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1 Introduction

One dimensional systems are simultaneously the object of the theory of
stochastic processes and the theory of Gibbs measures. The complemen-
tarity of both approaches has yet to be fully exploited. Stochastic processes
are defined on the basis of transition probabilities. A consistent chain is one
for which these probabilities are a realization of the single-site conditional
probabilities given the past. A Gibbs measure is defined in terms of spec-
ifications, which determine its finite-volume conditional probabilities given
the exterior of the volume. In one dimension this implies conditioning both
the past and the future. In this paper we study conditions under which
a stochastic process defines, in fact, a Gibbs measure and, in the opposite
direction, when a Gibbs measures can be seen as a stochastic process.

This type of questions has been completely elucidated for Markov pro-
cesses and fields. See, for instance, Chapter 11 of the treatise by Georgii
(1988). The equivalence, however, is obtained by eigenvalue-eigenvector con-
siderations which are not readily applicable to non-Markovian processes. An-
other approach, based on entropy considerations, has been used by Goldstein
et al (1989) to prove that cellular automata —a class of Markov processes
with alphabets of the form S%* with S finite— are indeed Gibbs states. This
approach, however, is restricted to translation-invariant, or periodic, pro-
cesses. The Gibbsian character of processes with exponentially decreasing
continuity rate is also known. It follows from Bowen’s characterization of
Gibbs measures (Theorem 5.2.4 in Keller, 1998, for instance). No result
seems to be available on the opposite direction, namely on the characteri-
zation of a one-dimensional Gibbs measure for an exponentially summable
interaction as a stochastic process.

In our paper we present both a generalization and an alternative to this
previous work. We directly establish consistency-preserving maps between
specifications and transition probabilities. More precisely, these applications
are between specifications and their analogous for stochastic processes, which
we call left-interval specifications (LIS). The description in terms of LIS is
equivalent to that in terms of transition probabilities, but it offers a setting
that mirrors the statistical mechanical setting of Gibbs measures. In fact, the
use of LIS allows us to “import”, in a painless manner, concepts and results
from statistical mechanics into the theory of stochastic processes. This will
be further exploited in a companion paper (Fernandez and Maillard, 2003).

We consider systems with a finite alphabet, possibly with a grammar,
that is, with exclusion rules such that the non-excluded configurations form
a compact set. We do not assume translation invariance either of the kernels
or of the consistent measures. Such a level of generality is consistent with
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our goal. It is well known that specifications can have non-invariant extremal
consistent mesures even if the specifications are translation-invariant them-
selves. An analogous phenomenon is expected for processes. Furthermore,
in that case, the maps to or from specifications could be measure-dependent
and could lead to non-invariant kernels. As a matter of fact, regimes of this
sort lie outside the scope of the results of this paper, but nevertheless we
allow non-invariance in our formalismin in the hope of future use.

The main limitation of our work is that, in order to insure that the nec-
essary limits are uniquely defined, specifications and processes are required
to satisfy a strong uniqueness condition called hereditary uniqueness condi-
tion (HUC). A second property, called good future (GF) is demanded for
stochastic processes to guarantee some control of the conditioning with re-
spect to the future. HUC is verified, for instance, by specifications satisfying
Dobrushin and boundary-uniformity criteria (reviewed below). Both GF and
HUC are satisfied by a large family of processes, for instance by the chains
with summable variations studied by Harris (1955), Ledrappier (1974), Wal-
ters (1975),Lalley (1986), Berbee (1987), Bressaud et al (1999), .. ..

Our results show that under these hypotheses there exist: (i) a map that
to each LIS associates a specification such that the process consistent with
the former is a Gibbs measure consistent with the latter (Theorem 4.16),
and (ii) a map that to each specification associates a LIS such that the
Gibbs measure consistent with the former is a process consistent with the
latter (Theorem 4.19). If domain and image match, these maps are inverses
of each other. This happens, in particular, in the case of exponentially de-
creasing continuity rates (Theorem 4.22). As part of the proofs, we obtain
estimates linking the continuity rates of LIS and specifications related by
these maps (Theorem 4.21). We also show that the validity of the Dobrushin
and boundary-uniformity criteria for the specification implies the validity of
analogous criteria for the associated stochastic process (Theorem 4.20). Fi-
nally, in Appendix A we show that a system of single-site normalized kernels,
satisfying order-consistency and boundedness properties with respect to an
a-priori measure, can be extended, in a unique manner, to a full specifica-
tion. This generalizes the reconstruction Theorem 1.33 in Georgii (1988).
As this theorem may be of independent interest, we have stated it in rather

general terms, for arbitrary spin space and non-necessarily Gibbsian kernels
(Theorem A.4).
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2 Notation and preliminary definitions

We consider a finite alphabet A endowed with the discrete topology and
o-algebra, and Q a compact subset of A%. The space 2 is endowed with
the projection F of the product c-algebra associated to A%. The space
Q) represents admissible “letter configurations”, where the admissibility is
defined, for instance by some exclusion rule as in Ruelle (1978) or by a
“grammar” (subshift of finite type) as in Walters (1975). For each A C Z,
and each configuration o € A% we denote o, its projection on A, namely the
family (0;)iea € A, We denote

Q) 2 {JAE.AA:EIwEQWith wA:aA}. (2.1)

We denote F the corresponding sub-o-algebra of . When A is an interval,
A = [k,n] with —oo < k < n < +o0, we shall use the “sequence” notation:

Wi 2 W = Wk Wny QF = Qpy, ete. The notation wy oa, where
AN A =), indicates the configuration on AU A coinciding with w; for i € A
and with o; for i € A. In particular, wjl 0] | = Wk, ..., Wn, Ont1, ..., 0m. For

w,o € A%, we note
£ B o
CEWw &= o0,=w;,Vi#] (2.2)

(“o equal to w off 57).

