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1 Introduction and main results

Let X = (X; ;) be a complex m xn, m > n, random matrix, the entries of which are independent
complex Gaussian random variables with mean zero and variance %, namely Re(X; ;), Im(X; ;)
form a family of independent real Gaussian random variables each with mean value 0 and

1

variance 5-. Let S = X*X, then S can be viewed as a sample covariance matrix of m samples

of n dimensional random vectors and it is of fundamental importance in multivariate statistical
analysis.

The complex sample covariance matrices was first studied by Goodman () and Khatri (9). The
distribution du(S) of S is given by

1
dp(S) = — (det S)ym=ne=trSds,  for S € M,(C),,

where Z = Z,, ,, > 0 is a normalization constant depending on m,n and

dS = (] dS;;) [ | d(ReSjr)d(ImSy).
j=1

j<k

The measure dy on the matrices produces naturally a measure on the corresponding n real
eigenvalues A;. It turns out that this induced measure can be explicitly calculated and its joint
density is given by

n

1 n —
pn(T1, @, -+, xy) = - H(x] — xk.)Q szn Tk, Te, -, Tp > 0, (1.1)
j<k k=1

where Z = Z,,,, > 0 is again a normalization constant depending on m,n.

It is the explicit form ([II) (sometimes called the Laguerre unitary ensemble) that makes possible
the deep and thorough asymptotic analysis, both inside the bulk and at the edge of the spectrum.
There are actually many other well-known ensembles with such a determinantal point process
representation in random matrices and random growth models. See (10) for recent works.

Let V,,,n(z) be such that e Vnm(®) = gm=ne=nz o ¢ R, Let p;(z),7 > 0, be a sequence of
orthonormalized polynomials with 7; the highest coefficient with respect to the weight function
e~™Vnm(@)  That is,

| pi@m@e ™ e b k>0
Ry
Define the kernel K, by

_nVam(@)  nVam(y)

n—1
Kn(x)y) = Zpk(zﬂ)pk(?/)e 2 € 2 , T,y € RJr’ (12)
k=0

then

1
pn(xla X, 7xn) = m det(Kn(xiv xj))nxn-
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Moreover, for 1 < k < n, the k-marginal dimensional density is given by

Pn,k($1a$2a"‘ ,IEk) — / kpn($1a$2a"‘ ,xn)d$k+1"'d$n
R

= Wdet(Kn(xi,xj))kxk. (1.3)

In particular, p;, 1(x1) describes the overall density of the eigenvalues.
The kernel K, (z,y) can also be represented by the so-called Christoffel-Darboux identity. For
x # y it holds

_ _ - _ nVn m(x) nVn m (y)
Fn(,y) = 222 2l@Pno1W) = ool@)on1(3) ntel@) - 2ingms) (1.4)

Tn r—=y

and for x = y one has

Ko(w,2) = 2L (pu(@)ply_y (x) — Ply(@)pa—i(2)) e Vom @), (1.5)

n

The classic Marchenko-Pastur ([L1) theorem states that as n — oo such that 7 — v > 1, almost
surely

1 n
— Ox, 1.
nlzl )\z—)u'y ( 6)

in distribution, where pu, is the probability density function of the M-P distribution with pa-
rameter v, namely

1
s/ e—a)B-=), fora<z<p,
MW(m) { 0, otherwise ,

and o = (/7 — 1)? and 8 = (/7 +1)%

A recent remarkable work is on a limiting distribution of the largest eigenvalue. Let Ay >
A@) > '+ > A@n) be the ordered list of eigenvalues. While studying a random growth model
of interest in probability, Johansson () derived the F3 limit distribution for ;). Specifically
speaking, define

(1.7)

(. omn = (v (e L)

m

Then as 70 — v > 1,
niq) — v,
AW T Tmen F (1.8)

Om,n

in distribution, where F5 is the Tracy-Widom distribution discovered in the Gaussian unitary
ensemble (GUE). Analogs for A(;) with & fixed has also been studied.

In this paper we deal with the distribution of Ay as n and k tend to infinity. Let

2 2
an,m:(\/m_1> ) ﬁn,m:<\/m+1> .
n n
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Define

ﬁ\/(x - an,m)(ﬂn,m - :C), for Qpm ST < ﬂn,ma
pnm () = (1.9)
0 elsewhere.

Our main results are as follows.

Theorem 1. (the bulk case). Set
t
G(t) = / :U'n,m(x)dxa On,m <t< ﬁn,m

and t = tn ), = G~Y(E) where k = k(n) is such that £ — a € (0,1) as n — oco. Then as

\/§7T/J'n,m(t)()‘(n—k) - t) .
Viogn

N(0,1) (1.10)

in distribution.

Theorem 2. (the edge case). Let k = k(n) be such that k — oo but % — 0 asn — oo. Then as

m

ﬁ_>7217

iy — (gnm _ (M@)m)
' ﬁn,m* n,m n
i .
\/Qﬂn,m \/m
(37 (Br,m—0n,m)) /3 n2/3k1/3

(1.11)

i distribution.

Remarks: (1) Analogous results have recently been established for the eigenvalues of the GUE
by (). Our proofs are again based on the Costin-Lebowitz-Soshnikov theorem. One should
be able to apply the same methodology to many other ensembles. A work on the discrete
Krawtchouk ensemble and Hahn ensemble is in progress.

(2) It is remarkable that with regard to the Plancherel measure on the set of partitions A of n,
the rows A1, Ao, A3, - -+ of A behaves, suitably scaled, like the 1st, 2nd, 3rd and so on eigenvalues
of a random matrix from the GUE. On the other hand, the boundary of Young shape A, a

polygonal line, behaves like
1
Q@y+U@)+o( ), (1.12)

nl/2 nl/2
where Q(z) is closely connected to Wigner’s semicircle law and U(z) is a kind of generalized
Gaussian random process. This is often referred to as Kerov’s central limit theorem.

Borodin, Okounkov and Olshanski (l) established an exact determinantal formula for the cor-
relation function of the Poissonized Plancherel measures. It would be expected that one could
provide a proof of ((LIZ) using the Costin-Lebowitz-Soshnikov argument.
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(3) It is well-known that . (z) is also the asymptotic distribution for zeros of orthogonal poly-
nomial p,(z). Therefore it is natural to ask whether the k-th eigenvalue Ax) fluctuates around
the corresponding zero of p,(x). The above theorems partly confirm the conjecture although a
rigorous argument is still open.

We say as usual that A« obeys the central limit theorem if there exist a, > 0 and b,, such that
Ay — b
20 TP L N(0,1) in distribution .
Gp

Fix x € (—o0,0). Let I, = [anz + by, 00), #1I,, stand for the number of eigenvalues in I,,. Then
it holds true

Atk) — bn
P —— <z = P()\(k)ganx—i-bn)

an

= P(#I, <k). (1.13)
Hence it suffices to prove

P #In - E#In < k— E#In
< VVar#l, — /Var#l,

where ®(x) is the standard normal distribution function.

) — ®(z), x€ (—o00,0), (1.14)

This in turn follows from the Costin-Lebowitz-Soshnikov theorem (2;[13) as long as
k — E#I,
VVar#l,

([CI3) will be used to determine the normalizing constants.

n — 0o. (1.15)

This paper is organized as follows. In Section 2 we shall give an exact formula and asymptotics
for the mean density of eigenvalues A, - -, A, uniformly valid on the entire real axis based on
the standard technique of asymptotic analysis of RH problems. Analogues for the GUE type
ensemble have been studied and used to give a proof of a complete large N expansion for the
partition function by Ercolani and McLaughlin (4). Just recently did Vanlessen (14) consider
strong asymptotics of Laguerre type orthogonal polynomials on R, with respect to the weight
function z%e~9®) where a > —1 and Q denotes a polynomial with positive leading coefficient.
As a direct consequence, we obtain the convergence speed of p,1 to g, when |2 —~| = O(1). In
the case when m = [yn], the speed is due to Gétze and Tikhomirov (f) using recursive equations.

