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Poisson-type processes governed by fractional and
higher-order recursive differential equations
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Abstract

We consider some fractional extensions of the recursive differential equation governing the Pois-
son process, i.e.

d

d t
pk(t) =−λ(pk(t)− pk−1(t)), k ≥ 0, t > 0

by introducing fractional time-derivatives of order ν , 2ν , ..., nν . We show that the so-called
“Generalized Mittag-Leffler functions” Ek

α,β(x), x ∈ R (introduced by Prabhakar [24]) arise as
solutions of these equations. The corresponding processes are proved to be renewal, with den-
sity of the intearrival times (represented by Mittag-Leffler functions) possessing power, instead
of exponential, decay, for t →∞. On the other hand, near the origin the behavior of the law of
the interarrival times drastically changes for the parameter ν varying in (0, 1] .
For integer values of ν , these models can be viewed as a higher-order Poisson processes, con-
nected with the standard case by simple and explict relationships.
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1 Introduction

Many well-known differential equations have been extended by introducing fractional-order deriva-
tives with respect to time (for instance, the heat and wave equations ([14]-[15] and [21]) as well
as the telegraph equation ([20]) and the higher-order heat-type equations ([1])) or with respect to
space (for instance, the equations involving the Riesz fractional operator).

Fractional versions of the Poisson processes have been already presented and studied in the litera-
ture: in [10] the so-called fractional master equation was considered. A similar model was treated
in [13], where the equation governing the probability distribution of the homogeneous Poisson pro-
cess was modified, by introducing the Riemann-Liouville fractional derivative. The results are given
in analytical form, in terms of infinite series or successive derivatives of Mittag-Leffler functions. We
recall the definition of the (two-parameter) Mittag-Leffler function:

Eα,β(x) =
∞
∑

r=0

x r

Γ(αr + β)
, α,β ∈ C, Re(α), Re(β)> 0, x ∈ R, (1.1)

(see [22], ğ1.2).

Another approach was followed by Repin and Saichev [25]: they start by generalizing, in a fractional
sense, the distribution of the interarrival times U j between two successive Poisson events. This is
expressed, in terms of Mittag-Leffler functions, for ν ∈ (0,1], as follows:

f (t) = Pr
¦

U j ∈ d t
©

/d t =−
d

d t
Eν ,1(−tν) =

∞
∑

m=1

(−1)m+1 tνm−1

Γ(νm)
, t > 0 (1.2)

and coincides with the solution to the fractional equation

dν f (t)
d tν

=− f (t) +δ(t), t > 0 (1.3)

where δ(·) denotes the Dirac delta function and again the fractional derivative is intended in the
Riemann-Liouville sense. For ν = 1 formula (1.2) reduces to the well-known density appearing in
the case of a homogeneous Poisson process, N(t), t > 0, with intensity λ= 1, i.e. f (t) = e−t .

The same approach is followed by Mainardi et al. [17]-[18]-[19], where a deep analysis of the re-
lated process is performed: it turns out to be a true renewal process, loosing however the Markovian
property. Their first step is the study of the following fractional equation (instead of (1.3))

dνψ(t)
d tν

=−ψ(t), (1.4)

with initial condition ψ(0+) = 1 and with fractional derivative defined in the Caputo sense. The
solution ψ(t) = Eν ,1(−tν) to (1.4) represents the survival probability of the fractional Poisson pro-
cess. As a consequence its probability distribution is expressed in terms of derivatives of Mittag-
Leffler functions, while the density of the k-th event waiting time is a fractional generalization of
the Erlang distribution and coincides with the k-fold convolution of (1.2).

The fractional Poisson process (a renewal process with Mittag-Leffler intertime distribution) has
proved to be useful in several fields, like the analysis of the transport of charged carriers (in [30]),

685



in finance (in [16]) and in optics to describe the light propagation through non-homogeneous media
(see [5]).

The analysis carried out by Beghin and Orsingher [2] starts, as in [13], from the generalization of
the equation governing the Poisson process, where the time-derivative is substituted by the fractional
derivative (in the Caputo sense) of order ν ∈ (0,1]:

dν pk

d tν
=−λ(pk − pk−1), k ≥ 0, (1.5)

with initial conditions

pk(0) =

¨

1 k = 0
0 k ≥ 1

and p−1(t) = 0. The main result is the expression of the solution as the distribution of a composed
process represented by the standard, homogeneous Poisson process N(t), t > 0 with a random time
argument T2ν(t), t > 0 as follows:

Nν(t) = N(T2ν(t)), t > 0.

The process T2ν(t), t > 0 (independent of N) possesses a well-known density, which coincides with
the folded solution to a fractional diffusion equation of order 2ν (see (2.8) below). In the particular
case where ν = 1/2 this equation coincides with the heat-equation and the process representing
time is the reflected Brownian motion.

These results are reconsidered here, in the next section, from a different point of view, which is
based on the use of the Generalized Mittag-Leffler (GML) function. The latter is defined as

Eγ
α,β(z) =

∞
∑

r=0

�

γ
�

r zr

r!Γ(αr + β)
, α,β ,γ ∈ C, Re(α), Re(β), Re(γ)> 0, (1.6)

where
�

γ
�

r = γ(γ + 1)...(γ + r − 1) (for r = 1,2, ..., and γ 6= 0) is the Pochammer symbol and
�

γ
�

0 = 1. The GML function has been extensively studied by Saxena et al. (see, for example,
[27]-[28]) and applied in connection with some fractional diffusion equations, whose solutions are
expressed as infinite sums of (1.6). For some properties of (1.6), see also [29]. We note that formula
(1.6) reduces to (1.1) for γ= 1.

By using the function (1.6) it is possible to write down in a more compact form the solution to (1.5),
as well as the density of the waiting-time of the k-th event of the fractional Poisson process. As a
consequence some interesting relationships between the Mittag-Leffler function (1.1) and the GML
function (1.6) are obtained here.

Moreover, the use of GML functions allows us to derive an explicit expression for the solution of the
more complicated recursive differential equation, where two fractional derivatives appear:

d2ν pk

d t2ν + 2λ
dν pk

d tν
=−λ2(pk − pk−1), k ≥ 0, (1.7)

for ν ∈ (0,1]. As we will see in section 3, also in this case we can define a process cNν(t), t > 0,
governed by (1.7), which turns out to be a renewal. The density of the interarrival times are
no-longer expressed by standard Mittag-Leffler functions as in the first case, but the use of GML
functions is required and the same holds for the waiting-time of the k-th event.
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An interesting relationship between the two models analyzed here can be established by observing
that the waiting-time of the k-th event of the process governed by (1.7) coincides in distribution
with the waiting time of the (2k)-th event for the first model. This suggests to interpret cNν as a
fractional Poisson process of the first type, which jumps upward at even-order events A2k and the
probability of the successive odd-indexed events A2k+1 is added to that of A2k. As a consequence,
the distribution of cNν can be expressed, in terms of the processes N and T2ν , as follows:

Pr
¦

cNν(t) = k
©

= Pr
�

N(T2ν(t)) = 2k
	

+ Pr
�

N(T2ν(t)) = 2k+ 1
	

, k ≥ 0.

We also study the probability generating functions of the two models, which are themselves solu-
tions to fractional equations; in particular in the second case an interesting link with the fractional
telegraph-type equation is explored.

For ν = 1, equation (1.7) takes the following form

d2pk

d t2 + 2λ
dpk

d t
=−λ2(pk − pk−1), k ≥ 0

and the related process can be regarded as a standard Poisson process with Gamma-distributed
interarrival times (with parameters λ, 2). This is tantamount to attributing the probability of odd-
order values A2k+1 of a standard Poisson process to the events labelled by 2k. Moreover, it should
be stressed that, in this special case, the equation satisfied by the probability generating function
bG(u, t), t > 0, |u| ≤ 1, i.e.

∂ 2G(u, t)
∂ t2 + 2λ

∂ G(u, t)
∂ t

= λ2(u− 1)G(u, t), 0< ν ≤ 1

coincides with that of the damped oscillations.

All the previous results are further generalized to the case n > 2 in the concluding remarks: the
structure of the process governed by the equation

dnν pk

d tnν +
�

n

1

�

λ
d(n−1)ν pk

d t(n−1)ν
+ ...+

�

n

n− 1

�

λn−1 dν pk

d tν
=−λn(pk − pk−1), k ≥ 0,

(1.8)

where ν ∈ (0,1], is exactly the same as before and all the previous considerations can be easily
extended.

