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Abstract

We study the asymptotic behavior of solutions of semilinear PDEs. Neither periodicity nor ergod-
icity will be assumed. On the other hand, we assume that the coefficients have averages in the
Cesaro sense. In such a case, the averaged coefficients could be discontinuous. We use a proba-
bilistic approach based on weak convergence of the associated backward stochastic differential
equation (BSDE) in the Jakubowski S-topology to derive the averaged PDE. However, since the
averaged coefficients are discontinuous, the classical viscosity solution is not defined for the av-
eraged PDE. We then use the notion of "Lp−viscosity solution" introduced in [7]. The existence
of Lp−viscosity solution to the averaged PDE is proved here by using BSDEs techniques.
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1 Introduction

Homogenization of a partial differential equation (PDE) is the process of replacing rapidly varying
coefficients by new ones such that the solutions are close. Let for example a be a one dimensional
periodic function which is positive and bounded away from zero. For ǫ > 0, we consider the operator

Lǫ = div(a(
x

ǫ
)∇)

For small ǫ, Lǫ can be replaced by
L = div(a∇)

where a is the averaged (or limit, or effective) coefficient associated to a. As ǫ is small, the solution
of the parabolic equation

∂tu= Lǫu, u(0, x) = f (x)

is close to the corresponding solution with Lǫ replaced by L.

The probabilistic approach to homogenization is one way to prove such results in the periodic or
ergodic case. It is based on the asymptotic analysis of the diffusion process associated to the operator
Lǫ. The averaged coefficient a is then determined as a certain "mean" of a with respect to the
invariant probability measure of the diffusion process associated to L.

There is a vast literature on the homogenization of PDEs with periodic coefficients, see for example
the monographs [3; 12; 21] and the references therein. There also exists a considerable literature on
the study of asymptotic analysis of stochastic differential equations (SDEs) with periodic structures
and its connection with homogenization of second order partial differential equations (PDEs). In
view of the connection between BSDEs and semilinear PDEs, this probabilistic tool has been used
in order to prove homogenization results for certain classes of nonlinear PDEs, see in particular
[4; 5; 6; 9; 11; 13; 19; 23; 24] and the references therein. The two classical situations which
have been mainly studied are the cases of deterministic periodic and random stationary coefficients.
This paper is concerned with a different situation, building upon earlier results of Khasminskii and
Krylov.

In [15], Khasminskii & Krylov consider the averaging of the following family of diffusions process




U
1,ǫ
t =

x1

ǫ
+

1

ǫ

∫ t

0

ϕ(U1,ǫ
s , U2,ǫ

s )dWs,

U
2,ǫ
t = x2+

∫ t

0

b(1)(U1,ǫ
s , U2,ǫ

s )ds+

∫ t

0

σ(1)(U1,ǫ
s , U2,ǫ

s )d
fWs,

(1.1)

where for each ǫ > 0 small, U
1,ǫ
t is a one-dimensional null-recurrent fast component and U

2,ǫ
t is a

d–dimensional slow component. The function ϕ (resp. σ(1), resp. b(1)) is IR-valued (resp. IRd×(k−1)-
valued, resp. IRd -valued). (W,fW ) is a k-dimensional standard Brownian motion whose component
W (resp. fW ) is one dimensional (resp. (k-1)-dimensional). Define now (X 1,ǫ, X 2,ǫ) = (ǫU1,ǫ, U2,ǫ).
The process {X ǫt := (X 1,ǫ

t , X
2,ǫ
t ), t ≥ 0} solves the SDE





X
1,ǫ
t = x1+

∫ t

0

ϕ

�
X 1,ǫ

s

ǫ
, X 2,ǫ

s

�
dWs,

X
2,ǫ
t = x2+

∫ t

0

b(1)

�
X 1,ǫ

s

ǫ
, X 2,ǫ

s

�
ds+

∫ t

0

σ(1)
�

X 1,ǫ
s

ǫ
, X 2,ǫ

s

�
dfWs,

(1.2)
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They define the averaged coefficients as limits in the Cesaro sense. With the additional assumption
that the presumed SDE limit is weakly unique, they prove that the process (X 1,ǫ

t , X
2,ǫ
t ) converges

in distribution towards a Markov diffusion (X 1
t , X 2

t ). As a byproduct, they derive the limit behavior

of the linear PDE associated to (X 1,ǫ
t , X

2,ǫ
t ), in the case where weak uniqueness of the limiting PDE

holds in the Sobolev space W
1,2
d+1,loc(IR+ × IRd) of all funcions u(t, x) defined on IR+ × IRd such that

both u and all the generalized derivatives Dtu, Dxu, and D2
x xu belong to Ld+1

loc
(IR+ × IRd).

In the present note, we extend the results of [15] to parabolic semilinear PDEs. Note that the
limiting coefficients can be discontinuous. More precisely, we consider the following sequence of
semi-linear PDEs, indexed by ǫ > 0,





∂ vǫ

∂ t
(t, x1, x2) = (L ǫvǫ)(t, x1, x2) + f (

x1

ǫ
, x2, vǫ(t, x1, x2)), t > 0

vǫ(0, x1, x2) = H(x1, x2); (x
1, x2) ∈ IR× IRd .

(1.3)

L ǫ := a00(
x1

ǫ
, x2)

∂ 2

∂ 2 x1
+

d∑

i, j=1

ai j(
x1

ǫ
, x2)

∂ 2

∂ x2i∂ x2 j

+

d∑

i=1

b
(1)
i
(

x1

ǫ
, x2)

∂

∂ x2i

,

where ϕ, σ(1) and b(1) are those defined above in equation (1.1),

a00 :=
1

2
ϕ2, ai j :=

1

2
(σ(1)σ(1)∗)i j, i, j = 1, ..., d,

and the real valued measurable functions f and H are defined on IRd+1× IR and IRd+1 respectively.

We put

b :=

�
0

b(1)

�
, a(x) :=

1

2
(σσ∗)(x), with σ :=

�
ϕ 0
0 σ(1)

�
.

We write

B :=

�
W
fW

�
and X ǫ :=

�
X 1,ǫ

X 2,ǫ

�
.

The PDE (1.3) is then connected to the system of SDE – BSDE




X ǫs = x +

∫ s

0

b(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )dr +

∫ s

0

σ(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )dBr ,

Y ǫs = H(X ǫt ) +

∫ t

s

f (
X 1,ǫ

r

ǫ
, X 2,ǫ

r , Y ǫr )dr −
∫ t

s

Zǫr dM X ǫ

r , ∀ s ∈ [0, t]

(1.4)

where M X ǫ is the martingale part of the process X ǫ i. e.

M X ǫ

s =

∫ s

0

σ(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )dBr , 0≤ s ≤ t.

Note that Y ǫ0 does depend upon the pair (t, x)where x is the initial condition of the forward SDE part
of (1.4), and t is the final time of the BSDE part of (1.4). It follows from e. g. Remark 2.6 in [22]
that under suitable conditions upon the coefficients {vǫ(t, x) := Y ǫ0 , t ≥ 0, x = (x1, x2) ∈ IRd+1}
solves the PDE (1.3).

The aim of the present paper is
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1. to show that for each t > 0, x ∈ IRd+1, the sequence of processes (X ǫs , Y ǫs ,
∫ t

s
Zǫr dM X ǫ

r )0≤s≤t

converges in law to the process (Xs, Ys,
∫ t

s
Zr dM X

r )0≤s≤t which is the unique solution to the
system of SDE – BSDE





Xs = x +

∫ s

0

b̄(X r)dr +

∫ s

0

σ̄(X r)dBr , 0≤ s ≤ t.

