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Abstract

Stein’s method is used to approximate sums of discrete and locally dependent random vari-
ables by a centered and symmetric binomial distribution, serving as a natural alternative
to the normal distribution in discrete settings. The bounds are given with respect to the
total variation and a local limit metric. Under appropriate smoothness properties of the
summands, the same order of accuracy as in the Berry-Essen Theorem is achieved. The
approximation of the total number of points of a point processes is also considered. The
results are applied to the exceedances of the r-scans process and to the Matérn hardcore
point process type I to obtain explicit bounds with respect to the two metrics.
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1 Introduction

The approximation of sums of dependent random variables by the standard normal distribution
has been investigated in a large variety of settings. The accuracy of approximation is most often
measured by the Kolmogorov and Kantorovich metrics (see Sunklodas [29] for an overview with
many references).

The use of stronger metrics typically requires that some ’smoothness’ condition must be satisfied.
In this paper, under the assumption of a general local dependence structure, we study the
approximation of sums of discrete random variables by a symmetric and centered binomial
distribution. In a discrete setting this distribution will serve us as a natural alternative to
the normal distribution and allow for an approximation in total variation, which would always
equal to 1 if the normal distribution were directly used to approximate integer valued random
variables. Under some general smoothness property of the summands, the same order of accuracy
as in the Berry-Essen Theorem can be achieved, but now, instead of the Kolmogorov metric,
for the stronger total variation metric. We also examine another metric, from which local limit
approximations can be obtained.

In the setting of independent summands, approximation by a centered Poisson distribution has
been successfully adopted by Čekanavičius and Vǎıtkus [11] and Barbour and Čekanavičius [4].
However, for dependent summands, applications were limited to simple examples; first attempts
were made by Barbour and Xia [5] and Čekanavičius and Vǎıtkus [11]. In contrast, the results
in this paper are of general nature and allow a wide range of applications.

The proofs are based on Stein’s method for distributional approximation. A main idea, intro-
duced in Röllin [27], is to use interpolation functions to represent the Stein operator of a discrete
distribution as the Stein operator of a continuous distribution. In the case of the binomial, this
then allows the application of standard techniques in Stein’s method for normal approximation.
A careful analysis of the remainder terms then shows how a suitable smoothness condition can
be exploited, to obtain total variation error bounds.

The paper is organized as follows. In the next section, we introduce the main technique in
the simple case of independent summands. In Section 3, these results are extended to locally
dependent summands and Section 4 shows their application to some simple examples. These
applications are instances of m-dependent sequences and finite-range random fields for which
a large amount of literature is available (see again Sunklodas [29] for references). We would
like to point out the local limit CLTs and Edgeworth expansions in Götze and Hipp [18, 19])
and Heinrich [20, 21], which also cover the examples in Section 4. In Section 5 we prove some
technical lemmas.

1.1 Notation

Denote by Bi(n, p) the binomial distribution with n trials of probability p each. Denote by
B̂i(n, p) the centered binomial distribution, i.e. a binomial distribution shifted by −np. Note
that this distribution does not necessarily lie on the integers, but on a lattice of R with span 1.

Throughout the paper, we shall be concerned with two metrics for probability distributions, the
total variation metric dTV and the local limit metric dloc, where, for two probability distributions
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P and Q,

dTV

(
P,Q

)
:= sup

A⊂R

∣∣P (A)−Q(A)
∣∣,

dloc

(
P,Q

)
:= sup

x∈R

∣∣P ([x, x+ 1)
)
−Q

(
[x, x+ 1)

)∣∣.
For simplicity, we will often use the notation dl, where l = 1 will stand for dTV and l = 2 for
dloc.

We denote by ‖·‖ the supremum norm if applied to functions, and the variation norm if applied to
measures, where for any signed measure M , ‖M‖ =

∫
|M |(dx) and thus ‖P −Q‖ = 2 dTV(P,Q).

Let δx denote the unit mass at x ∈ R, and ∗ the convolution of measures. Define for any measure
µ and any l ∈ N := {1, 2, . . . }

Dl(µ) =
∥∥µ ∗ (δ1 − δ0)∗l

∥∥.
Note that for measures µ and λ,

D1
(
µ
)

= 2 dTV

(
µ, µ ∗ δ1

)
, (1.1)

D2(µ ∗ λ) 6 D1(µ)D1(λ), (1.2)

where the later inequality can be deduced from the fact that for signed measures M1 and M2,
‖M1∗M2‖ 6 ‖M1‖·‖M2‖. Furthermore, define 〈x〉 := x−bxc to be the fractional part of x ∈ R,
and (x)+ = x ∨ 0.

1.2 Basic setup

Consider a sum of the form W =
∑

i∈J ξi, where W takes its values in a lattice of R with span 1.
The expectation of W has no influence on the quality of the approximation, and we therefore
assume without loss of generality that EW = 0; this can always be accomplished by subtracting
the expectation from each individual summand. Each of the summands may now take its values
on a different lattice; this, however, will result in no further complications.

To approximate W by a centered binomial distribution, we have to choose n in such a way that
the variance of B̂i(n, 1/2) is as close to the variance of W as possible. As n has to be integer,
this is only possible up to a rounding error. However, the symmetric and centered binomial
distribution thus chosen will in general take its values on a different lattice from W and the
total variation distance will become 1. To circumvent this problem, we introduce an additional
parameter t and approximate W by a centered binomial distribution with success probability
1/2− t instead (t being small), to be able to match not only the variance but also the lattice.

Hence, to put the above in a rigorous form, we will make the following assumptions if not
otherwise stated:

Assumptions G: Let J be a finite set and let {ξi, i ∈ J} be a collection of random variables with
Eξi = 0 for all i ∈ J and assume that there are numbers {ai ∈ R; i ∈ J} such that almost surely
ξi ∈ Z + ai. Let W =

∑
i∈J ξi; then EW = 0 and almost surely W ∈ Z + a for a :=

∑
i∈J ai.