2 First-type fractional recursive differential equation

2.1 The solution

We begin by considering the following fractional recursive differential equation

dν pk

d tν
=−λ(pk − pk−1), k ≥ 0, (2.1)

with p−1(t) = 0, subject to the initial conditions

pk(0) =

¨

1 k = 0
0 k ≥ 1

. (2.2)
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We apply in (2.1) the definition of the fractional derivative in the sense of Caputo, that is, for m ∈ N,

dν

d tν
u(t) =

(

1
Γ(m−ν)

∫ t

0
1

(t−s)1+ν−m
dm

dsm u(s)ds, for m− 1< ν < m
dm

d tm u(t), for ν = m
. (2.3)

We note that, for ν = 1, (2.1) coincides with the equation governing the homogeneous Poisson
process with intensity λ > 0.

We will obtain the solution to (2.1)-(2.2) in terms of GML functions (defined in (1.6)) and show
that it represents a true probability distribution of a process, which we will denote by Nν(t), t > 0 :
therefore we will write

pνk (t) = Pr
�

Nν(t) = k
	

, k ≥ 0, t > 0. (2.4)

Theorem 2.1 The solution pνk (t), for k = 0,1, ... and t ≥ 0, of the Cauchy problem (2.1)-(2.2) is given
by

pνk (t) = (λtν)kEk+1
ν ,νk+1(−λtν), k ≥ 0, t > 0. (2.5)

Proof By taking the Laplace transform of equation (2.1) together with the condition (2.2), we obtain

L
¦

pνk (t); s
©

=

∫ ∞

0

e−st pνk (t)d t =
λksν−1

(sν +λ)k+1
(2.6)

which can be inverted by using formula (2.5) of [24], i.e.

L
n

tγ−1Eδβ ,γ(ωtβ); s
o

=
sβδ−γ

(sβ −ω)δ
, (2.7)

(where Re(β) > 0, Re(γ) > 0, Re(δ) > 0 and s > |ω|
1

Re(β) ) for β = ν , δ = k + 1 and γ = νk + 1.
Therefore the inverse of (2.6) coincides with (2.5). �

Remark 2.1 For any ν ∈ (0, 1], it can be easily seen that result (2.5) coincides with formula (2.10) of
[2], which was obtained by a different approach.

Moreover Theorem 2.1 shows that the first model proposed by Mainardi et al. [17] as a fractional ver-
sion of the Poisson process (called renewal process of Mittag-Leffler type) has a probability distribution
coinciding with the solution of equation (2.1) and therefore with (2.5).

We derive now an interesting relationship between the GML function in (2.5) and the Wright func-
tion

Wα,β(x) =
∞
∑

k=0

xk

k!Γ(αk+ β)
, α >−1, β > 0, x ∈ R.

Let us denote by v2ν = v2ν(y, t) the solution to the Cauchy problem






∂ 2ν v
∂ t2ν = λ2 ∂ 2v

∂ y2 , t > 0, y ∈ R
v(y, 0) = δ(y), for 0< ν < 1
vt(y, 0) = 0, for 1/2< ν < 1

. (2.8)

688



then it is well-known (see [14] and [15]) that the solution of (2.8) can be written as

v2ν(y, t) =
1

2λtν
W−ν ,1−ν

�

−
|y|
λtν

�

, t > 0, y ∈ R. (2.9)

In [2] the following subordinating relation has been proved:

pνk (t) =

∫ +∞

0

e−y yk

k!
v2ν(y, t)d y = Pr

�

N(T2ν(t)) = k
	

, k ≥ 0, (2.10)

where

v2ν(y, t) =

¨

2v2ν(y, t), y > 0
0, y < 0

(2.11)

is the folded solution of equation (2.8). In (2.10) T2ν(t), t > 0 represents a random time (indepen-
dent from the Poisson process N) with transition density given in (2.9) and (2.11). This density can
be alternatively expressed in terms of the law gν(·; y) of a a stable random variable Sν(µ,β ,σ) of

order ν , with parameters µ= 0, β = 1 and σ =
� y
λ

cos πν
2

�
1
ν ,as

v2ν(y, t) =
1

Γ(1− ν)

∫ t

0

(t −w)−ν gν(w;
y

λ
)dw (2.12)

(see [20], formula (3.5), for details). By combining (2.5) and (2.10), we extract the following
integral representation of the GML functions, in terms of Wright functions:

Ek+1
ν ,νk+1(−λtν) =

1

k!λk+1 tν(k+1)

∫ +∞

0

e−y ykW−ν ,1−ν(−
y

λtν
)d y. (2.13)

Remark 2.2 Since result (2.13) holds for any t > 0, we can choose t = 1, so that we get, by means of
a change of variable,

Ek+1
ν ,νk+1(−λ) =

1

k!

∫ +∞

0

e−λy ykW−ν ,1−ν(−y)d y.

This shows that the GML function Ek+1
ν ,νk+1 can be interpreted as the Laplace transform of the function

yk

k!
W−ν ,1−ν(−y). In particular, for ν = 1

2
, since (2.10) reduces to

Pr
¦

N1/2(t) = k
©

=

∫ +∞

0

e−y yk

k!

e−y2/4λ2 t

p

πλ2 t
d y = Pr

�

N(|Bλ(t)|) = k
	

,

where Bλ(t) is a Brownian motion with variance 2λ2 t (independent of N), we get (for t = 1)

Ek+1
1
2

, k
2
+1
(−λ) =

1

k!

∫ +∞

0

e−λy yk e−y2/4

p
π

d y. (2.14)

The previous relation can be checked directly, by performing the integral in (2.14).
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2.2 Properties of the corresponding process

From the previous results we can conclude that the GML function Ek+1
ν ,νk+1(−λtν), k ≥ 0, suitably

normalized by the factor (λtν)k, represents a proper probability distribution and we can indicate it
as Pr

�

Nν(t) = k
	

.

Moreover by (2.10) we can consider the process Nν(t), t > 0 as a time-changed Poisson process.
It is well-known (see [12]) that, for a homogeneous Poisson process N subject to a random time
change (by the random function Λ((0, t])), the following equality in distribution holds:

N(Λ((0, t]))
d
= M(t), (2.15)

where M(t), t > 0 is a Cox process directed by Λ. In our case the random measure Λ((0, t]) possesses
distribution v2ν given in (2.9) with (2.11) and we can conclude that Nν is a Cox process. This
conclusion will be confirmed by the analysis of the factorial moments.

Moreover, as remarked in [2] and [18], the fractional Poisson process Nν(t), t > 0 represents a
renewal process with interarrival times U j distributed according to the following density, for j =
1,2, ...:

f ν1 (t) = Pr
¦

U j ∈ d t
©

/d t = λtν−1Eν ,ν(−λtν), (2.16)

with Laplace transform

L
¦

f ν1 (t); s
©

=
λ

sν +λ
. (2.17)

Therefore the density of the waiting time of the k-th event, Tk =
∑k

j=1 U j , possesses the Laplace
transform

L
¦

f νk (t); s
©

=
λk

(sν +λ)k
. (2.18)

Its inverse can be obtained by applying again (2.7) for β = ν , γ = νk and ω = −λ and can be
expressed, as for the probability distribution, in terms of a GML function as

f νk (t) = Pr
�

Tk ∈ d t
	

/d t = λk tνk−1Ek
ν ,νk(−λtν). (2.19)

The corresponding distribution function can be obtained by integrating (2.19)

Fνk (t) = Pr
�

Tk < t
	

(2.20)

= λk

∫ t

0

sνk−1
∞
∑

j=0

(k− 1+ j)!(−λsν) j

j!(k− 1)!Γ(ν j+ νk)
ds

=
λk tνk

ν

∞
∑

j=0

(k− 1+ j)!(−λtν) j

j!(k− 1)!(k+ j)Γ(ν j+ νk)

= λk tνk
∞
∑

j=0

(k− 1+ j)!(−λtν) j

j!(k− 1)!Γ(ν j+ νk+ 1)
= λk tνkEk

ν ,νk+1(−λtν).

