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1 Introduction

In this paper we introduce a point process representation of the genealogy of a random tree which we
use to study asymptotics for a certain classical model of random trees. To explain the point process
representation consider a branching population with one particle being distinguished. Say that at a
fixed time t particles belong to the same family, if they have the same most recent common ancestor
with the distinguished particle. This relationship structure can be represented by a point process on
(0, t]×{1, 2, . . .} where a point has as its coordinates the minimal (backwards) time that family members
have a common ancestor with the distinguished particle and the family size at t. Here we study limits of
such point processes representing a critical single- or multitype Galton-Watson tree size-biased according
to the number of particles at time t, where the distinguished particle is picked purely at random from
the population at t.

In the single-type case we show that the Poisson point process Ψt representing the family structure of
the size-biased Galton-Watson tree has a weak limit Ψ, say. The intensity of the Poisson point process
Ψ reflects the asymptotic behavior of critical Galton-Watson branching processes and explains the Lévy-
Khinchin representation of the limiting gamma distribution for the rescaled population size at t.

We then discuss the case where the particles may have different types and mutate at a fixed positive
rate µ to a new type not present so far. Let Ψµ

t be the point process representing the subpopulation with
the type of the distinguished particle at time t. Our main result states that the rescaled point process
Ψµ

t converges in distribution as first t → ∞ and then µ → 0, and identifies the limiting point process as
a random portion RUΨ of the weak limit Ψ from the single-type case. Here the relative size U is uniform
on (0, 1), independent of Ψ, and RU denotes the restriction to the time period (0, U ]. This result and a
scaling property of Ψ are applied to obtain an exponential limit law for the size of the distinguished type
in equilibrium.

In Section 2 we first review the decomposition of the size-biased Galton-Watson tree along the distin-
guished line of descent of a particle chosen purely at random and give a precise description of its point
process representation [formula (2.7)]. We then derive the limit laws for the single-type case. The
multitype case is contained in Section 3.

Size-biased Galton-Watson trees arise as so-called Palm trees in branching particle systems [4, 13] and
as limits of the pedigree of a randomly selected particle in a large population [11, 12]. They are closely
related to Galton-Watson trees conditioned on non-extinction (see the remark at the end of Section 2)
or on large total population size. The genealogy of critical Galton-Watson trees conditioned on non-
extinction has been studied in [6, 8] and later in the super process context, see e.g. [15]. Galton-Watson
trees conditioned on large total population size have been shown to converge to some limiting continuum
tree [1]. For spinal decompositions and related constructions of random family trees, see e.g. [2, 9, 16].

2 The size-biased Galton-Watson tree

Consider a critical binary continuous-time Galton-Watson branching process (Zt)t≥0 starting with a single
founding ancestor. In such a process particles have independent exponential lifetimes with rate one, say,
and produce either two or no offspring with probability p0 = p2 = 1/2, the lifetimes and offspring numbers
being independent (for background of Galton-Watson processes, see e.g. [3]). Let T be the random family
tree obtained by having one edge for each particle produced with the length of an edge being the particle’s
lifetime. We think of T as a rooted planar tree with the distinguishable offspring of each particle ordered
left and right. T is identified by its shape [T ] and the collection of the particles’ lifetimes Li, 1 ≤ i ≤ n(T ).
Here n(T ) is the total progeny, i.e. the number of particles ever produced (including the root), and edges
are labeled in some fixed deterministic manner, e.g. according to a depth-first search procedure (for a
formal description of the space of trees we refer to [2, 17]). By the shape [T ] of a tree T we mean the
tree obtained from T by setting all edges to constant length. See Figure 1 for an example of a realization
of T .
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Figure 1: A realization t of the Galton-Watson tree T. The tree t has total progeny n(t) = 7. The left child of

the founding ancestor at the bottom of the tree has no children, the right child has two children. The horizontal

lines are merely to indicate connections.

For a rooted binary tree t with edge lengths `i, 1 ≤ i ≤ n(t), let T ∈ dt be the event that T has shape
[t] and edge lengths in [`i, `i + d`i). Since the offspring numbers and exponential lifetimes are assumed
to be i.i.d. we have

P(T ∈ dt) = P([T ] = [t]) P(T ∈ dt | [T ] = [t])

= 2−n(t) exp
(
−

n(t)∑
i=1

`i

)
d`1 · · · d`n(t). (2.1)

Note that the distribution of T depends on [T ] only through n(T ), that is any shape with fixed total
progeny is equally likely. By the assumed criticality, T is almost surely finite, which in particular means
that the weights in (2.1) sum to 1.

