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Introduction

Among all the results on homogenization, the probabilistic approach is related to the intu-
itive idea of a particle in the highly heterogeneous media, but whose “statistical behavior”
is close to that of a Brownian motion. The variance of this Brownian motions gives the ef-
fective coefficient of the media. Though there could exist some systems which are sensitive
to some functional of trajectories. For example, the trajectories of the particles control a
differential equation, or a differential one-form is integrated along them. Thus, one may ask
if it is legitimate to substitute the trajectories of a Brownian motion to the trajectories of
the particles. In other words, does the effective coefficient provide sufficient information to
compute some approximations of such functionals? We show in this article that the answer
may be negative.

In this article, we deal with operators of type

Lε =
1

2
ai,j(·/ε)

∂2

∂xi∂xj
+
1

ε
bi(·/ε)

∂

∂xi
+ ci(·/ε)

∂

∂xi
,

where a and b are periodic. Let us denote by Xε the process generated by Lε, and b the
average of b with respect to the invariant measure of L1 acting on the space of periodic
functions. It is well known (see for example [1]) that the process X̃ε = (Xε

t − bt/ε)t>0
converges in distribution to a stochastic process X given by Xt = x + σeffBt + cefft, where
B is a Brownian motion, ceff is a constant vector and aeff = σeff(σeff)T is a constant matrix
called the effective coefficient of the media.

We are interested in three types of problems which are strongly linked:

(i) Let Hε be a family of processes adapted to the filtration generated by Xε and such
that (Hε, X̃ε) converges to (H,X). Is the limit of

∫ t
0 Hε

s dX̃
ε
s as ε goes to 0 equal to∫ t

0 Hs dXs? We show with some examples that it could be true, but also that
∫ ·
0 Hε

s dX̃
ε
s

may not converge at all, or that a corrective term appears.

(ii) We consider the convergence of the Lévy area of (X̃i,ε, X̃j,ε) for i, j = 1, . . . , N ,

Ai,j
s,t(X̃

ε) =
1

2

∫ t

s
(X̃i,ε

r − X̃i,ε
s ) dX̃

j,ε
r − 1

2

∫ t

s
(X̃j,ε

r − X̃j,ε
s ) dX̃

i,ε
r .

It is shown that Ai,j
s,t(X̃

ε) converges to Ai,j
s,t(X) + ψi,j(t − s), where ψi,j is a constant.

Some heuristic arguments of this fact could be found in [10].

(iii) Finally, we consider then the problem of the convergence of the solution Yε of some
SDE driven by X̃ε. Here again, interchanging the functional giving the solution of
SDE from X̃ε and the passage to the limit does not always provide the limit of Yε.

Yet it has to be noted that if b = 0, then it is possible to interchange the passage to the
limit and the functionals such that the one giving the Lévy area or the solution of an SDE.

The forthcoming article [10] also explains how the problems (ii) and (iii) are related. We
summarize this link here: In [11] (see also [9, 12]), T. Lyons gives a pathwise definition
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of Zt = z +
∫ t
0 f(Xs) dXs and Yt = y +

∫ t
0 f(Ys) dXs when X is a general process of finite

p-variation with p ∈ [2, 3), provided one knows, for a piecewise smooth approximation Xδ of
X, the limit of

Ai,j
s,t(X

δ) =
1

2

∫ t

s
(Xi,δ

r − Xi,δ
s ) dX

j,δ
r − 1

2

∫ t

s
(Xj,δ

r − Xj,δ
s ) dX

i,δ
r

for any (i, j) ∈ { 1, . . . , N }2. Moreover, the maps K : X 7→ Z and I : X 7→ Y are continuous
in the topology of p-variation. The Lévy area A0,t(X) = (A

i,j
0,t(X))i,j=1,...,N is a possible limit

of (A0,t(X
δ))δ>0. But there also exists some approximations Xδ of the trajectories of X such

that A0,t(X
δ) converges to A0,t(X)+ψt for an antisymmetric matrix ψ. As explained in [10],

with A(X) as a limit of A(Xδ), Y and Z are equal in distribution to the Stratonovich integrals
Zt = z +

∫ t
0 f(Xs) ◦ dXs and Yt = y +

∫ t
0 f(Ys) ◦ dXs, while with As,t(X) + ψ(t− s), a drift

is added to the previous integrals. Thus, using the continuity of K and I, the asymptotic
behavior of A(X̃) provides the limit of stochastic integrals or solutions of SDEs.

Although conditions (conditions UCV and UT) to ensure that one may interchange lim-
its and stochastic integrals driven by semimartingales are now well known, the problem of
interchanging stochastic integrals and the limit of stochastic process obtained by the ho-
mogenization theory seems, at the best of our knowledge, to have never been treated. Yet
the part of this work concerning the limit of SDEs uses some tools and results developed to
deal with averaging of SDEs or Backward Stochastic Differential Equations [14, 15, 16, 17].
Besides, the notion of good sequence of semimartingales and conditions UCV and UT (see
section 1.2) are widely used throughout this article, even to construct counterexamples.
Moreover, the results in this article give some natural counterexamples to the theory of
good sequence of semimartingales.

1 Notation, assumptions and review of some results

We denote by Xε ==⇒
ε→0

X the convergence in distribution of a family (Xε)ε>0 of random

variables to X.

Moreover, we use the Einstein summation convention, which means that all the repeated
indices shall be summed over.

1.1 Homogenization

Let a = (ai,j)
N
i,j=1 be a family of measurable, bounded functions with value in the space

of symmetric matrices and uniformly elliptic: There exist some positive constants λ and Λ
such that

∀x ∈ RN , ∀ξ ∈ RN , λ|ξ|2 6 ai,j(x)ξiξj 6 Λ|ξ|2. (1)

We assume that a is continuous and that
∂ai,j
∂xj

exists and is bounded for any i, j = 1, . . . , N .