We can check that (2.20) satisfies the following relationship

Pr
�

Tk < t
	

− Pr
�

Tk+1 < t
	

= pνk (t), (2.21)
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for pνk given in (2.5). Indeed from (2.20) we can rewrite (2.21) as

λk tνkEk
ν ,νk+1(−λtν)−λk+1 tν(k+1)Ek+1

ν ,ν(k+1)+1(−λtν)

= λk tνk
∞
∑

j=0

(k− 1+ j)!(−λtν) j

j!(k− 1)!Γ(ν j+ νk+ 1)
−λk+1 tν(k+1)

∞
∑

j=0

(k+ j)!(−λtν) j

j!k!Γ(ν j+ νk+ ν + 1)

=
�

by putting l = j+ 1 in the second sum
�

= λk tνk
∞
∑

j=0

(k− 1+ j)!(−λtν) j

j!(k− 1)!Γ(ν j+ νk+ 1)
+λk tνk

∞
∑

l=1

(k+ l − 1)!(−λtν)l

(l − 1)!k!Γ(ν l + νk+ 1)

= λk tνk
∞
∑

j=0

(k+ j)!(−λtν) j

j!k!Γ(ν j+ νk+ 1)
= pνk (t).

Remark 2.3 As pointed out in [18] and [25], the density of the interarrival times (2.16) possess the
following asymptotic behavior, for t →∞:

Pr
¦

U j ∈ d t
©

/d t = λtν−1Eν ,ν(−λtν) =−
d

d t
Eν ,1(−λtν) (2.22)

= λ1/ν sin (νπ)
π

∫ +∞

0

rν e−λ
1/ν r t

r2ν + 2rν cos(νπ) + 1
dr

∼
sin (νπ)
π

Γ(ν + 1)
λtν+1 =

ν

λΓ(1− ν)tν+1 ,

where the well-known expansion of the Mittag-Leffler function (given in (5.3)) has been applied. The
density (2.22) is characterized by fat tails (with polynomial, instead of exponential, decay) and, as a
consequence, the mean waiting time is infinite.

For t → 0 the density of the interarrival times displays the following behavior:

Pr
¦

U j ∈ d t
©

/d t ∼
λtν−1

Γ(ν)
, (2.23)

which means that U j takes small values with large probability. Therefore, by considering (2.22) and
(2.23) together, we can draw the conclusion that the behavior of the density of the interarrival times
differs from standard Poisson in that the intermediate values are assumed with smaller probability than
in the exponential case.

Remark 2.4 We observe that also for the waiting-time density (2.19) we can find a link with the solution
to the fractional diffusion equation (2.8). This can be shown by rewriting its Laplace transform (2.18)
as

L
¦

f νk (t); s
©

=
λk

(sν +λ)k
=

∫ +∞

0

e−sν t λ
k tk−1

(k− 1)!
e−λt d t.

By recalling that

e−sν y/λ =

∫ +∞

0

e−sz gν(z;
y

λ
)dz, 0< ν < 1, y > 0, (2.24)

691



for the stable law gν(·; y) defined above, we get

f νk (t) =

∫ +∞

0

gν(t;
y

λ
)

yk−1e−y

(k− 1)!
d y. (2.25)

Formula (2.25) permits us to conclude that f νk (t) can be interpreted as the law of the stable random
variable Sν with a random scale parameter possessing an Erlang distribution.

2.3 The probability generating function

We consider now the equation governing the probability generating function, defined, for any |u| ≤
1, as

Gν(u, t) =
∞
∑

k=0

ukpνk (t). (2.26)

From (2.1) it is straightforward that it coincides with the solution to the fractional differential
equation

∂ νG(u, t)
∂ tν

= λ(u− 1)G(u, t), 0< ν ≤ 1 (2.27)

subject to the initial condition G(u, 0) = 1. As already proved in [2] the Laplace transform of Gν =
Gν(u, t) is given by

L
�

Gν(u, t); s
	

=
sν−1

sν −λ(u− 1)
(2.28)

so that the probability generating function can be expressed as

Gν(u, t) = Eν ,1(λ(u− 1)tν), |u| ≤ 1, t > 0. (2.29)

By considering (2.29) together with the previous results we get the following relationship, valid for
the infinite sum of GML functions:

∞
∑

k=0

(λutν)kEk+1
ν ,νk+1(−λtν) = Eν ,1(λ(u− 1)tν). (2.30)

Formula (2.30) suggests a useful general relationship between the infinite sum of GML functions
and the standard Mittag-Leffler function:

∞
∑

k=0

(ux)kEk+1
ν ,νk+1(−x) = Eν ,1(x(u− 1)), |u| ≤ 1, x > 0. (2.31)

By considering the derivatives of the probability generating function (2.29) we can easily derive the
factorial moments of Nν which read

E
�

Nν(t)(Nν(t)− 1)...(Nν(t)− r + 1)
�

=
(λtν)r r!

Γ(ν r + 1)
. (2.32)

These are particularly useful in checking that Nν represents a Cox process with directing measure
Λ. Indeed, as pointed out in [12], the factorial moments of a Cox process coincide with the ordinary
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moments of its directing measure. We show that this holds for Nν , by using the contour integral
representation of the inverse of Gamma function,

E [Λ((0, t])]r =

∫ +∞

0

y r v2ν(y, t)d y

=

∫ +∞

0

y r

λtν
W−ν ,1−ν

�

−
y

λtν

�

d y

=
1

λtν
1

2πi

∫ +∞

0

y r d y

∫

Ha

ez− y t−ν

λ
zν

z1−ν dz

=
λr

2πi

∫

Ha

ez

z1+ν r dz

∫ +∞

0

tν r wr e−wdw

=
λr tν r

2πi
Γ(r + 1)

∫

Ha

ez

z1+ν r dz =
(λtν)r r!

Γ(ν r + 1)
,

which coincides with (2.32).

For r = 1 we can obtain from (2.32) the renewal function of the process Nν , which reads

mν(t) = EN ν(t)=−λtν
�

d

dµ
Eν ,1(λ(e

−µ− 1)tν)
�

µ=0
(2.33)

= λtν
�

d

d x
Eν ,1(x)

�

x=0
=

λtν

Γ(ν + 1)
,

and coincides with that obtained in [18], for λ = 1. It is evident also from (2.33) that the mean
waiting time (which is equal to limt→∞ t/mν(t)) is infinite, since ν < 1.

3 Second-type fractional recursive differential equation

3.1 The solution

In this section we generalize the results obtained so far by introducing in the fractional recursive
differential equation an additional time-fractional derivative. We show that some properties of the
first model of fractional Poisson process are still valid: the solutions represent, for k ≥ 0, a proper
probability distribution and the corresponding process is again a renewal process. Moreover the
density of the interarrival times displays the same asymptotic behavior of the previous model.

We consider the following recursive differential equation

d2ν pk

d t2ν + 2λ
dν pk

d tν
=−λ2(pk − pk−1), k ≥ 0, (3.1)

where ν ∈ (0, 1] , subject to the initial conditions

pk(0) =

¨

1 k = 0
0 k ≥ 1

, for 0< ν ≤ 1 (3.2)

p′k(0) = 0, k ≥ 0, for
1

2
< ν ≤ 1
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and p−1(t) = 0. In the following theorem we derive the solution to (3.1)-(3.2), which can be still
expressed in terms of GML functions.

Theorem 3.1 The solution bpνk (t), for k = 0,1, ... and t ≥ 0, of the Cauchy problem (3.1)-(3.2) is given
by

bpνk (t) = λ
2k t2kν E2k+1

ν ,2kν+1(−λtν) +λ2k+1 t(2k+1)ν E2k+2
ν ,(2k+1)ν+1(−λtν), k ≥ 0, t > 0. (3.3)

Proof Following the lines of the proof of Theorem 2.1, we take the Laplace transform of equation
(3.1) together with the conditions (3.2), thus obtaining the following recursive formula, for k ≥ 1

L
¦

bpνk (t); s
©

=
λ2

s2ν + 2λsν +λ2L
¦

bpνk−1(t); s
©

=
λ2

(sν +λ)2
L
¦

bpνk−1(t); s
©

,

while, for k = 0, we get

L
¦

bpν0 (t); s
©

=
s2ν−1+ 2λsν−1

s2ν + 2λsν +λ2 .

Therefore the Laplace transform of the solution reads

L
¦

bpνk (t); s
©

=
λ2ks2ν−1+ 2λ2k+1sν−1

(sν +λ)2k+2
. (3.4)

We can invert (3.4) by using (2.7) with δ = 2k+ 2, β = ν and γ = 2kν + 1 or γ = (2k+ 1)ν + 1,
thus obtaining the following expression

bpνk (t) = λ
2k t2νkE2k+2

ν ,2kν+1(−λtν) + 2λ2k+1 t(2k+1)ν E2k+2
ν ,(2k+1)ν+1(−λtν). (3.5)

We prove now the following general formula holding for a sum of GML functions:

xnEm
ν ,nν+z(−x) + xn+1Em

ν ,(n+1)ν+z(−x) = xnEm−1
ν ,nν+z(−x), n, m> 0, z ≥ 0, x > 0, (3.6)

which can be checked by rewriting the l.h.s. as follows:

xn

(m− 1)!