The law of the size-biased critical binary continuous-time Galton-Watson tree T̂t is defined as

P(T̂t ∈ dt) = zt(t) P(T ∈ dt), t ≥ 0, (2.2)

where zt(t) is the number of edges at height t of the tree t (note that, by the assumed criticality,
the normalizing constant Ezt(T ) on the right-hand side of (2.2) equals 1, hence T̂t is really distributed
according to a probability law). Relation (2.2) says that a tree with population size k at time t is chosen
k times as likely as if sampling were according to Galton-Watson measure. In particular, if Ẑt = zt(T̂t)
then Ẑt has the size-biased distribution of Zt = zt(T ), that is,

P(Ẑt = k) = k P(Zt = k), k ≥ 0. (2.3)

The size-biased Galton-Watson tree T̂t is a finite random tree of minimum height t. The tree is no longer
symmetric about rehanging subtrees, which means that particles no longer evolve independently of each
other nor homogeneously in time. However, as can be seen from the following explicit construction, the
size-biased tree T̂t has a transparent structure if decomposed along the line of descent of a particle V, say,
chosen purely at random from the population at time t. We construct a random binary continuous-time
tree T ∗

t and a random edge V ∗ of T ∗
t at height t such that the pair (T ∗

t , V ∗) has distribution L(T̂t, V ).
We start with the construction of the line of descent of the distinguished particle V ∗ alive at t. Take the
points T1 < T2 < . . . of a homogeneous rate one Poisson process on (0, t] to be the birth times of V ∗ and
its ascendants (other than the founding ancestor) and let each particle in V ∗’s line of descent (including
V ∗, excluding the founding ancestor) independently have probability 1

2 of being the sibling to the left.
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Otherwise the particle is positioned to the right. Having constructed V ∗’s line of descent we have to
determine the distribution of the descendant tree of V ∗ and of the descendant trees of the siblings of the
particles in the distinguished line of descent: Let the siblings of of the particles in the distinguished line
of descent found ordinary critical binary Galton-Watson trees and attach another independent such tree
at the top (i.e. at height t) of the distinguished line of descent. Call the resulting tree T ∗

t . See Figure 2
for an illustration of (T ∗

t , V ∗).
Note that particles not in the distinguished line of descent evolve as in an ordinary critical binary Galton-
Watson branching process and so does the distinguished particle V ∗ after time t. We remark that V ∗

cannot be recovered from T ∗
t unless zt(T ∗

t ) = 1. In fact, the distinguished edge V ∗ is distributed uniformly
on the edges of T ∗

t at height t,
P(V ∗ = e |T ∗

t = t) = zt(t)−1, (2.4)

where e is any edge at height t of the finite tree t with minimum height t. The marginal distribution of
the pair (T ∗

t , V ∗) on the space of trees is the size-biased distribution (2.2),

T ∗
t

d= T̂t. (2.5)

[Indeed, let t have edge lengths `i, 1 ≤ i ≤ n(t), and assume for convenience that e’s ascendants are
labeled as e1 = founding ancestor, e2, . . . , ej = e and that `1, . . . , `j are the corresponding lifetimes.
Recall that the infinitesimal probability that a rate one Poisson process on (0, t] has exactly j − 1 points
located in [

∑m
i=1 `i,

∑m
i=1 `i + d`m), m = 1, . . . , j − 1, is exp(−t)d`1 · · · d`j−1. Also, note that each of the

2j−1 possible left/right arrangements of the particles in the distinguished line of descent is equally likely.
Since the subtrees founded by particles off the distinguished line of descent have distribution (2.1) and
the remaining lifetime of e after time t is

∑j
i=1 `i − t, we see from the construction of (T ∗

t , V ∗) that

P(T ∗
t ∈ dt, V ∗ = e) = exp(−t)d`1 · · · d`j−1 2−(j−1)

· 1
2 exp

(
−

( j∑
i=1

`i − t
))

d`j

n(t)∏
i=j+1

1
2 exp(−`i)d`i

= 2−n(t) exp
(
−

n(t)∑
i=1

`i

)
d`1 · · · d`n(t) = P(T ∈ dt). (2.6)

Summing over all zt(t) edges of t at height t proves (2.5). Relation (2.4) follows from the fact that the
right-hand side of (2.6) does not depend on e.]