Ys = H(X t) +

∫ t

s

f̄ (X r , Yr)dr −
∫ t

s

Zr dM X
r , 0≤ s ≤ t,

(1.5)

where M X is the martingale part of X and σ̄, b̄ and f̄ are respectively the average of σ, b and
f , in a sense which will be made precise below;

2. deduce from the first result that for each (t, x), vǫ(t, x1, x2) −→ v(t, x1, x2), where v solves
the following averaged PDE in the Lp-viscosity sense





∂ v

∂ t
(t, x1, x2) = ( L̄v)(t, x1, x2) + f̄ (x1, x2, v(t, x1, x2)) t > 0,

v(0, x1, x2) = H(x1, x2),
(1.6)

with

L̄ =
∑

i, j

āi j(x1, x2)
∂ 2

∂ x i∂ x j

+
∑

i

b̄i(x1, x2)
∂

∂ x i

the averaged operator.

The method used to derive the averaged BSDE is based on weak convergence in the S-topology
and is close to that used in [23] and [24]. In our framework, we show that the limiting system
of SDE – BSDE (1.5) has a unique solution. However, due to the discontinuity of the coefficients,
the classical viscosity solution is not defined for the averaged PDE (1.6). We then use the notion of
"Lp−viscosity solution". We use BSDE techniques to establish the existence of Lp−viscosity solution
for the averaged PDE. The notion of Lp-viscosity solution has been introduced by Caffarelli et al.

in [7] to study fully nonlinear PDEs with measurable coefficients. Note however that although the
notion of a Lp-viscosity solution is available for PDEs with merely measurable coefficients, conti-
nuity of the solution is required. In our situation, the lack of L2-continuity property for the flow
X x := (X 1, x , X 2, x) transfers the difficulty to the backward one and hence we cannot prove the L2-
continuity of the process Y . To overcome this difficulty, we establish weak continuity for the flow
x 7→ (X 1, x , X 2, x) and using the fact that Y x

0 is deterministic, we derive the continuity property for
Y x

0 .

The paper is organized as follows: In section 2, we make precise some notations and formulate our
assumptions. Our main results are stated in section 3. Section 4 and 5 are devoted to the proofs.
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2 Notations and assumptions

2.1 Notations

For a given function g(x1, x2), we define

g+(x2) := lim
x1→+∞

1

x1

∫ x1

0

g(t, x2)d t

g−(x2) := lim
x1→−∞

1

x1

∫ x1

0

g(t, x2)d t

The average, in Cesaro sense, of g is defined by

g±(x1, x2) := g+(x2)1{x1>0} + g−(x2)1{x1≤0}

Let ρ(x1, x2) := a00(x1, x2)
−1(= [1

2
ϕ2(x1, x2)]

−1) and denote by b̄(x1, x2), ā(x1, x2) and

f̄ (x1, x2, y), the averaged coefficients defined by

b̄i(x1, x2) =
(ρbi)

±(x1, x2)

ρ±(x1, x2)
, i = 1, ..., d

āi j(x1, x2) =
(ρai j)

±(x1, x2)

ρ±(x1, x2)
, i, j = 0, 1, ..., d

f̄ (x1, x2, y) =
(ρ f )±(x1, x2, y)

ρ±(x1, x2)
.

σ̄(x1, x2) = (ā(x1, x2))
1
2

where ā(x1, x2) denotes the matrix (āi j(x1, x2))i, j.

It is worth noting that b̄, ā and f̄ may be discontinuous at x1 = 0.

2.2 Assumptions.

We consider the following conditions.

(A1) The functions b(1), σ(1), ϕ are uniformly Lipschitz in the variables (x1, x2).

(A2) For each x1, the first and second order derivatives with respect to x2 of these functions are
bounded continuous functions of x2.

(A3) a(1) := 1
2
(σ(1)σ(1)∗) is uniformly elliptic, i. e. ∃Λ > 0; ∀x ,ξ ∈ IRd , ξ∗a(1)(x)ξ ≥ Λ|ξ|2.

Moreover, there exist positive constants C1, C2, C3 such that
(
(i) C1 ≤ a00(x1, x2)≤ C2

(ii) |a(1)(x1, x2)|+ |b(x1, x2)|2 ≤ C3(1+ |x2|2).
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(B1) Let Dx2
ρ and D2

x2
ρ denote respectively the gradient vector and the matrix of second derivatives

of ρ with respect to x2. We assume that uniformly with respect to x2

1

x1

∫ x1

0

ρ(t, x2)d t −→ ρ±(x2) as x1→±∞,

1

x1

∫ x1

0

Dx2
ρ(t, x2)d t −→ Dx2

ρ±(x2) as x1→±∞,

1

x1

∫ x1

0

D2
x2
ρ(t, x2)d t −→ D2

x2
ρ±(x2) as x1→±∞.

(B2) For every i and j, the coefficients ρbi , Dx2
(ρbi), D2

x2
(ρbi), ρai j , Dx2

(ρai j),

D2
x2
(ρai j) have averages in the Cesaro sense.

(B3) For every function k ∈ {ρbi , Dx2
(ρbi), D2

x2
(ρbi), ρai j , Dx2

(ρai j), D2
x2
(ρai j)}, there

exists a bounded function α : IRd+1→ IR such that




1

x1

∫ x1

0

k(t, x2)d t − k±(x1, x2) = (1+ |x2|2)α(x1, x2),

lim
|x1|−→∞

sup
x2∈IR

d

|α(x1, x2)|= 0.
(2.1)

(C1)

(i) The coefficient f is uniformly Lipschitz in (x1, x2, y) and, for each x1 ∈ IR, its derivatives in
(x2, y) up to and including second order derivatives are bounded continuous functions of
(x2, y).

(ii) There exists positive constant K such that

for every (x1, x2, y), | f (x1, x2, y)| ≤ K(1+ |x2|+ |y |).

(iii) H is continuous and bounded.

(C2) ρ f has a limit in the Cesaro sense and there exists a bounded measurable function β : IRd+2→
IR such that





1

x1

∫ x1

0

ρ(t, x2) f (t, x2, y)d t − (ρ f )±(x1, x2, y) = (1+ |x2|2+ |y |2)β(x1, x2, y)

lim
|x1|→∞

sup
(x2, y)∈IRd×IR

|β(x1, x2, y)|= 0,
(2.2)

(C3) For each x1, ρ f has derivatives up to second order in (x2, y) and these derivatives are bounded
and satisfy (C2).

Throughout the paper, (A) stands for conditions (A1), (A2), (A3); (B) for conditions (B1), (B2),
(B3) and (C) for (C1), (C2), (C3).
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3 The main results

Consider the equation

X x
t = x +

∫ t

0

b̄(X x
s )ds+

∫ t

0

σ̄(X x
s )dBs, t ≥ 0. (3.1)

Assume that (A), (B) hold. Then, from Khasminskii & Krylov [15] and Krylov [18], we deduce
that for each fixed, x ∈ IRd+1 the process X ǫ := (X 1,ǫ, X 2,ǫ) converges in distribution to the process

X := (X 1, X 2) which is the unique weak solution to SDE (3.1).

We now define the notion of Lp-viscosity solution of a parabolic PDE. This notion has been intro-
duced by Caffarelli et al. in [7] to study PDEs with measurable coefficients. Presentations of this
topic can be found in [7; 8].