∞
∑

j=0

(m− 1+ j)!(−x) j

j!Γ(ν j+ nν + z)
−

xn

(m− 1)!

∞
∑

j=0

(m− 1+ j)!(−x) j+1

j!Γ(ν j+ (n+ 1)ν + z)

=
xn

(m− 1)!

∞
∑

j=0

(m− 1+ j)!(−x) j

j!Γ(ν j+ nν + z)
−

xn

(m− 1)!

∞
∑

l=1

(m+ l − 2)!(−x)l

(l − 1)!Γ(ν l + nν + z)

=
xn

(m− 1)!

∞
∑

l=1

(m+ l − 2)!(−x)l

(l − 1)!Γ(ν l + nν + z)

�

m− 1+ l

l
− 1
�

+
xn

Γ(nν + z)

=
xn

(m− 2)!

∞
∑

l=1

(m+ l − 2)!(−x)l

l!Γ(ν l + nν + z)
+

xn

Γ(nν + z)
= xnEm−1

ν ,nν+z(−x)

For m= 2k+ 2, z = 1, x = λtν and n= 2k formula (3.6) gives the following identity:

λ2k t2νkE2k+2
ν ,2kν+1(−λtν) +λ2k+1 t(2k+1)ν E2k+2

ν ,(2k+1)ν+1(−λtν) = λ2k t2νkE2k+1
ν ,2kν+1(−λtν),
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which coincides with the first term in (3.3).

It remains to check only that the initial conditions in (3.2) hold: the first one is clearly satisfied
since, for k = 0, we have that

bpν0 (t)
�

�

t=0 =
∞
∑

r=0

(−λ)r tν r

Γ(ν r + 1)
+λ

∞
∑

r=0

(r + 1)(−λ)r tν(r+1)

Γ(ν r + ν + 1)

�

�

�

�

�

t=0

= 1

and, for k ≥ 1,

bpνk (t) =
λ2k

(2k)!

∞
∑

r=0

(2k+ r)!(−λ)r tν(2k+r)

r!Γ(ν r + 2kν + 1)
+

λ2k+1

(2k+ 1)!

∞
∑

r=0

(2k+ r + 1)!(−λ)r tν(2k+r+1)

r!Γ(ν r + 2kν + ν + 1)
,

which vanishes for t = 0. The second condition in (3.2) is immediately verified for k ≥ 1, since it is

d

d t
bpνk (t) =

λ2k

(2k)!

∞
∑

r=1

(2k+ r)!(−λ)r tν(2k+r)−1

r!Γ(ν r + 2kν)
+

λ2k+1

(2k+ 1)!

∞
∑

r=0

(2k+ r + 1)!(−λ)r tν(2k+r+1)−1

r!Γ(ν r + 2kν + ν)
,

(3.7)
which for t = 0 vanishes in the interval 1

2
< ν ≤ 1. Then we check that this happens also for k = 0:

indeed in this case (3.7) reduces to

d

d t
bpν0 (t)

�

�

�

�

t=0

=
∞
∑

r=1

(−λ)r tν r−1

Γ(ν r)
+λ

∞
∑

r=0

(r + 1)2(−λ)r tν(r+1)−1

Γ(ν r + ν)

�

�

�

�

�

t=0

=
∞
∑

r=2

(−λ)r tν r−1

Γ(ν r)
−
λtν−1

Γ(ν)
+λ

∞
∑

r=1

(r + 1)2(−λ)r tν(r+1)−1

Γ(ν r + ν)
+
λtν−1

Γ(ν)

�

�

�

�

�

t=0

= 0.

�

Remark 3.1 The solution (3.3) can be expressed in terms of the solution (2.5) of the first model as
follows

bpνk (t) = pν2k(t) + pν2k+1(t). (3.8)

Therefore it can be interpreted, for k = 0,1, 2, ..., as the probability distribution Pr
¦

cNν(t) = k
©

for a
process cNν . Indeed, by (3.8), we get

Pr
¦

cNν(t) = k
©

= Pr
�

Nν(t) = 2k
	

+ Pr
�

Nν(t) = 2k+ 1
	

, (3.9)

so that it is immediate that (3.3) sums up to unity.

Moreover the relationship (3.8) shows that the process governed by the second-type equation can be seen
as a first-type fractional process, which jumps upward at even-order events A2k while the probability of
the successive odd-indexed events A2k+1 is added to that of A2k.

A direct check that expression (3.8) is the solution to equation (3.1), subject to the initial conditions
(3.2), can be carried out by using the form of pνk appearing in formula (2.10) of [2] which is more
suitable to this aim. Indeed, by substituting it into (3.8), the latter can be rewritten as

bpνk (t) =
∞
∑

r=2k

�

r

2k

�

(−λtν)r

Γ(ν r + 1)
−

∞
∑

r=2k+1

�

r

2k+ 1

�

(−λtν)r

Γ(ν r + 1)
. (3.10)
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By taking the fractional derivatives of (3.10) and performing some manipulations, we get that

d2ν

d t2ν bp
ν
k + 2λ

dν

d tν
bpνk (3.11)

=
∞
∑

r=2k−2

�

r + 2

2k

�

Ar −
∞
∑

r=2k−1

�

r + 2

2k+ 1

�

Ar +

−2
∞
∑

r=2k−1

�

r + 1

2k

�

Ar + 2
∞
∑

r=2k

�

r + 1

2k+ 1

�

Ar ,

where Ar =
(−1)rλr+2 tν r

Γ(ν r+1) . By means of some combinatorial results it can be checked that (3.11) is equal
to

−λ2(bpνk − bp
ν
k−1) (3.12)

= −λ2(pν2k + pν2k+1− pν2k−2− pν2k−1)

= −
∞
∑

r=2k

�

r

2k

�

Ar +
∞
∑

r=2k+1

�

r

2k+ 1

�

Ar +

+
∞
∑

r=2k−2

�

r

2k− 2

�

Ar −
∞
∑

r=2k−1

�

r

2k− 1

�

Ar ,

(see [3], for a detailed proof) and thus (3.10) satisfies equation (3.1).

3.2 The probability generating function

As we did for the first model we evaluate the probability generating function and we show that
it coincides with the solution to a fractional equation which arises in the study of the fractional
telegraph process (see [20]).

Theorem 3.2 The probability generating function bGν(u, t) =
∑∞

k=0 uk
bpνk (t), |u| ≤ 1, coincides with the

solution to the following fractional differential equation

∂ 2νG(u, t)
∂ t2ν + 2λ

∂ νG(u, t)
∂ tν

= λ2(u− 1)G(u, t), 0< ν ≤ 1 (3.13)

subject to the initial condition G(u, 0) = 1 and the additional condition Gt(u, 0) = 0 for 1/2 < ν < 1.
The explicit expression is given by

bGν(u, t) =
p

u+ 1

2
p

u
Eν ,1(−λ(1−

p
u)tν) +

p
u− 1

2
p

u
Eν ,1(−λ(1+

p
u)tν). (3.14)

Proof By applying the Laplace transform to (3.13), we get

(s2ν + 2λsν)L (bGν(u, t); s) + (s2ν−1+ 2λsν−1) = λ2(u− 1)L (bGν(u, t); s)

and then

L (bGν(u, t); s) =
s2ν−1+ 2λsν−1

s2ν + 2λsν +λ2(1− u)
. (3.15)
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We can recognize in (3.13) the fractional equation satisfied by the characteristic function of the
fractional telegraph process studied in [20] (see formula (2.3a) with c2β2 = λ2(1−u)) and thus the
Laplace transform (3.15) coincides with formula (2.6) therein. By applying the result of Theorem
2.1 of the cited paper, we obtain the inverse Laplace transform of (3.15) as given in (3.14). �

Remark 3.2 As an alternative proof of the Theorem 3.1, we can show that the series expansion of (3.14)
coincides with

∑∞
k=0 uk

bpνk (t) for bpνk (t) given in (3.3):

bGν(u, t)

=
p

u+ 1

2
p

u

∞
∑

j=0

(−λ(1−
p

u)tν) j

Γ(ν j+ 1)
+
p

u− 1

2
p

u

∞
∑

j=0

(−λ(1+
p

u)tν) j

Γ(ν j+ 1)