The proofs of Theorems 1 and 2 will be given in Section 3. Starting from ([LI3)-([LI), we need
only compute the expectation and variance for the number of eigenvalues in an interval. The
computation heavily depends on the exact formula and asymptotics for p, 1(z) and K,(z,y) in
the entire real axis.

Throughout the paper, there are lots of positive numerical constants, whose values are of no
importance. We shall use ¢, C for simplicity, which may take different values in different places.

2 The mean density of eigenvalues: exact formula and asymp-
totics

This section is devoted to the asymptotic analysis of orthogonal polynomials p,(z) and p,—1(x)
with respect to the n dependent weight function e~™Y»m(®) in which techniques are used for
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the asymptotic analysis of RH problems, first developed for singularity by Deift-Zhou. Deift
(@) is a standard excellent reference in this area. For completeness of notations we summarize
major steps of rigorous analysis, including a series of equivalent RH problems and explicit
transformations below.

Let us start with the following RH problem:
(a) U :C\ [0,00) — C?*? is analytic,
(b)

1 eann,m(:v)
Us(x) =U_(2) 0 1 > , for z € (0,00),

Ulz) = <I+O(£)> ( zon 29,1 ) as z — oo.

We remark that a similar analysis was given for z% ™" with a > —1 by (14).

The unique solution of the RH problem for U is given by

%npn(z) %C(pneinvn’m)(z)
, z€C\0,00),
2Ty 1Pn-1(2)  —2Tivp_1C (ppe™Vrm)(2)
where C(-) denotes the Cauchy operator. In particular,
)
pn(2) = WU11(2), pn-1(2) = Ua1(2). (2.1)

B 27 —1
We have by ([C]) and (LX)

4 Un(@)Un(y) —Un(@)Uan(z) _wame wamew £y (2.2)

K —

and

Ko(z,z) = (U11(2)Uby (x) — Ufy () Uss (z)) e V@) 2 € (0, 00). (2.3)

i
7r
The equilibrium measure plays an important role in the asymptotic analysis of RH problems.
It turns out that the measure with density function p, m(z) is the equilibrium measure in the

presence of the external field V}, ,,(z). It is actually easy to check that py, ,, satisfies the Euler-
Lagrange variational conditions: there exists a real number [,, ,,, such that

2 / log |z — ylpn,m(y)dy — Vium(x) — lym =0, for x € [anm, Bnm]

and
2/log |z — y|pn,m(y)dy — Vipm(x) — lpm <0, for z € (—00,00) \ [0nm, Bn,m)-
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In order to normalize the RH problem for U at infinity, we use the log-transform of the equilib-
rium measure. Define

Bn,m
gn(z) = / log(z - y),un,m(y)dya for z€C \ (—OO, ﬁn,m]a

where we take the principal branch of the logarithm, so that g, is analytic in C \ (—o0, By m)-

We now list several important properties of the function g, (2):

e g, (z) is analytic for z € C\(—o0, ,m], with continuous boundary values g, +(z) on (—00, B m |-

[}

gn,—l—(x) + gn,—(x) - Vn,m(x) - ln,m =0, for x € [an,rm ﬁn,m]v

290 (x) = Vi (z) — lym <0, for z € (—00,00) \ [@n,m, Bn,m)- (2.4)
[ ]

Gn+(T) — gn,—(x) = 2mi, for z € (—00, Ay m),
‘ Br,m

gn,—l—(x) - gn,—(x) = 27”/ Mn,m(y)dyv for z € [an,maﬁn,m]a (2-5)

and
Gn+(2) — gn—(x) =0, for z € (Bpmo0).

[}

6ngn(z) ="+ O(Zn_l), as 2 — 0.
Now we are ready to perform the transformation U — T. Define the matrix valued function T’

as

T(z) = e 2"nmo3 17 ()¢ m9n(2)3amnmos  for 2 € €\ (—o0, 00), (2.6)

where o3 = < (1) _01 >

Note that, the function €™9n(*) has no jump across (—o00, pm), so that T has an analytic
continuation to C \ [ap m,00). It is then straightforward to check, using the conditions of the
RH problem for U, that T is the unique solution of the following equivalent RH problem:

(a) T :C\ [0,00) — C?*2 is analytic,
(b) T4 (z) = T—(x)vp(x), for x € (0,00), with
e~ (gn,+(¥)=gn,— (2)) 1
( 0 1(gn+ (@)~ gn,— (@) > , forz & (anm, Bm),

vr(x) =

for x € (0, OO) \ (an,mw@n,m)v

1 en(2gn(x)7v7l»m(z)fln,m)
0 1 ’
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(c) T(2) =I+0(), asz— oo

From (Z3) we see that the diagonal entries of vp(x) on (cum, Bn,m) are rapidly oscillating for
large n. From (Z4) the jump matrix vz on (0,00) \ (@nm, Bn,m) converges exponentially fast to
the identity matrix as n — oc.

Now we will transform the oscillatory diagonal entries of the jump matrix v(x) on (an m, Bn.m)
into exponentially decaying off-diagonal entries. This lies the heart of the Deift-Zhou steepest
descent method.

In order to perform the transformation 7" — S we will introduce scalar functions 1, and &,.
Define

Un(2) = 5o/ = Q) (2 = Bu)  for 2 € C\ [, B, (2.7)

2miz

with principal branches of powers. So, the + boundary value of ¥, (z) on [a, m, Bn.m] is precisely
fnm(2). In particular, we have

¢n,+(9€) = —%,—(UC) = Mn,m(x)v for x € [an,mvﬁn,m]'
Now define

z

&n(2) = —mi 5 Yn(y)dy, for z € C\ (=00, Bpm), (2.8)

where the path of integration does not cross the real axis.

The important feature of the function &, is that &, and &, _ are purely imaginary on
(Ctn,m, Bn,m) and satisty for @ € (aum, Bnm)

% (1) = —2n (2)
Bn,m
= 2m’/ o m (w)du
= Gn+(2) = gn—(2).

So, 2§, +(z) and 2§, _(z) provide analytic extensions for g, 4 (z) — gn,—(z) into the upper half
plane and lower half plane, respectively.

On (—00,00) \ [an,ms Bnm), &n satisfies
bn+(x) — & —(x) =2mi, for z € (—00, anm),

280 (x) = 2gn(x) = Vom(x) — lym,  for z € [Bym, 00).

Further one can prove the existence of a 4; > 0 such that
Re&n(z) >0, for 0 < |[Imz| <d1, and anm < Rez < Bpm. (2.9)

The jump matrix vy for T can be written in terms of the scalar function &, as

e_2n§n,+(x) 1
( 0 672n£n’_(x) ) ) for HARS (an,mvﬁn,m)v
vp(z) = (2.10)
1 eZnén(a:)
0 1 ’ for z € (07 OO) \ (07 5n,m)
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A simple calculation, using the fact that &, 4 (z) + &, —(z) = 0 for z € (o m, Bn,m), then shows
that v has on the interval (ay, m, Bn.m) the following factorization,

1 0 0 1 1 0
vr(z) = ( e~ 2nén,—(z) q ) < -1 0 ) < e~ 2nén+(x) q ) (2.11)

Now we are ready to do the transformation 7' — S. Let Yg = U?ZlEj be the oriented lens
shaped contours as shown in Figure 2.1. The precise form of the lens (in fact of the lips X1 and

Y.3) is not yet defined but for now we assume that it will contained in the region where (Z3)
holds.

kn.m "Ijn" n : Vi
Figure 1: ¥g = U?ZlEj
Define an analytic matrix valued function S on C \ Xg as
T(z), for z outside the lens,
T(z) ! 0 for z in the upper part of the lens
S(z) = Ceén(z) 1 ) ppetp ’ (2.12)
1 0 .
T(z) —onén(2) , for z in the lower part of the lens,
\ e n 1

with the upper part of the lens we mean the region between 1 and Y5, and with the lower part
of the lens the region between Y9 and 3.