We denote S the set of finite subsets of Z and S, the set of finite intervals
of Z. For every A € S, we denote [, = minA and my = maxA, A_ =
| —00,lp — 1], Ay = [mp+1,+00] and Af) = [ma+1,mp + k| for all k € N*.
The expression limyyy will be used in two senses. For kernels associated to a
LIS (defined below), limyy fa is the limit of the net {fa, {A}res,, acv, C},
for V' an infinite interval of Z. For kernels associated to a specification |,
limaqy ya is the limit of the net {ya, {A}aes, acv, C}, for V an infinite subset
of Z. To lighten up formulas involving probability kernels, we will freely use
p(h) instead of E,(h) for p a measure on ) and h a F-measurable function.
Also p(op) will mean p({w € Q:wp =oa}) for A CZ and o, € Q4.

We start by briefly reviewing the well known notion of specification.

Definition 2.3
A specification v on (Q,F) is a family of probability kernels {va} s,
ya © F x Q — [0, 1] such that for all A in S,

(a) Foreach Ae F, va(A]-) € Fpe.
(b) For each B € Fye and w € Q, YA(B |w) = 1p(w).

148



(c) Foreach A € S:A DA,
TATA = YA (2.4)

The specification is:
(i) Continuous on () if for all A € S and all o5 € Q5 the functions
Q5w — n(oa|w) (2.5)
are continuous.
(ii) Non-null on Q if ya(wp | w) > 0 for each w € Q and A € S.

Property c) is usually referred to as consistency. There and in the sequel we
adopt the standard notation for composition of probability kernels (or of a
probability kernel with a measure). For instance, (2.4) is equivalently to

[ m@r g 10)7sldr 10) = [ bo)atdo| )

for each F-measurable function h and configuration w € Q.
Remarks

2.6 A Markov specification of range k corresponds to the particular case in
which the applications (2.5) are in fact Fjy, -measurable, where JxA =
{i € A°: |i — j| < k for some j € A}.

2.7 In the sequel, we find useful to consider also the natural extension of the
kernels v, to functions F x A% — [0, 1] such that v (- |w) = 0 if w ¢ Q.
We shall not distinguish notationally both types of kernels.

Definition 2.8
A probability measure p on (£, F) is said to be consistent with a specifi-
cation vy if

pyn = p VAES. (2.9)
The family of these measures will be denoted G (7).

Remarks

2.10 A Markov field of range k is a measure consistent with a Markov spec-
ification of range k.

2.11 A Gibbs measure on (2, F) is a measure p consistent with a specifica-
tion that is continuous and non-null on 2. The SRB measures (Bowen,
1975) are particular one-dimensional examples.
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We now introduce the analogous notion for processes. Due to the nature
of the defining transition probabilities, the corresponding finite-region kernels
must apply to functions measurable only with respect to the region and its
past. Furthermore, finite intervals already suffice.

Definition 2.12
A left interval-specification (LIS) f on (Q,F) is a family of probability
kernels {fa}ncs,» fa © Femy x @ — [0,1] such that for all A in S,

(a) Foreach A € Fep,, fa(A]-) is Fp_-measurable.
(b) Foreach Be Fy_ andw € Q, fo(B|w)= 1g(w).
(c) Foreach A€ Sy,:ADA,

Iafa = fa over Fep,, (2.13)

that is, (fafa)(h | w) = fa(h | w) for each F<pax a-measurable function
h and configuration w € ().

The LIS is:

(i) Continuous on Q if for all A € S, and all o5 € Q) the functions
No5w — falop|w) (2.14)
are continuous.
(ii) Non-null on Q if fa(wr |wa_) >0 for all A € S, and w € Q4.

(iii) Weakly non-null on Q if for all A € Sy, there exists a oy € Qp such
that fa(oa | W) > 0 for all w2t € Q! such that o) W' € Q™.

—00

Remarks
2.15 A Markov LIS of range k is a LIS such that each of the functions (2.14)
is measurable with respect to Fp, _ 1, -1]-

2.16 As for specifications, in the sequel we shall not distinguish notationally
the kernels fy from their extensions on F,,, x A% — [0, 1] such that

(- lw)=0ifwé Q.

Definition 2.17
A probability measure p on (2, F) is said to be consistent with a LIS f if
for each A € S,

pfn = p over Fop,. (2.18)

The family of these measures will be denoted G(f).
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Remarks
2.19 A Markov chain of range k is a measure consistent with a Markov LIS

of range k.

2.20 Measures consistent with general, non-necessarily Markovian LIS were
initially called Chains with complete connections by Onicescu and Mi-
hoc (1935). These objects have been reintroduced several times in
the literature under a variety of names: chains of infinite order (Har-
ris, 1955), g-measures (Keane, 1972), uniform martingales (=random
Markov processes) (Kalikow, 1990), .. ..

Finally, we introduce a strong notion of uniqueness needed in the sequel.

Definition 2.21
1) A specification vy satisfies a hereditary uniqueness condition (HUC)
for a family H of subsets of Z if for all (possibly infinite) sets V € 'H
and all configurations w € 0, the specification v*) defined by

AW =l |wve ), YAES, ACV, Ywpe&y € Q,
(2.22)
admits a unique Gibbs measure. The specification satisfies a HUC' if it
satisfies a HUC for H = P(Z).

2) A LIS f satisfies a hereditary uniqueness condition (HUC) if for
all intervals of the form V = [i,+oo[, i € Z, or V = Z, and all configu-
rations w € Q, the LIS (V) defined by

VIO =N lov &), YAES, ACV, Vuyetr €0,
(2.23)

admits a unique consistent chain.

3 Preliminary results

Let us summarize a number of useful properties of LIS and specifications.
First we introduce functions associated to LIS singletons. For a LIS f and a
configuration w € €2, let

filw) = frplwi | 020). (3.1)
In the shift-invariant case, the function fy is a g-function in the sense of
Keane (1972).
The following theorem expresses the equivalence between the description
in terms of LIS and the usual description in terms of transition probabilities
(=LIS singletons).
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Theorem 3.2 (singleton consistency for chains)
Let (g:)icz be a family of measurable functions over (2, F) which enjoy the
following properties

a) Measurability: for every i in Z, g; is F<;-measurable.
(a) ¥ y , gi I8 F<

(b) Normalization: for every i in Z and w € Q"

—007

Z gi(wo;) = 1. (3.3)

0, EA: woiEQi_oo

Then there exists a unique left interval-specification f = (fa)aes, such that
fi = gi, for all i in Z. Furthermore:

(1) f satistfies (in fact, it is defined by) the property
f[l,m} = f[l,n]f[n+1,m] over fgn (3.4)

foreachl,m,n € Z : 1 <n <m.