=
p

u+ 1

2
p

u

∞
∑

j=0

(λtν) j

Γ(ν j+ 1)

j
∑

k=0

�

j

k

�

�p
u
�k
(−1) j−k +

p
u− 1

2
p

u

∞
∑

j=0

(−λtν) j

Γ(ν j+ 1)

j
∑

k=0

�

j

k

�

�p
u
�k

=
p

u+ 1

2
p

u

∞
∑

k=0

�

−
p

u
�k

∞
∑

j=k

(−λtν) j

Γ(ν j+ 1)

�

j

k

�

+
p

u− 1

2
p

u

∞
∑

k=0

�p
u
�k

∞
∑

j=k

(−λtν) j

Γ(ν j+ 1)

�

j

k

�

=
p

u+ 1

2
p

u

∞
∑

k=0

�p
uλtν

�k
∞
∑

l=0

(−λtν)l

Γ(ν l + νk+ 1)

�

l + k

k

�

+

+
p

u− 1

2
p

u

∞
∑

k=0

�

−
p

uλtν
�k

∞
∑

l=0

(−λtν)l

Γ(ν l + νk+ 1)

�

l + k

k

�

=
p

u+ 1

2
p

u

∞
∑

k=0

�p
uλtν

�k
Ek+1
ν ,νk+1(−λtν) +

p
u− 1

2
p

u

∞
∑

k=0

�

−
p

uλtν
�k

Ek+1
ν ,νk+1(−λtν)

=
p

u+ 1

2
p

u

∞
∑

m=0

�p
uλtν

�2m
E2m+1
ν ,2mν+1(−λtν) +

p
u+ 1

2
p

u

∞
∑

m=0

�p
uλtν

�2m+1
E2m+2
ν ,(2m+1)ν+1(−λtν) +

+
p

u− 1

2
p

u

∞
∑

m=0

�p
uλtν

�2m
E2m+1
ν ,2mν+1(−λtν) +

p
u− 1

2
p

u

∞
∑

m=0

�

−
p

uλtν
�2m+1

E2m+2
ν ,(2m+1)ν+1(−λtν)

=
∞
∑

m=0

um
h

(λtν)2m E2m+1
ν ,2mν+1(−λtν) + (λtν)2m+1 E2m+2

ν ,(2m+1)ν+1(−λtν)
i

.

Since, for u= 1, formula (3.14) reduces to one, it is proved that
∑∞

k=0 bp
ν
k (t) = 1.

3.3 Properties of the corresponding process

We can prove that cNν(t), t > 0 represents a renewal process, by showing that, also for this model,
the required relationship between bpνk (t) and distribution function of the waiting time bTk of the k-th
event holds:

bpνk (t) = Pr
¦

bTk < t
©

− Pr
¦

bTk+1 < t
©

(3.16)

where
bTk = inf

¦

t > 0 : cNν(t) = k
©

.
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or alternatively for the Laplace transform of (3.16)

L
¦

bpνk (t); s
©

=
1

s
L
¦

bf νk (t); s
©

−
1

s
L
¦

bf νk+1(t); s
©

. (3.17)

In view of relationship (3.8), we can infer that each interarrival time cU j is distributed as the sum of
two independent interarrival times U j of the first model and therefore from (2.17) we have that

L
¦

bf ν1 (t); s
©

=

∫ ∞

0

e−st Pr
¦

cU j ∈ d t
©

=

�
∫ ∞

0

e−st Pr
¦

U j ∈ d t
©

�2

(3.18)

=
λ2

(sν +λ)2

and therefore

L
¦

bf νk (t); s
©

=
λ2k

(sν +λ)2k
. (3.19)

The relationship (3.18) can be checked directly as follows

∫ t

0

f ν1 (s) f
ν

1 (t − s)ds = λ2 t2ν−1E2
ν ,2ν(−λtν) = bf ν1 (t) (3.20)

(see [3] for details). By applying again (2.7) for β = ν , γ = 2νk and ω = −λ we invert (3.19) and
obtain

bf νk (t) = λ
2k t2νk−1E2k

ν ,2νk(−λtν). (3.21)

Moreover from (3.18) or (3.21) we easily get

bf ν1 (t) = λ
2 t2ν−1E2

ν ,2ν(−λtν). (3.22)

Therefore, in this case, both the waiting-time of the k-th event and the interarrival times possess
distributions which are expressed in terms of GML functions.

By performing steps similar to those of Remark 4.1 of [2], we can conclude from the previous results
that the Laplace transform (3.19), together with (3.4) satisfy the renewal property (3.17).

Remark 3.3 We evaluate now the asymptotic behavior of the interarrival-time density (3.22), as fol-
lows:

Pr
¦

cU j ∈ d t
©

/d t = λ2 t2ν−1
∞
∑

j=0

(−λtν) j( j+ 1)!
j!Γ(ν j+ 2ν)

(3.23)

= λ2 t2ν−1
∞
∑

l=0

l(−λtν)l−1

Γ(ν l + ν)
=−

λtν

ν

d

d t
Eν ,ν(−λtν)

=
1− ν
ν

d

d t
Eν ,1(−λtν) +

t

ν

d2

d t2 Eν ,1(−λtν).
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By applying (2.22) and (5.3), we finally get

Pr
¦

cU j ∈ d t
©

/d t =
ν − 1

ν
λ1/ν sin (νπ)

π

∫ +∞

0

rν e−λ
1/ν r t

r2ν + 2rν cos(νπ) + 1
dr +

+
λ2/ν t

ν

sin (νπ)
π

∫ +∞

0

rν+1e−λ
1/ν r t

r2ν + 2rν cos(νπ) + 1
dr (3.24)

∼
sin (νπ)
π

2Γ(ν + 1)
λtν+1 =

2ν

λΓ(1− ν)tν+1 .

If we compare (3.24) with the analogous result (2.22) obtained for the first model, we can conclude that
the interarrival-times density displays the same asymptotic behavior, with the power law decay (3.24),
so that again the mean waiting time is infinite.

For t → 0, instead of (2.23), we get in this case

Pr
¦

cU j ∈ d t
©

/d t ∼
λ2 t2ν−1

Γ(2ν)
.

The behavior near the origin of the density of the interarrival times cU j has a different structure for
ν < 1/2 (tends to infinity) and ν ∈ (1/2,1] (vanishes for t → 0+). For ν = 1

2
we have instead that

Pr
¦

cU j ∈ d t
©

is constant for t = 0 and equal to λ2.

From all the previous considerations, we can conclude that cNν is a renewal process and the corre-
sponding renewal function is given by

bmν(t) = E cNν(t) = λ2 t2ν Eν ,2ν+1(−2λtν) (3.25)

=
λtν

2Γ(ν + 1)
−
λtν

2
Eν ,ν+1(−2λtν).

Formula (3.25) can be obtained by taking the first derivative of (3.15) (for u= 1):

∂

∂ u
L (bGν(u, t); s)

�

�

�

�

u=1
=
λ2s−ν−1

sν + 2λ
.

By applying (2.7) for β = ν , δ = 1 and γ= 2ν + 1, we get (3.25).

Remark 3.4 By comparing the second form of (3.25) with (2.33), we can note that the following
relationship between the renewal functions of the two models holds:

bmν(t) =
mν(t)

2
−
λtν

2
Eν ,ν+1(−2λtν). (3.26)
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This can be alternatively proved by applying (3.8) as follows:

bmν(t) =
∞
∑

k=0

kbpνk (t) =
∞
∑

k=0

kpν2k(t) +
∞
∑

k=0

kpν2k+1(t) (3.27)

=
1

2

∞
∑

k=0

(2k)pν2k(t) +
1

2

∞
∑

k=0

(2k+ 1)pν2k+1(t)−
1

2

∞
∑

k=0

pν2k+1(t)

=
1

2

∞
∑

j=0

jpνj (t)−
1

2

∞
∑

k=0

pν2k+1(t)

=
mν(t)

2
−

1

2

∞
∑

k=0

pν2k+1(t).

The last term in (3.27), which coincides with the sum of the probabilities of an odd number of events of
the first model, can be evaluated as follows:

∞
∑

k=0

pν2k+1(t) =
∞
∑

k=0

λ2k+1 t(2k+1)ν E2k+2
ν ,ν(2k+1)+1(−λtν) = λtν Eν ,ν+1(−2λtν),

as can be checked by resorting to the Laplace transform:

∞
∑

k=0

λ2k+1sν−1

(sν +λ)2k+2
=

λ

s(sν + 2λ)
=L

¦

λtν Eν ,ν+1(−2λtν); s
©

.