Let also b = (bi)
N
i=1 and c = (ci)

N
i=1 be two families of measurable functions with values
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in RN . We assume that b and c are bounded by Λ. Let σ = (σi,j)
N
i,j=1 be a bounded,

measurable function such that σ(x)σT(x) = a(x).

These assumptions are sufficient to ensure the existence of a unique (in law) solution to the
stochastic differential equations (2) and (3) below.

We use the expression “periodic media” when the coefficients a, b and c are 1-periodic. We
are interested in the homogenization property of the family of semimartingales Xε given by
one of the following assumptions.

Assumption 1. Homogenization in periodic media without a fast oscillating first-order dif-
ferential term:

Xε
t = x+

∫ t

0
σ(Xε

s/ε) dB
ε
s +

∫ t

0
c(Xε

s/ε) ds. (2)

Assumption 2. Homogenization in periodic media with a fast oscillating first-order differ-
ential term:

Xε
t = x+

∫ t

0
σ(Xε

s/ε) dB
ε
s +

1

ε

∫ t

0
b(Xε

s/ε) ds+

∫ t

0
c(Xε

s/ε) ds. (3)

Assumption 1 is contained in Assumption 2, but the presence of an highly-oscillating differ-
ential first-order term b leads to different results.

We denote by εX the solution of the SDE

εXt = x/ε+

∫ t

0
σ(εXs) dB

ε
s +

∫ t

0
b(εXs) ds+ ε

∫ t

0
c(εXs) ds. (4)

We remark that Xε and εX are linked by the following relation: (Xε
t )t>0 is equal in distribu-

tion to the process (ε · εXt/ε2)t>0.

Let us denote by TN the N -dimensional torus RN/ZN . The space of measurable, square-
integrable functions on TN is denoted by L2(TN ), and is equipped with the norm ‖u‖L2(TN ) =(∫

TN |u(x)|2 dx
)1/2

. The completion of smooth, periodic functions on TN with respect to the

norm ‖u‖H1(TN ) =
(∫

TN |u(x)|2 dx+
∫

TN ‖∇u(x)‖2 dx
)1/2

is denoted by H1(TN ). Moreover,

the subspace of functions in H1(TN ) with a null mean-value (i.e.,
∫

TN u(x) dx = 0) is denoted
by H10(TN ). With an abuse of notation, if f = (f1, . . . , fN ) is a measurable vector valued

function, we still denote by ‖f‖L2(TN ) the norm
(∑N

i=1 ‖fi‖
2
L2(TN )

)1/2
.

One remarkable feature of the space H1
0(TN ) is that it satisfied the Poincaré inequality :

there exists a constant C such that for any function u in H1(TN ),
∥∥∥∥u−

∫

TN
u(x) dx

∥∥∥∥
L2(TN )

6 C ‖u‖H1(TN ) . (5)

Let L be the operator L = 1
2ai,j

∂2

∂xi∂xj
+ bi

∂
∂xi
. It could be shown that there exists a unique

solution m to

L∗m = 0, m ∈ H1(TN ) and

∫

TN
m(x) dx = 1, (6)
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where L∗ is the adjoint of the operator L seen as an operator acting on the space of periodic
functions.

Generally, under Assumption 2, Xε
t does not converge, but Xε

t − bt/ε converge with

b =

∫

TN
bi(x)m(x) dx. (7)

Proposition 1. With the previous notations, there exists a constant, symmetric and non-
degenerate N × N -matrix σeff , together with a constant vector ceff and a N -dimensional
Brownian motion B such that

X̃ε dist.
= (Xε

t − tb/ε)t>0 ==⇒
ε→0

X with Xt = x+ σeffBt + tc
eff .

The coefficients σeff and ceff may be constructed explicitly from the coefficients of L1 (see (12)
and (13) below). Furthermore, σeff does not depend on the value of c. If c = 0, then ceff = 0.

A special case appears when b = 0. This happens when L is a divergence form operator,
that is bi =

1
2
∂ai,j
∂xj

+ ∂V
∂xi

for some periodic function V . But this could also happen if

the generalized principal eigenvalue of the operator is equal to 0, which means that (see
Section 8.2 in [18, 19] for example)

lim
n→∞

lim
t→∞

1

t
logPx [ inf { s > 0 |Xs| > n } > t ] = 0.

We give the sketch of the proof of Proposition 1 under Assumptions 1 and 2. For details,
the reader is referred to [1, 13, 14] for example. Some of the notations used in this proof
will be used below.

Sketch of the proof. The idea is to find some functions u1, · · · , uN that are periodic and
such that

X̃
i,ε
t − X̃

i,ε
0 + εui(X

ε
t/ε)− εui(X

ε
0/ε) = M

i,ε
t +

∫ t

0
cj

(
δi,j +

∂ui
∂xj

)
(Xε

s/ε) ds, (8)

where Mε is a local martingale with cross-variations

〈Mi,ε,Mj,ε〉t dist.= ε2
∫ t/ε2

0
ap,q

(
δi,p +

∂ui
∂xp

)(
δj,q +

∂uj
∂xq

)
(X1

s) ds.

The functions u1, . . . , uN belong to H10(TN ) and are solutions to

ui(x) = 0 under Assumption 1, (9)

Lui = −bi + bi under Assumption 2. (10)

In (10), the existence of ui is given by the Fredholm alternative, hence the importance of b.

The projection of the process generated by L on the torus T is ergodic with respect to the
measure m(x) dx whose density m is solution to (6).