Let g : IRd+1× IR 7−→ IR be a measurable function and

L̄ :=
∑

i, j

āi j(x)
∂ 2

∂ x i∂ x j

+
∑

i

b̄i(x)
∂

∂ x i

denote the second order PDE operator associated to the SDE (3.1).

We consider the parabolic equation




∂ v

∂ t
(t, x) = ( L̄v)(t, x) + g(x , v(t, x)), t ≥ 0

v(0, x) = H(x).
(3.2)

Definition 3.1. Let p be an integer such that p > d + 2.

(a) A function v ∈ C
�
[0, T]× IRd+1, IR

�
is a Lp-viscosity sub-solution of the PDE (3.2), if for every

x ∈ IRd+1, v(0, x) ≤ H(x) and for every ϕ ∈W
1, 2
p, loc

�
IR+ × IRd+1, IR

�
and (bt, bx) ∈ (0, T]× IRd+1 at

which v −ϕ has a local maximum, one has

ess lim inf
(t, x)→(bt, bx)

½
∂ ϕ

∂ t
(t, x)− ( L̄ϕ)(t, x)− g(x , v(t, x))

¾
≤ 0.

(b) A function v ∈ C
�
[0, T]× IRd+1, IR

�
is a Lp-viscosity super-solution of the PDE (3.2), if for

every x ∈ IRd+1, v(0, x) ≥ H(x) and for every ϕ ∈ W
1, 2
p, loc

�
IR+ × IRd+1, IR

�
and (bt, bx) ∈ (0, T]×

IRd+1 at which v −ϕ has a local minimum, one has

ess lim sup
(t, x)→(bt, bx)

½
∂ ϕ

∂ t
(t, x)− ( L̄ϕ)(t, x)− g(x , v(t, x))

¾
≥ 0.

Here, G(t, x , ϕ(s, x)) is merely assumed to be measurable upon the variable x =: (x1, x2).

(c) A function v ∈ C
�
[0, T]× IRd+1, IR

�
is a Lp-viscosity solution if it is both a Lp-viscosity sub-

solution and super-solution.
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Remark 3.2. Condition (a) means that for every ǫ > 0, r > 0, there exists a set A ⊂ Br(bt, bx) of
positive measure such that, for every (s, x) ∈ A,

∂ ϕ

∂ s
(s, x)− ( L̄ϕ)(t, x)− g(x , v(t, x))≤ ǫ.

The main results are (the S–topology is explained in the Appendix below)

Theorem 3.3. Assume (A), (B), (C) hold. Then, for any (t, x) ∈ IR+ × IRd+1, there exists a process

(Xs, Ys, Zs)0≤s≤t such that,

(i) the sequence of process X ǫ converges in law to the continuous process X, which is the unique weak

solution to SDE (1.5), in C([0, t]; IRd+1) equipped with the uniform topology.

(ii) the sequence of processes (Y ǫs ,
∫ t

s
Zǫr dM X ǫ

r )0≤s≤t converges in law to the process

(Ys,
∫ t

s
Zr dM X

r )0≤s≤t in D([0, t]; IR2), where M X is the martingale part of X , equipped with the S–

topology.

(iii) (Y,Z) is the unique solution to BSDE (1.5) such that,

(a) (Y,Z) is F X−adapted and (Ys,
∫ t

s
Zr dM X

r )0≤s≤t is continuous.

(b) IE
�

sup0≤s≤t |Ys|2+
∫ t

0
|Zrσ(X r)|2dr

�
<∞

The uniqueness means that, if (Y 1, Z1) and (Y 2, Z2) are two solutions of BSDE (1.5) satisfying (iii)

(a)-(b) then, IE
�

sup0≤s≤t

¯̄
Y 1

s − Y 2
s

¯̄2
+
∫ t

0

¯̄
Z1

rσ(X r)− Z2
rσ(X r)

¯̄2
dr
�
= 0, i. e. since σσ∗ is elliptic

(see (A3)), Y 1
s = Y 2

s ∀0≤ s ≤ t, IP a. s., and Z1
s = Z2

s ds× dIP a. e.

Theorem 3.4. Assume (A), (B), (C) hold. For ǫ > 0, let vǫ be the unique solution to the problem (1.3).

Let (Y (t,x)s )s be the unique solution of the BSDE (1.5). Then

(i) Equation (1.6) has a unique Lp-viscosity solution v such that v(t, x) = Y
(t,x)

0 .

(ii) For every (t, x) ∈ IR+× IRd+1, vǫ(t, x)→ v(t, x), as ǫ→ 0.

4 Proof of Theorem 3.3.

In all of this section, (t, x) ∈ IR+ × IRd+1 is arbitrarily fixed with t > 0.

Assertion (i) follows from [15] and [18]. Assertion (iii) can be established as in [23; 24]. We
shall prove (ii). We first deduce from our assumptions (see in particular (A3) which says that the
coefficients of the forward SDE part of (1.4) are bounded with respect to their first variable, and
grow at most linearly in their second variable)

Lemma 4.1. For all p ≥ 1, there exists constant Cp such that for all ǫ > 0,

IE

�
sup

0≤s≤t

[|X 1,ǫ
s |

p + |X 2,ǫ
s |

p]

�
≤ Cp.
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4.1 Tightness and convergence for the BSDE.

Proposition 4.2. There exists a positive constant C such that for all ǫ > 0

IE

�
sup

0≤s≤t

¯̄
Y ǫs

¯̄2
+

∫ t

0

¯̄
Zǫrσ(X

ǫ
r )
¯̄2

dr

�
≤ C .

Proof. We deduce from Itô’s formula (here and below X̄ 1,ǫ
r = X 1,ǫ

r /ǫ)

|Y ǫs |
2+

∫ t

0

¯̄
Zǫrσ(X

ǫ
r )
¯̄2

dr)≤ |H(X ǫt )|
2+ K

∫ t

s

|Y ǫr |
2dr +

∫ t

s

| f (X̄ 1,ǫ
r , X 2,ǫ

r , 0)|2dr

− 2

∫ t

s

〈Y ǫr , Zǫr dM X ǫ

s 〉.

It follows from well known results on BSDEs that we can take the expectation in the above identity
(see e. g. [22]; note that introducing stopping times as usual and using Fatou’s Lemma would yield
(4.1) below). We then deduce from Gronwall’s lemma that there exists a positive constant C which
does not depend on ǫ, such that for every s ∈ [0, t],

IE
�
|Y ǫs |

2
�
≤ CIE

�
|H(X ǫt )|

2+

∫ t

0

| f (X̄ 1,ǫ
r , X 2,ǫ

r , 0)|2dr

�

and

IE

�∫ t

0

¯̄
Zǫrσ(X

ǫ
r )
¯̄2

dr

�
≤ CIE

�
|H(X ǫt )|

2+

∫ t

0

| f (X̄ 1,ǫ
r , X 2,ǫ

r , 0)|2dr

�
. (4.1)

Combining the last two estimates and the Burkhölder-Davis-Gundy inequality, we get

IE

�
sup

0≤s≤t

|Y ǫs |
2+

1

2

∫ t

0

¯̄
Zǫrσ(X

ǫ
r )
¯̄2

dr

�
≤ CIE

�
|H(X ǫt )|

2+

∫ t

0

| f (X̄ 1,ǫ
r , X 2,ǫ

r , 0)|2dr

�

In view of condition (C1) and Lemma 4.1, the proof is complete.

We deduce immediately from Proposition 4.2

Corollary 4.3.

sup
ǫ>0
|Y ǫ0 |<∞.

