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1 Introduction

A comprehensive theory of second order quasi-linear parabolic stochastic differential equations
in Bessel classes Hs

p(Rd) was developed by N. V. Krylov in [1], [2]. This theory applies to a large
class of important equations, including equations of nonlinear filtering, stochastic heat equation
with nonlinear noise term, etc.. The main results of the theory are sharp in that they could not
be improved under the same assumptions.

In this paper we extend Krylov’s Lp−theory to parabolic systems of quasilinear stochastic PDEs.
Specifically, we are considering the system of equations

∂tu
l = ∂i(aij(t, x)∂ju

l)+Dl(u, t, x)

+ [σk(t, x)∂ku
l +Ql(u, t, x)] · Ẇ , (1.1)

ul(0, x) = ul
0(x), l = 1, . . . , d;x ∈ Rd

where W is a cylindrical Wiener process in a Hilbert space. In (1.1) and everywhere below the
summation with respect to the repeated indices is assumed.

Among other reasons this research was motivated by our interest in stochastic Fluid Mechanics
(see e.g. [6], [7] ). While the results below do not apply directly to stochastic Navier-Stokes
equations, they provide us with important estimates for solutions of suitable approximation to
the latter.

The structure of the paper is as follows.

In Section 2 we present a simple and straightforward construction of stochastic integrals for
Hs

p−valued integrands (for related results see [3], [4]). In this Section we also derive an Ito
formula for Lp-norms of Hs

p−valued semimartingales.

In Section 3 we present some auxiliary results about pointwise multipliers in Hs
p needed for

the derivation of apriori estimates for (1.1) (see Lemma 8). We give a more precise version of
Krylov’s Lemma 5.2 in [2] with an estimate that gives a positive answer to Krylov’s question
raised in Remark 6.5 (see [2]).

In Section 4, following Krylov’s ideas, we derive the main results about the existence and unique-
ness of solutions to equation (1.1). The results of the last subsection, in particular those con-
cerning the regularity of solutions (Proposition 1, Corollary 3, Corollary 4) are new not only
for systems but also for the scalar equations considered in [1], [2]. In addition, in Section 4, we
obtain some new integrability properties of the solution (Proposition 2-3, Corollary 3-4).

To conclude the Introduction, we outline some notation which will be used throughout the paper.

Rd denotes d-dimensional Euclidean space with elements x = (x1, . . . , xd); if x, y ∈ Rd, we write

(x, y) =
d∑

i=1

xiyi, |x| =
√

(x, x).

Let us fix a separable Hilbert space Y . The scalar product of x, y ∈ Y will be denoted by x · y.
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If u is a function on Rd, the following notational conventions will be used for its partial
derivatives: ∂iu = ∂u/∂xi, ∂

2
ij = ∂2u/∂xi∂xj , ∂tu = ∂u/∂t,∇u = ∂u = (∂1u, . . . , ∂du), and

∂2u = (∂2
iju) denotes the Hessian matrix of second derivatives. Let α = (α1, ..., αd) be a multi-

index, then ∂α
x = Πd

i=1∂
αi
xi
.

Let C∞
0 = C∞

0 (Rd) be the set of all infinitely differentiable functions on Rd with compact
support.

For s ∈ (−∞,∞), write Λs = Λs
x =

(
1 − ∑d

i=1 ∂
2/∂x2

i

)s/2
.

For p ∈ [1,∞) and s ∈ (−∞,∞), we define the space Hs
p = Hs

p(Rd) as the space of generalized
functions u with the finite norm

|u|s,p = |Λsu|p,
where | · |p is the Lp norm. Obviously, H0

p = Lp. Note that if s ≥ 0 is an integer, the space Hs
p

coincides with the Sobolev space W s
p = W s

p (Rd).

If p ∈ [1,∞), and s ∈ (−∞,∞), Hs
p(Y ) = Hs

p(R
d, Y ) denotes the space of Y−valued functions

on Rd so that the norm ||g||s,p = | |Λsg|Y |p <∞. We also write Lp(Y ) = Lp(Rd, Y ) = H0
p(Y ) =

H0
p (Rd, Y ).

Obviously, the spaces C∞
0 ,Hs

p

(
Rd

)
, and Hs

p(Rd, Y ) can be extended to vector functions (de-
noted with bold-faced letters). For example, the space of all vector functions u = (u1, . . . , ud)
such that Λsul ∈ Lp, l = 1, . . . , d, with the finite norm

|u|s,p = (
∑

l

|ul|ps,p)1/p

we denote by H s
p = H s

p(Rd). Similarly, we denote by H s
p(Y ) = H s

p(Rd, Y ) the space of all
vector functions g = (gl)1≤l≤d, with Y -valued components gl, 1 ≤ l ≤ d, so that ||g||s,p =
(
∑

l |gl|ps,p)1/p < ∞. The set of all infinitely differentiable vector-functions u = (u1, . . . , ud) on
Rd with compact support will be denoted by C∞

0 .

When s = 0, H s
p(Y ) = Lp(Y ) = Lp(Rd, Y ). Also, in this case, the norm ||g||0,p is denoted more

briefly by ||g||p. To forcefully distinguish Lp−norms in spaces of Y−valued functions, we write
|| · ||p, while in all other cases a norm is denoted by |·| .
The duality 〈·, ·〉s between H s

q

(
Rd

)
, and H −s

p

(
Rd

)
where p ≥ 2 and q = p/ (p− 1) is defined

by

〈φ,ψ〉s = 〈φ, ψ〉s,p =
d∑

i=1

∫
Rd

[
Λsφi

]
(x) Λ−sψi (x) dx,φ ∈ H

s
q ,ψ ∈ H

−s
p .

If f ∈ H s
q

(
Rd, Y

)
and φ ∈ H −s

p

(
Rd

)
where p ≥ 2 and q = p/ (p− 1) , we write

〈f ,φ〉s,Y = 〈f ,φ〉s,p,Y =
d∑

l=1

∫
Rd

[
Λsf l (x)

]
Λ−sφl (x) dx .

Obviously, the function φ −→ 〈f ,φ〉s,Y is a linear mapping from H−s
p into Y and |〈f ,φ〉s|Y ≤

||f ||s,q |φ|−s,p .

Similar notation, 〈φ,ψ〉s and 〈f, φ〉s,Y , will be used for scalar functions.
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2 Stochastic integrals

Let (Ω,F ,P) be a probability space with a filtration F of right continuous σ-algebras (Ft)t≥0.
All the σ−algebras are assumed to be P−completed. Let W (t) be an F-adapted cylindrical
Brownian motion in Y . In this section we will construct a natural stochastic integral with
respect to W (t) for F-adapted Hs

p(Rd, Y )-valued integrands.
Let p ≥ 2, s ∈ (−∞,∞) . Then Is,p denotes the set of all measurable F-adapted H s

p(Y )-valued
functions such that for every t, ∫ t

0
||g(r)||ps,p dr <∞ P− a.s.

If g ∈Im,p then for every and φ ∈ H
−m
q where q = p/ (p− 1) , we can define a stochastic integral

Mt(φ) =
∫ t

0
〈g(r),φ〉s,Y · dW (r) .

Indeed, by Hölder inequality,
∫ t
0

∣∣∣〈g (r) ,φ〉s,Y
∣∣∣2
Y
dr ≤ ∫ t

0 ||g (r)||2s,p ||φ||2−s,q dr ≤

C
(∫ t

0 ||g (r)||ps,p dr
)(p−2)/p ||φ||2p/(p−2)

−s,q <∞ P − a.s.

(2.1)

Owing to (2.1), the stochastic integral
∫ t
0 〈g (r) ,φ〉s,Y ·dW (r) is well defined (see e.g. [9] or [5]).

Of course the integral above is defined as a linear functional on H −s
q . In fact, it can be charac-

terized more precisely. Specifically, the following result holds.

Theorem 1 If g ∈ Is,p, p ≥ 2, then there is a unique H s
p (Y )-valued continuous martingale

M(t) =
∫ t
0 g (r) · dW (r) such that for all φ ∈ H −s

q ,〈∫ t

0
g (r) · dW (r) ,φ

〉
s

=
∫ t

0
〈g(r),φ〉s,Y · dW (r) ∀t > 0,P − a.s. (2.2)

Moreover, for each T > 0 there exists a constant C so that for each stopping time τ ≤ T,

E sup
r≤τ

|M(r)|ps,p ≤ CE
∫ τ

0
||g(r)||ps,p dr.

To prove the Theorem we will need the following technical result.

Lemma 1 Assume g ∈Is,p. Then there is a sequence of F-adapted H s
p(Rd)-valued processes

gn(r) = gn(r, x) such that P-a.s. gn(r, x) is smooth in x and for each n,

sup
x

|gn(s, x)|Y ≤ Cn||g(r)||s,p, ||gn(r)||s,p ≤ ||g(r)||s,p,

and ∫ t

0
||gn(r) − g(r)||ps,p dr → 0, as n→ ∞.

P-a.s. for all t .
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Proof If we have two H
s
p (Y )-valued continuous martingales M1(t), M2(t) satisfying (2.2), then

P-a.s. for all t and φ ∈ H
−s
q ,

〈M1(t) − M2(t),φ〉s = 0,

and the uniqueness follows. Let ϕ be a nonnegative function so that ϕ ∈ C∞
0 (Rd) and

∫
ϕdx =

1. For ε > 0, write ϕε(x) = ε−dϕ(x/ε). Set

gn(r, x) =
∫

Λ−sϕ1/n(x− y)Λsg(r,y) dy.

Note that gn is a smooth bounded Y -valued function. Moreover, by Hölder inequality,

|∂α
x gn(r, x)|Y ≤ C ′

1/n,α(
∫

|Λsg(r, y)|pY dy)1/p

(∫
|∂α

x Λ−sϕ1/n(x− y)|qdy
)1/q

≤

≤ C1/n,α||g(r)||s,p,
It is readily checked that for all r, ω, and p ≥ 2, we have the following:
(a) ||gn(r, ·)||s,p ≤ ||g(r, ·)||s,p,
(b) ||gn(r) − g(r)||s,p → 0 as n→ ∞ .