5



For any periodic, integrable function f , we know as a consequence of the Poincaré inequal-
ity (5) that L (which acts on periodic functions) has a spectral gap and that for any t > 0,

sup
x∈RN

Ex

[ ∣∣∣∣∣
ε2

t

∫ t/ε2

0
f(εXs) ds−

∫

TN
f(x)m(x) dx

∣∣∣∣∣

]
6 g(ε) ‖f‖L1(TN ) , (11)

for some constants function g such that g(ε)→ 0 as ε→ 0 with a rate that does not depend
on f .

As a and u1, · · · , uN are periodic, the inequality (11) implies that the cross-variations of Mε

converge to

〈Mi,ε,Mj,ε〉t
proba−−−→
ε→0

taeffi,j
def
= t

∫

TN
ap,q

(
δi,p +

∂ui
∂xp

)(
δj,q +

∂uj
∂xq

)
(x)m(x) dx. (12)

The Central Limit Theorem for martingales [2, Theorem 1.4, p. 339] implies that Mε con-
verge in distribution to a martingale M with cross-variations 〈Mi,Mj〉t = taeffi,j . We define

σeff to be the square-root of the matrix aeff . Then, there exists a N -dimensional Brownian
motion B such that M = σeffB.

Again with (4) and (11),

∫ t

0
cj

(
δi,j +

∂ui
∂xj

)
(Xε

s/ε) ds
proba−−−→
ε→0

tceffi
def
= t

∫

TN
cj

(
δi,j +

∂ui
∂xj

)
(x)m(x) dx. (13)

In fact, this convergence holds in the space of continuous functions (see for example Corol-
lary 1.3 in [8, p. 58]).

The boundedness of ui for i = 1, . . . , N implies that X̃ε converges in distribution to X, where
Xt = x+Mt + tc

eff .

Remark 1. The first-order differential term c may be treated by using the Girsanov theorem,
as in [6, 7]. In view of (4), This allows to understand why c does not “interact” with the
diffusive behavior of the limit X, in difference to b.

1.2 A criteria of convergence of stochastic integral driven by a semi-

martingale

We give in this section a criterion under which the limit of stochastic integrals driven by
convergent semimartingales is the stochastic integral of the limits. We took the following
definitions and results from the review article [5].

For a semimartingale X and a stochastic process H, we denote by H · X, when it exists, the
continuous stochastic process

∫ ·
0 Hs dXs.

Definition 1 (Good sequence, Definition 7.3 in [5, p. 22]). A sequence of càdlàg (right-
continuous with left limit) semimartingales (Xε)ε>0 is said to be a good sequence if Xε ==⇒

ε→0
X,

and for any sequence (Hε)ε>0 of càdlàg processes such that Hε is adapted to the filtration
generated by Xε and (Hε,Xε) ==⇒

ε→0
(H,X), then X is a semimartingale with respect to the
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smallest filtration H = (Ht)t>0 generated by (H,X) satisfying the usual hypotheses, and,
when all the involved stochastic integrals are defined,

Hε · Xε ==⇒
ε→0

H · X.

There exist two equivalent conditions ensuring that a sequence of semimartingales is good.

Definition 2 (Condition UT, Definition 7.4 in [5, p. 22]). A sequence (Xε)ε>0 of semi-
martingales is said to be uniformly tight, or to satisfy the condition UT, if for each t ∈ (0, 1],
the set

{∫ t

0
Hε

s− dX
ε
s

∀ε > 0, Hε is càdlàg and piecewise constant

and sups∈[0,1] |Hε
s| 6 1

}

is tight.

Definition 3 (Condition UCV, Definition 7.5 in [5, p. 23]). A sequence of continuous
semimartingales (Xε)ε>0 is said to have uniformly controlled variations, or to satisfy the
condition UCV, if for each α > 0 and each ε > 0, there exists some stopping time T ε,α such
that P [T ε,α 6 α ] 6 1

α and

sup
ε>0

sup
i=1,...,N

E
[
〈Mi,ε,Mi,ε〉1∧T ε,α +

∫ 1∧T ε,α

0
| dNi,ε

s |
]
< +∞,

where Xε = Xε
0 +Mε + Nε is the decomposition of Xε as the sum of a local martingale and

a process locally of finite variation.

Remark 2. The conditions UT and UCV have been developed for càdlàg processes. Yet the
definition of the condition UCV is more complicated for discontinuous processes, since the
jumps have to be taken into account.

The following Theorem summarizes the main results about good sequences.

Theorem 1 (Theorems 7.6, 7.7 and 7.10 in [5]). Let (Xε)ε>0 be a sequence of semimartin-
gales converging in distribution to some process X. Then the sequence (Xε)ε>0 is good if and
only if it satisfies the condition UT and if and only if it satisfies the condition UCV.

We end this section by a lemma, that provides some interpretation of a condition close to
be the condition UCV. Of course, the homogenization result gives some examples in which
the assumptions on the following lemma are not satisfied.

Lemma 1. Let (Xε)ε>0 be a family of semimartingales with the decomposition Xε = Xε
0 +

Mε + Nε and such that

sup
ε>0

E
[
〈Mi,ε,Mi,ε〉1 +

∫ 1

0
| dNi,ε

s |
]
< +∞ (14)

and (Xε,Mε,Nε) converges in distribution to the process (X,M,N) on the space of continuous
functions on [0, 1]. Then X is a semimartingale with decomposition X = X0 +M+ N.

7



Proof. With Corollary VI.6.6 in [3, p. 342], it is well known that M is a martingale with
respect to the filtration generated by (X,M,N).