One can easily check, using (ZI0), [ZII) and the conditions of the RH problem for T, that S
satisfies the following RH problem:

(a) S:C\ X5 — C?*? is analytic,
(b) S4(z) = S_(z)vs(x), forxz € Xg with

1 0
< e~ 2nén(z) 1 ) s for x € ¥ U X3,
vg(z) = < _01 é > , for z € ¥ = (on,m, Bnm), (2.13)
2nén ()
((1) - > for @ € 24 = (0,00) \ (0, Bum),
\
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(c) S(z) =I+0(1), asz— oc.

Note that the jump matrix vg on X1, 33, and ¥4 converges exponentially fast to the identity
matrix. We shall see that the leading order asymptotics of U will be determined by a solution
P, which is often referred to as the parametrix for the outside region, of the following RH
problem:

(a) Px : C\ (anm, Brm) — C%*2 is analytic,
(b)

Pm7+(x) = Poo,_(x) < _01 (1) > , forze (an,maﬁn,m)v

(c) Poo(z) =14+ 0(2), asz— .
It is well-known that P, is given by

a(z)+a"'(z) a(z)-a"!(2)

2 21
Py(z) = , forxz e C\ (anm,Bnm) (2.14)
a(z)—a"Y2) a(z)+a"1(2)
—2i 2
with
(Z - ﬂn,m)l/4
a(Z) = m, fOl" z € C \ (an,m’ ﬂn7m) (215)

Before we can do the final transformation S — R we need to do a local analysis near a p,
and (3, ,, since the jump matrices for S and P, are not uniformly close to each other in the
neighborhood of these points. We will only construct the parametrix F,, near the right endpoint
Bn,m below. As for the left endpoint, if % — + > 1, then o > 0 and a similar construction is

valid in the left endpoint oy, ,,. While in the case 7> — 1, a = 0 becomes a hard edge since all

eigenvalues of covariance matrices are positive. The behavior of polynomials near the origin is
described via Bessel function. We refer to (14) for modifications.

Let Ug, .6, = {2 € C: |z — Bnm| < d2}. Consider the following RH problem for P,:
(a) P, :Ug, .5, \ Bg — C**? is analytic,
(b) Po 1 (z) = Py —(z)vs(x), forxeXsgnUs,,,s with vs in [ZI3),

(c) PyPx(2)™ =1+ 0(%), asn — oo uniformly for z on the boundary 0Ug, ,, s of the disk
Us,, .6, and for ¢ in a compact subsets of (0,d2).

The construction of P, is based on an auxiliary RH problem for ¥ in the (-plane with jumps
on the following oriented contour 7, consisting of four straight rays (see Figure 2.2 below)

Vo1 iargC =0, arg(=m, arg(=—0, argl=0

with o € (§,7). These four rays divide the complex plane into four regions.
The RH problem for V:
(a) ¥:C\ 7y — C?*? is analytic,

1293



Figure 2: The oriented contour ~,

(b) ¥4(¢) =¥_({)r1(¢), for ¢ € v, with v as shown in Figure 2.2, i.e.,

Vl(C):(_ll i)v CE’YJ,I

(c) ¥ has the following asymptotic behavior at infinity,

T(() ~ C_ﬁ\}5<—11 i)
resy (Ger) (D )

as ¢ — oo, uniformly for ¢ € C \ 7, in a compact subset of (§, 7). Here

_ miog ,%(3/203

X (& 4 €

P@k+3)  _ Gk+1
BARRIC(E+ 1) F T ek—1"

It is well-known that V¥ is defined by

[ (A
A/(C) 2A/

0)°
< i’((CC)) 2A’ > Il ( LY > for ¢ € I1,
oo

( A(Q)  —w?A(wC) ) P for ¢ € IV.
\

Sk = kZL

__‘73 for ( € 1,

(€)= Vare B (2.16)
< A(G)  —w?A(wQ)

A'(¢) —A(w()

—_ =

?), for ¢ € I11,

A'(¢) —A(wC) ’

The idea is now to construct W(f,(z)) for appropriate biholomorphic maps f, : Ug, .5 —
Jn(Ug, .62) With fr(Bnm) = 0. We will choose these biholomorphic maps to compensate for
the factor e~ "én(2)73 .
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Define
fa(2) =n?Pen(2), for z e UB, 625 (2.17)

with ¢, (z) defined in the following proposition.

Proposition. There exists a 2 > 0 such that there are biholomorphic maps ¢, : Ug, ,, 5, —
On(Up,, m.02) satisfying
(1) There is a constant cg > 0 such that for all z € Ug, .5, and all n > 1 the derivative of ¢,

can be estimated by
0

1
/ /

¢n(Uﬁn,m,62 N (_OO’ OO)) = ¢TL(UIBn,m762) N (_OO’ OO)
¢n(Uﬁn,m,62 m Ci) = ¢n(Uﬁn,m,62) m Ci’

—§¢n(z)3/2 — £.(2), for 2 € Us, .50\ (=00, Bm).

Proof. Define

n . 2ﬁn,m _%gn(z)
¢n(2) B (ﬂn,m - an,m)l/2 . (Z - ﬂn,m)g/z’

for z € Ug, ., .5, \ (=00, Bnm)- (2.18)

Note that the function ¢, (z) has no jump across (i, m, Bnm) so that én(z) has analytic contin-
uation to C \ ((—00, apm) U {Bnm}). From 1) and ) it follows that

. 3 Br,m
P N 7 B (e N 72
2 o 1/2 _ 1/2

w ﬁn,m

Using Cauchy’s theorem there exists an ng such that for all n > ny and |s — .| < 1/4,

1/2 1/2

(5 - an,m) . (ﬁn,m - an,m)
S ﬂn,m

(W_Oén,m)l/2 _ (ﬂn,m_an,m)l/Q

1 — dw
— |5~ Bum)l5y; z "
T |y | =1 w — Bn,m w—5

(w - an,m)l/Q (ﬁn,m - an,m)l/z

w ﬁn,m

S ’3 - ﬁn,m‘ sup

|W—5n,m‘:%

< C|5 - ﬁn,m|
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Inserting this into [ZI9) we obtain
|§£n(2) - 1| < C|Z - ﬂn,m|a for |Z - ﬁn,m| < 1/4, n > no. (2'20)

Therefore the isolated singularity of én(z) at B, m is removable so that én(z) is analytic in

C \ (=00, m], and there exists 6 > 0 such that Reggn(z) > 0 for all |z — B m| < 1/4 and
n > ng. This yields

= 12\ )
¢n<z>=<(ﬂ S ) (2 = Bnm)bn(2)° (2.21)

is analytic for z € Ug, . s-

Observe that ¢,(z) is uniformly (in n and z) bounded in Uy, ,, s, i.e.,

sup  sup |dn(2)] < oc. (2.22)
n>ng z€Ug,, 15

This implies, by using Cauchy’s theorem for derivatives, that ¢/ (z) is also uniformly (in n and
z) bounded in Ug, ,, 5 for a smaller 4, i.e.,

sup  sup ¢l (z)] < oo. (2.23)
n>no ZeUﬂn,m,é

A 2/3
Since ¢y, (Bpm) = 1, we have ¢,(3) = (M) , so that

2Bn,m

_ 1/2 2/3 z
¢;(z>—<(ﬁ hm — Oinym) ) :' / & (s)ds
ﬁn,m

<Clz— .
2Bn.m < Clz = Buml

Therefore, there exists 0 < d2 < § such that for all n > ny the ¢,(z) are injective and hence
biholomorphic in Ug, . 5. We conclude (1). Now (2) and (3) easily follows from (1), so the proof
is complete.