(ii) f is non-null on Q if, and only if, so are the functions g;, that is, if and
only if g;(w) > 0 for each i € Z and each w € Q° __.

(iii) f is weakly non-null on (2 if, and only if, so are the functions g;, that is,
if and only if for each i € Z there exists o; € ;3 such that g;(o; Wl >

0 for all W'} € QL such that o;w" L € QO __.

(iv) G(f)=A{p:pnfi=p, foralliinZ}.

The proof of this result is rather simple (it is spelled up in Ferndndez and
Maillard, 2003). The following theorem is the analogous result for specifica-
tions. Let us consider the following functions associated to an specification
7y

(W) 2 yay(wn lwae) 5 %w) 2 W) (3.5)

Theorem 3.6 (singleton consistency for Gibbs measure)
Let (p;);ez be a family of measurable functions over (A%, F) which enjoys
the following properties

(a) Non-nullness on ): for every i in Z, p;(w) =0 <= w ¢ Q.
(b) Order-consistency on Q: for every i,j € Z and w € Q,

pi(w) _ pj(w)

ST pi(Giwgye) o7 (Giwge) Y pi(giwye) ot (05wgy)

g, €EA O'jEA

(3.7)
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(c) Normalization on Q): for every i € Z and w € €,

Z pi (05 wpaye) = 1. (3.8)

o, €A

Then there exists a unique specification v on (£, F) such that v;(w) =
pi(w), for all i in Z. Furthermore,

(i) ~ is non-null on Q: For each A € S, Yz (w) =0 <= w ¢ Q.

(ii) ~ satisfies an order-independent prescription: For each A,T" € S with

' C A°

D (oawae) 15t (Gawae)
oA

Yaur (w)

for all w € €.
(i) G(v)={p:py=pforalliecZ}.
This result will be proved in Appendix A in a more general setting.

For completeness, we list now several, mostly well known, sufficient con-
ditions for hereditary uniqueness. They refer to different ways to bound
continuity rates of transition kernels. We start with the relevant definitions.

Definition 3.10
(i) The k-variation of a Fy;-measurable function f; is defined by

vare(fi) 2 sup{ |fi(w o) = Filol )| e 0o € Qe iy = 01y}

(ii) The interdependence coefficients for a family of probability kernels
™= (W{i})iez, miy « Fi x 0 — [0, 1] are defined by

T (19= 70 (- )] (3.11)

Cij(m) 2 sup
YISY!

£
£=n

for alli,j € Z. Here we use the variation norm and 7?{1-} is the projection
of m;y over {i} that is 7(%{1-} (Alw) £ 7y ({0 € A} |w) for all A € F;
and w € €.

A LIS f on (Q,F) satisfies a HUC if it satisfies one of the following
conditions:
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e Harris (Harris 1955; Coelho and Quas, 1998): The LIS f is stationary,
weakly non-null on € and

> ﬁ (1 - %Vark(fo)) = +o0.

n>1 k=1

e Berbee (1987): The LIS f is stationary, non-null and

Zexp <— Zvark(log f0)> = +00.

n>1

e Stenflo (2002): The LIS f is stationary, non-null and

ZHAk(fO) = +00

n>1 k=1

where Ay (fy) £ inf{}, camin (fo (W), fo (0Zhwo)) 1wy =04}

e Johansson and Oberg (2002): The LIS f is stationary, non-null and

Zvari(log fo) < +o0.

k>0

e One-sided Dobrushin (Fernandez and Maillard, 2003): For each
i € Z, Z Ci;(f) <1 and f is continuous on €.

J<i

e One-sided boundary-uniformity (Fernandez and Maillard, 2003):
There exists a constant K > 0 so that for every cylinder set A =
{z]"} € Q" there exists an integer n such that

Jnm(A16) > K flam)(A|n) foral§ne. (3.12)

The last two conditions, proven in a companion paper (Ferndndez and
Maillard, 2003), are in fact adaptations of the following well known criteria
for specifications.

A specification v on (2, F) satisfies a HUC if it satisfies one of the fol-
lowing conditions:

e Dobrushin (1968), Lanford (1973): supz Cij(v) <1 and ~ contin-
i€z <=
uous. ’c
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e Georgii (1974) boundary-uniformity: There exists a constant K >
0 so that for every cylinder set A € F there exists A € S, such that

YA &) > Ky(Aln) forall{,neQ.

We remark that the conditions involve no non-nullness assumption.

4 Main results

For a LIS f on Q let us denote, for each A € S, k > m, and w € QF

() = inf {fi (Oaw o) toawsoma € A} (A1)
and
55 (fr) = ZSUP {‘fk (wﬁoo) — Jk (Ofoo)\ oeQf o Z w} . (4.2)
jeA

Similarly, for a specification vy on €2, let us denote, for each w € {2 and each
k,jeZ

¢ () = o { (05 001) : 05005 € Q) (4.3)
and 2
67 () 2 sup {Ju(@) = (o) o€ Q o Zwh . (4.4)

Definition 4.5
(i) A LIS f on Q is said to have a good future (GF) if it is non-null

on () and for each A € S, there exists a sequence {5/16\}%1\1 of positive
numbers such that >, et < 400 for which
sup R (fi) POR(fr) < e (4.6)

wEQ'ioo
for each k > mp.

(ii) A LIS f on () is said to have an exponentially-good future (EGF)
if it is non-null on ) and there exists a real a > 1 such that

limsup a*~ sup ¢ fe) 00 (fr) < o0 (4.7)

k—oo wGQ’ioo

for all j € 7.
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(iii) A specification v on §) is said to have an exponentially-good future
(EGF) if it is non-null on € and there exists a real a > 1 such that

lim sup a*~7 sup ()67 () < o0 (4.8)
wel

k—o0

for all j € 7.