Proposition 4.4. For ǫ > 0, let Y ǫ be the process defined by equation (1.4) and Mǫ be its martingale

part. The sequence (Y ǫ, Mǫ)ǫ>0 is tight in the space D ([0, t], IR)×D ([0, t], IR) endowed with the

S-topology.

Proof. Since Mǫ is a martingale, then by [20] or [14], the Meyer-Zheng tightness criteria is fulfilled
whenever

sup
ǫ

�
CV (Y ǫ) + IE

�
sup

0≤s≤t

|Y ǫs |+ |M
ǫ
s |
��
<+∞. (4.2)

where the conditional variation CV is defined in appendix A.

>From [25], the conditional variation CV (Y ǫ) satisfies

CV (Y ǫ)≤ IE

�∫ t

0

| f (X̄ 1,ǫ
s , X 2,ǫ

s , Y ǫs )|ds

�
,

Now clearly (4.2) follows from (C1), Lemma 4.1 and Proposition 4.2.
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Proposition 4.5. There exists (Y, M) and a countable subset D of [0, t] such that along a subsequence

ǫn→ 0,

(i) (Y ǫn , Mǫn) =⇒ (Y, M) on D ([0, t], IR)×D ([0, t], IR) endowed with the S–topology.

(ii) The finite dimensional distributions of
�

Ys
ǫn , Mǫns

�
s∈Dc converge to those of

�
Ys, Ms

�
s∈Dc .

(iii) (X 1,ǫn , X 2,ǫn , Y ǫn) =⇒ (X 1, X 2, Y ) , in the sense of weak convergence in C([0, t], IRd+1) ×
D([0, t], IR), equipped with the product of the uniform convergence and the S topology.

Proof. (i) From Proposition 4.4, the family (Y ǫ, Mǫ)ǫ is tight in D ([0, t], IR)× D ([0, t], IR) en-
dowed with the S-topology. Hence along a subsequence (still denoted by ǫ), (Y ǫ, Mǫ)ǫ converges in
law on D ([0, t], IR)×D ([0, t], IR) towards a càd-làg process (Y, M).

(ii) follows from Theorem 3.1 in Jakubowski [14].

(iii) According to Theorem 3.3 (i), (X 1,ǫ, X 2,ǫ) =⇒ (X 1, X 2) in C([0, t], IRd+1) equipped with the
uniform topology. From assertion (i), (Y ǫ· )ǫ>0 is tight in D ([0, t], IR) equipped with the S–topology.
Hence the subsequence ǫn can be chosen in such a way that (iii) holds.

4.2 Identification of the limit finite variation process.

Proposition 4.6. Let (Y, M) be any limit process as in Proposition 4.5. Then

(i) for every s ∈ [0, t] \D,





Ys = H(X t) +

∫ t

s

f̄ (X 1
r , X 2

r , Y )dr − (Mt −Ms),

IE
�

sup
0≤s≤t

�
|Ys|2+ |X 1

s |
2+ |X 2

s |
2��≤ C;

(4.3)

(ii) M is a Fs-martingale, where Fs := σ
�

X r , Yr , 0≤ r ≤ s
	

augmented with the IP-null sets.

To prove this proposition, we need the following lemmas.

Lemma 4.7. Assume (A), (B), (C2) and (C3). For x2 ∈ IRd , y ∈ IR, let V ǫ(x1, x2, y) denote the

solution of the following equation:





a00(
x1

ǫ
, x2)D

2
x1

V ǫ(x1, x2, y) = f (
x1

ǫ
, x2, y)− f̄ (x1, x2, y), x1 ∈ IR,

V ǫ(0, x2, y) = Dx1
V ǫ(0, x2, y) = 0.

(4.4)

Then, for some bounded functions β1 and β2 satisfying (2.2),

(i) Dx1
V ǫ(x1, x2, y) = x1(1+ |x2|2+ |y |2)β1(

x1

ǫ
, x2, y),

and the same is true with Dx1
V ǫ replaced by Dx1

Dx2
V ǫ and Dx1

Dy V ǫ;

(ii) V ǫ(x1, x2, y) = x2
1(1+ |x2|2+ |y |2)β2(

x1

ǫ
, x2, y),

and the same is true with V ǫ replaced by Dx2
V ǫ, Dy V ǫ, D2

x2
V ǫ, D2

y V ǫ and Dx2
Dy V ǫ.
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Proof. We will adapt the idea of [15] to our situation. For ǫ > 0 and (z, x2, y) ∈ IRd+2 we set

Fǫ(z, x2, y) :=
1

ǫz

∫ ǫz

0

ρ(
t

ǫ
, x2)g(

t

ǫ
, x2, y)d t

where g(z, x2, y) := f (z, x2, y)− f̄ (ǫz, x2, y).
We only treat the case where x1 > 0. The same argument can be used in the case x1 < 0. We
successively use the definition of f̄ and assumptions (C2), to obtain

Fǫ(
x1

ǫ
, x2, y) =

1

x1

∫ x1

0

ρ(
t

ǫ
, x2) f (

t

ǫ
, x2, y)d t − (ρ f )+(x2, y)

+ (ρ f )+(x2, y)−
(ρ f )+(x2, y)

ρ+(x2)

1

x1

∫ x1

0

ρ(
t

ǫ
, x2)d t

= (1+ |x2|2+ |y |2)β(
x1

ǫ
, x2, y)

+
(ρ f )+(x2, y)

ρ+(x2)

�
ρ+(x2)−

1

x1

∫ x1

0

ρ(
t

ǫ
, x2)d t

�

= (1+ |x2|2+ |y |2)β(
x1

ǫ
, x2, y)

+ (1+ |x2|2+ |y |2)α1(
x1

ǫ
, x2, y)

where α1(
x1

ǫ
, x2, y) := (ρ f )+(x2, y)

(1+|x2|2+|y|2)ρ+(x2)

�
ρ+(x2)− 1

x1

∫ x1

0
ρ( t

ǫ
, x2)d t

�
.

Using assumptions (B1) and (C1-ii), one can show that α1 is a bounded function which satisfies
(2.2). Since Dx1

V ǫ(x1, x2, y) = x1Fǫ(
x1

ǫ
, x2, y), we derive the result for Dx1

V ǫ(x1, x2, y). Further,
by integrating it, we get

V ǫ(x1, x2, y) = x2
1(1+ |x2|2+ |y |2)

�
(
ǫ

x1
)2
∫ x1

ǫ

0

tβ1(t, x2, y)d t
�
,

where β1 = α1+ β .

Clearly, β2(
x1

ǫ
, x2, y) := ( ǫ

x1
)2
∫ x1
ǫ

0
tβ1(t, x2, y)d t is bounded function which satisfies (2.2). The

result for the other quantities can be deduced by similar arguments from assumptions (B1), (C1),
(C2) and (C3).

Lemma 4.8. As ǫ −→ 0,

sup
0≤s≤t

¯̄
¯̄
¯

∫ s

0

�
f (

X 1,ǫ
r

ǫ
, X 2,ǫ

r , Y ǫr )− f̄ (X 1,ǫ
r , X 2,ǫ

r , Y ǫr )

�
dr

¯̄
¯̄
¯→ 0

in probability .