Indeed,
||gn(r, ·)||s,p =

∣∣∣∣Λs
∫

Λ−sϕ1/n(x− y)Λsg(r,y) dy
∣∣∣∣

p
=

∣∣∣∣∫ ϕ1/n(x− y)Λsg(r,y) dy
∣∣∣∣

p
≤ ||Λsg(r, ·)||p = ||g(r, ·)||s,p.

Analogously, one can prove (b) . Now, the statement follows by Lebesgue’s dominated conver-
gence theorem. �

Proof of Theorem 1 Let gn be a sequence from Lemma 1. Since for every x and t,∫ t
0 |gn(r, x)|2Y dr <∞ P -a.s., the stochastic integral

Mn(t, x) =
∫ t

0
gn(r, x) · dW (r),

is well defined for each x (see e.g. [9] or [5]). It is not difficult to show that for every x,

ΛsMn(t, x) =
∫ t

0
Λsgn(r, x) · dWr (2.3)

P -a.s. By the Burkhölder-Davis-Gundy and Minkowski’s inequality, for each stopping time
τ ≤ T

E sup
r≤τ

|Mn(r) |ps,p = E sup
r≤τ

|ΛsMn(r) |pp ≤ (2.4)

CE
∫ τ

0
||Λsgn(r)||pp dr = CE

∫ τ

0
||gn(r)||ps,p dr

and

E sup
r≤τ

|Mn(r) − Mn′(r) |ps,p ≤ CE
∫ τ

0
||gn(r) − gn′(r)||ps,p dr.
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Firstly, we prove the existence of a continuous in t H s
p -valued modification of Mn(t, x). Let

gs
n,k(r, x) = 1{|x|≤k}1{‖g(r,·)‖s,p≤k}gn(r, x)

Let τ ≤ T be a stopping time such that

E
∫ τ

0
||g(r, ·)||ps,p dr <∞.

Define

Mn,k(t, x) =
∫ t∧τ

0
gs

n,k(r, x) · dWr, Ms
n,k(t, x) =

∫ t∧τ

0
Λsgs

n,k(r, x) · dWr.

Then, for all u ≤ t ≤ T,

E[(
∫

|Ms
n,k(t, x) − Ms

n,k(u, x)|p dx)2]

≤ CkE
∫

|Ms
n,k(t, x) − Ms

n,k(u, x)|2p dx

≤ Ck

∫
E(

∫ t∧τ

u∧τ
|Λsgs

n,k(r, x)|2Y dr)p dx ≤ Ck|t− u|p,

and by Kolmogorov’s criterion, Ms
n,k has a continuous Lp -valued modification. On the other

hand,

E supr≤τ |Mn,k(r, ·) − Mn(r, ·)|ps,p = E supr≤τ |Ms
n,k(r, ·) − ΛsMn(r, ·)|pp ≤

CE
∫ τ
0 ||Λs(gs

n,k(r, ·) − gn(r, ·))||pp dr → 0,

as k → ∞. So, ΛsMn has an Lp -valued continuous modification or, equivalently, Mn has an
H s,p -valued continuous modification. By (2.3) we have that for all t > 0,φ ∈ H −s

q ,

〈Mn(t),φ〉s =
∫ t

0
〈gn(r),φ〉s,Y · dWr ∀t > 0,P − a.s.

for every t > 0, P-a.s.

Now, by (2.4), Mn is a Cauchy sequence. Making n ↑ ∞ on both sides of the equality we
complete the proof. �

Remark 1 For p ∈ [1, 2), the stochastic integral with the properties above does not exist (see
[12]).

Lemma 2 Let p ≥ 2. Let g ∈I0,p and
∫ t

0
||g(r)||21 dr <∞ ∀t > 0, P − a.s.
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Then for every t > 0, P-a.s. one has∫ ∫ t

0
g(r, x) · dW (r) dx = lim

m→∞

∫
φm(x)

(∫ t

0
g(r, x) · dW (r)

)
dx

=
∫ t

0
(
∫

g(r, x) dx) · dW (r) ,

where φm ∈ C∞
0 is any uniformly bounded sequence converging pointwise to 1.

Proof By Theorem 1,

Zm(t) =
∫
φm(x)

∫ t

0
g(r, x) · dW (r) dx =

∫ t

0
(
∫

g(r, x)φm(x) dx) · dW (r)

for every t > 0, P-a.s.
Let τ be a stopping time such that

E
∫ τ

0
||g(r)||21 dr <∞.

Then
E sup

r≤τ
|Zn(r) − Zm(r)|2 ≤ CE

∫ τ

0
||g(r)(φn − φm)||21 dr → 0,

as n,m→ ∞, and the statement follows. �

Now we can prove the Ito formula for the Lp-norm of a semimartingale.

Lemma 3 Let p ≥ 2 . Set

u(t, x) = u0(x) +
∫ t

0
a(r, x) dr +

∫ t

0
b(r, x) · dW (r) (2.5)

where b ∈ I0,p, u0 is an F0-measurable Lp -valued random variable, and a is an F-adapted
H n−1

p -valued process where n = 0 or 1. If u(t) is continuous Lp -valued process and∫ t

0
(|a(r)|pn−1,p + |u(r)|p1−n,p) dr <∞

for all t > 0, P-a.s., then

|u(t)|pp = |u0|pp + p

∫ t

0
〈|u(r)|p−2u(r),a(r)〉1−n dr

+ p

∫ t

0
(
∫

|u(r, x)|p−2(u(r, x),b(r, x)) dx dW (r) (2.6)

+
p

2

∫ t

0
(
∫

[(p − 2)|u(r, x)|p−4ui(r, x)uj(r, x)

+ |u(r, x)|p−2δij ]bi(r, x) · bj(r, x) dx) dr

for all t > 0, P-a.s..
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Proof We remark that all the integrals in (2.6) are well defined. For example, let us prove
that the duality 〈|u(r)|p−2u(r),a(r)〉1−n makes sense if n = 0. Since a(r) ∈ H

−1
p , there exist

functions ai(r) ∈ Lp so that a(r) =
∑d

i=0 ∂iai (r) where ∂0 = 1. Now it is not difficult to see
that

〈|u(r)|p−2u(r),a(r)〉1 =
∑d

i=0〈|u(r)|p−2u(r), ∂iai (r)〉1 =

−∑d
i=0〈∂i|u(r)|p−2u(r),ai (r)〉0.

(2.7)

The right hand side of the equality is finite owing to the obvious equality

∂i(|u|p−2ul) = (p − 2)|u|p−4um∂iu
mul + |u|p−2∂iu

l).

Let ϕ ∈ C∞
0 be a non-negative function such that

∫
ϕdx = 1. For ε > 0, write

ϕε(x) = ε−dϕ(x/ε), uε(t, x) =
∫
ϕε(x− y)u(t, y) dy = u(t) ∗ ϕε(x).

Similarly, we write bε(t) = b(t) ∗ ϕε(x), u0,ε = u0 ∗ ϕε(x). Let aε(t, x)

= 〈a(t), ϕε(x− ·)〉 . For all x and t, we have

uε(t, x) = u0,ε(x) +
∫ t

0
aε(r, x) ds +

∫ t

0
bε(r, x) · dW (r) P− a.s.

Let φ ∈ C∞
0 , φ = 1 on {|x| ≤ 1}, φ = 0 on {|x| ≥ 2}. Then φm(x) = φ(x/m) is a uniformly

bounded sequence converging pointwise to 1. By Ito formula, we have

|uε(t, x)|pφm(x) = |u0,ε(x)|pφm(x)+ (2.8)∫ t

0
p|uε(r, x)|p−2(uε(r.x),aε(r, x))φm(x) dr

+
∫ t

0
pφm(x)|uε(r, x)|p−2(uε(r, x),bε(r, x)) · dW (r)

+
p

2

∫ t

0
φm(x)[(p − 2)|uε(r, x)|p−4ui

ε(r, x)u
j
ε(r, x)

+ |uε(r, x)|p−2δij ]biε(r, x) · bjε(r, x) ds..
Also,

sup
r≤t,x

|uε(r, x)| + sup
rst

|u(r)|p <∞ ∀t > 0, P − a.s.

and ∫ t

0
(|aε(r) − a(r)|pn−1,p + |uε(r) − u(r)|p1−n,p + |bε(r) − b(r)|pp) dr → 0,

|u0,ε − u0|pp → 0,
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as ε → 0. We complete the proof by taking integrals of both sides of (2.8) and passing to the
limit as ε→ 0, and then as m→ ∞ . �

3 Pointwise multipliers in H
s
p

If u ∈ Hs
p(Y ) (resp. u ∈ H

s
p(Y )), then

|u|s,p = |Λsu|p = |F−1[(1 + |ξ|2)s/2Fu]|p,
(resp. |u|s,p = |Λsu|p = |F−1[(1 + |ξ|2)s/2Fu]|p) where F is the Fourier transform and F−1 is
the inverse Fourier transform:

Ff(ξ) = (2π)−d/2

∫
e−iξ·xf(x) dx, F−1f(x) = (2π)−d/2

∫
eiξ·xf(ξ) dξ.

Define the operators

Λ̃su =
{ F−1[(1 + |ξ|s)Fu], if s ≥ 0,

F−1[(1 + |ξ||s|)−1Fu], if s < 0,

Λ̇su = F−1(|ξ|sFu), s ≥ 0.

Consider the norms on H s
p(Y )

||u||ˆs,p = ||u||p + ||Λ̇su||p, if p ∈ [1,∞], s ≥ 0. ,

|u|˜s,p = |Λ̃su|p, p ∈ (1,∞), s ∈ (−∞,∞).

Now we prove the equivalence of the norms |f |s,p, |f |˜s,p.

Lemma 4 The norms ||u||s,p, and ||u||˜s,p are equivalent for p ∈ (1,∞), s ∈ (−∞,∞), and
||u||s,p, and ||u||ˆs,p are equivalent for p ∈ [1,∞], s ≥ 0.