For later reference, observe that the biholomorphic maps is given by

2/3

(6nm — Qn m)1/2 2/3 ¢

fu(z) = : ’ n“?(z = Bnm)fn(z), forzeUg, . s, (2.24)
26n,m ’

where f,,(2) = ¢n(2)¥? with ¢, given by (EZIR).

Furthermore it follows that f, is analytic and uniformly (in n and z) bounded in Ugp.m,s for

some 0 > 0 and that fn(ﬁnm) = 1. Therefore

: ‘Z - ﬁn,m’

" _ 1 fn(s) - fn(ﬁn,m) ds
|fn(z) = 1] = 2—7”‘%9—,@7% ‘:@ 5= Bam s—z

< C|Z - ﬂn,m|

for z € Ug,, ,,.,s and n > na.
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Now suppose that Xg is defined in Ug, ,, 5, as the inverse f,-image of v, N f,(Ug, ,..s,). Then
WU(fn(2)) is analytic in Ug, . 5, \ X5 and satisfies jump relations,

;

1 0
U_(fn(2)) < 11 > , for z € (X1 UX3) NUg, .65

W) = o) (L) g ) for € BN U, = (Ban = 00 )

11
\I/,(fn(z)) < 0 1 > , for z e 34N Ugn7m752 = (ﬂmm,ﬂmm + 52).
Define
I o/ migg (1 —1 o3
E,(z) = EP (z)ed 0 1 fo(2)3, for z€Ug,,, s (2.25)
and

Po(2) = En(2)¥(fa(2)e @), for z € Us, 5\ frn ' (0): (2.26)
Then P, solves the desired RH problem, and

- 1
Py(2)P>®(2) "t ~ T+ Z Ak(z)m as n—o0 (2.27)
k=1

uniformly for z in compact subsets of 0 < [z — 3, »| < d2 and o in a compact subsets of (5, ) ,
where Ag(z) is a meromorphic 2 x 2 matrix valued function given by

_ 1 0 (1) (sp +tg)  i(sk — t) 0 (N —
A’“(z)_z(—,gn(z))/fp (z)( —i(=1)*(sp —tx)  sp +t >P ()7

We will perform the final transformation of our RH problems. Let dp = min{d1,d2}. Fix
§ € (0,60) and v € (2, 3Z). There exists a o such that f,!(y,1) 19U, ,.s = {1+ de’}. By
the symmetry f,(z) = f,(2) we have then f, ! (v53) N 0Ug, .5 = {1 + de~}. We then define
Ys in Ug, . s as the inverse f, image of 7, and define X5 in U,,, ,, s as the inverse fn image of
J5 such that fi!(35,1) N OUs,, .6 = {—0¢""} and f;'(35,3) N U, .5 = {—0e™}.

Let Xp=¥sU0Ug, ,, s U 60%7%5. Note that the contour X depends on n (and also on ¢, v).
However, we easily see that X, ¢ = 1,--- ,4 are independent of n. Define a matrix valued
function R : C — X ( depending on the parameters n,d,v) as

S(2)P,(2)7Y, forze€ UBpms \ L5,
R(z) = S(z)pn(z)_l, for z € Uan,m,é \ Xs, (2.28)

S(2)P*>(z)~1, for z elsewhere.

By the definition, R has jumps on the contour ¥g. However, one can show that R has only
jumps on the reduced contour Xp = X' U5 UX) UdUg, . s UIU, and R is a solution of

the following RH problem on the contour Sk

n,m,07
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(a) R:C\ Xg — C?*? is analytic,
(b) Ry (z) = R_(z)vg(x), for z € ¥p with

Po(2)P>®(2)71, for z € OUg, . .5
vr(2) = Pu(2)P>(2), for z € 6Uan s

P2 (2)vus(2)P®(2)71, for z € B U Uy,

(c) R(z) =1+0(%), asz— .

The point of the matter is that R has the following asymptotic expansion in powers of n!,
) I+1§o (z)n " (2.29)
z) ~ — re(2)n as n — oo .
” k

uniformly for § in compact subsets of (0,dy) and for v € (%”, %’r) and z € C\ g, i.e., there are
C; > 0 for each [ > 1 such that

l
1 B o
2€C\Sg,0€(0,00),v€( %, 5x) n Z n+1)/m

ey . e , 223

By going back in the series of transformations U — T — R, we can find the
asymptotics of U. This is summarized as follows.

Theorem 3. (1) For x € (cump + 0, Bmpn —9), 6 >0,
— Bm,n 1
Pn,1($) _ ,U'n,m(x) _ ﬁm,n Am.n ) cos (nﬂ/ un,m(u)du> +0 ($> .

AN (Bn — ) (T — Qmn,

(2.31)
(2) For x € (0,00) \ (amn — 0, B +9), § >0,

_ 2n(ﬂm,n — am,n) 2nén () i 2nén ()
pnal®) = o SO (2.52)

(3) For x € (Bmn — 0, Bmn +9), § >0,

”Pn,l(x)

_ ([ falz)  d(2) A VA N2 T (o o
B <4fn(x) a(x)> 2A(fn(2) A (fa(2)] + fr(@)[A'(fu(2))* = fu(z)A(fo(x))?]

+0 (o) [F@n @A @2 + @ @2 (239

For x € (ayn — 0, iy +0), § >0

npp,1()

- ( Sal) | ““”) RAGA) A Ful@)] = Fu@)A (Fule))? = Ful@) Ao ()

+0 (%) [a?(x)fn 3 (2) A (fo(2))? + 0 2(2) 2 (2) Alfu(2))? | | (2.34)
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where

~ (g2 () > 0,

(37”12 L™ iy () d) 2/3, if £ < o

Proof (1). We have for z € (amn + 9, Bmpn —9), 6 >0,

Ull(x) — lnln,mﬂ 1 0 en(gn(m)_%ln,m)
( Usy () ) = e2 3R(x) Py () ( —2%n@) 1 ) ( 0 _ (2.35)

Taking derivatives at both sides of (Z3H) yields

Uiy () I S R— 1 0 (gn (@)~ Ll m)
( UL () = e2 R(2)Po(@) | —2t,a) 0
21

Lnlnmo 1 0 n(gn ()= 3ln,m)
Fest (@) Foo() ( —2%n(2) g > ( 0 )

In o 1 0 (gn(x) an m)
+e2 In,m 3R($)Poo(x) ( —2n(x ) 1 ) ( 0 )
1al n(gn(x) an m)
+e2"™nm R(x) Poo () _2§n(w)

= (o )+ (i )+ zziiii () e

det( Un(@) du(@) ) = 0. (2.37)

First, it is easy to see

Poo(@) = %( D ) ( a(ox) a?(x) ) ( - > (2.38)

Pl(x) =

a 2;((2) (1 —12>

A simple algebraic computation gives

det ( gigg Z;ig; > = ZC;/((;)) cos (mr /jmyn Mn,m(u)du> WVn,m () (2.39)

so we have
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Since

10\ 1 0
e~2%n(@) 1 ) T\ —2¢ (x)e%n(@) 1

and
&) = —mighy(x)
1
- _% (.%' - anam)(x - ﬁn,m)a
then
Ull(-%') 611(.%') _ , WV ()
det( Us () () ) = —2n§, (x)e

= 2@ = )@ = o) € ),

Let
zi(z) \ _ 1 0 (90 (@)= Slnm)
( 22(2) > = P () ( o—2%n(@) 1 ) ( 0 >

and

_ ( Ru(z) Ria(z)
R(z) = ( Ror(z) Ros(2) >

Then inserting [ZT) and [£Z2) into [3H) and [E36), we obtain
() 218 v i) (2 28 (252).

az () r21(7)  T22(7)

where and in the sequel

_( Ru(z) Riy(2) _( Ru(z) Ry(2)
@)= () e ) 0= (5a0) s )