On the other hand, if (zε)ε>0 is a family of smooth functions of finite variation on [0, 1]
converging uniformly to z, then

k−1∑

i=0

|zti+1
− zti | 6 lim inf

ε→0

k−1∑

i=0

|zεti+1
− zεti | 6 lim inf

ε→0

∫ 1

0
|dzεs |,

where 0 6 t0 6 · · · 6 tk 6 1 is any partition of [0, 1]. Hence, z is also of finite variation and∫ 1
0 |dzs| 6 lim infε→0

∫ 1
0 |dzεs |. Thus, it is clear from (14) that N is of integrable variation.

Of course, in view of the homogenization result with a highly oscillating first order differ-
ential term, the condition (14) will not be satisfied, since the limit of the term of finite
variation in the decomposition of Xε is a martingale.

2 Good sequence and homogenization

In view of the results of Section 1.2, the first natural question to solve our problem is to
know if (X̃ε)ε>0 is a good sequence of semimartingales. If yes, the problem of interchanging
stochastic integrals and limits is already solved. Although this is not always true, let us
start by a positive answer.

Proposition 2. (i) Under Assumption 1, the sequence of semimartingales (Xε)ε>0 is a good
sequence.

(ii) Under Assumption 2, and with the notations of the proof of Proposition 1, (X̃ε +
εu(Xε/ε))ε>0 and (Mε)ε>0, where u is defined by (10) and Mε is defined by (8), are good
sequences of semimartingales.

Proof. Proof of (i). Under Assumption 1, the process Xε is Xε
t = Mε

t +
∫ t
0 c(X

ε
s/ε) ds, with

〈Mi,ε,Mi,ε〉t =
∫ t

0
ai,i(X

ε
s/ε) ds 6 sup

x∈TN
|ai,i(x)|t.

In addition, |c(x)| is bounded by Λ and then for any ε > 0,
∫ t
0 |c(Xε

s/ε)| ds 6 Λt. Thus,
(Xε)ε>0 satisfies the condition UCV and is a good sequence of semimartingales.

Proof of (ii). Under Assumption 2, the proof is the same for (Mε)ε>0 and (X̃
ε+εu(Xε/ε))ε>0,

since ∇u is bounded.

However, under Assumption 2, i.e., when there is a highly oscillating first-order differential
term, (X̃ε)ε>0 is not a good sequence in general. Otherwise, according to Theorem 7.12 in
[5, p. 30], 〈X̃ε, X̃ε〉 ==⇒

ε→0
〈X,X〉. While under Assumption 2, (11) yields

(〈X̃i,ε, X̃j,ε〉t)t∈[0,1]
proba−−−→
ε→0

(tai,j)t∈[0,1] with ai,j =

∫

TN
ai,j(x)m(x) dx.

But 〈Xi,Xj〉t = taeffi,j , and generally, a
eff 6= a. For example, in dimension one, if b(x) = 1

2a
′(x)

then aeff =
(∫ 1

0 a(x)
−1 dx

)−1
while a =

∫ t
0 a(x) dx.

8



2.1 Some counterexamples

As we have seen that nothing special happens under Assumption 1, we work from now under
Assumption 2.

In presence of a highly oscillating first-order differential term, we easily find some new
counterexamples to the fact that the limit of the stochastic integral is the stochastic integral
of the limit. However, there are cases for which interchanging limits and stochastic integrals
is possible.

Example 1. Let f is a function of class C2 on RN with compact support. Then, by the Itô
formula,

f(X̃ε
1) = f(x) +

∫ 1

0
∇f(X̃ε

s) dX̃
ε
s +

1

2

∫ 1

0

∂2f

∂xi∂xj
(X̃ε

s) d〈X̃i,ε, X̃j,ε〉s.

It is now clear that jointly with the convergence of X̃ε to X (see Lemma 2 below),

∫ 1

0

∂2f

∂xi∂xj
(X̃ε

s) d〈X̃i,ε, X̃j,ε〉s ==⇒
ε→0

∫ 1

0

∂2f

∂xi∂xj
(Xs)ai,j ds

and that f(X̃ε
1) =⇒ f(X1). With the Itô formula applied to X, we deduce that

∫ 1

0
∇f(X̃ε

s) dX̃
ε
s ==⇒

ε→0

∫ 1

0
∇f(Xs) dXs +

1

2

∫ 1

0
(aeffi,j − ai,j)

∂2f

∂xi∂xj
(Xs) ds. (15)

Hence, when g = (g1, · · · , gN ) is a C1 vortex-free vector field with compact support on RN ,
then

∫ 1
0 g(X̃

ε
s) dX̃

ε
s does not converge in general to

∫ 1
0 g(Xs) dXs.

Remark 3. In dimension 1, the convergence of (15) may be seen as a special case of a
more general result presented in [20]: If (Yε)ε>0 is a family of semimartingales such that
(Yε, 〈Yε〉)ε>0 ==⇒

ε→0
(Y,V) and f is analytic, then

∫ 1
0 f(Y

ε
s) dY

ε
s converges to

∫ 1
0 f(Ys) dYs +

1
2

∫ 1
0 f

′(Ys) d 〈Y〉s − 1
2

∫ 1
0 f

′(Ys) dVs.

Example 2. Let h be a bounded, 1-periodic function on RN with value in RN . The process
Yε defined by Yε

t =
√
εh(Xε

t/ε) converges to 0 in probability, so that Yε · MXε converges to
0, where MXε is the martingale part of Xε. But, if we set b̃ = b− b,

√
ε

ε

∫ 1

0
h(Xε

s/ε)̃b(X
ε
s/ε) ds

dist.
= ε

√
ε

∫ 1/ε2

0
(hb̃− d)(X1

s) ds+
1√
ε
d,

where d =
∫

TN h(x)b(x)m(x) dx− b
∫

TN h(x)m(x) dx. Using the homogenization procedure,

it is clear that ε
√
ε
∫ t/ε2

0 (hb− d)(X1
s) ds converges to 0. But generally, d 6= 0. Hence, there

exists some processes Yε such that Yε converges in distribution to 0, but Yε · Xε does not
converge.
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2.2 An example in which the interchange is possible

In this section and the next one, we use the following hypothesis on a family (Hε)ε>0 of
stochastic processes.