Formula (3.26) confirms that the mean waiting time is infinite (as we have noticed in Remark 3.4):
indeed it is

lim
t→∞

bmν(t)
t
= lim

t→∞

mν(t)
2t

− lim
t→∞

λtν−1

2
Eν ,ν+1(−2λtν) = 0,

where the second limit can be evaluated by the following considerations:

λtν−1

2
Eν ,ν+1(−2λtν) =

1

4t

�

1− Eν ,1(−2λtν)
�

∼
1

4t

�

1−
sin(πν)
π

Γ(ν)
2λtν

�

(see (5.3) in the Appendix).

3.4 The special case ν = 1

We consider now the previous results in the special case ν = 1. Equation (3.1) reduces in this case
to the second-order equation:

d2
bpk

d t2 + 2λ
dbpk

d t
=−λ2(bpk − bpk−1), k ≥ 0 (3.28)

and the corresponding solution (3.3) is given by

bpk(t) =
(λt)2k

(2k)!
e−λt +

(λt)2k+1

(2k+ 1)!
e−λt , k ≥ 0. (3.29)
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It is easy to check directly that (3.29) solves (3.28) with initial condition

bpk(0) =

¨

1 k = 0
0 k ≥ 1

bp′k(0) = 0, k ≥ 0

and bp−1(t) = 0.

Formula (3.29) agrees with the relationship (3.8) given in Remark 3.1, which in this case we can
write as follows

bpk(t) = p2k(t) + p2k+1(t). (3.30)

Therefore it can be interpreted, for k = 0,1, 2, ..., as the probability distribution Pr
¦

bN(t) = k
©

for
a “second-order process” bN(t), t > 0 linked to the standard Poisson process N by the following
relationship:

Pr
¦

bN(t) = k
©

= Pr {N(t) = 2k}+ Pr {N(t) = 2k+ 1} . (3.31)

From (3.21) and (3.22) we can easily see that for this process the densities of the interarrival times
and of the k-th event waiting time are given respectively by

bf1(t) = λ
2 te−λt (3.32)

and

bfk(t) =
λ2k t2k−1

(2k− 1)!
e−λt . (3.33)

Therefore, in this case, the random variable bT j , representing the instant of the j-th event, is dis-
tributed as Gamma(λ, 2 j).

We derive equation (3.29) in an alternative way, which is similar to the construction of the stan-
dard Poisson process, by considering the relationships (3.9) or, equivalently, the property of the
interarrival times described by (3.20). We can write that

bT j
law
= T2 j , (3.34)

where
T j = inf

�

t > 0 : N(t) = j
	

which represents the time of the j-th event of N(t).

Let us consider now the following intervals

A =
�

T2k−2, T2k−1
�

B =
�

T2k−1, T2k
�

C =
�

T2k, T2k+1
�

D =
�

T2k+1, T2k+2
�

so that
�

T2k−2, T2k+2
�

= A∪ B ∪ C ∪ D (see Fig.1).

We evaluate the following probability, by stopping the approximation at the second-order terms:
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T2k-2 T2k-1 
 

T2k 
 

T2k+1 
 

T2k+2 
 

A B C D 
Tk-1 Tk 

 
Tk+1 
 

Figure 1: The interval
�

T2k−2, T2k+2
�

bpk(t + 2∆t) (3.35)

' 2 Pr
�

bN(t) = k− 1, t ∈ A
� λ2 (∆t)2

2

�

1−
λ2 (∆t)2

2

�

+

+Pr
�

bN(t) = k− 1, t ∈ A
��

λ∆t −λ2 (∆t)2
�2
+

+2 Pr
�

bN(t) = k− 1, t ∈ B
��

λ∆t −λ2 (∆t)2
�

�

1−λ∆t +
λ2 (∆t)2

2

�

+

+2 Pr
�

bN(t) = k− 1, t ∈ B
� λ2 (∆t)2

2

�

1−λ∆t +
λ2 (∆t)2

2

�

+

+Pr
�

bN(t) = k− 1, t ∈ B
��

λ∆t −λ2 (∆t)2
�2
+

+Pr
�

bN(t) = k, t ∈ C
�

�

1−λ∆t +
λ2 (∆t)2

2

�2

+

+2 Pr
�

bN(t) = k, t ∈ C
�

�

1−λ∆t +
λ2 (∆t)2

2

�

�

λ∆t −λ2 (∆t)2
�

+

+Pr
�

bN(t) = k, t ∈ D
�

�

1−λ∆t +
λ2 (∆t)2

2

�2

+ o
�

(∆t)2
�

,

where we used the following well-known approximations valid for the standard Poisson process:

Pr (0 Poisson events in ∆t) = e−λ∆t ' 1−λ∆t +
λ2 (∆t)2

2
+ o
�

(∆t)2
�

Pr (1 Poisson event in ∆t) = λ∆t e−λ∆t ' λ∆t −λ2 (∆t)2+ o
�

(∆t)2
�

Pr (2 Poisson events in ∆t) =
λ2 (∆t)2

2
e−λ∆t '

λ2 (∆t)2

2
+ o
�

(∆t)2
�

.

By ignoring the terms of order greater than (∆t)2 the probability (3.35) can be rewritten (see [3]
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for details) as follows:

bpk(t + 2∆t) ' 2bpk−1(t)
λ2 (∆t)2

2
+ bpk−1(t)λ

2 (∆t)2+ (3.36)

+bpk(t) (1−λ∆t)2+ bpk(t)λ
2 (∆t)2+

+2Pr
�

bN(t) = k− 1, t ∈ B
��

λ∆t − 2λ2 (∆t)2
�

+

+2Pr
�

bN(t) = k, t ∈ C
��

λ∆t − 2λ2 (∆t)2
�

+ o
�

(∆t)2
�

.

By a similar reasoning we obtain the following probability, on a single interval of length ∆t

bpk(t +∆t)' bpk−1(t)
λ2 (∆t)2

2
+ Pr

�

bN(t) = k− 1, t ∈ B
��

λ∆t −λ2 (∆t)2
�

(3.37)

+bpk(t)

�

1−λ∆t +
λ2∆t2

2

�

+ Pr
�

bN(t) = k, t ∈ C
��

λ∆t −λ2 (∆t)2
�

+ o
�

(∆t)2
�

.

We multiply (3.37) by 2(1−λ∆t) and ignore the terms of order greater than (∆t)2, so that we get

bpk−1(t)λ
2 (∆t)2 ' 2(1−λ∆t)bpk(t +∆t)− 2 Pr

�

bN(t) = k− 1, t ∈ B
��

λ∆t − 2λ2 (∆t)2
�

+

− 2bpk(t)

�

(1−λ∆t)2+
λ2∆t2

2

�

− 2Pr
�

bN(t) = k, t ∈ C
��

λ∆t − 2λ2 (∆t)2
�

+ o
�

(∆t)2
�

,

which can be substituted in the first line of (3.36). Finally we obtain

bpk(t + 2∆t)' bpk−1(t)λ
2 (∆t)2+ 2(1−λ∆t)bpk(t +∆t)− bpk(t) (1−λ∆t)2 ,

which, divided by (∆t)2, gives

bpk(t + 2∆t)− 2bpk(t +∆t) + bpk(t)
(∆t)2

+ 2λ∆t
bpk(t +∆t)− bpk(t)

(∆t)2
=−λ2 (∆t)2

bpk(t)− bpk−1(t)
(∆t)2

.

By letting ∆t → 0 we easily obtain the second-order equation (3.28).

Remark 3.5 This special case is particularly interesting because it describes a generalization of the
Poisson process which have been used in many articles. Random motions at finite velocities spaced by
this particular renewal process have been considered by different authors ([6]-[7]-[11] and [23]).

In particular in [4] we have studied a model with uniformly distributed deviations which take place at
even-order Poisson events and therefore its interarrival times are distributed as Gamma(λ, 2) (thus the
conditional distribution possess a Dirichlet structure).