[ Ria(z) Riy(x) _
)= (o) w0 ) = (R0 e ):

{L'l((I;) o engn(z) nVn,m(x)
( xo(7) > = Poo(z) ( e—nén() )€ 2
enén(z)
e—nﬁn(a})

Note that

and the vector Py () (

Also, R(-) is piecewise analytic, it follows from (229

1 1
r1l, [rae| = O (—) , el fral =0 (—2> :
n n
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Hence, we have by (ZZ3)

e () et )| 2o (L) enincn o1

Combining (Z37),[Z39), Z20) and ZZ) yields the desired result.
(2). For all z € (0,00) \ (n,m — 9, Bn,m + ), we have

Un(®) \ _ Inlymo (0n (@)~ Llnm)
< Uai (2) ) - *B(2) Poo(2) < 0 : (2.45)

Taking derivatives at both sides yields

< U{l(l‘) ) — eénln’mo—BR,(l’)Poo(gj) < en(gn(z)féln,’m) )

Usy (2) 0
”(gn(x)_lln,m)
+e2"nmos R(z) Pl () ( ¢ . ’ )
”(gn(x)_lln,m) !
—i—e%"lnv’""?’R(x)Poo(x) ( € 0 ? )
aii(x) bi1(x) ) ( ci1(x) >
—. 4+ + ) 2.46
( agl(x) ) < 621(1‘) Cgl(.%') ( )
Now it is easy to see
Ull(-%') 611(.%')>
det =0. 2.47
¢ ( Usi(z) co1(z) (2.47)
Also, a similar algebra to ([Z39) shows
Ull(x) bll(x) ,a’(m) 2népn (x) NV, m(z)
det _ n (@) gnVom (@) 2.48
¢ ( Usi(z)  boi () Yalx) € ¢ (248)

Let

(2)-a ().

( 2%3 ) = Pw(2) ( (1) )esnu)eW.

Since Py (z) is bounded uniformly in n and = € (—o0,00) \ (&« — 9, 5+ 0), then one can similarly

then it obviously holds

prove

Uai(z) a2i(x) n

Combining (Z247), [228) and (ZZ9) yields the desired result.

‘det ( Ull(m) all(-%') >‘ -0 <i2> e2n§n(x)6nVn,m(a:). (2.49)
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We remark that when x > (3, », + 9,

_/z %\/(u—an,m)(u_ﬂ"7m)du<o.

This shows py, 1(z) is exponentially small in n and > (3, ,, + 6. Same to x < ay,m — 6.

(3). We need only to give a proof in the case of x € (Bym — 0, Bnm + J) since the other case is
similar.

For z € (Bym — 0, Bnm + 9), we have

() = gaettermr@pa@et () wer e

1 0 o1 (gn (@)= 5 ln,m)
—nén(z)os
Xe ( 672’”’6"(33) 1 > ( 0 ) . (250)

Taking derivatives at both sides (ZA0) yields

( U{I(x) >
Ué1($)
= S rp @t (1) AP ee)

1 0 n(gn (%)= §ln,m)
—nén(x)os (&
e ( e~ nn@ > ( 0 )

1 %nln’mgg e x/e%ag, 1 -1 T3
T T ST Nl G P M)

n(gn(2)—ln.m)
_ngn(m)oﬁ 1 0 € 2
xe ( e—2nn(z) | > ( 0

+sed R P )e ( L )f;m)%(fn(x))

o1(gn (2)=5ln,m)
_ngn(m)oﬁ 1 0 2
xe ( e—2nén(z) | > ( 0

1

1 Anlnmos z xe’%ag 1 - .%'% /
T e (T NEE L) (SR PATE R TTAE)

o1 (gn (@)= 5 ln,m)
_ngn(m)oﬁ 1 0 2
xe ( e—2nén(z) | > ( 0

L o dntnmos x 2)e T8 -1 x%
Ll CUN R L) (R FACR L TE)

1 0 n(gn(a:) glnm
—nép(z)os
(o (e 1) (1 )

=r(2;12§§)+<2;E§3)+<2:1%3> (@Yo (20 e
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Again, it is easy to see
Ull(x) 611(.%') >
det =0. 2.52
( Usi(x) ea1(x) ( )

Also, note that the following equations hold true

E ~—
-
o

10 —nén(x)os 1 0 (92 (2) =3 ln.m) — e Vnm ()
( -1 1 )6 6_2715"(33) 1 0 - 0 )

< j'(é)) wﬂﬁ% ) - ( b o ) < j'(é)) wﬁﬁ% )

Now some calculations show

(
)
Fa(@)[A'(fa(2))? = fa(@)A(fa(2))?]. (2.53)

n@ \_ (1 1 (—a(m)fn%)A'(fn(x))) M)
=vrl . . | e 7. (2.54)
(W)) < _@) o™ (@) 13 (@) Afn(2))



we have

'det( Ui () allgx) >'

=0 <$) [a%)ﬁ? (@) A (ful)? + a=2(@) £ () A( fn(x))Z] . (2.55)
Combining [Z52) 53] and ([Z5H) yields the desired result

npn,1(7)
(oo

4fp(z)  alx)
‘o <ni> [a2<x>fn2<x>A’<fn<x>>2 a3 (a)f7 <:c>A<fn<x>>2] ~

> 2A(fu(@))A'(fa(@)) + Fo(@)[A'(fa(2))? = fal@)A(fa(2))?)

The proof of Theorem 3 is now complete.

Corollary. We have for x € (apm + nQ—C;S, Bn,m — nQC/S),
00 (&) = tin ()] < - (256)
n,1 - Mn,m > . .
n(z = anm)(Bpm — T)
In addition, assume |2 —~| = O(L), then we have for z € (o + %, B — ng—%),
ona (@) = o) < (2.57)
Prff I = @ =) (B — =) |
Proof. Let us first show ([Z58]). By (231]), it suffices to prove for § > 0
C C
n - Mnm S P nm_5, nm — a9 2.58
|p 71((E) Hn, (:C)| n(x — an,m)(ﬁn,m — .’IJ) T e (ﬂ ) ﬁ , n2/3) ( )
and
ont (%) — fnm ()] < ¢ 2 € (Qnm + —=, Qo +6) (2.59)
pn,l I"Ln,m — n(x _ an?m)(ﬁnym _ x)) n,m n2/3) n,m . .
We shall prove only [Z58) using [Z33)) since the other is similar.
Recall that the Airy function is bounded on the real line, and for » > 0 (see (7),(13))
A(—T) = W {COS <§T - Z) + 0 (m)} (260)
and
1/4 9 1
Nepy =" dgin(4p32 - T -
A(-r)= Nz {sm <3r 4)+O(r3/2>}. (2.61)
Then it is easy to see that |[A(x)A’(z)] = O(1). Also, noting that
371' Bn,m 2/3
fulz) =— (712/ un,m(u)du> , for z < B, m, (2.62)
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we have

Fule)  ale) (263)
When z € (5n,m - 57 5n,m - n2 3)7
This together with ([Z60) and &) implies
: [fu(@)'2 f (2 m 1 ’
A (fn(x))2 - {Sln (g’fn(x)‘?’ﬂ > +0 <’f (x )‘3/2)} ) (2.65)

and

@G = 2O Loy (2 -T) w0 (s )b e

Thus we have by (Z60) and (ZG0)
F(@)[A'(fa(2))? = fu(@)A(fa(2))?]

= 2hlh = {eos (310 - §) +0 (7 }
foin (e - 5) w0 (G

= @) (1 +0 (‘ i (1)‘3/2)) (2.67)

Now (Z18)) easily follows from ([Z33]) and the fact that 1f’( ) fulx) M2 = tn,m () for z < By .
Next we prove (ZRZ). Note that oy pm — a,Bnm — B, soif 2 € (a + Q/S,ﬁ 2/3) and

| — 4| = O(2), then = € (aym + n2/3,ﬂn,m - 2/3) for some C' > 0 (possibly different) and
sufficiently large n.