Hypothesis 1. For any ε > 0, let Hε be a predictable process with respect to the minimal
admissible filtration F ε generated by X̃ε. Let also H a the predictable process adapted to
the minimal admissible filtration F generated by X. Moreover, (Hε, X̃ε) ==⇒

ε→0
(H,X) in the

space of càdlàg functions with the Skorohod topology. There is no need for Hε and H to be
continuous.

Let us give an example of family of processes (Hε)ε>0 for which the limit of stochastic
integral with respect to X̃ε is the stochastic integral of the limits of (Hε)ε>0 and (X̃

ε)ε>0.
Of course, we work under Assumption 2, i.e., in presence of a highly oscillating first-order
term. And for that, the variations of Hε shall be “slow” enough.

Proposition 3. In addition to Hypothesis 1, we assume that

sup
ε>0

E [ ‖Hε‖∞ ] < +∞.

We assume that for each ε > 0, there exists a (random) partition 0 = t1 < · · · < tnε = 1 of
[0, 1] with nε terms such that

nεε −−→
ε→0

0 (16)

E
[
ε−1‖Hε − Hε‖∞

]
−−→
ε→0

0, (17)

where

Hε(t) =

nε∑

i=1

Hε
ti1[ti,ti+1)(t).

Then, Hε · X̃ε converges in distribution to H · X.

Proof. We set Yε
t = X̃ε

t + εu(X
ε
t/ε). It is clear from (17) that ‖Hε − Hε‖∞

proba−−−→
ε→0

0. Now,

Hε · X̃ε = (Hε − Hε) · X̃ε + (Hε − Hε) · Yε + Hε · Yε + Rε

with

Rε
t = −ε

k s.t. tk<t∑

i=1

Hε
ti(u(X

ε
ti+1

/ε)− u(Xε
ti/ε)).

With (16) and the fact that u is bounded,

E
[
sup
06t61

|Rε
t |
]

6 εnεE [ ‖Hε‖∞ ] 2‖u‖∞ −−→
ε→0

0.

10



With Proposition 2, (Yε)ε>0 is a good sequence of semimartingales and converges jointly
with (Hε)ε>0 to (X,H). So, Hε · Yε converges to H · X and (Hε − Hε) · Yε converges to 0.

It remains to study (Hε − Hε) · X̃ε, which is equal at time t to

∫ t

0
(Hε

s− − Hε
s−) dM

Xε

s +
1

ε

∫ t

0
(Hε

s− − Hε
s−)̃b(X

ε
s/ε) ds,

where b̃ = b− b and MXε is the martingale part of X̃ε.

As E
[
sup06t61 |MXε

t |2
]

6 ΛT , it is clear that (Hε −Hε) ·MXε converges to 0 as ε goes to 0.
Furthermore, (17) implies that

E
[
1

ε

∣∣∣∣
∫ 1

0
(Hε

s − Hε
s)̃b(X

ε
s/ε) ds

∣∣∣∣
]

6 E
[
1

ε
‖b̃‖∞‖Hε − Hε‖∞

]
−−→
ε→0

0.

We have then proved that Hε · X̃ε converges in distribution to H · X.

2.3 Integration of good semimartingales

For two (càdlàg) semimartingales X and Y, the quadratic covariation process is defined to
be

[X,Y]t = XtYt − X0Y0 −
∫ t

0
Xs− dYs −

∫ t

0
Ys− dXs.

Proposition 4. We are still under Assumption 2. In addition to Hypothesis 1, we assume
furthermore that (Hε)ε>0 is a good sequence of Fε-semimartingales, and that H is also a
semimartingale. Then, there exists a martingale N such that, if M is the martingale part of
X,

〈Ni,Nj〉t = t

∫

TN
a(x)∇ui(x)∇uj(x)m(x) dx,

〈Mi,Nj〉t = t

∫

TN
ap,q(x)

(
δp,i +

∂ui(x)

∂xp

)
∂uj(x)

∂xj
(x)m(x) dx

and

Hε · X̃ε ==⇒
ε→0

H · X − [N,H] (18)

in the Skorohod topology.

Proof. We still use the notations of the proof of Proposition 1 and we denote by MXε

the martingale part of X̃ε, i.e., MXε

t =
∫ t
0 σ(X

ε
s/ε) dBs. Moreover, we set Yε

t = X̃ε
t − X̃ε

0 +
εu(Xε

t/ε)−εu(Xε
0/ε). LetMε and Vε be the martingale part and the process of finite variation

whose sum gives Yε (see (8)). Let us remember that Mε
0 = 0 and that Xε

0 = X̃ε
0 = x for any

ε > 0.

11



An integration by parts leads to

Hε · X̃ε = (X̃ε − x− Yε)× Hε + Yε
0 × Hε

0

+ Hε · Yε − (X̃ε − x− Yε) · Hε − [X̃ε − Yε,Hε].

From Hypothesis 1, (Hε, X̃ε) converges in distribution to (H,X). The quantity supt∈[0,1] |X̃ε
t−

x−Yε
t | converges almost surely to 0. Then (Hε,Yε) also converges in distribution to (H,X).