Assume that σ2 := VarW > 1. Define now δ := 〈−4σ2〉 and t := 〈a + 2σ2 + δ/2〉/(4σ2 + δ).
Clearly, 4σ2 + δ = d4σ2e, and by definition the distribution B̂i

(
d4σ2e, 1/2 − t

)
has expectation

0; it is also easy to check that it takes values in Z+ a.

758



From the above definition, we see that t is only of order O(σ−2) as σ2 →∞, which is rather small
in the setting that we are concerned with; Corollary 2.4 shows how to obtain results without t,
using Lemma 5.2.

2 Sum of Independent Random Variables

First, we examine the case of independent discrete summands. Previous work on total variation
approximation has been concerned with the compound Poisson distribution (see Le Cam [23] and
Roos [28] and references therein), the signed compound Poisson distribution (see Čekanavičius
[9] and references therein), the Poisson distribution (see Barbour et al. [7]), the centered Poisson
distribution (see Čekanavičius [10], Čekanavičius and Vǎıtkus [11], Barbour and Xia [5] and
Barbour and Čekanavičius [4]) and some more general distributions (see Brown and Xia [8]).

We present the theorem below to demonstrate the main technique in a simple setting, noting
that it also follows as a consequence of Theorem 3.1.

Theorem 2.1. Let {ξi; i ∈ J} be independent and satisfy Assumptions G. Then, if the ξi have
finite third moments,

dl
(
L (W ), B̂i

(
d4σ2e, 1/2− t

))
6 σ−2

(∑
i∈J

cl,iρi + 1.75
)
, l = 1, 2,

where ρi = σ3
i + 1

2E|ξi|
3, σ2

i = Var ξi and cl,i = Dl
(
L (W − ξi)

)
.

Remark 2.2. It is clear that the above bound is useful only if the cl,i are small. In the case
of n identically distributed random variables, we need c1,i = o(1) as n → ∞ for asymptotic
approximation in total variation, and in order to deduce a local limit theorem we must have
c2,i = o(n−1/2). This is however always the case if D1(ξ1) < 2 (which corresponds to the usual
condition in the local limit theorem that ξ1 must not be concentrated on a lattice with span
greater than 1; see e.g. Gnedenko [17]), as can be seen from (5.9)–(5.10), and we then even have
cl,i = O(n−l/2) for l = 1, 2.

Before proving the theorem, we start with a short summary of Stein’s method for binomial
approximation; for details see also Stein [31] and Ehm [16]. Denote by F (M) the set of all real
valued measurable functions on some given measure spaceM . A Stein operator B : F (Z)→ F (Z)
for the binomial distribution Bi(n, p) is characterized by the fact that, for any integer valued
random variable W ,

E(Bg)(W ) = 0 for all bounded g ∈ F (Z) ⇐⇒ W ∼ Bi(n, p), (2.1)

and a possible choice is

(Bg)(z) = qzg(z − 1)− p(n− z)g(z), for all z ∈ Z, (2.2)

where, as usual, we put q = 1− p.
Let h ∈ F (Z) be a bounded function. Then, the solution g = gh to the Stein equation

(Bg)(z) = I[0 6 z 6 n]
{
h(z)−Eh(Y )

}
, for all z ∈ Z, (2.3)
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where Y ∼ Bi(n, p), is also bounded. If the functions h are of the form h(z) = hA(z) = I[z ∈ A],
A ⊂ Z, we have the uniform bound

‖∆gA‖ 6
1− pn+1 − qn+1

(n+ 1)pq
, (2.4)

where ∆g(z) := g(z+1)−g(z), and the same bound holds for ‖g{b}‖, b ∈ Z; see Ehm [16]. Now,
for all z ∈ Z, we can write

I[z ∈ A]−P[Y ∈ A] = (BgA)(z) + I[z /∈ {0 . . . n}]
(
I[z ∈ A]−P[Y ∈ A]

)
,

and thus, for any integer valued random variable V ,

dTV

(
L (V ),Bi(n, p)

)
= sup

A⊂Z

∣∣P[V ∈ A]−P[Y ∈ A]
∣∣

6 sup
A⊂Z

∣∣E(BgA)(V )
∣∣+P

[
|V − n/2| > n/2

]
.

(2.5)

We now construct a Stein operator for the centered binomial distribution B̂i(n, p) on the lattice
Z− np. For any function g ∈ F (Z) define the function ĝ ∈ F (Z− np) by ĝ(w) := g(w+ np) for
w ∈ Z− np. Then the Stein operator is defined as

(B̂ĝ)(w) := (Bg)(w + np)
= p(w + np)g(w + np) + q(w + np)g(w − 1 + np)− npg(w + np)
= w

(
pĝ(w) + qĝ(w − 1)

)
− npq∆ĝ(w − 1).

(2.6)

for all w ∈ Z− np. Thus, for W = V − np, an inequality corresponding to (2.5) holds, namely

dTV

(
L (W ), B̂i(n, p)

)
6 sup

B⊂Z−np

∣∣E(B̂ĝB)(W )
∣∣+P

[
|W + n(p− 1/2)| > n/2

]
.

(2.7)

An equivalent inequality holds for the dloc metric, but the supremum is taken only over the sets
{b}, b ∈ Z− np.
Under the assumptions of the theorem, n = d4σ2e = 4σ2 + δ and p = 1/2− t, and (2.6) becomes

(B̂ĝ)(w) = wΘĝ(w − 1)− σ2∆ĝ(w − 1) +
(
t2(4σ2 + δ)− wt− δ/4

)
∆ĝ(w − 1), (2.8)

where Θĝ(w) := 1
2

(
ĝ(w + 1) + ĝ(w)

)
. Since σ2 > 1, the bound (2.4) simplifies to

‖∆ĝB‖ 6
1
σ2
. (2.9)

To see this, note that t < 1/d4σ2e = 1/n and n = d4σ2e > 5. Then from (2.4) we have

‖∆ĝB‖ 6
1

(n+ 1)pq
=

1
(n+ 1)(1/4− t2)

6
4n2

(n+ 1)(n2 − 4)
6

4
n

6
1
σ2
.
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Lemma 2.3. Assume the conditions of Theorem 2.1. Define A : F (Z+ a)→ F (Z+ a) by

(Aĝ)(w) := wΘĝ(w − 1)− σ2∆ĝ(w − 1), w ∈ Z+ a, ĝ ∈ F (Z+ a).