A simple calculation shows

(@)~ (@) € 5B 2 | ann - VEa]
+%\/x_an,m‘\/ﬂn,m_$_\/ﬂ_x‘

C‘@—v‘ ! .
n V(e —a) (B —x)

Thus we easily derive from (Z56) and ([Z68) that L) is true under the hypothesis |7 — | =
O(2), as desired.

(2.68)
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3 Proofs of Theorems 1 and 2

In this section we shall give the proof of Theorems 1 and 2. By virtue of (LI3)), (CId) and
(CIH), we shall basically focus on the computation of expectation and variance, which are given
in the following lemmas.

Lemma 1. Let t, be such that Bpm —tn, — 0 and n(By,m — tn)3/2 > C for some C > 0. Let
I, = [tn,00), then

B, = O )92+ 0(1). )

Proof. For some § > 0, we have
o
E#l, = n/ pn,l(x)dx
tn
ﬁn,m‘i’é o
= n/ pnyl(x)dx—i—n/ pn,1(z)dx. (3.2)
tn Br,m+0

By virtue of Z32), for x > [,m + 0, pp1(x) is exponentially small in n and exponentially
decaying in x. So it holds

/ npp1(x)dr = O(1). (3.3)
Br,m=+0
For Bym — 0 <@ < Bym + 6, recall

npp1(z)

_ ( fiz)  d(@)

Afp(x)  a(x)

) RA(fu(@) A (fa(2))] + fr(@)[A'(fa(2))? = fa(2)A(fa(2))?]

NI

+0 (o) [F@n @4 @2 + @ @ a2 (3.4)
Here 1/4
€T — ﬁn,m
a(z) = gm — an,m§1/4
and
- (%ﬂn ff”m ,un,m(u)du) 2/3, if x < Bnom,
fn(z) = s (3.5)
(%ﬂn fgnm umm(u)du) , itz > Bum.

We now look at the different terms in the asymptotic expression for npy 1(z) above. Observe
that (Z60) and EGI) give the asymptotic expansion of Airy function for large negative values.
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We need also the following asymptotic expansion of Airy function for large positive values (see
(12), (13)): for r >0

L _zen 1
and
rl/4 3/2
Al(r) = 2W1/2e*§T / (1 +0 (#)) . (3.7)
Hence it follows for any x € (—o0, 00)
[A(z)A'(x)| = O(1) (3.8)
and
() a(x)\
(4565 ) ~o &

Thus we have

et (i) da)
n — 2A(fr(x) A (fr(x))dz = O(1). 3.10
[ (- S ) 240, @) A @) = 0 (3.10)
Also, integrating the third term of ([B4l) only gives a contribution of order n~*. The main
contribution comes from the second term. In fact, a primitive function can be found for this
expression:

1

Br,m+0
/t Fa@)A (fa(@))? = fa(2)A(fa(2))?|dz

FuBumt®) )
:/f . (A'(y)* — yA(y)?) dy
29 0 \2 2 1 / F (B +0)
=— |2 (VA (y)* —yA®y)*) — =A(y)A'(y)
3 3 Faltn)

(falta)?A(fa(tn))? = falta) A’ (fu(tn))?)

—éAUA%DA%n@0)+O(’m) (31)

OJI[\?

where ¢ > 0.

One can now use (ZG0) and EEI) to get the desired result. Indeed, |f,(t,)] > C under the
hypothesis, so we have

it PAU ) = Ut foos (Ut = T ) 40 (i ) | (312

and

ﬁﬁmmwﬁmﬁzgnmmw{m(éhmmw—§>+0Qffﬂw>} (3.13)
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Thus it follows

= (altaPAU () = Faltn) A/ (fa(ta)?)
= )2 +0(1)
Bn.m
= n/t fn,m (w)du + O(1)
= VP SO )21+ 0(1), .14

where in the last equation we use the condition S, ,, —t, — 0. We now conclude the proof.

Lemma 2. Assume t is defined as in Theorem 1. Let t, = t + :c—vlong" for x € (—o0,00),
I, = [tn,00). Then

E#I, =n—Fk — pinm(t)z/logn + O(1). (3.15)

Proof. We use the fact again

E#I, = n/oo pn1(x)dx. (3.16)
tn

The above integral ([BI6]) can be written as
&) ﬁn,'m*(S ﬁn,m
[ @iz = [ na@) = oz [ (o)
tn tn tn

oo ﬁn,m
B B

n,m*é n,m*é

where § > 0 is a constant.

We now look at the integrals at the right hand side of (B). First, one easily sees from (E220])
that

Br,m—0 1
/ (P (%) = pnm(x))dz = O <5) : (3.18)
tn
Also, using the Taylor expansion for ftn fn,m(x)dx we have
ﬁn,m tn
/ pnm(z)de = 1-— / fnm (z)dx
tn On,m
k 2
= 1--- Lon,m (8) (tn — ) + O((tn, — t)°). (3.19)
Next we shall prove
0 6n,m 1
/ pn,l(x)dx - / Mn,m(x)dx =0 <_> . (3.20)
67%7”_6 ﬁn,m—é n
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By the argument in Lemma 1 above, it suffices to show
ﬁn,m‘f’é , , 9 9 6n,m
L R GR@) ~ f@AGE e—n [ ede =0, @21

Br,m—6

n,m_(S

In turn, by a primitive function argument used in (BIIl), we need to prove
2
g[fn(ﬁn,m - 5)2A(fn(ﬁn,m - 5))2 - fn(ﬁn,m - 5)A/(fn(ﬁn,m - 5))2]

Bn,m
= n/ﬁ fonm(x)dz + O(1). (3.22)

n,m*is

Indeed, since | f,,(Bnm — 6)| > cn?®3(Bym — §) — oo, then by ZB0) and EEI) again we have

2 B = 0 A B~ )~ FoBrm — DA (B~ 9))?

_ 2 o 3/2 1
_37T|fn(ﬂn,m 5)| [1+o<‘fn(ﬁn’m_5)‘3/2>}

Bn,m
= n/ﬁ fonm(x)dz + O(1). (3.23)

n,m*é

Now combining (BI7)-(B20) yields the desired result ([BIH), so the proof of Lemma 2 is complete.

We now turn to the variance of the number of eigenvalues in I,,. The computation is based on
a fact due to (@) that

Var(#1,) = /[ . K, (z,y)*dzdy. (3.24)

Observe that by (1)

'L’ 1 Ull(:(,‘) Ull(y) ) _nVn,m(z) _"Vn,m(y)
K, (z,y) = — det 2 T 3.25
() 2rx —y ( Uni(z) Un(y) )° ‘ (3.25)

We will compute the above determinant in two basic cases separately. The first case is when
t < Bn,m — 6 for some 6 > 0, i.e., in the bulk. The second case is when 3,,,, —t — 0 as n — oo,
i.e., near the right spectrum edge.