Owing to Proposition 2(ii), (Yε)ε>0 is a good sequence of semimartingales. So, (H
ε,Yε,Hε ·

Yε) converges in distribution to to (H,X,H · X). Using the fact that (Hε)ε>0 is a good
sequence of semimartingales, (X̃ε − x−Yε) ·Hε converges to 0. Besides, Hε × (X̃ε − x−Yε)
converge to 0 since Hε converges.

As X̃ε − Yε is continuous, according to Proposition I.4.9 in [3, p. 52],

[X̃ε − Yε,Hε] = [MXε − Mε,Hε].

For any ε > 0, we set Nε = Mε − MXε . The martingale (Mε,Nε), which takes its values in
R2N , has cross-variations for i, j = 1, . . . , 2N ,

〈(Mε,Nε)i, (Mε,Nε)j〉t =
∑

p,q=1,...,N

∫ t

0
ap,q

(
δp,i +

∂ui
∂xp

)(
δq,j +

∂uj
∂xq

)
(Xε

s/ε) ds.

with the convention that ui+N = ui for i = 1, . . . , N . It is clear that (M
ε,Nε)ε>0 satisfies

the condition UCV. Besides, (Mε,Nε) converges on account of (11) and the Central Limit
for martingales to (M,N), where M is the limit of Mε and N is a martingale whose cross-
variations are, for i, j = 1, . . . , N,

〈Ni,Nj〉t = t

∫

TN
ap,q

∂ui
∂xp

∂uj
∂xq

(x)m(x) dx.

As Nε and Mε are continuous, the quadratic co-variations of (Mε,Nε) are equal to their
cross-variations.

Using the fact that (Mε,Nε) is continuous, we deduce that

(Hε,Yε,Hε · Yε,Mε,Nε, 〈Mε,Mε〉, 〈Nε,Nε〉, 〈Mε,Nε〉)ε>0

is tight in the Skorohod topology. Moreover, this sequence converges in the Skorohod
topology to (H,Y,H · X,M,N, 〈M,M〉, 〈N,N〉, 〈M,N〉).
Let H is the filtration generated by (H,M,N). As (Hε)ε>0 and (Y

ε,Nε)ε>0 are good se-
quences, the semimartingales H and (M,N) are H-semimartingales. Since

HεNε = Hε
0N

ε
0 + Hε · Nε + Nε · Hε + [Nε,Hε],

the process (Hε,Yε,Nε, [Nε,Hε]) converges in the Skorohod topology to the process
(H,X,N, [N,H]).

Combining these results, we obtain (18).
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3 Convergence of the Lévy Area

Let us define the Lévy area Ai,j(Z) of two coordinates i and j of a semimartingale Z with
values in RN by

Ai,j
s,t(Z) =

1

2

∫ t

s
(Zi

r − Zi
s) dZ

j
r −

1

2

∫ t

s
(Zj

r − Zj
s) dZ

i
r.

The quantity Ai,j
s,t(Z) is only defined as a limit in probability but corresponds intuitively

to the area of the surface contained between the curve r ∈ [s, t] 7→ (Zi
r,Z

j
r) and the chord

[(Zi
s,Z

j
s), (Zi

t,Z
j
t )].

The study Ai,j
s,t(Z) can be reduced to the study of A

i,j
0,t(Z), since A

i,j
0,t(Z) = Ai,j

0,s(Z)+A
i,j
s,t(Z)+

(Zj
t − Z

j
s)(Zi

s − Zi
0) for any 0 6 s 6 t.

The area between a path and its chord is a functional which may not be continuous with
respect to the uniform norm: It is easily proved that t 7→ (n−1 cos(nt), n−1 sin(nt)) converges
uniformly to 0 as n→ ∞, while its area between 0 and 2π remains constant.
Under Assumption 1, it is immediate that A(Xε) converges to A(X), since the sequence
(Xε)ε>0 is a good sequence. We now work under Assumption 2. We recall that X̃ε

t = Xε
t−tb/ε.

From the results of Section 1.1, X̃ε converges in distribution to the semimartingale X given
in Proposition 1.

Proposition 5. Under Assumption 2, let us define for i, j = 1, . . . , N ,

ψi,j =
1

2

∫

T2

(
aj,i

(
∂uj
∂xj

− ∂ui
∂xi

)
− aj,j

∂ui
∂xj

+ ai,i
∂uj
∂xi

+ (bi − bi)uj − (bj − bj)ui

)
(x)m(x) dx.

If Xε
0 = X0 = x, then

Ai,j
0,·(X̃

ε) ==⇒
ε→0

(Ai,j
0,t(X) + ψi,jt)t>0.

in the space of continuous functions.

We remark that ψi,j = −ψj,i. In [10], we give some heuristic interpretation of the result of
this proposition.

Proof. We may assume without loss of generality that the dimension of the space N is equal

to 2 and that (i, j) = (1, 2). For i = 1, 2, we set Y
i,ε
t = M

i,ε
t +

∫ t
0 cj

(
δi,j +

∂ui
∂xj

)
(Xε

s/ε) ds,

where Mε is defined in (8) in the proof of Proposition 1. Hence, we know from Section 1.1
that Yε converges to X− x, since Xε

0 = x. Moreover, Yε
t − (X̃ε

t − X̃ε
0) = εu(Xε

t/ε)− εu(Xε
0/ε).

We use the following decomposition, since X̃ε
0 = x:

(X̃1,ε − X̃
1,ε
0 ) · X̃2,ε = (X̃1,ε − x1) · (X̃2,ε − x2 − Y2,ε) + (X̃1,ε − x1) · Y2,ε.

