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1 Introduction

In the paper (JN06) two expressions for the so called GUE minor kernel are presented, one in
definition 1.2 and one in the the formulas (5.6) and (5.7). The expressions given in (5.6) and
(5.7) are correct, but the expression in definition 1.2 of the paper has to be modified in the
case r > s. The proof of the equality of the two expressions for the GUE minor kernel given in
the paper was based on lemma 5.6 which is not correct since some terms in the expansion are
missing. The correct expansion is given in lemma 1.2 below.

The corrected version of definition 1.2 in (JN06) reads as follows.

Definition 1.1. The GUE minor kernel is

KGUE(r, ξ; s, η) = −φ(r, ξ; s, η) +

−1
∑

j=−∞

√

(s + j)!

(r + j)!
hr+j(ξ)hs+j(η)e−(ξ2+η2)/2,

where φ(r, ξ; s, η) = 0 when r ≤ s and

φ(r, ξ; s, η) =
(ξ − η)r−s−1

√
2r−s

(r − s − 1)!
e

1

2
(η2

−ξ2)H(ξ − η)

−
1
2e(η2

−ξ2)/2

4
√

π

−(s+1)
∑

j=−r

hr+j(ξ)
√

2−s−j

√

(r + j)!(−s − j − 1)!

∫

∞

η
(t − η)−s−j−1e−t2dt

for r > s.

Here, {hk}k are the normalised Hermite polynomials, defined to be ≡ 0 when k < 0, and H is
the Heaviside function.

The expansion of the double integral formula (6.16) in (JN06) in terms of Hermite polynomials
also has to be modified in the case r > s. This expansion was used in the proofs of lemma 3.15
and lemma 4.2 in (JN06) and the modification leads to the correct kernel given in definition 1.1
above. Expanding the integral formula in (6.16) gives

√
2s−reη2

−ξ2

2(πi)2

∞
∑

k=0

∫

γ
du

e2ξu−u2

ur−k

∫

Γ
dv vs−k−1ev2

−2ηv, (1)

where γ is a small circle counter clockwise around the origin and Γ is parameterised v = 2 + it,
where t : −∞ → ∞. Here we recognize the two classical integral representations for the Hermite
polynomials.

The proof in the article omitted the terms from k = s + 2 to k = r + 1 when r > s. Using the
identity

1

πi

∫

Γ

ev2
−2ηv

vn
dv =

2n

√
π(n − 1)!

∫

∞

η
(ξ − η)n−1e−ξ2

dξ, (2)

which is valid for n ≥ 1 and one of the classical integral representation for the Hermite polyno-
mials we obtain the expression we want for the omitted terms.
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It remains to verify the formula (2). Observe that, by repeated partial integration,
∫

∞

η
(ξ − η)n−1e−2ξv dξ =

(n − 1)!e−2ηv

(2v)n
(3)

if η > 0 and v ∈ Γ. So in this case the left hand side of our formula can be written

2n

πi(n − 1)!

∫

γ

∫

∞

η
(ξ − η)n−1ev2

−2ξv dξ dv. (4)

Here we can change the order of integration and evaluating the Gaussian integral gives the right
hand side of (2).

When η < 0, make a change of variables v 7→ −v. The left hand side of (2) becomes

(−1)n

πi

∫

Γ′

ev2+2ηv

vn
dv, (5)

where Γ′ is parameterised v = −2 + it, t = −∞ 7→ ∞. By deforming the contour Γ′ into Γ we
get

(−1)n−1

πi

∫

γ

ev2+2ηv

vn
dv +

(−1)n

πi

∫

Γ

ev2
−2(−η)v

vn
dv, (6)

where γ is a circle around the origin. The right term can be evaluated using the the result for
η > 0 above. The left term can be rewritten using the equality between the two integral formulas
for the Hermite polynomials mentioned above and we obtain

2n

√
π(n − 1)!

∫

∞

−∞

(ξ − η)n−1e−ξ2

dξ − 2n

√
π(n − 1)!

∫ η

−∞

(ξ − η)n−1e−ξ2

dξ, (7)

which proves formula (2) for η < 0.

Finally, we give the corrected version of lemma 5.6 in (JN06).

Lemma 1.2. The following expansion

√
2k

(k − 1)!
(x − y)k−1H(x − y) =

∞
∑

n=k

√

(n − k)!

n!
hn−k(y)hn(x)e−y2

+
1
4
√

π

k−1
∑

n=0

hn(x)
√

2k−n

√
n!(k − 1 − n)!

∫

∞

y
(t − y)k−1−ne−t2dt (8)

holds pointwise for x 6= y.

Proof. Proceed as in the proof of lemma 5.6 in (JN06) to compute cn(y) for n ≥ k. That
calculation fails for 0 ≤ n < k, and those terms account for the second sum in the statement of
this lemma. Use the formula e−x2

Hn(x) = − d
dx(e−x2

Hn−1(x)) to perform integration by parts
as many times as possible.

∫

∞

y
(x − y)k−1Hn(x)e−x2

dx =

∫

∞

y
(k − 1)(x − y)k−2Hn−1(x)e−x2

dx

= . . . =
(k − 1)!

(k − n − 1)!

∫

∞

y
(x − y)k−n−1e−x2

dx. (9)

Inserting this in (6.1) in (JN06) and changing to normalised Hermite polynomials proves the
lemma.
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