The results in the sequel refer to the following families of LIS

©® £ {LIS fcontinuous and non-null on 2}

0, = {f€O:fhasaGF} (4.9)
0, = {f€O: fsatisfiesa HUC}

O3 £ {f€6O,:fhasan EGF}

and to the following families of specifications

II = {specifications v continuous and non-null on 2}
M 2 {yell:|g()| =1} (4.10)
I, & {yell :~ satisfies a HUC over all [i, +oc[, i € Z}
[I; £ {ye€ll,:~ has an EGF}
Remarks

4.11 A stationary non-null LIS is in ©; if it is non-null and its oscillations
8;(fo) = sup, 62(fo) are summable. Since for all k > 1, varg(fo) >
dx(fo), ©1 includes the set of stationary non-null LIS with summable
variations.

4.12 The translation-invariant non-null LIS with 3, d;(fo) < 1 are in ©; N
©,. This is a consequence of the precedent remark and the one-sided
Dobrushin criterium.

4.13 Each of the LIS or specifications in (4.9) or (4.10) has at least one
consistent measure. This is because the (interesting part of) the config-
uration space is compact and the LIS or specifications are assumed to
be continuous. Indeed, as the space of probability measures on a com-
pact space is weakly compact, every sequence of measures 4, (- | wi™)
or fa, (- | w™), for (A,) an exhausting sequence of regions and (w{™})
a sequence of configurations, has a weakly convergent subsequence. By
continuity of the transitions the limit is respectively a Gibbs measure
or a consistent chain.
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Consider the function

fiam) (Wi [wa”)

Fiam) (@acapan | wa)

lI>

Fpp(wa | w) (4.14)

for all A € S, n > my and w € Q. The continuity of f implies that the
functions Fj ,(wa | -) are continuous on Qe for each wy € Q5. We use these
functions to introduce the map

b:0, =11, frnyf

defined by
Y(walw) 2 lim Fy,(ws |w) (4.15)

n—-+o0o

forall A € S and w € €.

Theorem 4.16 (LIS ~~ specification)
1) The map b is well defined. That is, for f € ©,

(a) the limit (4.15) exists for all A € S and w € ().
(b) ~7 is a specification on (Q, F).
(c) 7 ell
2) (a) For each (finite or infinite) interval V and eachw € Q, G (f*)) C
G (1))

(b) For f € b Y(ILy), G(f) = G(v/) = {u'}, where p! is the only
chain consistent with f.

(c) The map b restricted to b= (I1;) is one-to-one.

Consider now the map

c:lly = Oy, vy f7 (4.17)
defined by
fX (A | wAf) £ kl_])rlloo IYAUAS:C) (A | w) (418)

for all A € Sy, A € Fy, and w € €2 for which the limit exists.

Theorem 4.19 (specification ~» LIS)
1) The map c is well defined. That is, for v € Il

(a) the limit (4.18) exists for all A € Sy, A € Fa, wa_ € Qp_ and is
independent of wy, .
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(b) fYisa LIS on (2, F).
(C) f’y S @2.

2) (a) G(f") =G(y) = {w'}, where p7 is the only Gibbs measure con-
sistent with ~.

(b) The map c is one-to-one.
In addition a LIS of the form f7 satisfies the following properties.

Theorem 4.20
Let AS Hg.

(a) If ~y satisfies Dobrushin uniqueness condition, then so does f7.

(b) If v satisfies the boundary-uniformity uniqueness condition, then so
does f7.

Theorem 4.21 (Continuity rates)
Let we Q and j € Z.

1) For fe© and AeS

(a) ifj > ma then & (1) <23 () 2 ().

(2]

L 1= 62 (f)
b f Iy th ov f <1-— i . :
(b) ifj <l then P (7a) < H 1+C;Ej(fl')7l (5;"(]6@)

i=lp

17 L= ¢ 0m) "0y (w)
2) Foryell,, AeSyand j <lp, 04(f)) <1-— ] I
) y 2 b J A 0 (fA) z’l—z[\ 1+C;J(%)—1 5;:(%)

Under suitable conditions the maps b and ¢ are reciprocal.

Theorem 4.22 (LIS «~ specification)
(a) boc=1Id overc }(O;) and G(f7) =G(y) ={u'}.

(b) cob=1d over b '(Il,) and G(v/) = G(f) = {u'}.

(c) b and c establish a one-to-one correspondence between O3 and I3 that
preserves the consistent measure.

We remark that ©3 includes the well studied processes with Holdérian
transition rates (see, for instance, Lalley, 1986, or Keller, 1998). Part (c)
of the theorem shows, in particular, the equivalence between such processes
and Bowen’s Gibbs measures.
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5 Proofs

We start with a collection of results used for several proofs.

Lemma 5.1
Consider A € S, A C A° and 7 a probability kernel over (Fn @ Fa , Qp X Qa)
such that m(Aa | -) = La, (), YVAA € Fa. Then, for all w € Qp X Qa,

(- |w) = [T (-] w) @du(-)

where Ty (- | w) is the restriction of 7(- | w) to Fy and 8, is the Dirac mass
at wa.

Proof If A= Ay x Ax € FA @ Fa and w € O X Qa

m(Aa |w) = 7 (Ax X Ap | w) + 7 (A§ x Ax | w)

and

W(AA‘W) = W(AAXAA‘W)—F?T(AAXACA‘W) )
Hence,

7T(AA X AA) S W(AA) A W(AA) S W(AA) ]1AA‘
Analogously,

7T(AA X ACA) < 7T(AA> ﬂAcA .
On the other hand,

W(AAXAA)—l-?T(AAXACA) = W(AA) ﬂAA—i-ﬂ'(AA) ]lAZ'
The last three displays imply
W(A):W(AA) HAA <~ F(AA>I ]lAA.D

In particular, LIS and specifications are completely defined by the families
of their restrictions.

Proposition 5.2
LetweQ, AeSandn € Z, n > my.