4 Conclusions

The results of the previous sections can be generalized to the n-th order case, if we consider the
following equation

dnν pk

d tnν +
�

n

1

�

λ
d(n−1)ν pk

d t(n−1)ν
+ ...+

�

n

n− 1

�

λn−1 dν pk

d tν
=−λn(pk − pk−1), k ≥ 0, (4.1)
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where ν ∈ (0, 1) , subject to the initial conditions

pk(0) =

¨

1 k = 0
0 k ≥ 1

, for 0< ν < 1 (4.2)

d j

d t j pk(t)

�

�

�

�

�

t=0

= 0 j = 1, ..., n− 1, k ≥ 0, for
1

n
< ν < 1

and p−1(t) = 0. Following the same steps as for the first two models we get the Laplace transform
of (4.1):

�

snν +
�

n

1

�

λs(n−1)ν + ...+
�

n

n− 1

�

λn−1s2ν +λn
�

L
¦

epνk (t); s
©

= λnL
¦

epνk−1(t); s
©

,

which can be solved recursively (taking into account the initial conditions (4.2)), yielding

L
¦

epνk (t); s
©

=

∑n
j=1

�n
j

�

sν j−1λ(k+1)n− j

(sν +λ)(k+1)n
. (4.3)

For n = 2, we obtain from (4.3) formula (3.4). The Laplace transform can be inverted by applying
again (2.7) and the solution is given, also in this case, as a sum of GML functions as follows:

epνk (t) =
n
∑

j=1

�

n

j

�

(λtν)n(k+1)− j Ekn+n
ν ,νn(k+1)−ν j+1(−λtν). (4.4)

For n = 1, we get the distribution of the first model (2.5), while, for n = 2, we get the solution
of the second-type equation in the form (3.5). In this case the use of (3.6) requires much harder
calculations. Nevertheless a relationship similar to (3.8) can be obtained, even for n> 2, by studying
the density ef νk (t), t > 0 of the waiting time of the k-th event Tk. As already seen in section 3, the
following identity must be satisfied by ef νk (t) :

L
¦

epνk (t); s
©

=
1

s
L
¦

ef νk (t); s
©

−
1

s
L
¦

ef νk+1(t); s
©

, (4.5)

so that, by substituting (4.3) in the l.h.s. of (4.5) we get

L
¦

ef νk (t); s
©

=
λnk

(sν +λ)nk
,

which can be inverted as usual, thus obtaining

ef νk (t) = λ
nk tnνk−1Enk

ν ,nνk(−λtν). (4.6)

Again the process is a renewal one, since (4.6) coincides with the sum of k independent and iden-
tically distributed random variables fU j ’s (representing the interarrival times) with density given
by

Pr
¦

fU j ∈ d t
©

/d t =L−1
�

λn

(sν +λ)n
; t
�

= λn tnν−1En
ν ,nν(−λtν) = f nν

1 (t). (4.7)

Formula (4.7) shows that each interarrival time of the n-th order case is distributed as the sum of
n independent interarrival times of the first model. This suggests that the following relationship
between the corresponding probability distributions holds:

epνk (t) = pνnk(t) + pνnk+1(t) + ...+ pνnk+n−1(t), n> 2.
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5 Appendix

For the reader’s convenience we give a short proof of the following Mittag-Leffler integral represen-
tation used in (2.22):

Eν ,β(−tν) =
t1−β

π

∫ +∞

0

rν−β e−r t sin (νπ)

[rν + cos(νπ)]2+ sin2(νπ)

�

sin
�

βπ
�

sin (νπ)
[rν − cos(νπ)] + cos(βπ)

�

dr,

(5.1)
for 0 < ν < 1 and 0 < β < ν + 1. We derive (5.1) by starting from the series expression of the
Mittag-Leffler function:

Eν ,β(−tν)

=
∞
∑

m=0

(−1)m tνm

Γ(νm+ β)
sin(
�

νm+ β)π
�

π

π

sin(
�

νm+ β)π
�

=
1

π

∞
∑

m=0

(−1)m tνm

Γ(νm+ β)
sin(
�

νm+ β)π
�

π
Γ(1− νm− β)Γ(νm+ β)

=
t1−β

π

∞
∑

m=0

(−1)m

Γ(νm+ β)
sin(
�

νm+ β)π
�

∫ +∞

0

e−r t r−νm−βdr

∫ +∞

0

e−y yνm+β−1d y

=
t1−β

π

∞
∑

m=0

(−1)m

Γ(νm+ β)
sin(
�

νm+ β)π
�

∫ +∞

0

e−r t

 

∫ +∞

0

e−r y yνm+β−1d y

!

dr

=
t1−β

π

∫ +∞

0

e−r t

 

∫ +∞

0

e−r y yβ−1
∞
∑

m=0

(−1)m yνm

Γ(νm+ β)
eiπνm+iπβ − e−iπνm−iπβ

2i
d y

!

dr

=
t1−β

2πi

∫ ∞

0

d y

∫ ∞

0

e−r(y+t) yβ−1
�

eiπβ Eν ,β(−yν eiπν)− e−iπβ Eν ,β(−yν e−iπν)
�

dr

=
t1−β

2πi

∫ ∞

0

e−r t

�

eiπβ rν−β

rν + eiπν − e−iπβ rν−β

rν + e−iπν

�

dr

=
t1−β

π

∫ ∞

0

e−r t rν−β
rν sin(πβ) + sin(π(β − ν))

r2ν + 2rν cos(πν) + 1
dr

=
t1−β

π

∫ ∞

0

e−r t rν−β
sin(πν)

(rν + cos(πν))2+ sin2(πν)
×

×
�

rν
sin(πβ)
sin(πν)

+
sin(πβ) cos(πν)− sin(πν) cos(πβ)

sin(πν)

�

dr.

From the previous expression, formula (5.1) easily follows and, for β = ν , it reduces to

Eν ,ν(−tν) =
t1−ν

π

∫ +∞

0

rν e−r t sin (νπ)

[rν + cos(νπ)]2+ sin2(νπ)
dr. (5.2)
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As a check of (5.2) we can study the limit for ν → 1 :

Eν ,ν(−tν) =
t1−ν

νπ

∫ +∞

0

r
1
ν e−r

1
ν t sin (νπ)

[r + cos(νπ)]2+ sin2(νπ)
dr

=
t1−ν

2πν

∫ +∞

0

r
1
ν e−r

1
ν t

 

∫ +∞

−∞
e−irβ−|β | sin(πν)−iβ cos(πν)dβ

!

dr

ν→1→
1

2π

∫ +∞

0

re−r t

 

∫ +∞

−∞
e−irβ+iβdβ

!

dr

=

∫ +∞

0

re−r tδ(r − 1)dr = e−t = E1,1(−t).

For large t, the following approximations follow from (5.1) and (5.2):

Eν ,β(−tν)'

(

Γ(ν−β+1)
πtν

sin
�

(β − ν)π
�

, ν 6= β
Γ(ν+1)
πt2ν sin (νπ) , ν = β

.

In the particular case where β = 1, formula (5.1) reduces to

Eν ,1(−tν) =
sin (νπ)
π

∫ +∞

0

rν−1e−r t

r2ν + 2rν cos(νπ) + 1
dr. (5.3)

Alternatively, we can rewrite (5.3) in a form which permits us to interpret it as the mean of a Cauchy
random variable:

Eν ,1(−tν) =
1

π

∫ +∞

0

sin (νπ)

[rν + cos(νπ)]2+ sin2(νπ)
rν−1e−r t dr (5.4)

=
1

πν

∫ +∞

0

sin (νπ)

[r + cos(νπ)]2+ sin2(νπ)
e−r1/ν t dr

= EX

�

1

ν
e−tX 1/ν

1[0,∞)

�

,

where X is distributed as a Cauchy with parameters − cos(πν) and sin (νπ) . For ν = 1, we can
write (5.4), by means of the characteristic function of a Cauchy random variable, as follows:

Eν ,1(−tν) =
1

2πν

∫ +∞

0

e−r1/ν t

 

∫ +∞

−∞
e−irβ−|β | sin(πν)−iβ cos(πν)dβ

!

dr (5.5)

ν→1−→
∫ +∞

0

e−r tδ(r − 1)dr = e−t = E1,1(−t).
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We study now a similar expansion for the Wright function, valid for any 0 < ν < 1 and β 6= 1. By
following the same steps as in the proof of (5.1), we have that

Wν ,β(−tν)

=
∞
∑

m=0

(−t)νm

m!Γ(νm+ β)

=
t1−β

2πi

∫ ∞

0

d y

∫ ∞

0

e−r(y+t) yβ−1
�

eiπβWν ,β(−yν eiπν)− e−iπβWν ,β(−yν e−iπν)
�

dr

=
t1−β

2πi



eiπβ

∫ ∞

0

e−r t
∞
∑

m=0

(−eiπν)m

m!Γ(νm+ β)
Γ(νm+ β)

rβ+νm
dr+

−e−iπβ

∫ ∞

0

e−r t
∞
∑

m=0

(−e−iπν)m

m!Γ(νm+ β)
Γ(νm+ β)

rβ+νm
dr





=
t1−β

2πi

∫ ∞

0

e−r t

rβ

�

eiπβ− eiπν

rν − e−iπβ− e−iπν

rν

�

dr

=
t1−β

π

∫ ∞

0

e−r t

rβ
e−

cos(πν)
rν







eiπβ− i sin(πν)π
πrν − e−iπβ+ i sin(πν)π

πrν

2i






dr

=
t1−β

π

∫ ∞

0

e−r t

rβ
e−

cos(πν)
rν sin

�

π

�

β −
sin(πν)
πrν

��

dr.