Proof For each multiindex µ and s ≥ 0, we have

|∂µ
ξ

1 + |ξ|s
(1 + |ξ|2)s/2

| ≤ Cµ|ξ|−|γ|,

(3.1)

|∂µ
ξ

(1 + |ξ|2)s/2

1 + |ξ|s | ≤ Cµ|ξ|−|γ|.

Therefore, the equivalence of |u||s,p and ||u||˜s,p for p ∈ (1,∞) follows from Theorem 6.1.6 in
[10].

The part of the statement regarding the case s > 0, p ∈ [1,∞] follows by Theorem 6.3.2 in [10]. �
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Remark 2 For s ∈ (0, 2], f ∈ C
∞
0 (Y ), denote

∂̄sf(x) = −F−1[|ξ|sFf(ξ)](x).

It is well known (and easily seen) that there is a constant N = N(s) > 0 such that

∂̄sf(x) = N(s)
∫

[f(x+ y) − f(x) − (∇f(x), y)(1{|y|≤1}1{s=1} + 1{1<s<2)]
dy

|y|d+s
,

∂̄2f(x) = ∆f(x),

i.e. ∂̄s is the generator of s-stable stochastic process.

Indeed, for w = ξ/|ξ|, we have

F [
∫

[f(· + y) − f(·) − (∇f(·), y)(1{|y|≤1}1{s=1} + 1{1<s<2)]
dy

|y|d+s
]

= f̂(ξ)
∫

[ei(ξ,y) − 1 − i(ξ, y)(1{|y|≤1}1{s=1} + 1{1<s<2)]
dy

|y|d+s

= −|ξ|sf̂(ξ)
∫

[1 − cos(w, y)]
dy

|y|d+s
= −c(s)|ξ|s f̂(ξ)

where c(s) is a positive constant depending on s.

Lemma 5 Let δ ∈ (0, 1). Then for each p ∈ [1,∞] there is a constant C so that for all
u ∈ H s

p(Y ), z ∈ Rd

||u(· + z) − u(·)||s,p ≤ C||Λ̇δu||s,p|z|δ ≤ C||u||s+δ,p|z|δ.

Proof Indeed, there is a constant N so that for any x, z ∈ Rd,u ∈ C∞
b (Y )

u(x+ z) − u(x) = N

∫
k(δ)(z, y)∂̄δu(x− y) dy (3.2)

where k(δ)(z, y) = |y + z|−d+δ − |y|−d+δ . One can easily see this by taking Fourier transform of
(3.2) (see [11], Chapter II, section 2). Also, it can be easily seen, that for some constant C

∫
|k(δ)(z, y)|dy = C|z|δ. (3.3)

Using Minkowsky’s inequality we obtain from (3.2), (3.3) the desired estimate. �

Also, we will need some spaces of Y -valued continuous functions. For m = 1, 2, 3, . . . , we define

Cm(Y ) = {u : ∂αu is uniformly continuous on Rd for all |α| ≤ m},
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with the norm ||u||Cm =
∑

|α|≤m ||∂αu||∞. For a non-integer s > 0, we define

Cs(Y ) = {u ∈ C [s] : ||u||Cs = ||u||C[s] +
∑

|α|=[s]

sup
x 6=y

|∂αu(x) − ∂αu(y)|Y
|x− y|{s} <∞},

where s = [s] + {s}, s is an integer and 0 ≤ {s} < 1. For an integer s > 0, we denote

Cs(Y ) = {u ∈ Cs−1 : ||u||Cs = ||u||Cs−1 +
∑

|α|=[s]−
sup
x 6=y

|∂αu(x) − ∂αu(y)|Y
|x− y| <∞,

where s = [s]− + 1. If Y = Rd, we write simply Cm, Cs.

Lemma 6 Let s > 0. Then

a) Hs∞(Y ) ⊆ Cs(Y ), if s is not an integer;

b) Cs+ε(Y ) ⊆ Hs∞(Y ) for each ε > 0.

Proof For an non-integer s, Cs is Zygmund’s space (see Theorem 2.5.7 and Corollary 2.5.12 in
[8]). Therefore the statement a) follows by Theorem 6.2.4 in [10].

Let s ∈ (0, 2], u ∈ Cs+ε(Y ). We can assume that s + ε is not an integer and s < 2. By Remark
2,

| − Λ̇su|Y = |∂̄su|Y = N(s)|
∫
|y|≤1

...+
∫
|y|>1

...|Y

≤ C[||u||Cs+ε + ||u||∞ + |∇u|∞1{|α|>1}].

So, the statement b) follows by Lemma 4. �

Define

Bs(Y ) =




Hs∞(Y ), if s > 0 is not an integer,
Cs(Y ), if s > 0 is an integer,
L∞(Y ), if s = 0,

and denote the corresponding norms by | · |Bs . If Y = Rd, we write simply Bs. The main
statement we need is the following Lemma.

Lemma 7 a) Let a ∈ B|s|(Y ), s ∈ (−∞,∞), p ∈ (1,∞). Then there is a constant N so that

||au||s,p ≤ N ||a||B|s| |u|s,p

for all u ∈ H s
p , where au = (au1, . . . , aud);

b) Assume, p ∈ (1,∞), κ > 0 and

a ∈
{

Bs(Y ), if s ≥ 0,
B|s|+κ(Y ), if s < 0.

11



Let ās = |a|Bs if s ≥ 0 and ās = |a|B|s|+κ if s < 0.

Then for every s there exist constants s0 < s and N such that

||au||s,p ≤ N(||a||∞|u|s,p + ās|u|s0,p)

for all u ∈ H s
p .

Moreover,

Λ̃s(au) = aΛ̃su + Hs(a,u), if s 6= 2m+ 1 (m = 0, 1, . . .),

∂iΛ̇s−1(au) = a(∂iΛ̇s−1u) + Hs(a,u), if s = 2m+ 1 (m = 0, 1, . . .)

where ||Hs(a,u)||p ≤ Cās|u|s0,p.

Proof Let s ∈ (0, 2), u ∈C∞
0 , a ∈ C∞

b (Y ) (a and all its derivatives are bounded). Then, by
Remark 2,

Λ̇s(au) =aΛ̇su + uΛ̇sa−
∫

[u(x+ y) − u(x)](a(x+ y) − a(x))
dy

|y|d+s
. (3.4)

By Minkowski’s inequality,

||
∫

[u( · +y) − u(·)](a(· + y) − a(·)) dy

|y|d+s
||p

≤
∫

|u( · +y) − u(·)|p||a(· + y) − a(·)||∞ dy

|y|d+s
.

If s ∈ (0, 2) and s 6= 1, we have by Lemma 5 for each s0 ∈ ((s− 1)+, s)
∫

|u( · +y) − u(·)|p||a(· + y) − a(·)||∞ dy

|y|d+s

≤ ||a||B|s|∧1 |Λ̇s0u|p
∫
|y|≤1

dy

|y|d+s−(s∧1)−s0
+ 4||a||∞|u|p

∫
|y|>1

dy

|y|d+s
.

In the case s = 1, we have ∂i(au) = a∂iu + u∂ia and

||∇(au)||p ≤ ||a||∞|∇u|p + ||∇a||∞|u|p.

In the case s = 2, we have ∆(au) = a∆u + u∆a+ 2(∇a)(∇u) and

||∆(au)||p ≤ ||a||∞|∆u|p + ||∆a||∞|∆u|p + 2||∇a||∞|∇u|p.
Therefore both parts of our statement hold for s ∈ [0, 2]. For an arbitrary s > 2, we can find a
positive integer m so that s = 2m+ r, r ∈ (0, 2]. If r 6= 1,

Λ̇s(au) = Λ̇rΛ̇2m(au) = Λ̇r(aΛ̇2mu) + Λ̇rh
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where h is a linear combinations of the products in the form (∂νu)(∂µa), where ν 6= 0, and
|ν| + |µ| = 2m According to the previous estimates, there is s0 ∈ ((r − 1)+, r) so that

||Λ̇rh||p ≤ C||a||B|s| |u|2m−1+s0 .

On the other hand, by (3.4)

Λ̇r(aΛ̇2mu) = aΛ̇su+Λ̇raΛ̇2mu + h̃

where ||h̃||p ≤ C||a||Bs∧1 |Λ̇s0+2mu|p. If s = 2m+ 1,m = 1, 2, . . . , then

∂iΛ̇2m(au) = a∂iΛ̇2mu + Hs

where ||Hs||p ≤ C||a||Bs |u|s−1,p.

So, we found that for each s > 0, there is a constant C so that

||au||s,p ≤ C||a||Bs |u|s,p.
Since the multiplication by a is selfadjoint operation, by duality, obviously, follows that for each
s ∈ (−∞,∞) we have for some C

||au||s,p ≤ C||a||B|s| |u|s,p (3.5)

If s = −2m < 0,m = 1, 2, . . . ,u ∈ H
s
p , then u = (1 − ∆)mh,h ∈ Lp . Then it is easy to check

that
au =(1 − ∆)m(ah) − H, (3.6)

and the function H is a linear combinations of the products in the form (∂νh)(∂µa), where
µ 6= 0, and |ν| + |µ| = 2m. Since ∂µa ∈ B|s|+κ−|µ|, using (3.5) we obtain

||(∂νh)(∂µa)||s,p ≤ ||(∂νh)(∂µa)||s−κ+|µ|,p ≤ C|(∂νh)|s−κ+|µ|||(∂µa)||B−s+κ−|µ|

≤ C||∂µa||B|s|+κ−|µ| |∂νh|s+|µ|−κ,p ≤

≤ C||a||B|s|+κ |h|−κ,p ≤ C||a||B|s|+κ |u|s−κ,p.

So, by (3.6)
(1 − ∆)s(au) = a(1 − ∆)su− (1 − ∆)sH,

||(1 − ∆)sH||p = ||H||s,p ≤ C||a||B|s|+κ |u|s−κ,p, and

||au||s ≤ C(||a||∞|u|s + ||a||B|s|+κ |u|s−κ).