(a) Forany (3 € Q,

0 (fn
Jns1 (Wn+1 | Ba w]_oo,n]\A) [1 + % '

(5.3)

IV IA

Jns1 (Wn—l-l | w]—oom})
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(b) Forj<lAandJEQWitha§w

UTatnTse(m) ™ Ve | )
(c) § "
Frua(s | @) S Faalon ) [1 %] (5.5)

Proof Ifwe telescope fn+1 (wn+1 ’ gA w]—oo,n}\A)_fn+1 (wn+1 ’ N w]—oo,n}\[\)a
transforming &, into n, letter by letter, we have

Jor1 (Wna [ €A w—oompa) = fatt (Wnst | 7 Wmsompa) < 0% (fas1)

for any £x,ma € Qa. To obtain (5.3) we simply use this inequality twice,
assigning wy to &y, Ba to na, and vice versa.

To prove (5.4) we use definition (4.14)

fuam (@, [ wa_)

Z Fiam) (Bawneniiyn | wa_)
Ba

Fpn(wa |w) =

and the factorization

n

Fie) (i [52) =T i (wi [ o)

i=k

We then apply inequalities (5.3) to bound each of the factors by similar
factors with conditioning configuration o.

To obtain (5.5) we apply the LIS-reconstruction formula (3.4) with m =
n + 1 which yields

f[lA,n] (w& | WA_) fn+1 (wnJrl ‘ w]foo,n])

Z |:f[lA,n] (Bawaeniiam | wa_) fat1 (a1 | Bawi—com\a)
Ba

Fangi(wa |w) =

In the denominator, only 5y with f,.1 (wnﬂ ] W]—s0,n]\A ﬁA) # 0 contribute.
We use inequalities (5.3) for these. O
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Lemma 5.6
Let f € ©1, we Qand A € S. Consider the sequence Fy ,, (wp | w), n > mp
defined by (4.14). Then the limit (4.15) exits and satisfies

o (@ lwne) = Fan(on |0)| € 30 G007 R (6T

k>n+1

Proof ;From (5.5), plus the fact that F}, € [0,1] Vn > m, we obtain

[Fani1 (a | w) = Fap (wa | w)] < & (far) ™ 0X(far)-

Therefore the summability of ¢%(f) ™! 6% (fx) for k > m implies the summa-
bility of the sequence | Fj j41 (wa | w) — Fak (wa | w)]. In particular (Fj ,(w |
w))n>m is a Cauchy sequence so the limit lim, oo Fan (wa | @) 2 7L (wa | w)
exits and satisfies (5.7) for each w € Q. O

5.1 LIS ~» specification

Proof of Theorem 4.16

Lemma (5.6) proves Item 1) (a).

To prove item 1) (b), we observe that v{ (A | -) is clearly Fxe-measurable
for every A € S and every A € F. Moreover condition (b) of Definition
2.12 together with the presence of the indicator function 1, . in the
denominator of (4.14) imply that v4(B | -) = 1g(-) for every A € S and
every B € Fjc. Therefore it suffices to show that

D Ak (wa lwae) 1A (wana | wae) = 74 (wa | wae) (5.8)
WA\A

for each A, A € § such that A C A and each w € ). Let us denote, for each
I' C A, each integer n > [p and w”_ € Q" _,
wp_> .

. GA n ( ﬂw ’ WAC)
hlw) = 1 e
YA ( | Ld) nirfm GA,n (1 ‘ (.UAC)

G (- lwre) 2 frem(* orergy

Definition (4.14)—(4.15) becomes

(5.9)

Using the reconstruction property (3.4) of LIS with [ = lx, n =1y — 1 and
m = n, we obtain

Gan(Tuy, [wae) = Gagy-1(Luy, | wae) X Gan(l | wae)
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and

GA’n(]lwA | u)Ac> X GA,ZA—I(HwA\A | wAc) = GA,n<ﬂwA | u)Ac) .
Therefore

Gan(Tuy |wae)  Gan(Tuy, [wae)  Gan(llu, |wae)
GAm(l | wAc) GA’n(l | wAc) GA,n(l | wAC)

Identity (5.8) follows from (5.9) and (5.10).
We proceed with item 1) (c). By (5.7) and the summability of the bound
€ [defined in (4.6)], Fan(wa | -) converges uniformly to yx(wa | -). As each

F 5, is continuous on (2, so is 'y,{. Let us fix kg such that ¢, < 1 for k > k.
By (4.6) and the lower bound in (5.5)

(5.10)

o

M= Fas [JO—a).

k=ko

The right-hand side is strictly positive on {2 due to the non-nullness of F 4,
and the summability of the €. Hence 'y/{ is non-null on €.

To prove assertion 2)(a) we consider 1 € G (fV*)) and denote

Vw
Gg\,n ) (-] oae) < f[lA,n} ( ]IGACm[zA,n]

wy_ UA_\V_>

forall A € S : ACV and w,0: wy_op_\v. € Qy_. By a straightforward
extension of (5.9), the dominated convergence theorem and the consistency
of ith (Viw)

v with respect to G

GV (1, |- >>

f : (Viw)
pyy (1,,) = lim ,uGAm ( o
G )

Applying the consistency hypothesis a second time we obtain u’y[{ = [

Assertion 2)(b) is an immediate consequence of 2) (a) and of the fact
that |G(v)| = 1 for all v € II;.

Finally we prove 2) (c). Let f' and f? be two LIS on (2, F), both in
b1 (II;), and such that v/* = ~/*. By 2) (¢), /" = p/* £ ji. The non-nullness
of f1 and f? on Q implies that u charges all open sets in . Therefore, fi
and f3 coincide, on €, with the unique continuous realization of E, ( | Fa_ )

g
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5.2 Specification ~» LIS

Let us introduce the spread of a (bounded) function h on €:
Spr(h) = sup(h) —inf(h) .

Lemma 5.11
1) Let «y be a specification on ).

(a) If there exists an exhausting sequence of regions A\,, C 7 such that
lirf Spr (ya,h) =0 (5.12)

for each continuous F-measurable function h, then |G(y)| < 1.
(b) If~ is continuous and |G(y)| < 1, then (5.12) holds for all exhaust-

ing sequences of regions A,, C 7Z and all continuous F-measurable
function h.

2) Let f be a LIS on Q

(a) If for each i € Z and each continuous F<;-measurable continuous
function h

lim Spr (f[i,n,i]h) =0, (5.13)

n— 400

then |G(f)| < 1.
(b) If f is continuous and |G(f)| < 1, then (5.13) is verified for all
t € Z and all continuous F<;-measurable continuous function h.