Then, ∣∣E(Aĝ)(W )
∣∣ 6 (‖∆ĝ‖∑

i∈J
c1,iρi

)
∧
(
‖ĝ‖

∑
i∈J

c2,iρi

)
. (2.10)

Proof. For every w ∈ Z+ a and x ∈ [ 0, 1) define

f(w + x) := Θĝ(w − 1) + x∆ĝ(w − 1) + 1
2x

2∆2ĝ(w − 1). (2.11)

One easily checks that f ∈ C1 and f(w) = Θĝ(w − 1) and f ′(w) = ∆ĝ(w − 1), hence

(Aĝ)(w) = wf(w)− σ2f ′(w), (2.12)

for all w ∈ Z+ a. Furthermore, f ′ is absolutely continuous, hence f ′′ exists almost everywhere.
Choose f ′′ to be the function

f ′′(w + x) = ∆2ĝ(w − 1) (2.13)

for all w ∈ Z+ a, 0 6 x < 1.

We can now apply the usual Taylor expansion (cf. Reinert [25], Theorem 2.1), but with a refined
estimate of the remainder terms. Write Wi = W − ξi, i ∈ J ; then

ξif(W ) = ξif(Wi) + ξ2i f
′(Wi) + ξ3i

∫ 1

0
(1− s)f ′′(Wi + sξi) ds,

σ2
i f
′(W ) = σ2

i f
′(Wi) + ξiσ

2
i

∫ 1

0
f ′′(Wi + sξi) ds,

and hence, using the independence of ξi and Wi and that Eξi = 0,∣∣E{ξif(W )− σ2
i f
′(W )

}∣∣ 6 E∣∣∣∣ξ3i ∫ 1

0
(1− s)E

[
f ′′(Wi + sξi)

∣∣ ξi] ds
−ξiσ2

i

∫ 1

0
E
[
f ′′(Wi + sξi)

∣∣ ξi] ds∣∣∣∣. (2.14)

Note now that for any real valued random variable U taking values on a lattice with span 1, we
obtain together with (2.13)∣∣E(f ′′(U + z)

)∣∣ 6 (‖∆ĝ‖D1
(
L (U)

))
∧
(
‖ĝ‖D2

(
L (U)

))
, (2.15)

for all z ∈ R. Thus, from (2.14) and (2.15),∣∣E{ξif(W )− σ2
i f
′(W )

}∣∣
6
(
‖∆ĝ‖D1

(
L (Wi)

)(
σ3
i + 1

2E|ξi|
3
))
∧
(
‖ĝ‖D2

(
L (Wi)

)(
σ3
i + 1

2E|ξi|
3
))
.

(2.16)

Now, using (2.12) we have∣∣E{Aĝ(W )
}∣∣ 6∑

i∈J

∣∣E{ξif(W )− σ2
i f
′(W )

}∣∣
and with (2.16) the lemma is proved.
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Proof of Theorem 2.1. Recall that, by Assumptions G, the distributions L (W ) and
B̂i
(
d4σ2e, 1/2− t)

)
are concentrated on the same lattice. Thus, using (2.7) and the form (2.8) of

the Stein operator, and applying the left side of the minimum in (2.10) to the first part of (2.8)
with the bound (2.9) gives

dTV

(
L (W ), B̂i(4σ2 + δ, 1/2− t)

)
6

∑
i∈J c1,iρi

σ2
+
t2(4σ2 + δ) + σt+ δ/4

σ2
+P

[
|W | > 2σ2 − 1

]
.

(2.17)

To bound the middle part of (2.17) note that 0 6 t < (4σ2 +δ)−1 and 0 6 δ < 1. Thus, recalling
that σ2 > 1, we obtain the simple bounds

t2(4σ2 + δ) < (4σ2 + δ)−1 6 1/4, σt 6 σ/(4σ2 + δ) 6 1/4, δ/4 6 1/4.

Applying Chebyshev’s inequality on the last term of (2.17) we obtain

P
[
|W | > 2σ2 − 1

]
6

σ2

(2σ2 − 1)2
6

1
σ2
.

The dloc case is analogous, using the right side of the minimum in (2.10) instead and the remark
after (2.4).

Note that in the next corollary we do not assume that the ξi have expectation zero.

Corollary 2.4. Let W be the sum of independent and integer valued random variables {ξi, i ∈ J}
with σ2

i = Var ξi and
vi = min

{
1/2, 1− dTV

(
L (ξi),L (ξi + 1)

)}
.

Then, if σ2 > 1,

dTV

(
L (W ),Bi(d4σ2e, 1/2) ∗ δs

)
6

2
∑(

σ3
i + 1

2E|ξi|
3
)

σ2(V − v∗)1/2
+

1 + 2.25σ−1 + 0.25σ−2

σ
,

dloc

(
L (W ),Bi(d4σ2e, 1/2) ∗ δs

)
6

8
∑(

σ3
i + 1

2E|ξi|
3
)

σ2(V − 4v∗)+
+

3.25 + 0.25σ−1

σ2
,

where s := dµ− d4σ2e/2e, µ = EW , V =
∑

i∈J vi and v∗ = maxi∈J vi.

Proof. Define W0 = W − µ, and let t be defined with respect to W0, taking a = −µ. Then, as
the metrics dl are shift invariant,

dl
(
L (W ),Bi(d4σ2e, 1/2) ∗ δs

)
= dl

(
L (W0),Bi(d4σ2e, 1/2) ∗ δs−µ

)
6 dl

(
L (W0), B̂i

(
d4σ2e, 1/2− t

))
+ dl

(
Bi(d4σ2e, 1/2− t),Bi(d4σ2e, 1/2)

)
=: Rl1 +Rl2,

since Bi(d4σ2e, 1/2− t) ∗ δs ∗ δ−µ = B̂i
(
d4σ2e, 1/2− t

)
.
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Applying Lemma 5.2 to Rl2 with the fact that 0 6 t 6 (4σ2 + δ)−1 gives

R1
2 6 σ−1

(
1 + (2σ)−1 + (4σ2)−1

)
, R2

2 6 σ−2
(
1.5 + (4σ)−1

)
. (2.18)

Define now cl = maxi∈J
{
Dl
(
L (W − ξi)

)}
. Application of (5.9)-(5.10) yields

c1 6
2

(V − v∗)1/2
, c2 6

8
(V − 4v∗)+

. (2.19)

Thus, application of Theorem 2.1 to Rl1 proves the corollary.