If s < 0 is not an integer, then there is a positive integer m so that s = −2m− r, r ∈ (0, 2). Let
u ∈H s

p . Then u = h + Λ̇rΛ̇2mh, h ∈ Lp . Let h̃ =Λ̇2mh. We have h̃ ∈ H −2m
p and

aΛ̇rh̃ = Λ̇r(ah̃) − (Λ̇ra)h̃−
∫

(h̃(x+ y) − h̃(x))(a(x + y) − a(x)) dy
|y|d+r ,

ah̃ = aΛ̇2mh =Λ̇2m(ah) − g,

(3.7)

13



where g is a linear combination of (∂νh)(∂µa), |µ| + |ν| = 2m,µ 6= 0. Since

||Λ̇r(∂νh ∂µa)||s,p ≤ ||∂νh ∂µa||s+r,p ≤ ||∂νh ∂µa||s+r+|µ|−κ,p

≤ C||∂µa||B|s|−r−|µ|+κ |h|s+|µ|+|ν|+r−κ,p

= C||∂µa||B|s|−r−|µ|+κ |h|−κ,p ≤ C||a||B|s|−r+κ |h|−κ,p,

we have ||Λ̇rg||s,p ≤ C||a||B|s|−r+κ |h|−κ.

Also by (3.5),

||(Λ̇ra)h̃||s ≤ C||(Λ̇ra)h̃||−2m−κ ≤ C||Λ̇ra||B2m+κ |h̃|−2m−κ ≤ C||Λ̇ra||
B2m+κ |u|s−κ.

Fix κ′ ∈ (0, κ). Let δ1 = max{r− 1, 0} + κ, ε1 = δ1 − κ′, ε2 = min{1, r}. By Lemma 5 and (3.5)
and using Minkowsky’s inequality, we have

||
∫

(h̃(· + y) − h̃(·))(a(· + y) − a(·)) dy

|y|d+r
||s,p

≤ C

∫
||h̃(· + y) − h̃(·))(a(· + y) − a(·))||−2m−δ1 ,p

dy

|y|d+r

≤
∫

|h̃(· + y) − h̃(·)|−2m−δ1 ||a(· + y) − a(·)||B2m+δ1

dy

|y|d+r

≤ C[
∫
|y|≤1

|h̃|−2m−δ1+ε1
||a||B2m+δ1+ε2 |y|ε1+ε2−d−γ dy

+
∫
|y|>1

|h̃|−2m−δ1
||a||B2m+δ1 ]

dy

|y|d+r
].

So,

||
∫

(h̃(x+ y) − h̃(x))(a(x + y) − a(x))
dy

|y|d+r
||s,p

≤ C|h̃|−2m−κ′ ||a||Bs+κ ≤ C|u|s−κ′ ||a||Bs+κ .

Thus, according to (3.7),
au = aΛ̃−sh = Λ̃−s(ah) + G,

where ||G||s,p ≤ C||a||B|s|+κ |h|−κ,p ≤ C||a||B|s|+κ |u|s−κ,p. Therefore,

Λ̃s(au) = ah + Λ̃sG = aΛ̃su+Λ̃sG,

and ||Λ̃sG||p ≤ C||G||s,p ≤ C||a||B|s|+κ |u|s−κ,p. �
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4 Systems of SPDEs in Sobolev spaces

As in the previous Section, let (Ω,F ,P) be a probability space with a filtration F of right
continuous σ-algebras (Ft)t≥0. All the σ−algebras are assumed to be P−completed. LetW (t) be
an F-adapted cylindrical Brownian motion in Y . Let s ∈ (−∞,∞). For v ∈H s+1

p , let Q(v, t) =
Q(v, t, x) be a predictable H

s
p(Y )-valued function and D(v, t) = D(v, t, x) a predictable H

s−1
p -

valued function. Let a = a(t) = (aij(t, x))1≤i,j≤d be a symmetric F-adapted matrix. Let
σ = σ(t) = (σk(t, x))1≤k≤d be F-adapted vector function with Y -valued components σk, and let
u0=

(
ul

0

)
1≤l≤d

be an F0−measurable H
s+1−2/p
p −valued function so that E ||u0||ps+1−2/p,p < ∞.

Everywhere in this section it is assumed that p ≥ 2.

Consider the following nonlinear system of equations on [0,∞) :

∂tu(t, x) = ∂i(aij(t, x)∂ju) + D(u, t, x)+

[σk(t, x)∂ku(t, x) + Q(u, t, x)] · Ẇ , (4.1)

u(0, x) = u0(x)

where u(t) = u(t, x) = (uk(t, x))1≤k≤d.

The following assumptions will be used in the future:

A. For all t ≥ 0, x, λ ∈Rd,

K|λ|2 ≥ [aij(t, x) − 1
2
σi(t, x) · σj(t, x)]λiλj ≥ δ|λ|2,

where K, δ are fixed strictly positive constants.

A1(s, p). For all t, x, y,P-a.s.

|aij(t, x) − aij(t, y)| + |σi(t, x) − σi(t, y)|Y ≤ K|x− y|

and 


|aij(t)|Bs ≤ K, if s > 1,

|a(t, x)| ≤ K, if − 1 < s ≤ 1,

|aij(t)|B−s+ε ≤ K, if s ≤ −1,

where ε ∈ (0, 1).

The Y -valued function σ(t, x) is P-a.s. continuously differentiable in x and for all i, t



||σi(t)||Bs ≤ K, if s ≥ 1,
|σi(t, x)|Y ≤ K, if s ∈ (−1, 1),
||σi(t)||B−s+ε ≤ K, if s ≤ −1,

where ε ∈ (0, 1).
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A2(s, p) For v ∈H s+1
p , Q(v, t) = Q(v, t, x) is a predictable H s

p(Y )-valued function and D(v, t) =
D(v, t, x) is a predictable H

s−1
p -valued function, and P-a.s. for each t

∫ t

0
(|D(0, r)|ps−1,p + ||Q(0, r)||ps,p) dr <∞ ∀t > 0,P − a.s.

where 0 = (0, . . . , 0).
A3(s, p). For every ε > 0, there exists a constant Kε such that for any u,v ∈H s+1

p ,

|D(u, t, x) −D(v, t, x)|s−1,p + ||Q(u, t, x) − Q(v, t, x)||s,p ≤

ε|u − v|s+1,p +Kε|u− v|s−1,p P− a.s.

Given a stopping time τ , we consider a stochastic interval

[[0, τ ]] =
{

[0, τ(ω)], if τ(ω) <∞,
[0,∞), otherwise.

Definition 1 Given a stopping time τ, an H s
p(Rd)-valued F−adapted function u(t) on [0,∞) is

called an H s
p -solution of equation (4.1) in [[0, τ ]] if it is strongly continuous in t with probability

1,

u(t ∧ τ) = u(t),
∫ t∧τ

0
|u(s)|ps+1,p ds <∞ ∀t > 0,P − a.s., (4.2)

and the equality
u(t ∧ τ) = u0 +

∫ t∧τ
0

[
∂i(aij(r)∂ju) + D(u, r)

]
dr+

∫ t∧τ
0 [σk(r)∂ku (r) + Q(u, r)] · dW (r)

(4.3)

holds in H s−1
p (Rd) for every t > 0, P− a.s.

If τ = ∞, we simply say u is an H s
p -solution of equation (4.1).

Sometimes, when the context is clear, instead of ”H s
p -solution” we will simply say ”solution”.

It is readily checked that all the integrals in 4.3 are well defined. For example, let us consider
the stochastic integral. Since ∂i is a bounded operator from H s

p into H s−1
p (see [8]), by Lemma

7 and Assumption A1(s, p), we have
∣∣∣∣σk(r)∂ku (r)

∣∣∣∣
s,p

≤ C ||u (r) ||s+1,p for r ≤ τ P-a.s. By
assumptions A2(s, p),A3(s, p),∫ t∧τ

0
||Q(u, r)||ps,p dr ≤ C

∫ t∧τ

0
(||Q(0, r)||ps,p + |u (r) |ps+1,p)dr.

Thus, [σk(r)∂ku + Q(u, r)]1{r<τ} ∈ Is,p, and the integral is defined by Theorem 1.

Remark 3 It is not difficult to show that (4.3) can be replaced by the equality〈
ul(t ∧ τ), φl

〉
s

=
〈
ul

0, φ
l
〉
s
+

∫ t∧τ
0 − 〈

(aij(r)∂iu
l), ∂jφ

l
〉
s
+

〈Λ−1Dl(u, r),Λφl〉sdr +
∫ t∧τ
0 〈σk(r)∂ku

l +Ql(u, r), φl〉s,Y · dW (r)

∀t > 0,P − a.s.

(4.4)

which holds for all φ = (φl)1≤l≤d such that φl ∈ C∞
0 , l = 1, . . . , d, .
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Indeed, owing to (4.3), we have

〈
ul(t ∧ τ), φl

〉
s−1

=
〈
ul

0, φ
l
〉
s−1

+
∫ t∧τ
0

〈
∂j(aij(r)∂iu

l) +Dl(u, r), φl
〉
s−1

dr

+
∫ t∧τ
0

〈
σk(r)∂ku

l +Ql(u, r), φl
〉
s−1,Y

· dW (r) ∀t > 0,P − a.s.

(4.5)

On the other hand, since u ∈H s
p ,u0 ∈H s+1−2/p

p , and P-a.s. for r ≤ τ, σk(r)∂ku+Ql(u, r)∈H s
p ,we

have that
〈
ul(t), φl

〉
s−1

=
〈
ul(t), φl

〉
s
,
〈
ul

0, φ
l
〉
s−1

=
〈
ul

0, φ
l
〉
s+1−2/p

, and,

〈
σk(r)∂ku

l +Ql(u, r), φl
〉

s−1,Y
=

〈
σk(r)∂ku

l +Ql(u, r), φl
〉

s,Y
.

It is readily checked that dr × dP-a.s.