13



One knows that (Yε)ε>0 is a good sequence of semimartingales (see Proposition 2) and that
X̃1,ε−X̃

1,ε
0 converges in distribution to X1−x1. So (X̃1,ε−X̃

1,ε
0 )·Y2,ε converges in distribution

to (X1 − x1) · X2.

An integration by parts on Ψ = (X̃1,ε − X̃
1,ε
0 ) · (X̃2,ε − X̃

2,ε
0 − Y2,ε) yields

Ψ(t) =

∫ t

0
u2(X

ε
s/ε)(b1(X

ε
s/ε)− b1) ds+ ε

∫ t

0
u2(X

ε
s/ε) dM

X2,ε

s

+ εu2(X
ε
0/ε)(X̃

1,ε
t − X̃

1,ε
0 ) + 〈M2,ε − MX2,ε

,MX1,ε〉t
+ (X̃1,ε

t − X̃
1,ε
0 )(X̃

2,ε
t − X̃

2,ε
0 − Y

2,ε
t ).

Since u is bounded, ε
∫ t
0 u2(X

ε
s/ε) dM

X1,ε

s converges in probability to 0 uniformly in t. Clearly,

the product (X̃1,ε
t − X̃

1,ε
0 )(X̃

2,ε
t − X̃

2,ε
0 − Y

2,ε
t ) = ε(X̃1,ε

t − x1)(u2(X
ε
0/ε)− u2(X

ε
t/ε)) converges

uniformly in t to 0, since X̃1,ε − x1 converges in distribution. From (11), one has

∫ t

0
u2(X

ε
s/ε)(b1(X

ε
s/ε)− b1) ds

proba−−−→
ε→0

t

∫

T2

(b1(x)− b1)u2(x)m(x) dx
def
= tD2,1.

Similarly,

〈M2,ε − MX2,ε

,MX1,ε〉t =
∫ t

0

(
a2,1

∂u2
∂x2

+ a2,2
∂u2
∂x1

)
(Xε

s/ε) ds

proba−−−→
ε→0

t

∫

T2

(
a2,1

∂u2
∂x2

+ a2,2
∂u2
∂x1

)
(x)m(x) dx

def
= tC2,1.

The previous convergences hold in fact in the space of continuous functions.

Similar computations for (X̃2,ε − x2) · X̃1,ε leads to the result with ψ1,2 =
1
2(C2,1 − C1,2 +

D2,1 −D1,2).

4 Convergence of solutions of SDEs

In [10], we consider the convergence of
∫ t
0 f(X̃

ε
s) dX̃

ε
s and the convergence of the solution Yε

of the SDE Yε
t = y +

∫ t
0 f(Y

ε
s) dX̃

ε
s. Here, we consider the more general problem, where one

of the component of f is “fast”, that is

Yε
t = Yε

0 +

∫ t

0
f(Xε

s/ε,X
ε
s − bs/ε,Yε

s) dX̃
ε
s with Yε

0 = y. (19)

The tools to deal with SDEs are taken from those used in the theory of averaging Backward
Stochastic Differential Equations [14, 15].

Let f be a function defined from RN × RN × R to RN . We assume that f is such that, for
any ε > 0, there exists a unique strong solution Yε to the SDE (19). We assume that the
function x 7→ f(x, ·, ·) is periodic. The process Yε takes its value in R, but nothing prevent
us to consider processes Yε in Rm for any integer m. We are interested in the convergence
of Yε.
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4.1 Without highly oscillating first-order differential term

Let f be a function on TN × RN × R. We say that (z, y) 7→ f(·, z, y) is equi-continuous if
the modulus of continuity of this function does not depend on the first variable x.

We work under the following assumption on the function f .

Hypothesis 2. We assume that there exists a constant K such that |f(x, z, y)| is bounded
by K for any (x, z, y) ∈ TN × RN × R, and that (z, y) 7→ f(·, z, y) is equi-continuous.
Proposition 6. We work under Assumption 1 (So b = 0 and X̃ε = Xε) and Hypothesis 2.
Let α(z, y) = (αi,j(y, z))

N
i,j=1 be a function on RN × R such that

ααT(z, y) =

∫

TN
ai,j(x)fi(x, z, y)fj(x, z, y)m(x) dx. (20)

Then there exists some Brownian Motion B on an extension of the probability space on which
X is defined such that Yε converges in distribution to the unique solution of the SDE

Yt = y +

∫ t

0
α(Xs,Ys) dBs.

We denote by f the function on RN × R defined by

f(z, y) =

∫

TN
f(x, z, y)m(x) dx.

The following lemma is particularly useful, and its proof may be found in [14, 15].

Lemma 2. Let f be an equi-continuous function. If (Xε,Yε)ε>0 is tight, then for any κ > 0,

sup
x∈RN

Px

[ ∣∣∣∣
∫ t

0
f(Xε

s/ε,X
ε
s,Y

ε
s) ds−

∫ t

0
f(Xε

s,Y
ε
s) ds

∣∣∣∣ > κ

]
−−→
ε→0

0.

Proof of Proposition 6. According to Remark 1, we assume that c = 0. Under Assump-
tion 1, the process Yε is a continuous martingale. Moreover, the sequence (Yε)ε>0 is tight
in the space of continuous functions. For that, we remark that

〈Yε〉t =
∫ t

0
ai,j(X

ε
s/ε)fi(X

ε
s/ε,X

ε
s,Y

ε
s) ds,

the coefficients ai,j and the functions fi are bounded. So, it is clear that (〈Yε〉)ε>0 is tight,
and it follows from Theorem 4.13 in [3, p. 322], that the sequence (Yε)ε>0 is also tight.