Proof We proof part 1), the proof of 2) is similar. The obvious spread-
reducing relation

inf h(Z) < (Mh)(w) < suph(@),
we wen

valid for every bounded measurable function h on €2 and every configura-
tion w € 2, plus the consistency condition (2.4) imply that the sequence
{sup(ya,h)} is decreasing (and bounded below by inf k), while the sequence
{inf(ya, h)} is increasing (and bounded above by sup h). Therefore, if u,v €

g(),
pu(h) —v(h) < sup(ya,h) — inf(ya,h) (5.14)

for every n, which yields

|u(h) = v(h)| < Spr(1a,h) (5.15)
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for every n. This proves item 1)(a).

Regarding 1) (b), we observe that, as 2 is compact, there exist optimizing
boundary conditions {o(™ } and {n™} such that (y5,%) (c!™) = sup(7a,h).
and (74,h) (n™) = inf(74,k). (Of course, both sequences of boundary con-
ditions depend on h). Let p and p be respective accumulation point of the

sequences of measures {74, (- | a(")_)} and {v,, (- | 0™)} (they exist by com-
pactness). Then, p,p € G(7) (due to the continuity of ) and

lim Spr(ya, k) < p(h) = p(h) - (5.16)

Hence the uniqueness of the consistent measure implies (5.12). We learnt
this argument from Michael Aizenman (private communication). [

Our last auxiliary result refers to the following notion.

Definition 5.17
A global specification 7 over (€2, F) is a family of probability kernels
{whver w  F xQ —[0,1] such that for all vV C Z

(a) Foreach Ae F, vw(A|-) € Fye.
(b) For each B € Fyec andw € Q, 7y (B |w) = L(w).
(c) ForeachW CZ :W DV, ywyw =Yw.

Proposition 5.18

Let v be a continuous specification over (§2, F) which satisfies a HUC. Then
v can be extended into a continuous global specification such that for every
subset V C Z,

W (hwye) & lim o (b | w) (5.19)

for all continuous functions h € F and all w € ). Moreover for all V C Z
and all w € (),

G (") = {w (- [w)}. (5.20)

Georgii (1988) gives a proof of this proposition in the Dobrushin regime
(Theorem 8.23). The same proof extends, with minor adaptations, under a
HUC (see Ferndndez and Pfister, 1997).

Proof of Theorem 4.19
Items 1) (a)—(b) are proven in Proposition (5.18).
There are three things to prove regarding 1) (c):
(i) Continuity of f7. This is, in fact, an application of Proposition (5.18).
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(i1) Non-nullness of f7. Consider A € S, w € Q, n > my and k > 0. By
the non-nullness and the continuity of v and the compactness of {25c, there
exists w € Qe such that

0 < 7(wal®) = inf 9 (wa|w) 2 c(Awn).
wEiA
Therefore by the consistency of ~

f(wnfwn) = lm ypnen (a [ w) = lim (V[ZA,anwA) (wa [w)

> c(Awp) > 0.

(111) Hereditary uniqueness. Let us fix w € Q and V € {[j, +o0], j € Z} UZ.
For each 7 € Z and h € F<;. We have

v (Viw) . (Viw)
Spr (f [i—k,i] h) < nl_{rfoo Spr (’Y[sz,wn}h) :
As, by hypothesis, each specification v(V*) admits an unique Gibbs measure,
it follows from lemma 5.11 1) (b) that

: 7 (Viw) _
Jim Spr (£15570) = 0.

This proves that |G (f7V))| =1 by lemma 5.11 2) (a).

The uniqueness part of assertion 2) (a) is contained in the just proven
hereditary uniqueness. To show that p? € G(f7), consider A € S, and
h a continuous F<,,,-measurable function. By the dominated convergence
theorem

MWfX(h) = lim WAUAS:L) (h | 5) u’y(dé’)

n—-+o0o
The consistency of 7 with respect to - implies, hence, that ¥ € G(f7).

To prove assertion 2) (b), let 4* and 42 such that f7' = f7°. By 2) (a)
;ﬂl = ,u72 £ 1. The non-nullness of v' and +2 implies that x charges all open
sets on . Therefore for each A € S, v5 and 73 coincide with the unique
continuous realization of £, (- | Fac). O

Proof of Theorem 4.20
To prove item (a), let us recall one of the equivalent definitions of the vari-
ational distance between probability measures over (£2;, F;)

o lulh) — v
In=vl = sup =5
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For a proof of this result see for example Georgii (1988) (section 8.1). By
the consistency of 701 with respect to vy iqx, k>0

[ lweh) & Im Y (- |w) = ETOOV[@HM % (| w) .

k—+o0 k

Therefore, by dominated convergence,

Cy(f") < sup
EmeQ
g1‘71 #zjni—l

—0o0

S (18- 1| (5.21)

Since 7 is continuous, we can do an infinite telescoping of (5.21) to obtain

Cy(f) < Y Caly).
k=j
or k>1

Thus
D Cu(f) < ) Cyly) <1,

7:9<1 JijFi

To show assertion (b), consider v € II, for which there exists a constant
K > 0 such that for every cylinder set A = {z]"} € " there exist integers
n, p satisfying

V[mp](A &) > K ’V[n,p}(A |n) forall{,neQ.

Hence, by consistency of v, we have that for some fixed ¢ € 2 and for each
k>0

Vnpth) (A €)= / Vgl (A [ @) Y piry(dw | §) = Ky (A ] o)

In a similar way we obtain

1
'Y[n,pHc](A ’ 77) < I Yin,p] (A ’ U) .
We conclude that for each £ > 0

’y[nm-i-k](A 1§) > K? Vin,p+k] (Aln).

Letting k — oo we obtain, due to definition (4.18), that f; (A4 | §) =
K2 fim(Aln). O

[,
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5.3 LIS «~ specification

Proof of Theorem 4.21
Assertion 1) (a) is a direct consequence of inequality (5.7) of Lemma 5.6
with A ={k} andn=7— 1.

Assertion 1) (b) follows from the n — oo limit of inequalities (5.4) and
the fact that 0 < F, < 1.

