un(t)‖α → 0 as n → ∞. This shows that every
sequence in KM has a convergent subsequence. Hence KM is a sequentially relatively compact subset
of X . Finally, let {un} be a sequence of elements of KM which converges to v in X . The above
argument shows that there exists a subsequence {unk

, k ≥ 1} which converges to some element
uh ∈ KM for the uniform topology on C ([0, T], V ) endowed with the ‖ · ‖α norm. Hence v = uh, KM
is a closed subset of X , and this completes the proof of the proposition.

Proof of Theorem 4.2: Propositions 4.5 and 4.4 imply that the family {uν} satisfies the Laplace
principle, which is equivalent to the large deviation principle, in X defined in (4.7) with the rate
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function defined by (4.8); see Theorem 4.4 in [4] or Theorem 5 in [5]. This concludes the proof of
Theorem 4.2. �
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