Let Y be a limit point for this sequence. We know from Corollary VI.6.6 in [3, p. 342] that
Y is itself a martingale and that 〈Yε〉 converges to 〈Y〉. With Lemma 2, 〈Yε〉 converges
in distribution to the process 〈Y〉 =

∫ ·
0 ai,jfifj(Xs,Ys) ds. So, for any limit point Y of the

sequence Yε
t , and any function α from RN × R satisfying (20), there exists a Brownian

Motion B on an extension of the probability space (see for example Theorem 3.4.2 in [4,
p. 170]) such that

Yt = y +

∫ t

0
α(Xs,Ys) dBs

and the quadratic variation of Y is 〈Y〉 =
∫ ·
0 ai,jfifj(Xs,Ys) ds. Due to the uniqueness of

the solution of the martingale problem for (X,Y), the limit is unique in distribution.
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We have to remark that nothing proves that Y and B are adapted to the filtration generated
by X, since Y is just a martingale with respect to the filtration generated by X and itself.
Yet, if (x, z, y) = f(z, y), then the martingale Y is a martingale with respect to the filtration
generated by X. For that, one has just to remark that

Yε
t − y =

∫ t

0
f(Xε

s,Y
ε
s) dX

ε
s ==⇒

ε→0

∫ t

0
f(Xs,Ys) dXs = Yt − y.

According to the Yamada and Watanbe’s result (see for example Section 5.3.D in [4, p. 309]),
Y is the unique strong solution to the SDE Yt = y +

∫ t
0 f(Xs,Ys) dXs and is then adapted

to the filtration generated by X.

4.2 With a highly oscillating first-order differential term

Under Assumption 2, the situation is more complicated and Yε does not always converge.
However, we may prove that there exists a function u on TN × RN × R such that

Lu(·, z, y) = −f(·, z, y)b(·) + fb(z, y) (21)

where fb(z, y) =
∫

TN b(x)f(x, z, y)m(x) dx. If f(x, z, y) = f(z, y), then fb(z, y) = f(z, y)b.

Proposition 7. We assume that (z, y) 7→ f(·, z, y) is of class C2, and that this function
together with all its first and second derivatives are equi-continuous and bounded on RN ×R
with respect to the first variable. The sequence

(
Yε − 1

ε

∫ ·
0 fb(X̃

ε
s,Y

ε
s) ds

)

ε>0
converges in

distribution to the unique solution Y of

Yt = Y0 +

∫ t

0
α(Xs,Ys) dBs +

1

2

∫ t

0

∂2u

∂xi∂y
ai,jfj(Xs,Ys) ds− b

∫ t

0
∇zu(Xs,Ys) ds

+
1

2

∫ t

0
ai,j

∂2u

∂xi∂zj
(Xs,Ys) ds+

∫ t

0
∇zu · fb(Xs,Ys) ds, (22)

where α(z, y) is such that

α(z, y)αT(z, y) =

∫

TN
ai,j(x)

∂u

∂xi

∂u

∂xj
(x, z, y)m(x) dx

and B is a (σ(Xs,Ys; 0 6 s 6 t))t>0-standard Brownian Motion.

The following proposition is the central point of the proof. It means that the continuity of
f is transfered to u.

Proposition 8 ([16, 17]). Under the hypotheses on f of Proposition 7, the function
(z, y) 7→ u(·, z, y) given by (21) is twice differentiable with continuous derivatives up to
order 2. Furthermore, this function and its derivatives up to order 2 are uniformly bounded
on RN × R. Moreover, for i, j = 1, . . . , N , (y, z) 7→ ∇xu(·, z, y), (y, z) 7→ ∇zu(·, z, y),
(y, z) 7→ ∂2u

∂xi∂y
(·, z, y) and (y, z) 7→ ∂2u

∂xi∂zj
(·, z, y) are equi-continuous and bounded on each

compact uniformly with respect to the first variable.
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Proof. The proof relies on the formula u(x, z, y) =
∫ +∞

0 Pt(f(x, z, y)b(x)−fb(z, y)) dt, where
(Pt)t>0 is the semi-group generated by L seen as an operator acting on periodic functions.
The continuity and differentiability of u follows from the fact that this semi-group admits
a probability transition function which is differentiable. See [16, 17] for details.

Proof of Proposition 7. The Itô formula implies that

Yε
t −

1

ε

∫ t

0
fb(X̃ε

s,Y
ε
s) ds+ εu(X

ε
t/ε, X̃

ε
t ,Y

ε
t )

= Yε
0 + εu(X

ε
0/ε, X̃

ε
0,Y

ε
0) +

∫ t

0
(f +∇xu)(X

ε
s/ε, X̃

ε
s,Y

ε
s) dM

Xε

s

+
1

2

∫ t

0
fj

∂2u

∂xi∂y
(Xε

s/ε, X̃
ε
s,Y

ε
s)ai,j(X

ε
s/ε) ds

+
1

2

∫ t

0

∂2u

∂xj∂zi
(Xε

s/ε, X̃
ε
s,Y

ε
s)ai,j(X

ε
s/ε) ds

+

∫ t

0
∇zu(X

ε
s/ε, X̃

ε
s,Y

ε
s) · fb(Xε

s/ε, X̃
ε
s,Y

ε
s) ds

−
∫ t

0
b∇zu(X

ε
s/ε, X̃

ε
s,Y

ε
s) ds+ Vε

t ,

where Vε contains all the terms of order ε and consequently decreases to 0 as ε→ 0.

Then, one may use Proposition 8 and Lemma 2 to prove that the sequence(
Yε − 1

ε

∫ ·
0 fb(X̃

ε
s,Y

ε
s) ds

)

ε>0
is tight and that any limit Y of this sequence is a solution

to (22). With the martingale problem, the limit is unique in distribution.
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