3 Locally dependent random variables

In this section we present the main results of the paper. We exploit a finite local dependence
structure as presented in Chen and Shao [12]. In the context of Stein’s method for normal
approximation, it has been successfully applied to a variety of problems; see for example Stein
[31] (Lecture 10), Barbour et al. [6], Rinott and Rotar [26], Dembo and Rinott [15] and Barbour
and Xia [3]. Note that Barbour et al. [6] use a slightly more general dependence structure,
often yielding crucial improvement when approximating sums of dissociated random variables
by the normal distribution. The generalization of Theorem 3.1 is straightforward, yet somewhat
tedious, and we therefore use the simpler dependence structure of Chen and Shao [12]; see the
Appendix for the more general version, but without proof. The dependence structure used by
Rinott and Rotar [26] is more general in the sense that the set of neighbours is allowed be
random itself; they obtain multivariate normal approximation in the uniform and more general
metrics under the assumption of bounded summands.

Let {ξi; i ∈ J} be a collection of random variables satisfying Assumptions G. For convenience,
let ξA denote {ξi; i ∈ A} for every subset A ⊂ J . Assume further the following dependence
structure: For every i ∈ J there are subsets Ai ⊂ Bi ⊂ J such that ξi is independent of ξAci , and
ξAi is independent of ξBci . Define ηi =

∑
j∈Ai ξj and τi =

∑
j∈Bi ξj .

Theorem 3.1. With W as above,

dl
(
L (W ), B̂i

(
d4σ2e, 1/2− t

))
6 σ−2

(∑
i∈J

ϑl,i + 1.75
)
, l = 1, 2, (3.1)

where

ϑl,i = 1
2E
{
|ξi|η2

iD
l
(
L (W |ξi, ηi)

)}
+E

{
|ξiηi(τi − ηi)|Dl

(
L (W |ξi, ηi, τi)

)}
+ |Eξiηi|E

{
|τi|Dl

(
L (W |τi)

)} (3.2)

If further there are constants cl,i such that almost surely

Dl
(
L (W |ξBi)

)
6 cl,i, (3.3)

then
ϑl,i 6 cl,i

(
1
2E|ξiη

2
i |+E|ξiηi(τi − ηi)|+ |Eξiηi|E|τi|

)
. (3.4)
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Proof. Estimate (3.4) is immediate. Following the proof of Theorem 2.1 and using Lemma 3.2
below, (3.1) is proved.

Note that Theorem 2.1 follows from Theorem 3.1 with the choices Ai = Bi = {i}.

Lemma 3.2. Assume the conditions of Theorem 3.1. Define A : F (Z + a) → F (Z + a) as in
Lemma 2.3. Then, ∣∣E(Aĝ)(W )

∣∣ 6 (‖∆ĝ‖∑
i∈J

ϑ1,i

)
∧
(
‖ĝ‖

∑
i∈J

ϑ2,i

)
. (3.5)

Proof. We follow the proof of Lemma 2.3 right up to the end of the paragraph of (2.13). Note
now that

σ2 =
∑
i∈J
E{ξiηi} (3.6)

and that, by Taylor expansion, almost surely

ξif(W ) = ξif(W − ηi) + ξiηif
′(W − ηi) + ξiη

2
i

∫ 1

0
(1− s)f ′′(W − ηi + sηi) ds,

ξiηif
′(W − ηi) = ξiηif

′(W − τi) + ξiηi(τi − ηi)
∫ 1

0
f ′′(W − τi + s(τi − ηi)) ds,

E{ξiηi}f ′(W ) = E{ξiηi}f ′(W − τi) +E{ξiηi}τi
∫ 1

0
f ′′(W − τi + sτi) ds.

Now, using the facts that Eξi = 0, that ξi is independent of W − ηi and that ηi is independent
of W − τi, we obtain from (3.6) and (3) that

E
{
Wf(W )− σ2f ′(W )

}
=
∑
i∈J
E
{
ξif(W )−E{ξiηi}f ′(W )

}
=
∑
i∈J
E

{
ξiη

2
i

∫ 1

0
(1− s)E

{
f ′′(W − ηi + sηi)

∣∣ ξi, ηi} ds
+ ξiηi(τi − ηi)

∫ 1

0
E
{
f ′′(W − τi + s(τi − ηi))

∣∣ ξi, ηi, τi} ds
−E

{
ξiηi
}
τi

∫ 1

0
E
{
f ′′(W − τi + sτi))

∣∣ τi} ds}.
With (2.12) and (2.15) the lemma follows.

We now give a point process version of Theorem 3.1, exploiting mainly the same dependence
structure as before. Recall that, heuristically, the Palm process Φα of a simple point process Φ
on a set J has the conditional distribution of Φ given that there is a point at α ∈ J ; for a rigorous
definition see e.g. Kallenberg [22]. The Palm processes are characterized by the equality

E

∫
f(α,Φ)Φ(dα) =

∫
Ef(α,Φα)µ(dα),

for measurable functions f , where µ is the mean measure of Φ; this equality will be used
throughout the proof of the next theorem.
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Theorem 3.3. Let Φ be a point process on a Polish space J with mean measure µ such that
µ(J) < ∞. For all points α ∈ J , assume that there are measurable subsets Aα ⊂ Bα ⊂ J , such
that for every α ∈ J ,

L
(
Φα(Acα)

)
= L

(
Φ(Acα)

)
, (3.7)