Proof. We shall show that for every s ∈ [0, t],
¯̄
¯
∫ s

0

�
f (

X 1,ǫ
r

ǫ
, X 2,ǫ

r , Y ǫr )− f̄ (X 1,ǫ
r , X 2,ǫ

r , Y ǫr )
�

dr

¯̄
¯ tends

to zero in probability as ǫ tends to zero. Let V ǫ denote the solution of equation (4.4). Note that
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V ǫ has first and second derivatives in (x1, x2, y) which are possibly discontinuous only at x1 = 0.
Then, as in [15], since ϕ2 is bounded away from zero, we can use the Itô-Krylov formula to get

V ǫ(X 1,ǫ
s , X 2,ǫ

s , Y ǫs ) = V ǫ(x1, x2, Y ǫ0 ) +

∫ s

0

�
f (

X 1,ǫ
r

ǫ
, X 2,ǫ

r , Y ǫr )− f̄ (X 1,ǫ
r , X 2,ǫ

r , Y ǫr )
�

dr

+

∫ s

0

Trace
�

a(1)(X 1,ǫ
r , X 2,ǫ

r )D
2
x2

V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )
�

dr

+

∫ s

0

[Dx2
V ǫ(X 1,ǫ

r , X 2,ǫ
r , Y ǫr )b

(1)(X 1,ǫ
r , X 2,ǫ

r )− Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr ) f (
X 1,ǫ

r

ǫ
, X 2,ǫ

r , Y ǫr )]dr

+

∫ s

0

[Dx V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )σ(X
1,ǫ
r , X 2,ǫ

r ) + Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )Z
ǫ
rσ(

X 1,ǫ
r

ǫ
, X 2,ǫ

r )]dBr

+
1

2

∫ s

0

D2
y V ǫ(X 1,ǫ

r , X 2,ǫ
r , Y ǫr )Z

ǫ
rσσ

∗(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr

+
1

2

∫ s

0

Dx Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )σσ
∗(

X 1,ǫ
r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr (4.5)

In view of Lemma 4.7 and Corollary 4.3, V ǫ(x1, x2, Y ǫ0 ) tends to zero as ǫ→ 0.
Using the fact taht 1= 1{|X 1,ǫ

s |<
p
ǫ}+ 1{|X 1,ǫ

s |≥
p
ǫ} and Lemma 4.7, we obtain

¯̄
V ǫ(X 1,ǫ

s , X 2,ǫ
s , Y ǫs )

¯̄
≤ ǫ
�
(1+ |X 2,ǫ

s |
2+ |Y ǫs |

2)|β2(
X 1,ǫ

s

ǫ
, X 2,ǫ

s , Y ǫs )|
�

+ 1{|X 1,ǫ
s |≥
p
ǫ}|X

1,ǫ
s |

2

�
(1+ |X 2,ǫ

s |
2+ |Y ǫs |

2)|β2(
X 1,ǫ

s

ǫ
, X 2,ǫ

s , Y ǫs )|
�

From Lemma 4.1 and Proposition 4.2, we deduce that

IE

�
sup

0≤s≤t

|V ǫ(X 1,ǫ
s , X 2,ǫ

s , Y ǫs )|
�
≤ K

 
ǫ+ sup
|x1|≥
p
ǫ

sup
(x2, y)

|β2(
x1

ǫ
, x2, y)|

!

Then, since β2 satisfy respectively (2.2), the right hand side of the previous inequality tends to zero
as ǫ −→ 0. Similarly, one can show that

∫ s

0

Trace
�

a(1)(X 1,ǫ
r , X 2,ǫ

r )D
2
x2

V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )
�

dr

+

∫ s

0

[Dx2
V ǫ(X 1,ǫ

r , X 2,ǫ
r , Y ǫr )b

(1)(X 1,ǫ
r , X 2,ǫ

r )− Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr ) f (
X 1,ǫ

r

ǫ
, X 2,ǫ

r , Y ǫr )]dr

+

∫ s

0

[Dx V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )σ(X
1,ǫ
r , X 2,ǫ

r ) + Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )Z
ǫ
rσ(

X 1,ǫ
r

ǫ
, X 2,ǫ

r )]dBr

+
1

2

∫ s

0

D2
y V ǫ(X 1,ǫ

r , X 2,ǫ
r , Y ǫr )Z

ǫ
rσσ

∗(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr

+
1

2

∫ s

0

Dx Dy V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )σσ
∗(

X 1,ǫ
r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr
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converges to zero in probability. Let us give an explanation concerning the one but last term, which
is the most delicate one.

¯̄
¯̄
¯

∫ s

0

D2
y V ǫ(X 1,ǫ

r , X 2,ǫ
r , Y ǫr )Z

ǫ
rσσ

∗(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr

¯̄
¯̄
¯

≤ C sup
0≤r≤s

¯̄
¯D2

y V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )

¯̄
¯Trace

∫ s

0

Zǫrσσ
∗(

X 1,ǫ
r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr

Since {Trace
∫ s

0
Zǫrσσ

∗(
X 1,ǫ

r

ǫ
, X 2,ǫ

r )(Z
ǫ
r )
∗dr, 0 ≤ s ≤ t} is the increasing process associated to a mar-

tingale which is uniformly Lp(IP)−integrable for each p ∈ IN, its Lp(IP) norm is bounded, for all
p ≥ 1. Finally the same argument as above shows that

sup
0≤r≤s

¯̄
¯D2

y V ǫ(X 1,ǫ
r , X 2,ǫ

r , Y ǫr )

¯̄
¯→ 0

in probability, as ǫ→ 0.

Lemma 4.9.

∫ .

0

f̄ (X 1,ǫ
r , X 2,ǫ

r , Y ǫr )dr
law
=⇒

∫ .

0

f̄ (X 1
r , X 2

r , Yr)dr on C ([0, t], IR) as ǫ −→ 0.

For the proof of this Lemma, we need the following two results.

Lemma 4.10. Let X 1
s := x1+

∫ s

0

ϕ̄(X 1
r , X 2

r )dWr , 0≤ s ≤ t, and, assume (A2-i), (B1).

For ǫ > 0, let Dǫn :=

½
s : s ∈ [0, t] / |X 1,ǫ

s | ≤
1

n

¾
.

Define also Dn :=

½
s : s ∈ [0, t] / |X 1

s | ≤
1

n

¾
.

Then, there exists a constant c > 0 such that for each n≥ 1, ǫ > 0,

IE|Dǫn| ≤
c

n
and IE|Dn| ≤

c

n
,

where |. | denotes the Lebesgue measure.

Proof. Consider the sequence (Ψn) of functions defined as follows,

Ψn(x) =





− x

n
− 1

2n2 i f x ≤− 1
n

x2

2
i f − 1

n
≤ x ≤ 1

n

x

n
− 1

2n2 i f x ≥ 1/n

We put, ϕ̄ := ā00 := ρ(x1, x2)
−1.

Using Itô’s formula, we get

Ψn(X
1
s ) = Ψn(X

1
0) +

∫ s

0

Ψ
′

n(X
1
s )ϕ̄(X

1
s , X 2

s )dWs +
1

2

∫ s

0

Ψ”
n(X

1
s )ϕ̄

2(X 1
s , X 2

s )ds, s ∈ [0, t]
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Since ϕ̄ is lower bounded by C1, taking the expectation, we get

C1IE

∫ t

0

1[− 1
n

, 1
n
](X

1
s )ds ≤ IE

∫ t

0

Ψ”
n(X

1
s )ϕ̄

2(X 1
s , X 2

s )ds

= 2IE
�
Ψn(X

1
t )−Ψn(x1)

�

It follows that IE(|Dn|) ≤ 2C−1
1 IE

�
Ψn(X

1
t )−Ψn(x1)

�
≤ c/n. The same argument, applies to Dǫn,

allows us to show the first estimate.