〈
∂j(aij(r)∂iu

l), φl
〉
s−1

= − 〈
aij(r)∂iu

l, ∂jφ
l
〉
s−1

=

− 〈
Λs(aij(r)∂iu

l),Λ−s∂jφ
l
〉
0

= − 〈
(aij(r)∂iu

l), ∂jφ
l
〉
s

Note that to prove the first equality one should first establish it for smooth functions and then
prove it in the general case by approximations. Thus, (4.5) implies (4.4). Now by reversing the
order of our arguments one could easily show that (4.3) follows from (4.4).

The basic result of this Section is given in the following

Theorem 2 Let s ∈ (−∞,∞), p ≥ 2. Let A, A1(s, p)-A3(s, p) be satisfied and |u0|ps+1,p < ∞
P-a.s. Then for each stopping time τ the Cauchy problem (1.1) has a unique H

s
p -solution in

[[0, τ ]]. Moreover, for each T > 0, there is a constant C such that for each stopping time
τ̄ ≤ T ∧ τ ,

E[sup
r≤τ̄

|u(r)|ps,p +
∫ τ̄

0
|∂2u(r)|ps−1,p ds] ≤ CE[|u0|ps+1−2/p,p

+
∫ τ̄

0
(|D(0, r)|ps−1,p + ||Q(0, r)||ps,p) dr].

The Theorem will be proved in several steps. We begin with a simple particular case.

Theorem 3 (cf Theorem 4.10 in [2]). Let s ∈ (−∞,∞), p ≥ 2. Assume A, A1(s, p)-A3(s, p).
Suppose that D and Q are independent of u, aij and σk are independent of x, and u0= 0.

Then for each stopping time τ there is a unique H s
p−solution u of equation (4.1) in [[0, τ ]].

Moreover,

(i) for each stopping time τ̄ ≤ τ,

E
∫ τ̄

0
|∂2u(r)|ps−1,p dr ≤ NE

∫ τ̄

0
(|D(r)|ps−1,p + ||Q(r)||ps,p) dr, (4.6)

where N = N(d, p, δ,K) does not depend on τ, τ̄ ;
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(ii) for each finite T and each stopping time τ̄ ≤ T ∧ τ

E sup
r≤τ̄

|u(r)|ps,p ≤ eTCE
∫ τ̄

0
(|D(r)|ps−1,p + ||Q(r)||ps,p) dr], (4.7)

where C = C(d, p, δ,K) does not depend on T and τ̄ , τ .

Proof The statement is a straightforward corollary of the results of [2]. Indeed, owing to our
assumptions one can treat each component ul of u separately. The the statement regarding
the existence follows directly by Theorem 4.10 in [2] considering D(r) = D(r)1[[0,τ ]](r), and
Q(r) = Q(r)1[[0,τ ]](r). According to Lemma 4.7 in [2], the uniqueness is an obvious consequence
of the deterministic heat equation result. In particular, we obtain (4.7) by taking λ = 1/p in
(4.26) in [2]. �

To prove Theorem 3 in the general case, we will rely on the two fundamental techniques: partition
of unity and the method of continuity. The same technology was used in [2] for scalar equations.

The next step is to derive a priori Lp-estimates for a solution of (4.1).

Lemma 8 Assume A, A1(s, p)-A3(s, p). Suppose that u is an H
s
p− solution of equation (4.1)

in [[0, τ ]] with u0= 0.

Then for each T there is a constant C = C(d, p, δ,K, T ) such that for each stopping time τ̄ ≤
T ∧ τ,

E[ supr≤τ̄ |u(r)|ps,p +
∫ τ̄
0 |∂2u(r)|ps−1,p dr] ≤

CE
∫ τ̄
0 (|D(0, r)|ps−1,p + ||Q(0, r)||ps,p) dr.

(4.8)

Proof In order to use Theorem 8 we start with a standard partition of unity. Let ψ ∈ C∞
0 (R),

be [0, 1]-valued and such that ψ(s) = 1, if |s| ≤ 5/8, and ψ(s) = 0, if |s| > 6/8. For an arbitrary
but fixed κ > 0 there we choose m such that κ < 2−m. Consider a grid in Rd consisting of
xk = k2−m, k = (k1, . . . , kd) ∈ Zd, where Z is the set of all integers. Given k ∈ Zd, we define a
function on Rd :

η̄k(x) =
d∏

l=1

ψ((xl − xl
k)2

m).

Notice that 0 ≤ η̄k ≤ 1, η̄k = 1 in the cube vk = {x : |xl − xl
k| ≤ (5/8)2−m, l = 1, . . . , d}, and

η̄k = 0 outside the cube Vk = {x : |xl − xl
k| ≤ (6/8)2−m, l = 1, . . . , d}. Obviously,

1. ∪kvk = Rd and
1 ≤

∑
k

1Vk
≤ 2d;

2. For all multiindices γ
|∂γ η̄k| ≤ N(d, |γ|)2m|γ| < N(d)κ−|γ|.
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Denote
ηk(x) = η̄k(x)(

∑
k

η̄k(x))−1, k = 1, . . .

Obviously,
∑

k ηk = 1 in Rd and for all k and multiindices µ,

|∂µηk| ≤ N(d, |µ|)κ−|µ|,

and for each p ≥ 1, µ ∑
k

ηk(x)p ≤ N(p, d),
∑

k

|∂µηk|p ≤ N(p.d, |µ|)κ−p|µ|. (4.9)

So, by Lemma 6.7 in [2], for any n there exist constants c = c(d, p, κ), C = C(d, p, κ) such that
for all f ∈H n

p ,g ∈ H n
p (Y )

c|f |pn,p ≤
∑

k

|ηkf |pn,p ≤ C|f |pn,p, (4.10)

c||g||pn,p ≤
∑

k

||ηkg||pn,p ≤ C||g||pn,p.

Multiplying (4.1) by ηk, we obtain

∂t(uηk) = ∂i(aij(t, xk)∂j(ηku)) + Dk(u, t, x)+ (4.11)

+ [σi(t, xk)∂i(ηku) + Qk(u, t, x)] · Ẇ ,

where

Dk(u, t, x) = ηk[D(u, t, x) + ∂i(aij(t, x) − aij(t, xk)∂ju)]

− ∂i(aij(t, xk)∂jηku)−aij(t, xk)∂iηk∂ju,

Qk(u, t, x) = ηk[Q(u, t, x) + (σi(t, x) − σi(t, xk))∂iu]

− σi(t, xk)∂iηku.

We have ∑
k

|ηk∂i(aij(t) − aij(t, xk)∂ju(t))|ps−1,p

≤ 2p−1
∑

k

|∂iηk(aij(t) − aij(t, xk))∂ju(t)|ps−1,p

+ 2p−1
∑

k

|∂i[ηk(aij(t) − aij(t, xk))η̃k∂ju(t)]|ps−1,p,
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where η̃k(x) = η̄k(5x/6) (notice η̃k(x) = 1 in Vk and η̃k(x) = 0 if there is l such that |xl − xl
k| >

0.9 · 2−m). According to Lemma 7, there is a constant C and s0 < s such that
∑

k

|∂i[ηk(aij(t) − aij(t, xk))η̃k∂ju(t)]|ps−1,p

≤
∑

k

|ηk(aij(t) − aij(t, xk))η̃k∂ju(t)|ps,p

≤ C
∑

k

[sup
x,k

|η̃k(aij(t) − aij(t, xk))|p|∂u(t)|ps,p

+ |ηk∂ju(t)|ps0−1,p].

Similarly, by Lemma 7 there is s0 < s so that
∑

k

||ηk(σi(t) − σi(t, xk))∂iu(t)||ps,p

=
∑

k

||η̃k(σi(t) − σi(t, xk))ηk∂iu(t)||ps,p

≤ C
∑

k

[sup
x

||η̃k(σi(t) − σi(t, xk))||p|ηk∂iu(t)|ps,p

+ |ηk∂iu(t)|ps0,p].

It follows by the assumptions, (4.10), Lemma 7 and interpolation theorem (see Lemma 6.7 in
[2]) that for each ε there is κ > 0 and a constant C = C(ε, κ, d, p, δ,K) such that

∑
k

|Dk(u, t)|ps−1,p ≤ ε|∂2u(t)|ps−1,p + C(|u(t, ·)|ps−1,p + |D(0, t)|ps−1,p),

∑
k

||Qk(u, t, ·)||ps,p ≤ ε|∂2u(t)|ps−1,p + C(|u(t)|ps−1,p + ||Q(0, t)||ps,p).

Choosing ε sufficiently small, applying (4.10) and Theorem 3 to ηku (it is a solution to the
equation (4.11), we obtain that

(i) for each stopping time τ̄ ≤ τ

E
∫ τ̄

0
|∂2u(t)|ps−1,p dt ≤ NE

∫ τ̄

0
(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt

where N = N(p, d, δ,K) does not depend on τ .
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(ii) for each T > 0 and each stopping time τ̄ ≤ T ∧ τ

E sup
t≤τ̄

|u(t)|ps,p ≤ NeTE
∫ τ̄

0
(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt

Fix an arbitrary τ̄ ≤ T ∧ τ such that

E[ sup
t≤τ̄

|u(t)|ps,p +
∫ τ̄

0
(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt] <∞.

Then for each t ≤ T

E sup
r≤t∧τ̄

|u(r)|ps,p ≤ NeTE
∫ t

0
sup

r̄≤r∧τ̄
|u(r̄)|ps,p dr

+ E
∫ τ̄

0
|D(0, t)|ps−1,p + ||Q(0, t)||ps,p dt,

and the statement follows by Gronwall’s inequality. �

Now we can prove the uniqueness of a solution to equation (4.1).

Corollary 1 Assume A, A1(s, p)-A3(s, p). Then for each stopping time τ there is at most
one H s

p−solution to (4.1) in [[0, τ ]].

Proof If u1,u2 are solutions to (4.1), then v = u2 − u1 satisfies on [[0, τ ]] the equation

∂tv(t, x) = ∂i(aij(t, x)∂jv) + D(v + u1, t, x) − D(u1, t, x)

+ [σk(t, x)∂kv(t, x) + Q(v + u1, t, x) − Q(u1, t, x)] · Ẇ ,

v(0, x) = 0.