Φα(Aα) and Φα(Bc
α) are independent, (3.8)

Φ(Aα) and Φ(Bc
α) are independent, (3.9)

where Φα denotes the Palm process of Φ at point α. Then, for W = Φ(J) − µ(J) and if
σ2 = VarW > 1,

dl
(
L (W ), B̂i

(
d4σ2e, 1/2− t

))
6 σ−2

∫
α∈J

ϑl(α)µ(dα) + 1.75σ−2, l = 1, 2.
(3.10)

where, with Φ′ := Φ− µ and Φ′α := Φα − µ,

ϑl(α) =
∣∣EΦ′α(Aα)

∣∣E{|Φ′(Bα)|Dl
(
Φ(Bc

α)
∣∣ Φ(Bα)

)}
+ 1

2E
{

Φ′α(Aα)2Dl
(
Φα(Acα)

∣∣ Φα(Aα)
)}

+ 1
2E
{

Φ′(Aα)2Dl
(
Φ(Acα)

∣∣ Φ(Aα)
)}

+E
{
|Φ′α(Aα)Φ′α(Bα \Aα)|Dl

(
Φα(Bc

α)
∣∣ Φα(Aα),Φα(Bα)

)}
+E

{
|Φ′(Aα)Φ′(Bα \Aα)|Dl

(
Φ(Bc

α)
∣∣ Φ(Aα),Φ(Bα)

)}
.

(3.11)

Proof. Following the proof of Theorem 2.1 and Lemma 2.3, it is clear that we only have to bound
E
{
Wf(W )− σ2f ′(W )

}
for f defined as in (2.11).

In what follows, all integrals are taken over {α ∈ J} if not otherwise stated. Note first that,
because of (3.7),

σ2 = E{Φ(J)Φ′(J)} =
∫
µ(dα)E{Φ′α(Aα) + Φ′α(Acα)} =

∫
µ(dα)EΦ′α(Aα)

and hence, by Taylor’s expansion,

σ2
Ef ′(W ) =

∫
µ(dα)EΦ′α(Aα)Ef ′(Φ′(Bc

α))

+
∫
µ(dα)EΦ′α(Aα)E

{
Φ′(Bα)

∫ 1

0
f ′′(Φ′(Bc

α) + tΦ′(Bα)) dt
}

=: R1 +R2.
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Now, again by Taylor,

E{Wf(W )} =
∫
µ(dα)

[
Ef(Φ′α(J))−Ef(Φ′(J))

]
=
∫
µ(dα)

[
Ef(Φ′α(Acα))−Ef(Φ′(Acα))

]
+
∫
µ(dα)

[
E
{

Φ′α(Aα)f ′(Φ′α(Acα))
}
−E

{
Φ′(Aα)f ′(Φ′(Acα))

}]
+
∫
µ(dα)

[
E

{
Φ′α(Aα)2

∫ 1

0
(1− t)f ′′

(
Φ′α(Acα) + tΦ′α(Aα)

)
dt
}

−E
{

Φ′(Aα)2
∫ 1

0
(1− t)f ′′

(
Φ′(Acα) + tΦ′(Aα)

)
dt
}]

=: R3 +R4 +R5

and

R4 =
∫
µ(dα)

[
E
{

Φ′α(Aα)f ′(Φ′α(Bc
α))
}
−E

{
Φ′(Aα)f ′(Φ′(Bc

α))
}]

+
∫
µ(dα)

[
E

{
Φ′α(Aα)Φ′α(Bα \Aα)

∫ 1

0
f ′′
(
Φ′α(Bc

α) + tΦ′α(Bα \Aα)
)
dt
}

−E
{

Φ′(Aα)Φ′(Bα \Aα)
∫ 1

0
f ′′
(
Φ′(Bc

α) + tΦ′(Bα \Aα)
)
dt
}]

=: R6 +R7.

Using (3.7)–(3.9), we see that R3 = 0 and R1 = R6, hence∣∣E{Wf(W )− σ2f ′(W )
}∣∣ 6 |R2|+ |R5|+ |R7|.

With (2.15) we finally obtain

|R2| 6 ‖∆ĝ‖
∫
µ(dα)

∣∣EΦ′α(Aα)
∣∣E{|Φ′(Bα)|D1

[
L
(
Φ(Bc

α)
∣∣ Φ(Bα)

)]}
,

|R5| 6 1
2‖∆ĝ‖

∫
µ(dα)

[
E
{

Φ′α(Aα)2D1
[
L
(
Φα(Acα)

∣∣ Φα(Aα)
)]}

+E
{

Φ′(Aα)2D1
[
L
(
Φ(Acα)

∣∣ Φ(Aα)
)]}]

,

|R7| 6 ‖∆ĝ‖
∫ [
E
{
|Φ′α(Aα)Φ′α(Bα \Aα)|D1

[
L
(
Φα(Bc

α)
∣∣ Φα(Aα),Φα(Bα)

)]}
+E

{
|Φ′(Aα)Φ′(Bα \Aα)|D1

[
L
(
Φ(Bc

α)
∣∣ Φ(Aα),Φ(Bα)

)]}]
µ(dα).

To obtain ϑ2, just replace ‖∆g‖ by ‖g‖ and D1 by D2 in the above bounds.

Corollary 3.4. Let Φ be a simple point process satisfying (3.7)–(3.9). If there is further a
function cl(α), such that for µ-almost every α ∈ J almost surely

Dl
(
L
(
Φ(J)

∣∣ Φ|Bα
))
∨Dl

(
L
(
Φα(J)

∣∣ Φα|Bα
))

6 cl(α), l = 1, 2, (3.12)
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then the ϑl from (3.11) satisfy

ϑl(α) 6 cl(α)
[∣∣EΦ′α(Aα)

∣∣E|Φ′(Bα)|+ 1
2EΦ′α(Aα)2 + 1

2EΦ′(Aα)2

+E|Φ′α(Aα)Φ′α(Bα \Aα)|+E|Φ′(Aα)Φ′(Bα \Aα)|
]

6 cl(α)
[
1.5E

{
Φα(Aα)Φα(Bα)

}
+ 1.5E

{
Φ(Aα)Φ(Bα)

}
+ 6µ(Aα)µ(Bα) + 4µ(Bα)EΦα(Bα)

]
.