Remark. The construction above is a special case of the construction of the conditioned family tree
of a branching particle system described in [4] and is easily extended to general offspring distributions
with finite mean. It is intimately related to the (infinite) size-biased discrete-time Galton-Watson tree
constructed in [16].

To define the degree of relationship that a particle in T̂ t alive at time t has with the distinguished
particle V we introduce the notion of a particle’s (genealogical) distance from V . A particle is said
to have distance s from V , if the particle’s most recent common ancestor with V died at time t − s.
Write Ẑt(s), 0 < s ≤ t, for the number of particles at t with distance s from V. We may decompose the
population at some fixed time t as

Ẑt = 1 +
∑

0<s≤t

Ẑt(s).

Keeping track of the particles’ distances from V we represent the relationship structure (or genealogy)
of the population at t by the random finite set

Ψt = { (s, Ẑt(s)) : 0 < s ≤ t, Ẑt(s) > 0}. (2.7)
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Figure 2: Schematic representation of the random tree T ∗
t and the random edge V ∗ of T ∗

t at height t. The birth

times T1 < T2 < . . . of V ∗ and its ascendants form a Poisson point process on (0, t]. The subtrees which grow

to the sides of the distinguished line of descent and out at the top are independent copies of an ordinary critical

binary Galton-Watson tree.

We will identify the set Ψt and the simple point process
∑

(s,z)∈Ψt
δ(s,z), i.e. we do not distinguish

between the random measure and its support. Note that we have replaced the complex structure of a
random tree with an object that is much simpler to analyse and yet contains essential information on the
relationship between particles.

The following statement is evident from the construction of (T ∗
t , V ∗) and the equality in law of (T̂ t, V )

and (T ∗
t , V ∗). We use notations N = {1, 2, . . .} and R

+ = (0,∞).

Lemma 2.1. For any t > 0, the random set Ψt is a simple Poisson point process on (0, t] × N with
intensity measure

νt(ds × {k}) = ds P(Zs = k). (2.8)

Let R s, s > 0, denote the restriction operator,

R s A = A ∩ (0, s] × R
+ , ∀A ⊂ R

+ × R
+ . (2.9)

Since the Ψt satisfy the consistency condition

Ψs
d= R sΨt, 0 < s ≤ t < ∞,

all Ψt, t > 0, can be constructed from one single Poisson point process Ψ∞ on R
+ × N with intensity

measure ν∞(ds × {k}) = ds P(Zs = k).

A suitable rescaling of Ψt is to speed up time by t and assign mass t−1 to each particle. The asymptotic
behavior of the rescaled point process

t−1Ψt = {(t−1s, t−1z) : (s, z) ∈ Ψt}

is described by the following Proposition.

Proposition 2.2. As t → ∞,

t−1Ψt
d−→ Ψ,

5



where Ψ is a simple Poisson point process on (0, 1] × R
+ with intensity

ν(ds dz) =
4
s2

exp
(
− 2z

s

)
ds dz. (2.10)

Here, d→ denotes convergence in distribution, which is just weak convergence of the joint distributions of
(t−1Ψt(Bi), 1 ≤ i ≤ n) for every finite family of relatively compact Borel subsets Bi of (0, 1] × R

+ .

Proof. Regard t−1Ψt as a point process on (0, 1] × R
+ rather than on (0, 1] × t−1

N. By the mapping
theorem for Poisson point processes (see e.g. [14], p. 18), t−1Ψt is a simple Poisson point process with
intensity measure ν̃t = νt(t · ). Hence, it is sufficient to show ν̃t(B) → ν(B) for every relatively compact
Borel subset B of (0, 1]×R

+ . The critical binary Galton-Watson process (Zs)s≥0 is a linear growth birth
and death process whose distribution is explicitly known (see e.g. [7], p. 480). For any s ≥ 0,

P(Zs > 0) =
2

2 + s
; (2.11)

P(Zs ≥ k |Zs > 0) =
( s

2 + s

)k−1

, k ≥ 1. (2.12)

Using Lemma 2.1 and relations (2.11) and (2.12), we obtain for any rectangle C = [u1, u2] × [z,∞) ⊂
(0, 1] × R

+ ,

lim
t→∞ ν̃t(C) = lim

t→∞

u2t∫
u1t

ds P(Zs ≥ zt)

= lim
t→∞

u2∫
u1

tds P(Zst > 0)P(Zst ≥ zt |Zst > 0)