Applying Lemma 8 to this equation we get v = 0 P-a.s. �

Remark 4 In fact the uniqueness of the solution can be proved in a larger functional class,
similar to the one of Theorem 5.1 in [2]. For the sake of simplicity we will not address this
problem in the present paper.

To complete the proof of Theorem 2 we apply the standard method of continuity (cf. Theorem
5.1 in [2]).

Proof of Theorem 2.
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(Existence) Without any loss of generality we can assume u0 = 0 (see Proof of Theorem 5.1 in
[2]) and τ = ∞. Now, let us take λ ∈ [0, 1] and consider the equation

∂tu(t, x) = ∂i[λδij + (1 − λ)aij∂ju] + (1− λ)D(u, t,x)+

+(1 − λ)[σk∂ku + Q(u, t, x)] · Ẇ
(4.12)

with zero initial condition. By Lemma 8 the a priori estimate (4.8) holds with the same constant
C for all λ. Assume that for λ = λ0 and any D,Q satisfying A3(n, p), equation (4.12) has a
unique solution.

For other λ ∈ [0, 1] we rewrite (4.12) as follows:

∂tu(t, x) = ∂i[(λ0δij + (1 − λ0)aij)∂ju]+ (1 − λ0)D(u, t, x)

+(λ− λ0)
(
∂i[(δij − aij)∂ju] − D(u, t, x)

)

+(1 − λ0)[σk∂ku + Q(u, t, x)] · Ẇ

− (λ− λ0) [σk∂ku + Q(u, t, x)] · Ẇ

This equation can be solved by iterations. Specifically, take u0 = 0 and write

∂tuk+1(t, x) = ∂i[(λ0δij + (1 − λ0)aij)∂juk+1]+ (1 − λ0)D(uk+1, t, x)

+(λ− λ0)
(
∂i[(δij − aij)∂juk] − D(uk, t,x)

)

+(1 − λ0)[σi∂iuk+1 + Q(uk+1, t, x)] · Ẇ

− (λ− λ0) [σi∂iuk + Q(uk, t, x)] · Ẇ

(4.13)

So, for k ≥ 1, ūk+1 = uk+1 − uk is a solution of the equation

∂tūk+1(t, x) = ∂i[(λ0δij + (1 − λ0)aij)∂jūk+1]+ (1 − λ0) [D(uk + ūk+1, t, x)−

D(uk, t, x)] + (λ− λ0)(∂i[(δij − aij)∂jūk] − [D(uk, t, x) − D(uk−1, t, x)])

+(1 − λ0)[σi∂iūk+1 + Q(uk + ūk+1, t, x) − Q(uk, t, x)] · Ẇ

− (λ− λ0) [σi∂iūk + Q(uk, t, x) − Q(uk−1, t, x)] · Ẇ
By Lemma 8, for each T > 0 there is a constant C = C(d, p, δ,K, T ) such that for all stopping
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times τ ≤ T

E[ sup
r≤τ

|ūk+1(r)|ps,p +
∫ τ

0
|∂2ūk+1(r)|ps−1,p dr ]

≤ C ′|λ− λ0|pE
∫ τ

0
(|∂ūk(r)|ps,p + |∂2ūk(r)|ps−1,p) dr

≤ C|λ− λ0|pE[ sup
r≤τ

|ūk(r)|ps,p +
∫ τ

0
|∂2ūk(r)|ps−1,p dr].

Fix an arbitrary stopping time τ ≤ T such that

I(τ) = E[ sup
r≤τ

|u1(r)|ps,p +
∫ τ

0
|∂2u1(r)|ps−1,p dr] <∞,

Notice u1 and τ do not depend on λ (only on λ0). Let |λ− λ0| < C−1/p/2. Then

E[ sup
r≤τ

|ūk+1(r)|ps,p +
∫ τ

0
|∂2ūk+1(r)|ps−1,p dr]

1/p ≤ (1/2)kI(τ)1/p.

and (uk) is a Cauchy sequence on [0, τ ]. Therefore, there is a continuous in t and H s
p -valued

process u such hat

E[ sup
r≤τ

|uk(r) − u(r)|ps,p +
∫ τ

0
|∂2(uk(r) − u(r))|ps−1,p dr] → 0,

as k → ∞. Obviously u is a solution to (4.12) on [0, τ ]. Since τ is any stopping time such that
I(τ) is finite, it follows that we have a solution for any |λ − λ0| < C−1/p/2 (assuming we have
one for λ0). For λ = 1 it does exist by Theorem 3. So, in finite number of steps starting with
λ = 1, we get to λ = 0. This proves the statement.

Corollary 2 (cf. Corollary 5.11 in [2]) Assume A, A1(s, p)-A3(s, p). Assume further
A1(s, q)-A3(s, q) for q ≥ 2, and suppose that |u0|s+1−2/p,p + |u0|s+1−2/q,q <∞ P-a.s. Then the
H s

p−solution u of equation (4.1) is also an H s
q−solution of the equation.

Moreover, for each T > 0, there is a constant C such that for each stopping time τ ≤ T ,

E[sup
r≤τ

|u(r)|ls,l +
∫ τ

0
|∂2u(r)|ls−1,l dr] (4.14)

≤ CE[|u0|ls+1−2/l,l +
∫ τ

0
(|D(0, r)|ls−1,l + ||Q(0, r)||ls,l) dr],

l = p, q.
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Proof We follow the lines of the proof of the Theorem 2 by introducing the parameter λ ∈ [0, 1]
and considering the equation (4.12). We can assume that u0 = 0. The statement holds true
for λ = 1 by Lemma 5.11 in [2] applied to each component of u. If it is true for λ0, then (4.13)
defines a sequence uk of H s

p -valued continuous processes that are H
s
q -valued and continuous as

well, and ∫ t

0
(|∂2uk(r)|ls−1,l dr <∞, l = p, q

P-a.s. for all t.

For each T > 0, there are constants Cl = C(d, l, δ,K, T ), l = p, q such that for all stopping times
τ ≤ T,

E[ sup
r≤τ

|ūk+1(r)|ls,l +
∫ τ

0
|∂2ūk+1(r)|ls−1,l dr]

≤ C ′|λ− λ0|pE
∫ τ

0
((|ūk(r)|ps,p + |∂2ūk(r)|ps−1,p) dr

≤ Cl|λ− λ0|pE[ sup
r≤τ

|ūk(r)|ls,l +
∫ τ

0
|∂2ūk(r)|ls−1,l dr],

l = p.q. Fix an arbitrary stopping time τ ≤ T such that

I(τ) = E[ sup
r≤τ

(|u1(r)|ps,p + |u1(r)|qs,q +
∫ τ

0
(|∂2u1(r)|ps−1,p + |∂2u1(r)|qs−1,q) dr] <∞.

Let C = max{Cp, Cq}, |λ − λ0| < C−1/p/2. Then

E[ sup
r≤τ

|ūk+1(r)|ls,l +
∫ τ

0
|∂2ūk+1(r)|ls−1,l dr]

1/p ≤ (1/2)kI(τ)1/p,

l = p, q. Therefore, there is a continuous in t and H
s
p ∩ H

s
q -valued process u such hat

E[ sup
r≤τ

|uk(r) − u(r)|ls,l +
∫ τ

0
|∂2(uk(r) − u(r))|ls−1,l dr] → 0,

l = p, q, and the statement follows. �

4.1 Some estimates

Unfortunately, if s is positive, Assumption A3(s, p) is rarely satisfied for equations of Mathe-
matical Physics even in the scalar case (see Example 1 below). The following Proposition as
well Corollary 4 below help to circumvent this problem in many important cases.
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Proposition 1 Assume that for each v ∈H s+1
p , Q(v, t) is a predictable H

s+1
p -valued process and

D(v, t) is a predictable H
s
p -valued process. Let A, A1(s+1, p), A2(s+1, p), A3(s, p) be satisfied,

|u0|s+2,p <∞ with probability one, and for all t > 0,v ∈H s+1
p ,

| |Q(v, t)| |s+1,p ≤ | |Q(0, t)| |s+1,p +C|v|s+1,p.

|D(v, t)|s,p ≤ |D(0, t)|s,p + C|v|s+1,p.

Suppose also that ∫ t

0
(| |Q(0, r)| |ps+1,p + |D(0, r)|ps,p) dr <∞

P-a.s. for all t. Then (4.1) has a unique continuous H
r+1
p - solution.

Moreover, for each T > 0 there is a constant C such that for each stopping time τ ≤ T ,

E1A[sup
r≤τ

|u(r)|ps+1,p +
∫ τ

0
|∂2u(r)|ps,p dr] ≤ CE1A[|u0|ps+2,p

+
∫ τ

0
(|D(0, r)|ps,p + | |Q(0, r)| |ps+1,p) dr].

Proof Since the assumptions A, A1(s, p)-A3(s, p) are satisfied, the existence and uniqueness
of H s

p - solution is guaranteed by Theorem 2 By the same Theorem, the linear equation

∂tξ(t, x) = ∂i(aij(t, x)∂jξ(t, x)) + D(u, t, x)+

[σk(t, x)∂kξ(t, x) + Q(u, t, x)] · Ẇ ,

ξ(0, x) = u0(x),

has a unique H s+1
p -solution. Thus, ξ = u P-a.s.. Moreover, for each T there is a constant C

such that for all stopping times τ ≤ T ,

E[ sup
r≤t∧τ

|u(r)|ps+1,p +
∫ t∧τ

0
|∂2u(r)|ps,p dr] ≤ CE[|u0|ps+2,p +

∫ t∧τ

0
(|u(r)|pn+1,p

+ |D(0, r)|ps,p + ||Q (0,r)||ps+1,p) dr].

Now the estimate of the statement follows by Gronwall’s inequality. �

Example 1 Let us consider the following scalar equation:

∂tu = ∆u+D(u) + u · Ẇ ,

u(0, x) = 0
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where W (t) is a one-dimensional Wiener process, D(u) = ∂[f(u(x))](= ∂f(u(x))∂u(x)) and f
is a scalar Lipschitz function on R1. Then A3(1,p) would require the following estimate:

|D(u) −D(v)|p = |∇f(u(x))∂u(x)) −∇f(v(x))∂v(x)|p

≤ ε|u− v|2,p +Kε|u− v|p,
which is false in general even if ∇f is Lipschitz.