Lemma 3. Assume t < (3, — 0 for some § > 0. Let I, = [t,00), then

Var(#I,) = 2—71T2 logn(1+ o(1)). (3.26)

Proof. First consider the sub-domain where both variables are in the bulk:

F:{(xuy):tsxgﬁn,m_éaan,m‘i‘(SSySt}'
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For z € (apm + 6, Bn,m — 9), define 0(z) to be such that

= (ﬂn,m + an,m)/2
(ﬁn,m - an,m)/Q ’

cosf(z) = (3.27)

Then a simple computation shows

. 1/2 .
&) a7 = (ﬁin;n;l/4?z"inln S IZL (3.28)

and

_ /
a(z) —a '(z) = — (Brm = Conm) 1 e~2002), (3.29)

So it follows from (ZI4]) that

(671,771 . Oén,m)l/Q e%a(z) ie—%&(z)
Poo(2) = 2(z — Bm) /(2 — an,m)1/4 ( _ie—39(2)  ,30(2) ) (3.30)
Define
a(z) = 30(2) — inka(z), B(2) =~ 50(2) — ina(2). (3.31)

Then inserting (B30) and B31) into &30) yields
(5)
Ugl(z)
Dy en(2) N\ nVim(s)
= ezlnm *R(2) P (2) < e—nén(2) >e :

= (Bn,m — O‘n,m)l/z Fln,mos
B 2(2 - /Bn,m)l/4(z — Oén’m)l/462 R(Z) _Z‘eﬁ(z) + e*iﬁ(z

B (Brm — nm) '/ 2 o (1 —4)(cos a(z) + sina(z)) nVnm (2)
2z — Brm)Y4(z — 04n,m)1/46 R(2) ( (1 +4)(cos B(z) +sinf(z)) > ¢ ’

2

eia(2) 4 je—ia(2) nVn,m (2)
) e

(3.32)
Thus using (Z29) and ([B32)) we have for (z,y) € T,
Un(z) Unl(y)
det ( Uai(z) Usai(y) )
. (6n,m - an,m) nVn,m(x) "V"’Qm(y)
- 4(-7; - 5n,m)1/4(x - an,m)1/4(y - ﬁn,m)1/4(y - CVn,m)l/46 ‘
« de (1 —i)(cosa(z) +sina(x)) (1 —1)(cosa(y) + sina(y)) 1
d t< (1+14)(cos B(z) +sinB(z)) (1 +1i)(cos B(y) + sin B(y)) ) o (n)
6n,m — On.m nVin,m(x) "V"’Qm(y)
- 2(-7; - 5n,m)1/4(x - an,m)1/4(y - ﬁn,m)1/4(y - CVn,m)l/46 ‘
X [(cos a(z) + sin a(x))(cos B(y) + sin B(y))
—(cos a(y) + sina(y))(cos B(x) + sin 5(z))] + O (%) . (3.33)
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Noting that

cos a(z) +sina(z) = 2cos (a(z) - %) cos%
and
cos 3(z) + sin B(z) = 2 cos (ﬁ(z) - %) cos %,

we derive from (BZH) and (B33) that
Kn(z,9)

ﬁn,m - an,m
20 (B — )@ — ) VA (B — 1)y — o)
y [cos(a(z) — F) cos(B(y) — &) — cos(a(y) — %)cos( ( ) — ]+ O(%)
(z —y) '

(3.34)

To prepare for integration we now divide I' into four disjoint sub-domains. Let

where r(n) = logn, and let
Iy=T-TouluT?

Let us first calculate the integral over I'y. When (z,y) € I'g, one can use the Taylor expansion
for the function 6(-) at t,

0(z) = 0(t) + O (%) By =0+ 0 <%> . (3.35)
From the obvious fact 3(z) = a(z) — 0(2) it follows
cos (a(@) = T ) cos (aly) = 7 = 0(y) ) = cos (aly) = ) cos (a(z) - T~ 0())
— cos (a ) cos (a(y) -2 e(t)) — cos (a(y) - Z) cos (a(m) - % - H(t))
10 )
— sin0(t) sin(a(z) — a(y)) + O (E) (3.36)

Since both z and y are close to ¢, and

(ﬂnm—t)l/Q(t—a )1/2
(5n,m an,m)/Q ’

sinf(t) = (3.37)
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then

ﬂn,m — Opm

1
2(ﬂn,m - 37)1/4(37 - an,m)1/4(ﬁn,m - y)1/4(y - O‘n,m)1/4(5C - y) =10 (E> .

Also, let for z € (anm, Bnm)

Br,m \/(u — Oénym)(ﬁn,m - u)

u

F(z) =

z

then it follows from Z7), (X)) and (B31)

du,

) —aly) = inteu®) &) +0 (1)
= S(F@) - F(y)+0 (1> -

2 n
Thus we have by combining B34)-BZ0) together,

Lgin[2(F(x) — 1
Ko(z.y) = = [5 (F( )x _F;(y))HO(n)’ (2.9) € T,

which in turn implies
Kn(xuy) < Cnv (xvy) € F0'
Hence

K, (z,y)*dzdy = O(1).
o

A similar argument to (1) gives

Lgin[2(F(x) — L
foey) = S SIIOAD, oy er

In order to calculate the integral of K, (z,y)? over I'1, we shall use an elementary fact

b d 1 (b—d)(a—c)
dz / - gy de-9
/a e (z—y)? (@a—d)(b—c)
It immediately follows from ([FZH) that

ray = log——"————
ri (z —y)? 2r(n)

= logn+O(lnr(n)).
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(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



Also, one easily sees

[ o) Fa
ri (x —y)?

/t+—ﬁ’:zﬁ an(F(y) ~ F())] } o
dx ’ 2
\ nF' W)@ =9 1 (g m)/rin)

T 1 /
— dx/ sinjn(F(y) — F(x (—> dy
/ e SO PO S0 ),
= Il - IQ. (347)

Both the integrals are easy to estimate:

c [ 1 1
|| < E/t |:(x( 1))2+(:c(tttﬁ"’m))2} dx
o)

_ (3.48)
Note that
( 1 >’ Py L 2
Fl(y)(z —y)?/, Fl(y)? (z—-y)?* Fl(y)(z—y)?
and both F'(y) and F"(y) are bounded in (. m + 9, Bpm — 6). We easily have
C 1
L < — ———dxdy = O(1). 3.49
i< [ gty =00 (3.49)
Combining ([B28) and EZ9) yields
sin®[n(F(y) — F(2))] + O(55)
Kp(z,y)?dedy = / 5 5 rn) dxdy
r! ri T (z —y)
L[ 1= cosfn(F(y) - F@)]
= — dxd o(1
22 Jry =y =dy +O(1)
i 1 [ cosln(F(y) - F@))]
= —logn— — dxdy + O(1
272 27? J (x —y)? (1)
1
— —1 1 . .
53 logn +0(1) (3.50)
Also, it is easy to see
1
Kn T,y :O(7>7 T,y €F7
@ =0(5=m). @)
then using ([B243) again, we have
1
K (z,y)*dedy < C/ ———dzdy
r? r? (z—y)
2n(Bpm — t
n—2WBam =) _ 5y (3.51)

n(Bpm —t) +r(n)
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Similarly, it follows

1
Kp(z,y)?dedy < C ———dxdy
/r2 (=.v) r, (T —y)?

—  O(n(r(n))). (3.52)

Finally, we need to look at the sub-domain I's =: I,, x I —I'. We divide I's into the following
four sub-domians:

Tl ={(z,9): tnm =0 <& < pm + 8, B — 0 <& < B + 0}

FQZ{(:Cay):O‘n,m_égxgan,m'f'(saxzﬂn,m+5}
T8 = {(2,9) : 2> anm +6, Bom — 06 < < B + 6}
T4 = {(2,9) : & > Qpm + 06, & > B + 0}

The asymptotic expression for K, (z,y) is different in I'; but there are no difficulties. One can
just take the absolute values in the integral since | — y| > By.m — an,m and the result

Kn(z,y)*dzdy = O(1). (3.53)
I's

This together with ([B243)), (B50), (B321) and (BXZ) now concludes the proof.