(3.13)

4 Applications

In what follows, we calculate only rough bounds, leaving much scope for improvement. In
particular, we replace the moments in the estimates by almost sure bounds. To estimate the
terms describing the conditional smoothness, such as Dl(W |τi), we essentially use the a blocking
argument and Remark 2.2, see also Subsections 5.3 and 5.4. Note that the following examples are
cases of m-dependent random variables (in particular, finite range functionals of i.i.d. random
variables), for which a large literature exists, see Sunklodas [29] for an excellent overview. We
point out Kolmogorov distance approximations such as Stein [30] and Tikhomirov [32], and
Edgeworth expansions and local limit CLTs such as Götze and Hipp [18, 19] and Heinrich
[20, 21].

We provide approximations in both the total variation and the local limit metrics, where all
constants can easily be extracted from the proofs and, hence, be made explicit.

4.1 Exceedances of the r-scans process

We follow the notation of Dembo and Karlin [14]. Let X1, X2, . . . , Xn+r−1 be independent
and identically distributed random variables with distribution function F . Define the r-scan
process Ri =

∑r−1
k=0Xi+k, i = 1, 2, . . . , n and further W−i = I[Ri 6 a] for a ∈ R. We are

interested in the number N− =
∑n

i=1W
−
i , that is the number of Ri not exceeding a. With

p = EW−i = P[R1 6 a], we have EN− = np and

σ2 = VarW = np
(

1− p+ 2
r−1∑
d=1

(1− d/n)ψ(d)
)
, (4.1)

where ψ(d) := P[Rd+1 6 a|R1 < a]− p > 0.

Poisson approximations for the r-scan process have been extensively studied by Dembo and
Karlin [14]. Normal approximation has been considered by Dembo and Rinott [15]; in particular
they show, that, for fixed r and a, N− converges in the Kolmogorov metric to the normal
distribution with rate O(n−1/2). In the next theorem we achieve the same rate in total variation,
and also a rate for the corresponding local limit approximation.

Theorem 4.1. Assume that F is continuous, F (0) = 0, and 0 6 F (x) < F (y) for all x < y,
and let a > 0 be fixed. Then, for all n such that σ2 > 1,

dl
(
L (N− − np), B̂i

(
d4σ2e, 1/2− t

))
6 Cln

−l/2, l = 1, 2,

where the constants C1 and C2 are independent of n and can be extracted from the proof.
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Proof. We apply Theorem 3.1 for W =
∑n

i=1 ξi =
∑n

i=1(W−i − p). We can set

Ai = {i− r + 1, . . . , i+ r − 1} ∩ {1, . . . , n},
Bi = {i− 2r + 2, . . . , i+ 2r − 2} ∩ {1, . . . , n}.

Then, as |Ai| 6 2r − 1, |Bi| 6 4r − 3 and |Bi \ Ai| 6 2r − 2, the following rough bounds are
obvious:

E|ξiη2
i | 6 (2r − 1)2, E|ξiηi(τi − ηi)| 6 (2r − 1)(2r − 2),

|Eξiηi|E|τi| 6 (2r − 1)(4r − 3),

thus
ϑl,i 6 cl,i

(
16r2 − 20r + 6

)
(4.2)

Consider now the block B1 =
∑3r−2

i=1 W−i , and assume that the values ∂B1 = (X1, . . . , Xr−1)
and ∂B2 = (X3r−1, . . . , X4r−2) are given. Define the events

A :=
{a
r
< Xr, . . . , X2r−2, X2r+1, . . . , X3r−2 6

a(r + 1)
r2

, 0 < X2r 6
a

2r2
}

A0 :=
{a
r
< X2r−1 6

a(r + 1)
r2

}
, A1 :=

{
0 < X2r−1 6

a

2r2
}
.

Due to the conditions on F and independence it is clear that pj := P[A ∩ Aj ] > 0 for j = 0, 1.
Note now that

Rr =
2r−1∑
i=r

Xi > a on A ∩A0, Rr < a on A ∩A1.

Note further that Rs < a for all s = r + 1, . . . , 2r − 1 on A ∩ (A0 ∪ A1). Hence

2r−1∑
i=r

W−i = r − 1 on A ∩A0,
2r−1∑
i=r

W−i = r on A ∩A1.

It easy to see now by a coupling argument that

1
2D

1
(
L (B1)

)
6 1− (p0 ∧ p1) < 1.

Noting that by sequentially stringing together blocks like B1, we can have m := bn/(3r − 2)c
such blocks, which are independent given all the borders ∂Bi. Furthermore, for every i, the Rj
in Bi depend on the Xk of at most two such blocks. Therefore, defining Z = (∂B1, . . . , ∂Bm)
and using (5.11) and (5.12),

D1
(
L (W |∂Bi, i = 1, . . . ,m)

)
6

2(
min{1/2, p0, p1}(m− 2)

)1/2 =: c1,i,

D2
(
L (W |∂Bi, i = 1, . . . ,m)

)
6

8
min{1/2, p0, p1}(m− 4)+

=: c2,i.

Clearly, cl,i = O(n−l/2). Hence, putting this, (4.1) and (4.2) into (3.1), the theorem follows.
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4.2 Matérn hard-core process type I

We approximate the total number of points of the Matérn hard-core process type I introduced
by Matérn [24]. We use rectangular instead of the usual circular neighborhoods. Let Φ be the
process on the d-dimensional cube J = [0, 1)d ⊂ Rd defined as

Φ(B) =
τ∑
i=1

I[Xi ∈ B]I[Xj /∈ Kr(Xi) for all j = 1, . . . , τ , j 6= i],

where τ ∼ Po(λ) and {Xi; i ∈ N} is a sequence of independent and uniformly distributed
random variables on J and where, for x = (x1, . . . , xd) ∈ J and r > 0, Kr(x) denotes the
d-dimensional closed cube with center x and side length r. To avoid edge effects, we treat J as
a d-dimensional torus, thus identifying any point outside J by the point in J which results in
coordinate-wise shifting by 1. The process Φ is thus a thinned Poisson point process with rate λ
having all points deleted which contain another point in their Kr neighborhood. For the mean
measure µ of Φ we obtain

dµ(x)
dx

= λe−λr
d
. (4.3)

We are now interested in the distribution of Φ(B) when r is small an λ large.