On the other hand, the assumptions of the Proposition are satisfied for n = 0. Indeed,

|D(u)|p = |∇f(u)∂u|p ≤ C|∂u|p
where C is the Lipcshitz constant of f.

Now,since ∂ is a bounded operator from H s
p into H s+1

p , we have

|D(u) −D(v)|−1,p = |∂[f(u)] − ∂[f(v)]|−1,p ≤

C|f(u) − f(v)|p ≤ C ′|u− v|p ≤

ε|u− v|1,p +Kε|u− v|−1,p.

(The latter inequality follows from Remark 5.5 in [2].) Thus assumption A3(0,p) is verified and
we are done.

Proposition 2 Let s ∈ (−∞,∞), p ≥ 2. Assume A, A1(s, 2)-A3(s, 2). Suppose |u0|s+1,2 <∞
P-a.s. Assume further that∫ t

0
(|D(0,r)|ps−1,2 + | |Q(0, r)| |ps,2) dr <∞

P-a.s. for all t.

Then for each T > 0, there is a constant C such that for each stopping time τ ≤ T,

E[ sup
r≤τ

|u(r)|ps,2 +
∫ τ

0
|u(r)|p−2

s,2 |∇u(r)|2s,2 dr ≤ CE[|u0|ps+1,2 +
∫ τ

0
(|D(0, r)|ps−1,2

+ | |Q(0, r)| |ps,2) dr].

Proof Since the assumptions of Theorem 2 are satisfied, there is a unique H s
2 - solution u (t, x)

of equation (4.1). Let s 6= 2m + 1, m = 0, 1, . . .. Then ũ = Λ̃su is L2 -valued continuous and
satisfies the equation

∂tũ(t, x) = Λ̃s[∂i(aij(t, x)∂ju) + D(u, t, x)]+

Λ̃s[σk(t, x)∂ku(t, x) + Q(u, t, x)] · Ẇ ,

ũ(0, x) = ũ0(x),
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where ũ0 = Λ̃su0. On the other hand, by Lemma 7,

Λ̃s∂i(aij(t, x)∂ju) = ∂iΛ̃s(aij(t, x)∂ju)

= ∂i(aij(t, x)∂jΛ̃su) + ∂iHs(aij , ∂ju), (4.15)

Λ̃s[σk(t, x)∂ku(t, x)] = σk(t, x)∂kΛ̃su(t, x) + H(σk, ∂ku),

and
|Hs(aij , ∂ju)|2 + |H(σk, ∂ku)|2 ≤ C|∇u(t)|s0,2,

(s0 < s). By interpolation theorem, for each ε there is a constant Cε so that

|Hs(aij , ∂ju)|2 + |H(σk, ∂ku)|2 ≤ ε|∇u(t)|s,2 + Cε|∇u(t)|s−1,2. (4.16)

Applying Ito formula, we obtain

|ũ(t)|p2 = |ũ(0)|p2 + p

∫ t

0
|ũ(r)|p−2

2 〈ũ(r), Λ̃s(D(u(r), r)〉1,2 ds

− p

∫ t

0
|ũ(r)|p−2

2

∫
aij(r)∂iũ

l(r))∂j ũ
l(r) dx dr

− p

∫ t

0
|ũ(r)|p−2

2

∫
∂iũ

l(r)H l
s(a

ij(r), ∂ju(r)) dx dr

+ p

∫ t

0
|ũ(r)|p−2

2 (
∫
ũl(r)b̃l(r) dx) · dWr

+
p

2

∫ t

0
|ũ(r)|p−2

2

∫
b̃i(r) · b̃i(r) dx ds

+
p

2
(p− 2)

∫ t

0
|ũ(r)|p−4

2 |
∫
ũl(r)b̃l(r) dx|2Y dr,

where b̃k(r) = σi(r)∂iũ
k(r) +H l

s(σk, ∂ku)+Λ̃sQk(u, r). Notice

Λ̃s(D(u(r), r)) ∈ H
−1
q , Λ̃sQk(u, r) ∈ L2 ,
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and, by A3(s, 2), for each ε there is a constant Cε so that

|Λ̃s(D(u(r), r))|−1,2 ≤ C|D(u(r), r)|s−1,2

≤ ε|u(r)|s+1,2 +Cε(|u(r)|s−1,2 + |D(0,r)|s−1,2), (4.17)

||Λ̃sQk(u, r)||2 ≤ C||Qk(u, r)||s,2

≤ ε|u(r)|s+1,2 +Cε(|u(r)|s−1,2 + ||Q(0,r)||s,2),

|
∫
ũl(r)b̃l(r) dx|Y ≤ ε|u(r)|s+1,2|u(r)|s.2 + Cε(|u(r)|2s,2 + |u(r)|s,2||Q(0,r)||s,2.

So, y(t) = |ũ(t)|p2 is a semimartingale:

y(t) = y(0) +
∫ t

0
h(r) dr +

∫ t

0
g(r) · dW (r) ,

where h(r), g(r) are measurable F-adapted (g is Y -valued). Let c(r) = |ũ(r)|p−2
2

∫ |∇ũ(r)|2 dx.
Since

N(ũ(r)) = −|ũ(r)|p−2
2

∫
aij(r)∂iũ

l(r)∂j ũ
l(r) dx

+
1
2
|ũ(r)|p−2

2

∫
σk(r) · σl(r)∂kũ

i(r)∂lũ
i(r)

≤ −δ|ũ(r)|p−2
2

∫
|∇ũ(r)|2 dx = −δc(r),

using (4.15)-(4.17), we find easily that for each ε there is a constant Cε so that

h(r) ≤ (−δ + ε)c(r) + Cε(y(r) + f(r)), (4.18)

|g(r)|Y ≤ ε|u(r)|p−1
s,2 |u|s+1,2 + Cε(y(r) + y(r)1−1/pl(r)1/p),

|g(r)|2Y ≤ ε2|u(r)|2p−2
s,2 |u|2s+1,2 + Cε(y(r)2 + y(r)2−2/pl(r)2/p)

≤ ε2y(r)c(r) + Cε(y(r)2 + y(r)2−2/pl(r)2/p),

where
f(r) = |D(0, r)|ps−1,2, l(r) = | |Q(0, r)| |ps,2.

Let v < t ≤ T, t− v ≤ 1/4, and τ̃ be a stopping time such that supr≤τ̃ y(r) is bounded and

E
∫ τ̃

0
(f(r) + l(r)) dr <∞.
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Fix an arbitrary stopping time τ . Let τ̄ = τ ∧ τ̃ . Then by Burkhölder’s inequality and (4.18)

E sup
v≤r≤t

y(r ∧ τ̄) ≤ Ey(v ∧ τ̄) + CεE[ sup
v≤r≤t

y(r ∧ τ̄)(t− v)+

−
∫ t∧τ̄

v∧τ̄
(δ − ε)c(r) dr +

∫ t∧τ̄

v∧τ̄
f(r) dr

+ (
∫ t∧τ̄

v∧τ̄
[ε2y(r)c(r) + Cε(y(r)2 + y(r)2(1−1/p)l(r)2/p)] dr)1/2].

For each ε there is a constant Cε independent of T such that

(
∫ t∧τ̄

v∧τ̄
y(r)2(1−1/p)l(r)2/p) dr)1/2 ≤ sup

v≤r≤t
y(r ∧ τ̄)1−1/p(

∫ t∧τ̄

v∧τ̄
l(r)2/p dr)1/2

≤ ε sup
v≤r≤t

y(r ∧ τ̄) + Cε(
∫ t∧τ̄

v∧τ̄
l(r)2/p dr)p/2

≤ ε sup
v≤r≤t

y(r ∧ τ̄) + Cε

∫ t∧τ̄

v∧τ̄
l(r) dr.

Also,

(
∫ t∧τ̄

v∧τ̄
ε2y(r)c(r) dr)1/2 ≤ ε sup

v≤r≤t
y(r)1/2(

∫ t∧τ̄

v∧τ̄
c(r) dr)1/2

≤ 2ε[ sup
v≤r≤t

y(r) +
∫ t∧τ̄

v∧τ̄
c(r) dr].

So, there is a constant C such that

E sup
v≤r≤t

y(r ∧ τ̄) ≤ CE[y(v ∧ τ̄) + sup
v≤r≤t

y(r ∧ τ̄)(t− v)1/2 +
∫ t∧τ̄

v∧τ̄
(f(r) + l(r)) dr],

and we can find ε0 such that for |t− v| ≤ ε0

E sup
v≤r≤t

y(r ∧ τ̄) ≤ CE[y(v ∧ τ̄) +
∫ t∧τ̄

v∧τ̄
(f(r) + l(r)) dr].

Now, the estimate easily follows. �

Now we derive similar estimates for |u(t)|ps,q, q ≥ 2.
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Proposition 3 Let s ∈ {0, 1, . . .}, q ≥ 2, |u0|s+1−2/q,q < ∞ P-a.s., and A, A1(s, q)-A3(s, q)
hold. Assume further that p ≥ q, aij ∈ Bs∨2, if s ≥ 1, and

| |Q(v, t)| |s,q ≤ | |Q(0, t)| |s,q + C|v|s,q.

|D(v, t)|s−1,q ≤ |D(0, t)|s−1,q + C|v|s,q,

∫ t

0
(|D(0,r)|ps−1,q + | |Q(0, r)| |ps,q) dr <∞

P-a.s. for all t.