References

[1] Beghin, L. (2008), Pseudoprocesses governed by higher-order fractional differential equa-
tions, Electronic Journ. Prob., 13, n.16, 467-485. MR2386739 (2009g:60048)

[2] Beghin, L., Orsingher, E. (2009), Fractional Poisson processes and related planar random
motions, Electronic Journ. Prob., 14, n.61, 1790-1826.MR2535014

[3] Beghin, L., Orsingher, E. (2009), Poisson-type processes governed by fractional and higher-
order recursive differential equations, arXiv:0910.5855v1, [math.PR], 30 Oct. 2009.

[4] Beghin, L., Orsingher, E. (2010), Moving randomly amid scattered obstacles, Stochastics, vol.
82, n.2, 201-229.

[5] Cahoy, D.O. (2007), Fractional Poisson process in terms of α-stable densities, Ph.D. Thesis,
Case Western University.

[6] Di Crescenzo, A. (2001), On random motions with velocities alternating at Erlang-distributed
random times, Adv. in Appl. Probab. 33 (3), 690–701.MR1860096 (2002h:60231)

[7] Di Crescenzo, A. (2002), Exact transient analysis of a planar random motion with three
directions, Stoch. Stoch. Rep., 72, n. 3-4, 175–189. MR1897914 (2003c:60091)

707

http://www.ams.org/mathscinet-getitem?mr=2386739
http://www.ams.org/mathscinet-getitem?mr=2535014
http://www.ams.org/mathscinet-getitem?mr=1860096
http://www.ams.org/mathscinet-getitem?mr=1897914


[8] Gorenflo R., Mainardi F. (1997), Fractional calculus, integral and differential equations of
fractional order, in Fractals and Fractional Calculus in Continuum Mechanics, A.Carpinteri and
F.Mainardi Editors, Springer Verlag, Wien, n.378, Series CISM Courses and Lecture Notes,
223-276. MR1611585 (99g:26015)

[9] Gradshteyn, I. S., Ryzhik, I. M. (2000), Table of integrals, series, and products. Translated
from the Russian. Sixth edition. Translation edited and with a preface by Alan Jeffrey and
Daniel Zwillinger. Academic Press, Inc., San Diego, CA. MR1773820 (2001c:00002)

[10] Jumarie, G. (2001), Fractional master equation: non-standard analysis and Liouville-
Riemann derivative, Chaos, Solitons and Fractals, 12, 2577-2587. MR1851079 (2003i:82069)

[11] Lachal, A. (2006), Cyclic random motions in Rd -space with n direction,. ESAIM Probab. Stat,.
10, 277–316. MR2247923 (2007k:60036)

[12] Lageras, A. N (2005), A renewal-process-type expression for the moments of inverse subor-
dinators, Journ. of Applied Prob., 42, 1134–1144. MR2203828 (2007c:60089)

[13] Laskin, N. (2003), Fractional Poisson process, Communications in Nonlinear Science and Nu-
merical Simulation, 8, 201-213. MR2007003 (2004j:60101)

[14] Mainardi F. (1996), The fundamental solutions for the fractional diffusion-wave equation,
Applied Mathematics Letters, 9, n.6, 23-28. MR1419811 (97h:35132)

[15] Mainardi F. (1996), Fractional relaxation-oscillation and fractional diffusion-wave phenom-
ena, Chaos, Solitons and Fractals, 7, n.9, 1461-1477. MR1409912 (97i:26011)

[16] Mainardi F., Raberto, M., Gorenflo R., Scalas E. (2000), Fractional calculus and continuous-
time finance II: the waiting-time distribution, Physica A, 287, 468-481.

[17] Mainardi F., Gorenflo R., Scalas E. (2004), A fractional generalization of the Poisson pro-
cesses, Vietnam Journ. Math., 32, 53-64. MR2120631

[18] Mainardi F., Gorenflo R., Vivoli A. (2005), Renewal processes of Mittag-Leffler and Wright
type, Fractional Calculus and Applied Analysis, 8, (1), 7-38. MR2179226

[19] Mainardi, F., Gorenflo R., Vivoli A. (2007), Beyond the Poisson renewal process: A tutorial
survey, Journ. of Computational and Applied Mathematics, 205, 725-735. MR2329648

[20] Orsingher, E., Beghin, L. (2004), Time-fractional equations and telegraph processes
with Brownian time, Probability Theory and Related Fields, 128, 141-160. MR2027298
(2005a:60056)

[21] Orsingher, E., Beghin, L. (2009), Fractional diffusion equations and processes with
randomly-varying time, Annals of Probability, 37 (1), 206-249. MR2489164 (2010b:60116)

[22] Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
MR1658022 (99m:26009)

[23] Pogorui, A.A., Rodrìguez-Dagnino, R.M. (2005), One-dimensional semi-Markov evolutions
with general Erlang sojourn times, Random Oper. Stoch. Equat., 13, (4), 399-405. MR2183564
(2007g:60107)

708

http://www.ams.org/mathscinet-getitem?mr=1611585
http://www.ams.org/mathscinet-getitem?mr=1773820
http://www.ams.org/mathscinet-getitem?mr=1851079
http://www.ams.org/mathscinet-getitem?mr=2247923
http://www.ams.org/mathscinet-getitem?mr=2203828
http://www.ams.org/mathscinet-getitem?mr=2007003
http://www.ams.org/mathscinet-getitem?mr=1419811
http://www.ams.org/mathscinet-getitem?mr=1409912
http://www.ams.org/mathscinet-getitem?mr=2120631
http://www.ams.org/mathscinet-getitem?mr=2179226
http://www.ams.org/mathscinet-getitem?mr=2329648
http://www.ams.org/mathscinet-getitem?mr=2027298
http://www.ams.org/mathscinet-getitem?mr=2489164
http://www.ams.org/mathscinet-getitem?mr=1658022
http://www.ams.org/mathscinet-getitem?mr=2183564


[24] Prabhakar T.R. (1971), A singular integral equation with a generalized Mittag Leffler function
in the kernel, Yokohama Math. J. 19, 7–15. MR0293349

[25] Repin O.N., Saichev, A.I. (2000), Fractional Poisson law, Radiophysics and Quantum Electron-
ics, 43 (9), 738-741. MR1910034

[26] Saji Kumar V.R., Pillai, R.N. (2006), Single server queue with batch arrivals and α-Poisson
distribution, Calcutta Stat. Assoc. Bull., 58, n.229-230, 93-103. MR2305408 (2007m:60282)

[27] Saxena, R.K., Mathai, A.M., Haubold, H.J. (2006), Fractional reaction-diffusion equations,
Astrophysics and Space Science, 305, 289-296.

[28] Saxena, R.K., Mathai, A.M., Haubold, H.J., (2006), Solutions of fractional reaction-diffusion
equations in terms of Mittag-Leffler functions, Intern. Journ. Scient. Research, 15, 1-17.
arXiv:0708.2265 (August 2007).

[29] Shukla A.K., Prajapati, J.C., (2007), On a generalization of Mittag-Leffler function and their
properties, Journ. Math. Anal. Appl., 336, 797-811. 33E12 (33C15 33E20 44A20)

[30] Uchaikin, V.V., Sibatov, R.T. (2008), Fractional theory for transport in disordered semicon-
ductors, Communic. Nonlinear Sciences and Numerical Simulation, 13, 715-727. MR2381497
(2008k:82136)

709

http://www.ams.org/mathscinet-getitem?mr=0293349
http://www.ams.org/mathscinet-getitem?mr=1910034
http://www.ams.org/mathscinet-getitem?mr=2305408
http://www.ams.org/mathscinet-getitem?mr=2381497

	Introduction
	First-type fractional recursive differential equation
	The solution
	Properties of the corresponding process
	The probability generating function

	Second-type fractional recursive differential equation
	The solution
	The probability generating function
	Properties of the corresponding process
	The special case =1

	Conclusions
	Appendix
	References