To prove assertion 2), let k, j € Z such that j < k and consider w,o € Q

such that w 2 . As a direct consequence of definitions 4.3-4.4 we have that,
for all 1 > k,

(1= (3) 7167 () x milwi [ QwiT) < yiloi | o7 oY) (5:22)
and

Yiloi | 0L ol ) < (L4+ ¢ ()10 (n) X vilws | wlwity) . (5.23)
By the specification reconstruction formula (3.9) with A = {n + 1} and
I' =[x, n] we have

In+1 (Jn-i-l | 0" 07—1_—&?%)

+00
Viamt1) (Oa ] 0a- 00%) = Z
v T Ay e e | 7 )

Viam) (UlnA | oa_ &nir U,J{f%)

En+1

Using (5.22) and (5.23) it is easy to show, by induction over n > my + 1,
that

Viam) (@a [ Ea_ wiD3) < Yiam (Wa | 1o wifS) X

for all £,n e Q: €& ! n =0 Taking the limit when n tends to infinity, we
obtain 2). O

Proof of Theorem 4.22
For the proof of item (a) we consider v € Ily such that f7 € ©; and fix
A € S and w € €. By definition of the maps b and ¢ [see (4.14)—(4.15) and
(4.18)], we have that
K : : Vla,ntk] (w/\ WA [ia,n] | wa_ w:f;c—l-l)
A (wp |w) = lim  lim
nteo koo Y nn] (Waenpianl [ Wa- wn i)

(5.24)

The consistency of y5 and 7y, n4 implies
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+oo _
Viamk] (WA Waenpan) | @A Wihy) =

k k
Z Y (W | @aer)—oom) Enit Wit Thin) Vinmk] (Waenian Entt | wa_ w9 1)
e
(5.25)

By continuity of 5 (wa | -) we have that, for each ¢ > 0,

‘%\ (wA | WAen])—oo,n] fﬁﬁ wiﬁﬂ) — YA (wa | W)) < €

for n large enough uniformly in k. Combining this with (5.24)—(5.25) we
conclude that

’Y/{7 (WA\W)—’YA(WA!W)‘ <€

for every € > 0. Therefore v/7 = .

To prove item (b), consider f € ©; such that 7/ € Il, and fix A € S,
and w € Q. Let us denote V = [I5, +00[. Since 7/ satisfies a HUC equation,
(5.19) and definition (4.18) yield

s
fU (walwa ) & lim ’y[ZA masn (W |w) = ~ (walwa) . (5.26)

n—-4o00

Combining (5.20) with assertion 2) (a) of Theorem 4.16 we obtain that

G (f) ={of (- 1wn )}

Therefore
ot (onlwn ) =2 (A5 @al ) Twn ) = fa(on [wa )
The last equality is a consequence of the definition (2.23). By (5.26) this
implies that
h
J (wa lwa) = fa(wa lwa ).
Item (c) is a direct consequence of Theorem 4.21 and the following result. [
Lemma 5.27
Let h : RY — R be a decreasing function and (u;);.y be a sequence taking

values in |0, 1[ for which there exists m > 0 such that u; < mh(i). Then
there exists M > 0 such that

—+00
1—u;
1-— L < MH(k-1

where H(x) = /+OO h(t) dt.
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The proof is left to the reader. [J

A Singleton consistency for (Gibbs measures

In this appendix we work in a more general setting than in the paper. We
consider a general measurable space (E,E) (not necessarily finite or even
compact) and a subset Q of E% for a given d > 1. The space 2 is endowed
with the projection F of the product o-algebra associated to E%'. We also
consider a family of a priori measures A = (X'), ;. in M (E,€) and their
products \* £ @), A" for A C Z%. We denote by (Ar), s the family of
measure kernels defined over (2, F) by

M| w) = (M ©duye) (h) (A1)

for every measurable function A and configuration w. These kernels satisfy
the following identities for every A € S:

M(B|-) = 1p(+), VB € Fy (A.2)

and

Aua = Mda, VAeES:AUA= 0. (A3)

Theorem A .4
Let X be as above and (7;);cz« be a family of probability kernels on F x €;
such that

1) For each i € Z? and for some measurable function p;,
Vi = pidi . (A.5)
2) The following properties hold:
(a) Normalization on Q: for every i in Z¢,
Ni(pi)) (w) =1, VweQ. (A.6)

(b) Bounded-positivity on Q: for every i,j € Z¢,

inf A (pjpi') (W) >0 (A.7)
and
sug A (pjpi!) (w) < +oo. (A.8)
we
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(c) Order-consistency on Q: for every i,j in Z¢ and every w € ,
Pi Pj
pijlw) = ——— W) = ———x (W) . (A.9)

! i (pip; ) N (i pit)

Then there exists a unique family p = {p} s of positive measurable func-
tions on (€2, F) such that

(i) v = {para}acs is a specification on (0, F) with vy = v; for each
i €Z.

(i) par = —22—— forall AT € S such that T' C A,
A (paprt)

(i) G(v) ={p e P F): wy; = p for all i € Z4}.

(iv) Foreach A € S there exist constants Cy, Dy > 0 such that Cy pg(w) <
pa(w) < Dy pr(w) for all k € A and all w € ).

Remarks

A.10 This theorem is a strengthening of the reconstruction result given by
Theorem 1.33 in Georgii (1988). In the latter, the order-consistency
condition (A.9) is replaced by the requirement that the singletons come
from a pre-existing specification (which the prescription reconstructs).
For finite F/, Nahapetian and Dachian (2001) have presented an alter-
native approach where (A.9) is replaced by a more detailed pointwise
condition. Their non-nullness hypotheses are also different from ours.

A.11 Identity (ii) can be used, in fact, to inductively define the family p by
adding one site at a time. In fact, this is what is done in the proof
below. The inequalities (iv) relate the non-nullness properties of p to
those of the original family {p;};cza.

A.12 In the case E countable, \;=counting measure, the order-consistency
requirement (A.9) is automatically verified if the singletons are defined
through a measure p on F in the form

: Hwy,,)
pi(w) = lim ———
n=oo (W, \ (3})

for an exhausting sequence of volumes {V,,}. Indeed, a simple compu-
tation shows that the last two terms in (A.9) coincide with

i )
n—oo [1(Wy,\{i,j})
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Proof In the following all functions are defined on €2 or on a projection of
Q over a subset of Z.