Lemma 4.11. Consider a collection {Zǫ, ǫ > 0} of real valued random variables, and a real valued

random variable Z. Assume that for each n≥ 1, we have the decompositions

Zǫ = Z1,ǫ
n + Z2,ǫ

n

Z = Z1
n + Z2

n ,

such that for each fixed n≥ 1,

Z1,ǫ
n ⇒ Z1

n

IE|Z2,ǫ
n | ≤

c
p

n

IE|Z2
n | ≤

c
p

n
.

Then Zǫ ⇒ Z, as ǫ→ 0.

Proof. The above assumptions imply that the collection of random variables {Zǫ, ǫ > 0} is tight.
Hence the result will follow from the fact that

IEΦ(Zǫ)→ IEΦ(Z), as ǫ→ 0

for all Φ ∈ Cb(IR) which is uniformly Lipschitz. Let Φ be such a function, and denote by K its
Lipschitz constant. Then

|IEΦ(Zǫ)− IEΦ(Z)| ≤ IE|Φ(Zǫ)−Φ(Z1,ǫ
n )|++|IEΦ(Z

1,ǫ
n )− IEΦ(Z1

n )|+ IE|Φ(Z1
n )−Φ(Z)|

≤ |IEΦ(Z1,ǫ
n )− IEΦ(Z1

n )|+ 2K
c
p

n
.

Hence
lim sup
ǫ→0
|IEΦ(Zǫ)− IEΦ(Z)| ≤ 2K

c
p

n
,

for all n≥ 1. The result follows.

Proof of Lemma 4.9. For each n ≥ 1, define a function θn ∈ C(IR, [0,1]) such that θn(x) = 0 for
|x | ≤ 1

2n
, and θn(x) = 1 for |x | ≥ 1

n
. We have

∫ t

0

f̄ (X 1,ǫ
s , X 2,ǫ

s , Y ǫs )ds =

∫ t

0

f̄ (X 1,ǫ
s , X 2,ǫ

s , Y ǫs )θn(X
1,ǫ
s )ds+

∫ t

0

f̄ (X 1,ǫ
s , X 2,ǫ

s , Y ǫs )[1− θn(X
1,ǫ
s )]ds

= Z1,ǫ
n + Z2,ǫ

n∫ t

0

f̄ (X 1
s , X 2

s , Ys)ds =

∫ t

0

f̄ (X 1
s , X 2

s , Ys)θn(X
1
s )ds+

∫ t

0

f̄ (X 1
s , X 2

s , Ys)[1− θn(X
1
s )]ds

= Z1
n + Z2

n
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Note that the mapping

(x1, x2, y) 7−→
∫ t

0

f̄ (x1
s , x2

s , ys)θn(x
1
s )ds

is continuous from C([0, t]) × D([0, t]) equipped with the product of the sup–norm and the S

topologies into IR. Hence from Proposition 4.5, Z1,ǫ
n =⇒ Z1

n as ǫ→ 0, for each fixed n≥ 1. Moreover,
from Lemma 4.10, the linear growth property of f̄ , Lemma 4.1 and Proposition 4.2, we deduce that

E|Z2,ǫ
n | ≤

c
p

n
, E|Z2

n | ≤
c
p

n
.

Lemma 4.9 now follows from Lemma 4.11. �

Proof of Proposition 4.6 Passing to the limit in the backward component of the equation (1.4) and
using Lemmas 4.8 and 4.9, we derive assertion (i).
Assertion (ii) can be proved by using the same arguments as those in section 6 of [24].

4.3 Identification of the limit martingale.

Since f̄ is uniformly Lipschitz in y and H is bounded, then standard arguments of BSDEs (see e. g.
[23]) show that the BSDE (1.5) has a strongly unique solution and we have,

Proposition 4.12. Let (Ȳs, Z̄s, 0 ≤ s ≤ t) be the unique solution to BSDE (1.5). Then, for every

s ∈ [0, t],

IE|Ys − Ȳs|2+ IE

�
[M −

∫ .

0

Z̄r dM X
r ]t − [M −

∫ .

0

Z̄r dM X
r ]s

�
= 0.

Proof. For every s ∈ [0, t] \D, we have




Ys = H(X t) +
∫ t

s
f̄ (X r , Yr)dr − (Mt −Ms)

Ȳs = H(X t) +
∫ t

s
f̄ (X r , Ȳr)dr −

∫ t

s
Z̄r dM X

r

Arguing as in [24], we show that M̄ :=
∫ .

s
Z̄r dM X

r is a Fs-martingale.

Since f̄ satisfies condition (C1), we get by Itô’s formula, that

IE|Ys − Ȳs|2+ IE

�
[M −

∫ .

0

Z̄r dM X
r ]t − [M −

∫ .

0

Z̄r dM X
r ]s

�
≤ CIE

∫ t

s

|Yr − Ȳr |2dr.

Therefore, Gronwall’s lemma yields that IE|Ys − Ȳs|2 = 0, ∀s ∈ [0, t]−D.
Since Ȳ is continuous, Y is càd-lag and D is countable, then Ys = Ȳs, IP-a.s, ∀s ∈ [0, t].

Moreover, we deduce that, IE

�
[M −

∫ .

0

Z̄r dM X
r ]t − [M −

∫ .

0

Z̄r dM X
r ]s

�
= 0.
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As a consequence of Proposition 4.12, we have

Corollary 4.13.

�
Y ǫ,

∫ .

0

Zǫr dM X ǫ

r

�
law
=⇒

�
Ȳ ,

∫ ·

0

Z̄r dM X
r

�
.

Theorem 3.3 is proved.

5 Proof of Theorem 3.4.

Since the SDE (3.1) is weakly unique ([18]), the martingale problem associated to X = (X 1, X 2) is
well posed. We then have the following:

Proposition 5.1. (i) For any t > 0, x ∈ IRd , the BSDE

Y t, x
s = H(X x

t ) +

∫ t

s

f̄ (X x
r , Y t, x

r )dr −
∫ t

s

Z t, x
r dM X x

r , 0≤ s ≤ t.

admits a unique solution (Y t, x
s , Z t, x

s )0≤s≤t such that the component (Y t, x
s )0≤s≤t is bounded and Y

t, x
0

is deterministic.

(ii) If moreover, the deterministic function, (t, x) ∈ [0, T] × IRd+1 7−→ v(t, x) := Y
t, x

0 belongs to

C
�
[0, T]× IRd+1, IR

�
, then it is a Lp-viscosity solution of the PDE (3.2).

Remark. The continuity of the map (t, x) 7−→ v(t, x) := Y
t, x

0 , which is assumed in assertion (ii) of
Propostion 5.1, will be established in Proposition 5.3 below.

Proof of Proposition 5.1. (i) Thanks to Remark 3.5 of [23], it is enough to prove existence and
uniqueness for the BSDE

Y t, x
s = H(X x

t ) +

∫ t

s

f̄ (X x
r , Y t, x

r )dr −
∫ t

s

Z t, x
r dBr , 0≤ s ≤ t.

Since f satisfies (C) and ρ is bounded, one can easily verify that f̄ is uniformly Lipschitz in y

uniformly with respect to (x1, x2) and satisfies (C1)-(ii). Existence and uniqueness of solution follow
then from standard results for BSDEs, see e. g. [22]. Moreover, since H is uniformly bounded and
f̄ satisfies the linear growth condition (C1)-(ii), one can prove that the solution Y t, x is bounded,
see e. g. [1]. Finally, since (Y t, x

s ) is F X
s −adapted then Y

t, x
0 is measurable with respect to a trivial

σ−algebra and hence it is deterministic.