=

u2∫
u1

2
s

exp
(
−2z

s

)
ds = ν(C) < ∞. (2.13)

Since the rectangles C generate the σ-algebra of Borel subsets of (0, 1] × R
+ , we in particular have

ν̃t(B) → ν(B) for every relatively compact Borel subset B of (0, 1] × R
+ . This completes our proof of

Proposition 2.2. �

Remark. Note that to obtain (2.13) we have only used the asymptotic decay of the non-extinction
probability P(Zt > 0) and the exponential limit law of Zt conditioned on Zt > 0 following from (2.12).
This asymptotic behavior holds for any critical Galton-Watson branching process with finite variance and
is commonly referred to as Kolmogorov’s asymptotic and Yaglom’s exponential limit law (see e.g. Section
I.9 in [3]).

The limiting point process Ψ from Proposition 2.2 satisfies the following scaling property which we
state for further reference.

Lemma 2.3. For any 0 < u ≤ 1,

RuΨ d= uΨ. (2.14)

Proof. The Poisson point process RuΨ has intensity 1(0,u](s)ν(ds dz) which coincides with ν(u−1· ),
the intensity of the Poisson point process uΨ. �

6



The following result describes the asymptotic behavior of Ẑt as t → ∞.

Proposition 2.4. The number of edges at height t in the size-biased Galton-Watson tree T̂t has a gamma
limit law with shape parameter 2,

lim
t→∞P(t−1Ẑt ≤ x) =

x∫
0

4y e−2y dy, x ≥ 0. (2.15)

Proof. Let g(A) =
∑

(s,z)∈A z for a countable set A ⊂ R
+ ×R

+ . Note that g(Ψt) = Ẑt − 1 is the total
number of particles at time t other than the distinguished particle itself. We first show that g(Ψ) has
distribution as in (2.15). Write p(A) for the projection of A onto its mass coordinate,

p(A) = {z | ∃ s : (s, z) ∈ A}.
By the mapping theorem p(Ψ) is a simple Poisson point process on R

+ with intensity measure νp =
ν((0, 1] × · ). Using a change of variables u = s−1 we obtain

νp(dz) = 4

1∫
0

ds

s2
exp

(
−2z

s

)
dz

= 4

∞∫
1

du exp(−2zu) dz = 2
e−2z

z
dz. (2.16)

It is well-known and easily verified that να(dz) = z−1e−αz dz is the Lévy measure of the gamma process
with scale parameter α (see e.g. [18], p. 80). Consequently, g(Ψ) =

∑
z∈p(Ψ) z has the gamma distribution

as in (2.15) with scale and shape parameter 2, respectively.
To establish the weak convergence

t−1g(Ψt)
d−→ g(Ψ) as t → ∞, (2.17)

use (2.16) to deduce

Eg(Ψ) =
∫ ∞

0

z νp(dz) = 1

and note that Lemma 2.1 implies

Eg(Ψt) =
∫ t

0

ds EZs = t.

Hence,
lim

t→∞ t−1Eg(Ψt) = Eg(Ψ).

Assertion (2.17) now follows from Proposition 2.2 and the fact that t−1g(Ψt) = g(t−1Ψt). This completes
our proof of Proposition 2.4. �

Remarks. An alternate proof of Proposition 2.4 is as follows. Observe that Ẑt can also be obtained
by size-biasing the law of Zt conditioned on Zt > 0. In view of Yaglom’s exponential limit law (com-
pare (2.12)) one simply has to justify that limiting and size-biasing procedures may be interchanged. (In
general, a sufficient condition for the interchange is convergence of the means.) However, note that our
proof of Proposition 2.4 explains the Lévy-Khinchin representation of the limiting gamma distribution.
Let T ′

t be a critical binary Galton-Watson tree conditioned on non-extinction at time t. The genealogy
of T ′

t with the left-most particle at t being distinguished has a point process representation analogous
to (2.7) (see [10]). This point process Ψ′

t, say, is a Poisson point process with intensity ν′
t = 1

2νt, i.e.,
the point process Ψt representing the size-biased critical Galton-Watson tree is the superposition of two
independent copies of Ψ′

t, the point process representing the conditioned Galton-Watson tree.
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V

Figure 3: A realization of the multitype size-biased Galton-Watson tree with the distinguished particle V. The

asterisks on the edges indicate mutation events. The solid subtree is the component with the type of the distin-

guished particle V at t.