Theorem 4.2. Put W := Φ(J)− µ(J) and let a > 0 be a fixed real number. Then, for every λ
and r such that λrd = a and σ2 := VarW > 1,

dl
(
L (Φ(J)− µ(J)), B̂i

(
d4σ2e, 1/2− t

))
6 Clλ

−l/2, l = 1, 2,

for constants C1 and C2 which are independent of λ and can be extracted from the proof.

Proof. We apply Corollary 3.4. We can take Ax = K2r(x) and Bx = K4r(x) and check that
the conditions (3.7)–(3.9) are fulfilled. Some calculations show that the reduced second factorial
moment measure M satisfies

dM(x)
dx

=


0 if x ∈ Kr(0),
λ2e−λ|Kr(0)∪Kr(x)| if x ∈ K2r(0) \Kr(0),
λ2e−2a if x /∈ K2r(0),

compare with Daley and Vere-Jones [13], pp. 367, 373. Thus, M(J) > λ2e−2a(1− rd) and

σ2 = λe−a +M(J)− µ(J)2 > λe−a(1− ae−a). (4.4)

Since we can have at most 7d points of Φ in Bx, we obtain from (3.13) the rough estimate

ϑl(x) 6 26 · 7dcl(x), (4.5)

where cl(·) is as in (3.12). To estimate cl(x) write Kr = Kr(0). We have

P
[
Φ(Kr) = 0

∣∣ ΦK7r\K5r

]
> Po

(
λ|Kr|

)
{0} = e−a =: p0,

P
[
Φ(Kr) = 1

∣∣ ΦK7r\K5r

]
> Po

(
λ|K3r \Kr|

)
{0} · Po

(
λ|Kr|

)
{1} = ae−3da =: p1.
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Figure 1: Matérn hard-core process type I: Given that the process Φ is known on the borders
∪l∈MK6r(xl) \K5r(xl) (grey area), the boxes Φ|K6r(xl), l ∈M, are independent.

Hence, by a coupling argument,

1
2D

1
(
L (Φ(K6r)|ΦK7r\K5r

)
)

6 1− (p0 ∧ p1) < 1. (4.6)

Let now x be arbitrary. Divide the space J into boxes of side length 6r, centered around x
(see Figure 1). With m := b1/(6r)c, we can have md such boxes plus a remainder. Denote this
remainder by JR and denote by xl, l ∈ {1, . . . ,m}d =:M the centers of the boxes where x1,...,1 =
x. Note now that, given Φ on all the borders K6r(xl)\K5r(xl), l ∈M (grey area in Figure 1), the
random variables Φ(K6r(xl)), l ∈M, are independent and satisfy Inequality (4.6). Furthermore,
Φ|J\K6r(x) is independent of Φ|Bx , and therefore, defining Z =

(
(Φ|K6r(xl)\K5r(xl))l∈M,Φ|JR

)
and

using (5.11) and (5.12), we obtain

D1
(
L
(
Φ(J)

∣∣ Φ|Bx
))

6
2(

min{1/2, p0, p1}(md − 2)+
)1/2 =: c1(x), (4.7)

D2
(
L
(
Φ(J)

∣∣ Φ|Bx
))

6
8

min{1/2, p0, p1}(md − 3)+
=: c2(x). (4.8)

Noting that almost surely L
[
Φx

(
J \K6r(x)

) ∣∣ Φx|Bx
]

= L
[
Φ
(
J \K6r(x)

)]
, we see that (4.7)

and (4.8) hold also for Φx, thus cl(x) satisfies (3.12). Now, recalling that a = λrd is constant,
we have cl(x) = O(λ−l/2). Hence, putting this and (4.3)–(4.5) into (3.10), the theorem follows.
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5 Appendix

5.1 Properties of the solution to the Stein equation

Lemma 5.1. For any indicator function h(z) = I[z ∈ A], z ∈ Z, A ⊂ Z, the solution g = gh to
the Stein Equation (2.3) satisfies

‖g‖ 6 1 ∧ (npq)−1/2. (5.1)

Proof. We apply the generator method introduced by Barbour [1]. For any function f :{
0, . . . , n

}
→ R, define

(Af)(z) =
(
B(−∆f)

)
(z) = qzf(z − 1)−

(
qz + p(n− z)

)
f(z) + p(n− z)f(z + 1), (5.2)

which is the infinitesimal generator of a pure jump Markov process. A solution g to (2.3) is now
given through

ψ(z) = −
∫ ∞

0
E
{
h
(
Yz(t)

)
− h(Y )

}
dt, for z ∈ {0, . . . , n},

and g(z) = −∆ψ(z) for z ∈ {0, . . . , n− 1} and g(z) = 0 else, where Yz is a Markov process with
generator A starting at point z, and Y is a random variable having the stationary distribution
Bi(n, p). Now, we have for z ∈ {0, . . . , n− 1},

∆ψ(z) =
∫ ∞

0
E
{
h
(
Yz(t)

)
− h
(
Yz+1(t)

)}
dt. (5.3)

We now fix z and construct a coupling of Yz and Yz+1 to bound (5.3). Let thereto X
(i)
k (t),

k ∈ {1, . . . , n}, i ∈ {0, 1}, be independent Markov processes with state space {0, 1}, starting in
point i and having jump rate p if the process is in 0 and q otherwise. It is easy to see by the
Kolmogorov differential equations that