Lemma 4. Assume t is such that By m —t — 0 and n(Bpm — 15)3/2 > C for some C > 0. Let
I, = [t,00), then

Var(#1,) = % tog [(Bn — 1)*2] (1 -+ o(1)). (3.54)

Proof. The argument is similar to that of Lemma 3 but requires a finer partition. Now we
divide I,, x I into the following nine sub-domains:

Qo ={(z,y) :t<w<t4et-—e<y<t}

Ql:{(xay)itﬁxgm-%’t_%

ﬂn,m —t

r(n)

Syst_€}7

ng{(x,y):t+e§x§t+ ,t—egygt},

r(n
Q=1 (2,y) t+ﬁ”m tgxgﬁnm—g,t—ﬁn’m_t y<tvy,
r(n) ’ n r(n)
C C
952{(1'72/) 5n,m_zgx§5n,m+ 76n,m 5Sy<t}



QG:{(xay):ﬁn,m"i_%sxgﬁn,m"i'év 5n,m_5§ygt}7

97:{(9€7y)3t§3€§5n,m+57 an,m_ésygﬁn,m_é}a
W={(z,y) ;2> Bpm+06, ory<apm-—>d},
where 6 > 0, C' > 0, r(n) and ¢ are defined by

) 1
Tn) = max (m’ log [n(ﬂn,m - t)3/2] >

and
1

N ”(ﬁn,m - t)l/Q.
In the corner Q4 we shall use the representation ((C2). By use of the Cauchy-Schwarz inequality
we have

e

K2(z,y) < Kn(2,2)Kn(y,y).

Having separated the variables one can now use the calculations of the expected value giving

/t o K2(z,y)dzdy = O(1). (3.55)

—e Jt

Now let us look at the sub-domain €2;. We shall prove the following estimate for K, (z,y):

Ko@) = ———s{sin[§(F(x) - ()]

o (W) o (WW (3.56)

To see this, we use for z € (By,m — 0, Bnm + 6)

(0h) = etmmr@rs@ee () ) e e

1 0 n(gn(z)_%ln,m)
—nén(z)os €
Xe ( e*2n£n(z) 1 ) < 0 > . (357)

Some algebraic calculations show
(23)
Ugl(z)

- ﬁeinl"»W’SR(z)< L ) ( —a(w)fn(w)‘i

—1
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By virtue of ([Z29)), one easily obtains for z,y € (8pnm — 9, Bn,m + 9)

Kn(.%',y)

— AL A AL M0 A )

L AU ) A () + O], (359)

Now assume (z,y) € Q1. Using (Z80) and ZE1) for large positive r, we have

Fa(@)TAL(@)) f(y) T A (Fa®)) = Fal0) T An () ()5 A (ful))

_ %sin [g(F(:c) - F(?J))} +0 (—n(ﬁn,ml— x)3/2) 40 (—n(ﬁn,ml— y)3/2> (3.60)

Moreover, % is asymptotically equal to 1. Indeed,

a(z)]?
[@} -
(@ = Brn) 2 (Y = ) ? = (5 = Bom) 2 (x — Q)
(?/ ﬂn,m); (55 - O‘n,m)%
_ @ nm)i [ = )t = = Fam)] | (@ = Bam) [y = Gnm)? — (2 — )
(y - ﬁn,m)§($ - C“n,m)E (y - ﬁn,m)g(x - C“n,m)E
_ @ Brn)® = 0= o) | (= Bun) [0 — ) = (@ — )]
(?/ - ﬁn,m)E (?/ - ﬁn,m)E (55 - O‘n,m)E
r—y
(Y = Bun)? (@ = Bun)? + (= Brm)?)
(& = Bum)? (y — @)
(¥~ Brn)? (& = Q) 2 (¥ — Qo) ? + (& — ) ?)

0 (%) , (3.61)

which implies

=

D=

]

+

a(x) 1

a@)_1+O<NM)' (362
Similarly, we have

aly) _ 1

a(x) L+0 (r(n)) ' (3.63)



Inserting (B60), (B52) and BE3) into (B5T) immediately yield (B350).
The following computation is completely similar to that of ([B46) and [BZ1) except that F'(y)
and F”(y) are no longer bounded.

By (B35 again,

= log |n(Bum — t)*/%| + O(Inr(n)). (3.64)

Also, it holds

/ cos[n(F(y) — F(x))] dady
951
/t+% [sin[n(F(y) _ F(m))]]t—l/n o
i nF' ()@ =) o (t48m)r(n)
o O, . 1 /
_/t dx /ttt‘zz;m sin[n(F(y) — F(x))] (m)ydy

(z —y)?
Bn,m—t tfi
= Il - IQ. (365)

Both the integrals are easy to estimate: we take derivatives twice at both sides of (B39) to get

VW = anm) Bom — y)
y

F'y) = -

and

/
F//(y):_(\/y_an,m> /76 o+ Y—0pm .
y , 2y\/Brm — Y

Thus we have

Bn,m—t

C = my 1 1
_ dx
< me—= e - DP " (o (t— By
= 0(1). (3.66)
Also,
Fl(y)(x —y)?/, Fl(y)? (z—y)?* Fl(y)(z—y)
which gives
C 1 1
L A G e R e e ) L
= 0(1). (3.67)
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Combining (B64)-(B.67), we have

o m2(x —y)? (x —y)?
1 1 — cos[n(F(y) — F(z))]
- 0, e dzdy + O(log(r(n)))
= 57198 [0 — %] + Ollog(r(n)).

The calculations made above can also be applied to the small slice 29:
K, (z,y)*dzdy = O(log(r(n))).
Q2
Next let us look at the integral in Q23 U €24 U Q5. We shall prove in these sub-domains

a(y) 1 _1 |ﬂn,m - y|1/4
mfn(x)4"4(fn(x))fn(y) 4A (f"(y))‘ S Cm

and

; 1 /4
Y0 A ) 34 )| < ol

o ’ﬁn,m_xll/él'

For B3, —d <y < t, a simple calculation shows
en®* (B = y) < fa(®)] < Cn*(Bogn — y).
So, by virtue of &) and &) and n?/3(Bpm —y) > n*3(Bym — t) — 00, we have
FaFAU)| £ G, | faly) 54 ()| < €.
For t <x < B, m, in the exactly same way, we have
en® (Bnm — x) < |fa(@)] < Cn* (B m — @),
which together with (B7Z3]) implies

%fnmm(fn(x))fn(y)iA’(fn@»\ < %
|ﬂn,m - y|1/4
o C|ﬁn,m_x|1/4

i.e., B is true for t < x < By and By, — 0 <y < t.

sin?[2 — F(x 1
K, (.9 dady :/Q [Z(F(y) — F( ))HO(”(”))dxder/Q 0(1) dody

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

To prove (B, we need only to consider the case f,(x) — 0 since the other case is simpler.

When f,(z) — 0, |A'(fn(z))] < C which easily follows from A’(0) = _W(l/fi)
by (ET3) and (ET3)
@ % €T 7% / T @ €T *i
" A ) A )| < ]S )
C
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Since y < t < x and n%*3(B,m — t) — 0o, then

|ﬂn,m - y|1/2n1/6 > |ﬁn,m o t|1/2n1/6
Z ‘5n,m - t‘1/4
> |ﬁn,m - .T|1/4, (377)

which yields BX1]).
So far, we have proved (BX) and BZI) for ¢t < < B, and By, — 0 < y < t. The case
Brm <@ < Bpm + % can be similarly proved using (B0 and (B) and noting that

. — — 2/3
fn(w)=<g p L an,,,;)(u 5n’m)dU> ;2> Bam.

From (B70) and (B7) it follows

K 9] 6nm_y 1/2 1 in O 0O 0O

It is now sufficient to calculate the integrals of K, (x,y)? in Q;,i = 3,4,5 are O(log(r(n))). The
calculation is straightforward and almost same as in the case of GUE (see (7)), so some details
will be skipped.

In the sub-domain Q¢ one can perform the same calculations as in
C
(xay):tgxgﬂn,m'f'g,ﬂn,m_égygt

and the contribution is O(1).

In Q7 one can use the fact  —y > ¢ to show that the contribution form this domain is O(1). In
Qg one can easily get K, (x,y) is exponentially small in n and exponentially decaying in x (or
y). Thus the contribution from this domain is o(1). The proof of Lemma 4 is complete.

Acknowledgement: The author would like to express his gratitude to K. Johansson for insightful
comments. Thanks also go to the referee for careful reading.
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