Then Theorem 2 holds. Moreover, for each T > 0, there is a constant C such that for each
stopping time τ ≤ T,

E sup
r≤τ

|u(r)|ps,q ≤ CE[|u0|ps,q +
∫ τ

0
(|D(0, r)|ps−1,q + | |Q(0, r)| |ps,q) dr]. (4.19)

Proof Since the assumptions of Theorem 2 are satisfied, there is a unique H s
q - solution of

equation (4.1). Let α be a multiindex such that |α| ≤ s. Then uα = ∂αu is Lq -valued continuous
and satisfies the equation

∂tuα(t, x) = ∂α[∂i(aij(t, x)∂ju) + D(u, t, x)]+

∂α[σk(t, x)∂ku(t, x) + Q(u, t, x)] · Ẇ ,

uα(0, x) = u0,α(x),

where u0,α = ∂αu0. Define

Gα =
∑

ν+µ=α,|ν|≥1

∂νaij(t)∂j∂
µu(t),

G̃α =
∑

ν+µ=α,|ν|≥1

∂νσk(t)∂k∂
µu(t).

Differentiating the product, we obtain

∂α∂i(aij(t)∂ju(t)) = ∂i(aij(t)∂juα(t))+∂iGα(t) (4.20)

∂α[σk(t)∂ku(t)] = σk(t)∂kuα(t) + G̃α(t).

and
|Hα(t)|q + ||H̃α(t)||q ≤ C|u(t)|s−1,q, (4.21)
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Let b̃kα(r) = σi(r)∂iu
k
α(r) + G̃l

α(r)+∂α(Qk(u, r)), 1 ≤ k ≤ d. Applying Ito formula, we obtain
that yα(t) = |uα(t)|pq is a semimartingale:

yα(t) = yα(0) +
∫ t

0
hα(r) dr +

∫ t

0
gα(r) · dW (r) ,

where

hα(r) = p|uα(r)|p−q
q {〈|uα(r)|q−2uα(r), ∂α(D(u(r), r)〉0,q

−
∫
aij(r)uα(|uα(r)|q−2ul

α(r))∂ju
l
α(r) dx

−
∫
∂i(|uα(r)|q−2ul

α(r))Gl
α(r) dx

+
1
2

∫
[(q − 2)|uα(r)|q−4ui

α(r)uj
α(r) + |uα(r)|q−2δij ]b̃i(r) · b̃j(r) dx}

+
p

2
(p− q)|uα(r)|p−2q

q |
∫

|uα(r)|q−2ul
α(r)b̃l(r) dx|2Y ,

and
gα(r) = p|uα(r)|p−q

q

∫
|uα(r)|q−2ul

α(r)b̃l(r) dx.

Notice
∂α(D(u(r), r)) ∈ H −1,q , ∂

α(Qk(u, r)) ∈ Lq ,

and, by our assumptions, there is a constant C so that

|∂α(D(u(r), r))|−1,q ≤ C|D(u(r), r)|s−1,q

≤ C(|u(r)|s,q + |D(0,r)|s−1,q),
(4.22)

||∂αQk(u, r)||q ≤ C||Qk(u, r)||s,q ≤ C(|u(r)|s,q + ||Q(0,r)||s,q),

|
∫

|uα(r)|q−2ul
α(r)b̃l(r) dx|Y ≤ C(|u(r)|qs,q + |u(r)|q−1

s,q ||Q(0,r)||s,q.

We have hα(r) = p|uα(r)|p−q
q h1

α(r) + h2
α(r), where

h1
α(r) = −

∫
aij(r)∂i(|uα(r)|q−2ul

α(r))∂ju
l
α(r) dx+

1
2

∫
[(q − 2)|uα(r)|q−4ui

α(r)ũj

+ |uα(r)|q−2δij ]σk(r)∂ku
i
α(r) · σl(r)∂lu

j
α(r) dx.
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Let
Aij(r) = aij(r) − 1

2
σi(r) · σj(r).

Then

h1
α(r) = −

∫
Aij(r)[∂iu

l
α(r)∂ju

l
α(r)|uα(r)|q−2

+
4(q − 2)
q2

∂i(|uα(r)|q/2)∂j(|uα(r)|q/2)] dx ≤ −δ
∫

|uα(r)|q−2|∇u(r)|2 dx,

and for each ε > 0 there is a constant Cε such that

|h2
α(r)| ≤ ε

∫
|uα(r)|q−2|∇u(r)|2 dx+ Cε(|u(r)|qs,q + |D(0, r)|ps−1,q).

So, we obtain that

y(t) =
∑
|α|≤s

yα(t) = y(0) +
∫ t

0
h(r) dr +

∫ t

0
g(r) · dWr

and

h(r) =
∑
|α|≤s

hα(r) ≤ C(y(r) + f(r)), (4.23)

|g(r)|Y ≤
∑
|α|≤s

|gα(r)|Y ≤ C(y(r) + y(r)1−1/pl(r)1/p),

where
f(r) = |D(0, r)|ps−1,q, l(r) = | |Q(0, r)| |ps,q.

Let v < t ≤ T, t− v ≤ 1/4, and τ̃ be a stopping time such that supr≤τ̃ y(r) is bounded and

E
∫ τ̃

0
(f(r) + l(r)) dr <∞.

Fix an arbitrary stopping time τ . Let τ̄ = τ ∧ τ̃ . Then by Burkhölder’s inequality and (4.18)

E sup
v≤r≤t

y(r ∧ τ̄) ≤ Ey(v ∧ τ̄) +CE[ sup
v≤r≤t

y(r ∧ τ̄)(t− v) +
∫ t∧τ̄

v∧τ̄
f(r) dr

+ (
∫ t∧τ̄

v∧τ̄
[y(r)2 + y(r)2(1−1/p)l(r)2/p)] dr)1/2].
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For each ε there is a constant Cε independent of T such that

(
∫ t∧τ̄

v∧τ̄
y(r)2(1−1/p)l(r)2/p) dr)1/2 ≤ sup

v≤r≤t
y(r ∧ τ̄)1−1/p(

∫ t∧τ̄

v∧τ̄
l(r)2/p dr)1/2

≤ ε sup
v≤r≤t

y(r ∧ τ̄) + Cε(
∫ t∧τ̄

v∧τ̄
l(r)2/p dr)p/2

≤ ε sup
v≤r≤t

y(r ∧ τ̄) + Cε

∫ t∧τ̄

v∧τ̄
l(r) dr.

So, there is a constant C such that

E sup
v≤r≤t

y(r ∧ τ̄) ≤ CE[y(v ∧ τ̄) + sup
v≤r≤t

y(r ∧ τ̄)(t− v)1/2 +
∫ t∧τ̄

v∧τ̄
(f(r) + l(r)) dr],

and we can find ε0 such that for |t− v| ≤ ε0

E sup
v≤r≤t

y(r ∧ τ̄) ≤ CE[y(v ∧ τ̄) +
∫ t∧τ̄

v∧τ̄
(f(r) + l(r)) dr].

Now, the estimate easily follows. �

In the following two corollaries we combine Propositions 1 and 2, 3.

Corollary 3 Let s ∈ (−∞,∞), p ≥ 2. Assume that for each v ∈H s+1
2 , Q(v, t) is a predictable

H
s+1
2 -valued process and D(v, t) is a predictable H s

2-valued process. Let A, A1(s+1, 2), A2(s+
1, 2), A3(s, 2) be satisfied, |u0|s+1,2 <∞ with probability one, and for all t > 0,v ∈H s+1

2 ,

| |Q(v, t)| |s+1,2 ≤ | |Q(0, t)| |s+1,2 + C|v|s+1,2.

|D(v, t)|s,2 ≤ |D(0, t)|s,2 + C|v|s+1,2.

Suppose also that, ∫ t

0
(| |Q(0, r)| |ps+1,2 + |D(0, r)|ps,2) dr <∞

P-a.s. for all t. Then (4.1) has a unique continuous H
s+1
2 - solution. Moreover, for each T > 0,

there is a constant C such that for each stopping time τ ≤ T and set A ∈ F0,

E1A sup
r≤τ

|u(r)|ps+1,2 ≤ CE1A[|u0|ps+1,2 +
∫ τ

0
(|D(0, r)|ps,2 + | |Q(0, r)| |ps+1,2) dr].
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Proof Since all the assumptions of Proposition 1are satisfied, there is a unique H
s+1
p – solution

u for which the estimate of Proposition 1 holds. Then applying again Proposition 2 to s+1 and
the linear equation

∂tξ(t, x) = ∂i(aij(t, x)∂jξ) + D(u, t, x)+

[σk(t, x)∂kξ(t, x) + Q(u, t, x)] · Ẇ ,

ξ(0, x) = h(x),

and using the fact that ξ = u we obtain the statement. �

Corollary 4 Let s ∈ {0, 1, . . .}, p ≥ q ≥ 2. Assume that for each v ∈H s+1
q , Q(v, t) is a pre-

dictable H s+1
q -valued process and D(v, t) is a predictable H s

q -valued process. Let A, A1(s+1, q),
A2(s + 1, q), A3(s, q) be satisfied, |u0|s+2−2/q,q < ∞ with probability one, and for all t >
0,v ∈H s+1

q ,

| |Q(v, t)| |s+1,q ≤ |Q(0, t)| |s+1,q +C|v|s+1,q.

|D(v, t)|s,q ≤ |D(0, t)|s,q + C|v|s+1,q, .

Suppose also that, ∫ t

0
(| |Q(0, r)| |ps+1,q + |D(0, r)|ps,q) dr <∞

P-a.s. for all t. Then (4.1) has a unique continuous H s+1
q - solution. Moreover, for each T > 0,

there is a constant N such that for each stopping time τ ≤ T and set A ∈ F0,

E1A sup
r≤τ

|u(r)|ps+1,q ≤ NE1A[|u0|ps+1,q +
∫ τ

0
(|D(0, r)|ps,q + | |Q(0, r)| |ps+1,q) dr].

Proof Since all the assumptions of Proposition 1are satisfied, there is a unique H s+1
q – solution

u for which the estimate of Proposition 1 holds. Then applying again Proposition 3 to s+1 and
the linear equation

∂tξ(t, x) = ∂i(aij(t, x)∂jξ) + D(u, t, x)+

[σk(t, x)∂kξ(t, x) + Q(u, t, x)] · Ẇ ,

ξ(0, x) = h(x),

and using the fact that ξ = u we obtain the statement. �
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