3 Pruning the size-biased Galton-Watson tree

We now suppose that the particles may have different types. While alive particles independently mutate
at rate µ > 0, changing to a new type which was not present so far. (We may take the interval (0, 1) for
the set of possible types.) At birth particles inherit the type of their parent. Mutation and branching
mechanisms are assumed independent. To indicate mutation events we put marks on the edges of the
tree. If a particle mutates at time s, then a mark is put at height s on the edge corresponding to that
particle. (The term “marked tree” is sometimes used for what we call a continuous-time Galton-Watson
tree or, more general, for a tree-indexed Markov process. Here a mark is just meant to be some symbol.)
An edge of length ` has a Poisson number of mutation marks with mean µ`. The positions of the marks
are independent and uniformly distributed on the edge. If we cut up the edges of the tree at mutation
marks, then the tree falls to components of identical type (see Figure 3). For an account of pruned
discrete-time Galton-Watson trees, see [2].

Our aim is to explore the genealogy of the subpopulation with the type of the distinguished particle V
at t which is described by the component of the tree containing V (respectively, the piece of the edge V
at height t, if the edge is cut up). As in the single type case we suppress some of the information
on the relationship between particles and represent the pruned size-biased Galton-Watson tree with a
distinguished particle by the random set

Ψµ
t = {(s, Ẑµ

t (s)) : 0 < s ≤ t, Ẑµ
t (s) > 0}, (3.1)

where Ẑµ
t (s) is the number of particles at time t which at t have the same type as the distinguished

particle V and have distance s from V . If we pass to the limit t → ∞ in (3.1) we obtain a weak
limiting point process Ψµ∞, say. (Indeed, recall from Section 2 that the law of a subtree growing out of
the distinguished line of descent at height t − s does not depend on t. Hence, neither does the law of
Ẑµ

t (s), 0 < s ≤ t.) We will refer to the point process Ψµ
∞ as the equilibrium genealogy. Its law is described

by the following lemma.

8



Lemma 3.1. For any µ > 0,

Ψµ
∞

d= RTµΦµ,

where Tµ is an exponential random variable with rate µ, independent of the simple Poisson point process
Φµ on R

+ × N with intensity measure

ρµ(ds × {k}) = ds P(Zµ
s = k). (3.2)

Here, (Zµ
s )s≥0 is a subcritical binary Galton-Watson branching process with

pµ
2 = 1 − pµ

0 = 1
2 (1 + µ)−1 and lifetime rates 1 + µ.

Proof. By Lemma 2.1 independent critical binary Galton-Watson trees grow out of the distinguished
line of descent at rate one. We claim that if the edges of a critical Galton-Watson tree are cut up at
rate µ, then the component containing the root is a subcritical binary Galton-Watson tree with the
parameters stated in the lemma. Indeed, note that the length of an edge in the pruned tree is the
minimum of two independent exponential random variables X1 and X2 with rates 1 (original lifetime)
and µ (mutation), respectively. The minimum of X1 and X2 has exponential distribution with rate 1+µ.
For the offspring numbers note that a particle in the pruned tree has two children iff it had so before
the pruning procedure and if the particle did not mutate. The first event has probability p2 = 1/2, the
second event independently has probability P(X1 < X2) = (1 + µ)−1. Finally, note that the particles in
some pruned subtree have the same type as the distinguished particle V iff their distance from V is less
than the time since the most recent mutation in the distinguished line of descent. This mutation event
has occurred an independent exponential time Tµ ago. �

For µ > 0 let fµ : R+ × R
+ → (0, 1) × R

+ be defined as

fµ(s, z) = (1 − e−µs, µz).

The following theorem describes the asymptotic behavior of the rescaled equilibrium genealogy fµ(Ψµ
∞)

as the mutation rate µ goes to zero.

Theorem 3.2. As µ → 0,

fµ(Ψµ
∞) d−→ RUΨ,

where Ru, 0 < u ≤ 1, is the restriction operator introduced in (2.9), Ψ is the limiting Poisson point
process from Proposition 2.2, and U has uniform distribution on (0, 1), independent of Ψ.