(ii) Assume that the function v(t, x) := Y
t,x

0 belongs to C
�
[0, T]× IRd+1, IR

�
. We only prove that

v is a Lp–viscosity sub–solution. The proof of the super–solution property can be done similarly.
Since the coefficient of PDE under consideration are time homogeneous, then v(t, x) is solution to
the initial value problem (1.6) if and only if the function u(t, x) := v(T − t, x) is solution to the
terminal value problem.





∂ u

∂ t
(t, x) = ( L̄u)(t, x) + f̄ (x , u(t, x)) t ∈ [0, T],

u(T, x) = H(x).
(5.1)
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Working with this backward PDE will simplify the details of the proofs below.

Let X t,x
s be the unique weak solution to SDE (3.1). We will establish that the solution Y of the

Markovian BSDE

Y t, x
s = H(X

t,x
T ) +

∫ T

s

f̄ (X t,x
r , Y t, x

r )dr −
∫ T

s

Z t, x
r dM X t,x

r , 0≤ t ≤ s ≤ T. (5.2)

define a Lp−viscosity sub–solution to the problem (5.1) by puting u(t, x) := Y
t,x

t .
Let ϕ ∈W

1, 2
p, loc

�
[0, T]× IRd+1, IR

�
, let (bt, bx) ∈ [0, T]× IRd+1 be a point which is a local maximum

of u− ϕ. Since p > d + 2, then ϕ has a continuous version which we consider from now on. We
assume without loss of generality that

v(bt, bx) = ϕ(bt, bx) (5.3)

We will argue by contradiction. Assume that there exists ǫ, α > 0 such that

∂ ϕ

∂ s
(s, x) + L̄ϕ(s, x) + f̄ (x , u(s, x))< −ǫ, λ–a.e. in Bα(bt, bx). (5.4)

where λ denote the Lebesgue measure.

Since (bt, bx) is a local maximum of u−ϕ, we can find a positive number α′ (which we can suppose
equal to α) such that

u(t, x)≤ ϕ(t, x) in Bα(bt, bx) (5.5)

Define
τ= inf

n
s ≥ bt, ; |X bt, bxs − bx |> α

o
∧ (bt +α)

Since X is a Markov diffusion and f̄ is uniformly Lipschitz in y and satisfies condition (C1)-(ii),
then arguing as in [10], one can show that for every r ∈ [bt, bt + α], Y bt, bxr = u(r, X bt, bxr ). Hence, the

process (Ȳs, Z̄s) := ((Y
bt, bx
s∧τ ), 11[0,τ](s)(Z

bt, bx
s ))s∈[bt, bt+α] solves the BSDE

Ȳs = u(τ, X
bt, bx
τ ) +

∫ bt+α

s

11[0,τ] f̄ (r, X
bt, bx
r , u(r, X

bt, bx
r ))dr

−
∫ bt+α

s

Z̄r dM Xbt, bx
r , s ∈ [bt, bt +α].

On other hand, by Itô-Krylov formula, the process (bYs, bZs)s∈[bt, bt+α], defined by (bYs, bZs) :=�
ϕ(s ∧τ, X

bt, bx
s∧τ), 11[0,τ](s)∇ϕ(s, X

bt, bx
s )
�

solves the BSDE

bYs = ϕ(τ, X
bt, bx
τ )−

∫ bt+α

s

11[0,τ][(
∂ ϕ

∂ r
+ L̄ϕ)(r, X

bt, bx
r )]dr

−
∫ bt+α

s

bZr dM Xbt, bx
r .

From the choice of τ, (τ, X bt, bxτ ) ∈ Bα(bt, bx). Therefore, u(τ, X bt, bxτ )≤ ϕ(τ, X bt, bxτ ).
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Let A := {(t, x) ∈ Bα(bt, bx), [ ∂ ϕ∂ s
+ L̄ϕ+ f̄ (.,u(.))](t, x)< −ǫ} and Ā := Bα(bt, bx) \A the complement

of A. By (5.4), λ(Ā) = 0.

Since the diffusion {X t̂, x̂
s , s ≥ t} is nondegenerate, Krylov’s inequality ([17], Ch. 2, Sec. 2 & 3)

implies that 11Ā(r, X bt, bxr ) = 0 dr × dIP− a.e. It follows that

IE

∫ bt+α

bt
−11[0,τ][(

∂ ϕ

∂ r
+ L̄ϕ)(r, X

bt, bx
r ) + f̄ (r, X

bt, bx
r , u(r, X

bt, bx
r ))])dr ≥ IE(τ− bt)ǫ > 0 (5.6)

This implies that [−11[0,τ][(
∂ ϕ

∂ r
+ L̄ϕ)(r, X bt,bxr ) + f̄ (r, X bt,bxr ,u(r, X bt,bxr ))])] > 0 on a set of d t × dIP

positive measure. Therefore, the strict comparison theorem (Remark 2.5 in [23]) shows that Ȳbt < bYbt
, that is u(bt, bx)< ϕ(bt, bx), which contradicts our assumption (5.3).

Under assumptions (A), (B), the SDE (3.1) has a unique weak solution, see [18]. We then have the
following continuity property.

Proposition 5.2. (Continuity in law of the map x 7→ X x
. )

Assume (A), (B). Let X x
s be the unique weak solution of the SDE (3.1), and

X n
s := xn+

∫ s

0

b̄(X n
r )dr +

∫ s

0

σ̄(X n
r )dBr , 0≤ s ≤ t

Assume that xn→ x = (x1, x2) ∈ IR1+d as n→∞. Then X n
law
=⇒ X x .

Proof. Since b̄ and σ̄ satisfy (A), (B), one can easily check that the sequence X n is tight inC ([0, t]×
IRd+1). By Prokhorov’s theorem, there exists a subsequence (denoted also by X n) which converges
weakly to a process bX . We shall show that bX is a weak solution of SDE (3.1).
• Step 1: For every ϕ ∈ C∞c (IR

1+d),

∀u ∈ [0, t], ϕ(bX r)−
∫ u

0

L̄ϕ(bX v)dv is a F bX -martingale.

All we need to show is that for every ϕ ∈ C∞c (IR
1+d), every 0 ≤ s ≤ u and every function Φs of

(X
xn
r )0≤r<s which is bounded and continuous for the topology of uniform convergence, as n→∞,

0= IE

¨
[ϕ(X xn

r )−ϕ(X
xn
s )−

∫ r

s

L̄ϕ(X xn
α )dα]Φs(X

xn
. )

«

−→ IE

¨
[ϕ(bX r)−ϕ(bXs)−

∫ r

s

L̄ϕ(bXα)dα]Φs(bX .)

«

Indeed, since ϕ, Φ are continuous functions and L̄ϕ is continuous away from the set {x1 = 0},
similar argument as that developed in the proof of Lemma 4.9 gives

[ϕ(X xn
r )−ϕ(X

xn
s )−

∫ u

s

L̄ϕ(X xn
v )dv]Φs(X

xn
. )

law−→ [ϕ(bX r)−ϕ(bXs)−
∫ u

s

L̄ϕ(bX v)dv]Φs(bX .)

Since ϕ, Φ are bounded functions, L̄ϕ has at most linear growth at infinity and

sup
n

IE( sup
s∈[0, t]

|X xn |2)<∞,

494



the result follows by uniform integrability. Hence

IE

¨
[ϕ(bX r)−ϕ(bXs)−

∫ u

s

L̄ϕ(bX v)dv]Φs(bX .)

«
= 0

and therefore ϕ(bX r)−ϕ(bXs)−
∫ r

s
L̄ϕ(bX v)dv is a F bXr –martingale.