Initially we define p by choosing a total order for Z? and prescribing,
inductively, that for each A € § with |A] > 2 and each w € Q

palw) = —2 ><w>, (A.13)

Ak (pk P

where £ = max A and A} = A\ {k}. For each A,T" € S such that I' C A€,
we will prove, by induction over |[A UT'|, that the functions so defined satisfy
the following properties:

(I1) Helg Aa (paprt) (w) > 0 and sup Ay (pa pr') (w) < +oo.
w weN

PA
12 =\
(I2) paur A (pA pl:l)

(I3) Ax(pa) =1

(I4) If p is a probability measure on (2, F) such that u (p; \;) = u, Yi € A,
then 11 (pa An) = p.

(I5) (paur Aaur) (pi Ai) = paur Aaur, Vi€ AUT.

Let us first comment why these properties imply the theorem. It is clear
that properties (I3)—(I5), together with the deterministic character of (Ay)
on Fye [property (A.2)], imply that (paAx),cg verifies assertions (i)-(iv).
Furthermore, if 7 is a specification such that Jg;; = 4, for all i € Z? then,
by consistency, Ya(- | w)vi = Ya(- | w) for every A € S, i € A and w € Q.
Therefore property (I5) implies that J5(- | w) (para) = Fa(- | w), that is
paA (- | w) =79a(+ | w). So the construction is unique.

Initial inductive step The first non-trivial case is when |[A UT'| = 2. This
implies that |A| = |I'| = 1 and hence (I1)-(I3) coincide with hypotheses

(A.6)—-(A.9) while (I4) is trivially true. To prove (I5), assume that A = {i}
and I' = {j}. By (A.3) and (A.9), we have

(pij Aij) ((pi Xi) (h)) = Ay [(%) ((pi M) (h))] :

As the factor (p; A;) (h)/X; (pi p; ') is independent of the configuration at {i},
the remaining integration with respect to the measure p;\; disappears due
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to the normalization condition (A.6). We obtain

h
(pi Ai) (W)

Inductive step We suppose the assertions true for [AUT'| = n, (n > 2), and
consider A, I' such that I' C A®and [AUT| =n+ 1.

(I1) Assume first that |I'| = 1 and let & = maxA. Combining the
definition (A.13) and the property (A.3), we obtain

(pij Aig) ((pi Xi) (h) = A = (pij Mij) ()

A —1
An (pApEI) — A M _ (A.14)

If |T'| > 2 we consider [ = max " and apply the definition (A.13) to obtain

M (oapr') = A (pApflAz (pz pEf)) : (A.15)

We can now apply the inductive hypothesis (I1) to the right-hand side of
(A.14) and (A.15) to prove (I1) at the next inductive level.

(I2) The argument is symmetric in A and I', so we can assume without
loss that k& = max(AUT") belongs to A. We will use the inductive hypothesis
to write the RHS of (I2) as a sequence of similar expressions where A is
successively deprived of one of its sites which becomes “attached” to I'. At
the end we shall obtain (A.13) with AUT instead of A. This will prove (I2).

If |[A| =1 (I2) is just the definition (A.13) applied to AUT". We assume,
hence, that |A| > 2 and consider j € A such that j # k. By the inductive
assumption (I2) we have

op = PA; S N (A.16)
An: (PA; P{1> Aj (Pj PX;.I )

We first combine the rightmost preceding expression with the factorization
property (A.3) to write

. N (pjor!
M (o) = awy | 2l0r) (A7
Aj (pj pA;)
We now apply once more the inductive assumption (I2) in the form
N (pipe') = prigy Pi (A.18)

172



in combination with the rightmost identity in (A.16), to obtain
Aj (Pj ,0/_\;.1> = pa: P A (PA; Pj_l) : (A.19)
JFrom (A.17)-(A.19) we get
M (o o)
A (PA; Pj_1> |

We now use this relation together with the first identity in (A.16) to conclude
that

M (paprt) =

PA - PAs
1 - 1 .
)\A (PA Pr ) )\A;‘ (pA;‘ pFU{j})
We iterate this formula A}‘ — 1 times and we arrive to

PA _ Pk
1\
A (paprt) hy (pk p(?&ul“);)

which is precisely paur according to our definition (A.13).

(I3) We assume that |A| > 2, otherwise (I3) is just the normalization
hypothesis (A.6). Let £ = max A. Definition A.13 and property A.3 yield

An (PA*) 1
A W (B0 VT I WY (B S
2 (o) : (/\A; (pa: ,01;1)) ‘ (AAZ (paz PE1)>

where the last identity follows from the inductive hypothesis (I3). But, as in
(A.18),

Aar (paz Pe') = M (Pk pX%) paz Pk
therefore
Ak (Pk PX% >

A (pa) =
Ak (,Ok PXZI >

(I4) To avoid a triviality we assume that |A| > 2. Let p be a probability
measure on (2, F) such that u(p; \;) = p for all i € A. Consider k = max A
and a measurable function h. By the factorization property (A.3) of Ay and
the definition (A.13) of pa, we have

p((oa2n) (1)) = 1 | (% ) )

Ak (Pk /?le
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By the inductive hypothesis (I4)  is consistent with py«Ax+ and with ppAg,
thus

i((oad) ) = 1| (o re) [ o3 (%Ak)w

Ak <Pk PK%

But, in the right-hand side, the two innermost integrals with respect to Ay
commute with the external one, so we have

h

T e

A (Pk PXZl
= (o a0 (1) .

1((pa2a) ()

| (or Ak)

which proves (14).

(I5) Denote A = AUT and pick i, j € A, i # j and a measurable function
h. By (A.3) and (I2) we have

(PA; AA;) ((Pz Ai) (h>>
Aa: (PA; P;l)

(P 2a) (toen) ) =

Therefore, applying inductive assumption (I5) we obtain

(pA; M;) (h)
(pada) ((0:2) (1) = -
Ans (PA; P; )
= (pA )\A) (h) U (A21)
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