Proof. In much the same way as in the proof of Proposition 2.2 we first show that

fµ(Φµ) d−→ Ψ as µ → 0. (3.3)

By the mapping theorem fµ(Φµ) is a simple Poisson point process on (0, 1]× R
+ with intensity measure

ρµfµ = ρµ(f−1
µ ( · )), where f−1

µ is the inverse of fµ. To prove (3.3) it is sufficient to show ρµfµ(B) → ν(B)
for every relatively compact Borel subset B of (0, 1] × R

+ . For any s ≥ 0 the distribution of Zµ
s is given

by (see e.g. [7], p. 480)

P(Zµ
s > 0) =

2µe−µs

2µ + 1 − e−µs
;

P(Zµ
s ≥ k |Zµ

s > 0) =
( 1 − e−µs

2µ + 1 − e−µs

)k−1

, k ≥ 1.

9



Hence, if we denote by h−1
µ the inverse of hµ(s) = 1− e−µs, s ≥ 0, and let bαc denote the integer part of

α ∈ R
+ , then

P(Zµ

h−1
µ (s)

> 0) =
2µ(1 − s)
2µ + s

; (3.4)

P(Zµ

h−1
µ (s)

≥ µ−1z |Zµ

h−1
µ (s)

> 0) =
( s

2µ + s

)bµ−1zc−1

. (3.5)

Using (3.4), (3.5) and the fact that h′
µ(s) = µ (1 − hµ(s)), we obtain for any rectangle C = [u1, u2] ×

[z,∞) ⊂ R
+ × R

+

lim
µ→0

ρµfµ(C) = lim
µ→0

u2∫
u1

dh−1
µ (s) P(Zµ

h−1
µ (s)

≥ µ−1z)

= lim
µ→0

u2∫
u1

ds

h′
µ(h−1

µ (s))
P(Zµ

h−1
µ (s)

> 0)

· P(Zµ

h−1
µ (s)

≥ µ−1z |Zµ

h−1
µ (s)

> 0)

= lim
µ→0

u2∫
u1

ds

µ(1 − s)
2µ (1 − s)

2µ + s

(
1 − 2µ

2µ + s

)bµ−1zc−1

=

u2∫
u1

2ds

s
exp

(
− 2z

s

)
= ν(C) < ∞,

which establishes assertion (3.3). Now observe that

fµ ◦ R t = Rhµ(t) ◦ fµ, ∀µ, t > 0,

and that hµ(Tµ) d= U since hµ is the distribution function of Tµ. Hence, Lemma 3.1 implies

fµ(Ψµ
∞) d= Rhµ(Tµ)fµ(Φµ) d= RUfµ(Φµ),

where U is independent of Φµ. In view of (3.3) the claim of Theorem 3.2 now follows by passing to the
limit µ → 0. �

Let Ẑµ∞ = 1 + g(Ψµ∞) denote the number of particles with the distinguished type in equilibrium. Our
final result describes the asymptotic behavior of Ẑµ∞ as the mutation rate µ goes to zero.

Theorem 3.3. The population size of the distinguished type in equilibrium has an exponential limit law,

lim
µ→0

P(2µẐµ
∞ ≥ x) = exp(−x), x ≥ 0.

Proof. Note that µg(Ψµ∞) a.s.= g(fµ(Ψµ∞)) for any µ > 0. Hence, Theorem 3.2 implies

µẐµ
∞

d→ g(RUΨ) as µ → 0,

if we show
lim
µ→0

µ Eg(Ψµ
∞) = Eg(RUΨ). (3.6)
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By the scaling property of Ψ (Lemma 2.3) we have

g(RUΨ) d= g(U Ψ) a.s.= Ug(Ψ),

that is g(RUΨ) is an independent uniform contraction of a gamma distributed random variable with
shape and scale parameter 2 (Proposition 2.4). Consequently, g(RUΨ) has exponential distribution with
rate two (see this e.g. by considering the interval covering the origin in a homogeneous Poisson process
on R). To verify (3.6) recall that EZµ

s = e−µs (see e.g. [7], p.457). Hence, Lemma 3.1 implies

Eg(Ψµ
∞) =

∞∫
0

P(Tµ ∈ dt)

t∫
0

ds EZµ
s = (2µ)−1 = µ−1Eg(RUΨ),

which completes our proof of Theorem 3.3. �

Remark. It is shown in [5] that the genealogy of the cluster at the origin in the multitype voter model is
asymptotically described by the size-biased Galton-Watson tree. Combining this result with Theorem 3.3
explains a classical result by Sawyer [19] that the size of the type at the origin in the multitype voter
model with mutation approaches an exponential limit distribution.

Acknowledgment. The author is grateful to an anonymous referee for helpful suggestions.
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