•Step 2: From step 1, there exists a F bX -Brownian motion bB such that,

bXs = x +

∫ s

0

b̄(bX r)dr +

∫ s

0

σ̄(bX r)dbBr , 0≤ s ≤ t.

Weak uniqueness of the SDE (3.1) allows us to deduce that bX = X x in law sense.

Proposition 5.3. Assume (A), (B), (C). Then,

(i) lim
ǫ→0

Y ǫ0 = Y
t,x

0 .

(ii) The map (t, x) 7−→ Y
t, x

0 is continuous.

(iii) For p > d + 2, the function v(t, x) := Y
t, x

0 is a Lp-viscosity solution to the PDE (1.6).

Proof. (i) Let Y t,x be the limit process defined in Proposition 4.5. We have




Y ǫ0 = H(X ǫt ) +

∫ t

0

f (
X 1,ǫ

r

ǫ
, X 2,ǫ

r , Y ǫr )dr −Mǫt

Y
t,x

0 = H(X x
t ) +

∫ t

0

f̄ (X x
r , Y t,x

r )dr −Mt

From Jakubowski [14], the projection: y 7→ yt is continuous from D([0, t]; IR) into IR for the S–
topology. We then deduce from the convergence of the above right–hand sides that Y ǫ0 converges
towards Y0 in distribution. Since Y ǫ0 and Y0 are deterministic, this means exactly that Y ǫ0 → Y0

(ii) Let (tn, xn)→ (t, x). We assume that t > tn > 0. We have,

Y tn, xn
s = H(X

xn

tn
) +

∫ tn

s

f̄ (X xn
r , Y tn, xn

r )dr −
∫ tn

s

Z tn, xn
r dM X xn

r , 0≤ s ≤ tn, (5.7)

where X xn
law
⇒ X x .

Since H is a bounded continuous function and f̄ satisfies (C1), one can easily show that the sequence
{(Y tn, xn ,

∫ .

0
1[s,tn]

(u)Z
xn
r dM X xn

r )}
n∈IN∗ is tight in D([0, t]; IR2).

Let us rewrite the equation (5.7) as follows

Y tn, xn
s = H(X

xn

tn
) +

∫ t

s

f̄ (X xn
r , Y tn, xn

r )dr −
∫ t

s

1[s,tn]
(u)Z tn, xn

r dM X xn

r (5.8)

−
∫ t

tn

f̄ (X xn
r , Y tn, xn

r )dr, 0≤ s ≤ t.

= A1
n+ A2

n
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• Convergence of A2
n

Since f̄ is bounded, IE

¯̄
¯̄
¯

∫ t

tn

f̄ (X xn
r , Y tn, xn

r )dr

¯̄
¯̄
¯≤ K |t − tn|. Hence A2

n tends to zero in probability.

• Convergence of A1
n

Denote by (Y ′, M ′) the weak limit of {(Y tn, xn ,
∫ .

0
1[s,tn]

(u)Z
xn
r dM X xn

r )}
n∈IN∗ . The same proof as that

of Lemma 4.9 establishes that

∫ t

s

f̄ (X xn
r , Y tn, xn

r )dr
law
=⇒

∫ t

s

f̄ (X x
r , Y ′r )dr.

Passing to the limit in (5.8), we obtain that

Y ′s = H(X x
t ) +

∫ t

s

f̄ (X x
r , Y ′r )dr − (M ′t −M ′s ), s ∈ [0, t]∩ Dc .

The uniqueness of the considered BSDE ensures that ∀s ∈ [0, t], Y ′s = Y t, x
s IP-ps. Hence Y tn, xn

law
⇒

Y t, x . As in (i), one derive that Y
tn, xn

0

law
=⇒ Y

t, x
0 which yields to the continuity of Y

t, x
0 .

Assertion (iii) follows from (ii) and the second statement of Proposition 5.1.

A Appendix: S-topology

The S–topology has been introduced by Jakubowski ([14], 1997) as a topology defined on the
Skorohod space of càdlàg functions: D([0, T]; IR). This topology is weaker than the Skorohod
topology but tightness criteria are easier to establish. These criteria are the same as the one used in
Meyer-Zheng [20].
Let N a, b(z) denotes the number of up-crossing of the function z ∈ D([0, T]; IR) from level a to level
b (a < b). We recall some facts about the S–topology.

Proposition A.1. (A criteria for S-tight). A sequence (Y ǫ)ǫ>0 is said to be S–tight if and only if it is

relatively compact for the S–topology.

Let (Y ǫ)ǫ>0 be a family of stochastic processes in D([0, T]; IR). Then this family is tight for the S–

topology if and only if (‖Y ǫ‖∞)ǫ>0 and (N a, b(Y ǫ))ǫ>0 are tight for each a < b.

Let
�
Ω, F , IP, (Ft)t≥0

�
be a stochastic basis. If (Y )0≤t≤T is a process in D([0, T]; IR) such that Yt

is integrable for any t, the conditional variation of Y is defined by

CV (Y ) = sup
n≥1, 0≤t1<...<tn=T

n−1∑

i=1

IE[|IE[Yt i+1
− Yt i
| Ft i

]|].

The process Y is called a quasimar tingale if CV (Y ) < +∞. When Y is a Ft -martingale, CV (Y ) =

0. A variation of Doob’s inequality (cf. lemma 3, p. 359 in Meyer and Zheng [20], where it is
assumed that YT = 0) implies that

IP

�
sup

t∈[0, T]

|Yt | ≥ k

�
≤

2

k

�
CV (Y ) + IE

�
sup

t∈[0, T]

|Yt |
��

,
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IE
�

N a, b(Y )
�
≤

1

b− a

�
|a|+ CV (Y ) + IE

�
sup

t∈[0, T]

|Yt |
��

.

It follows that a sequence (Y ǫ)ǫ>0 is S-tight whenever

sup
ǫ>0

�
CV (Y ǫ) + IE

�
sup

t∈[0, T]

|Y ǫt |
��
< +∞.

Theorem A.2. Let (Y ǫ)ǫ>0 be a S-tight family of stochastic process whose trajectories belong to

D([0, T]; IR). Then there exists a sequence (ǫk)k∈IN decreasing to zero, some process Y ∈ D([0, T]; IR)

and a countable subset D ∈ [0, T] such that for any n≥ 1 and any (t1, ..., tn) ∈ [0, T]\D,

(Y
ǫk
t1

, ..., Y
ǫk
tn
)
D ist−→ (Yt1

, ..., Ytn
)

Remark A.3. The projection πT : y ∈ (D([0, T]; IR), S) 7→ y(T ) is continuous (see Remark 2.4, p.8
in Jakubowski [14]), but y 7→ y(t) is not continuous for each 0≤ t ≤ T .

Lemma A.4. Let (Uǫ, Mǫ) be a multidimensional process in D([0, T]; IRp) (p ∈ IN∗) converging to

(U , M) in the S-topology. Let (F Uǫ

t )t≥0 (resp. (F U
t )t≥0) be the minimal complete admissible filtration

generated by Uǫ (resp. U). We assume moreover that for every T > 0, supǫ>0 IE
�

sup0≤t≤T |Mǫt |2
�
<

CT .

If Mǫ is a F Uǫ -martingale and M is F U -adapted, then M is a F U -martingale.

Lemma A.5. Let (Y ǫ)ǫ>0 be a sequence of process converging weakly in D([0, T]; IRp) to Y . We assume

that supǫ>0 IE
�

sup0≤t≤T |Y ǫt |2
�
<+∞. Then for any t ≥ 0, E

�
sup0≤t≤T |Yt |2

�
< +∞.
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