X
(1)
k (t) ∼ Be(p+ qe−t), X

(0)
k (t) ∼ Be(p− pe−t) (5.4)

where Be(p) denotes the Bernoulli distribution with success probability p. Let τ be the minimum
of the first jump times of the two processes X(0)

z+1 and X
(1)
z+1, and define a new process

X(t) =

X
(1)
z+1 if τ > t,

X
(0)
z+1 if τ 6 t,

describing the well-known Doeblin coupling. Then, let

Yz =
z∑

k=1

X
(1)
k +

n∑
k=z+1

X
(0)
k , Yz+1 = Yz −X(0)

z+1 +X(t), (5.5)

and one proves that Yz and Yz+1 are Markov processes with generator (5.2). Hence, we can
write (5.3) as

−∆ψ(z) =
∫ ∞

0
e−tE

{
∆h(Yz)

}
dt, (5.6)
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since τ is exponentially distributed with rate 1. The bound ‖g‖ 6 1 is now immediate from (5.6),
thus we may assume that npq > 1. Note that, from (5.4) and (5.5),

L (Yz) = Bi(z, p+ qe−t) ∗ Bi(n− z, p− pe−t),

and hence, from Barbour and Jensen [2], Lemma 1,

D1
(
L (Yz)

)
6 Var(Yk)−1/2

6
(
z(p+ qe−t)(q − qe−t) + (n− z)(p− pe−t)(q + pe−t)

)−1/2

6
(
npq(1− e−t)

)−1/2
.

(5.7)

Note also that for h̃ := h− 1/2∣∣E{∆h(Yz)
}∣∣ =

∣∣E{∆h̃(Yz)
}∣∣ 6 D1

(
L (Yz)

)
/2. (5.8)

Thus, applying (5.8) on (5.6) and using (5.7),

∣∣∆ψ∣∣ 6 ∫ s

0
e−t dt+

1
2
√
npq

∫ ∞
s

e−t√
1− e−t

dt.

Choosing s = − ln
(
1− (npq)−1

)
and computing the integrals proves the lemma.

5.2 Change of the success probabilities

Lemma 5.2. For every n ∈ N, 0 < p < 1 and −(1− p) < t < p

dTV

(
Bi(n, p− t),Bi(n, p)

)
6 |t|

( √
n

√
pq

+
p− t
pq

+

√
(p− t)(q + t)
pq
√
n

)
dloc

(
Bi(n, p− t),Bi(n, p)

)
6 |t|

(
1 + p− t

pq
+

√
(p− t)(q + t)
pq
√
n

)
Proof. We use Stein’s method. If W ∼ Bi(n, p− t), we obtain from (2.1) and (2.2)

E
{

(1− p)Wg(W − 1)− p(n−W )g(W )
}

= E
{
tW∆g(W − 1)− tng(W )

}
for every bounded function g ∈ F (Z). The left side is just the Stein operator for Bi(n, p) hence,
taking g = gA obtained by solving (2.3) for Bi(n, p), with the bounds (2.4) and (5.1) the dTV-
bound follows, noting also that E|W | 6 |EW | +

√
VarW . With the remark after (2.4), the

dloc-bound is proved.

5.3 Smoothing properties of independent random variables

In several parts of this article we need to estimate Dm(U), m = 1, 2, for some integer valued
random variable U , being a sum of some other random variables. If the U is a sum of independent
random variables, we can proceed as follows. Assume that U =

∑n
i=1Xi, where the Xi are

772



independent. Defining vi = min{1
2 , 1 −

1
2D

1(Xi)} and V =
∑

i vi we obtain from Barbour and
Xia [5], Proposition 4.6 the bound

D1(U) 6
2

V 1/2
. (5.9)

Define further v∗ = maxi vi. Now it is always possible to write U = U (1) + U (2) in such a way
that the analogously defined numbers V (1) and V (2) satisfy V (k) > V/2 − v∗, k = 1, 2. Using
(1.2) and (5.9), we obtain

D2(U) 6 D1
(
U (1)

)
D1
(
U (2)

)
6

4(
V (1)V (2)

)1/2 6
8

(V − 2v∗)+
. (5.10)

5.4 Smoothing properties of conditional independent random variables

In most applications, U is a sum of dependent summands and we can not apply (5.9) and (5.10)
directly. However, assuming that there is a random variable Z on the same probability space
as U such that L (U |Z = z) can be represented as a sum of independend summands, say X(z)

i ,
i = 1, . . . , nz, for each z that Z can attain, we can still apply (5.9) and (5.10), and we obtain

D1(U) 6 E
{
E[D1(U)|Z]

}
6 E

{ 2

V
1/2
Z

}
, (5.11)

D2(U) 6 E
{
E[D1(U)|Z]

}
6 E

{ 8
(VZ − 2v∗Z)+

}
, (5.12)

where, for each z, Vz and v∗z are the corresponding values as defined in Subsection 5.3 with
respect to the X(z)

i .

5.5 Generalization of the local dependence structure

We now give a generalization of Theorem 3.1. The proof is omitted, because it runs analogously
to the proof of Theorem 3.1; see also Barbour et al. [6].

Suppose that a random variable W satisfies Assumptions G and assume that there are sets
Ki ⊂ J , i ∈ I, and square integrable random variables Zi, Zik and Vik, k ∈ Ki and i ∈ I, as
follows:

W = Wi + Zi, i ∈ I, where Wi is independent of ξi, (5.13)

Zi =
∑
k∈Ki

Zik, (5.14)

Wi = Wik + Vik, i ∈ I, k ∈ Ki, (5.15)
where Wik is independent of the pair (Xi, Zik).

Theorem 5.3. With W as above,

dl
(
L (W ), B̂i

(
d4σ2e, 1/2− t

))
6 σ−2

(∑
i∈I

ϑl,i + 1.75
)
, l = 1, 2, (5.16)
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where

ϑl,i =
1
2
E
{
|ξi|Z2

i D
l
(
L (Wi|ξi, Zi)

)}
+
∑
k∈Ki

E
{∣∣ξiZikVik∣∣Dl

(
L (Wik|ξi, Zik, Vik)

)}
+
∑
k∈Ki

∣∣E{ξiZik}∣∣E{|Zi + Vik|Dl
(
L (Wik|Zi, Vik)

)}
.

(5.17)
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