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Abstract

We consider the behaviour of a continuous super-Brownian motion catalysed by a random
medium with infinite overall density under the hydrodynamic scaling of mass, time, and
space. We show that, in supercritical dimensions, the scaled process converges to a macro-
scopic heat flow, and the appropriately rescaled random fluctuations around this macroscopic
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flow are asymptotically bounded, in the sense of log-Laplace transforms, by generalised stable
Ornstein-Uhlenbeck processes. The most interesting new effect we observe is the occurrence
of an index-jump from a ‘Gaussian’ situation to stable fluctuations of index 1 + γ where
γ ∈ (0, 1) is an index associated to the medium
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1 Introduction and main results

1.1 Motivation and background

In order to describe the long-term behaviour of infinite interacting spatial particle systems with
mass preservation on average, limit theorems under mass-time-space rescaling are an established
tool. A typical feature that can be captured by this means is the clumping behaviour of spatial
branching processes in low dimensions: In some models, for a critical scaling one can observe
convergence to a nontrivial field of isolated mass clumps. The spatial contraction allows to
get hold of large mass clumps in remote locations, and the index of mass-rescaling serves as a
measure of the strength of the clumping effect, quantifying the degree of intermittency. In some
of these results a macroscopic time dependence can be retained, giving insight in the long-time
developments of the clumps. For a recent result in this direction, see Dawson et al. (DFM02).

In higher dimensions one does not expect to observe clumping under mass-time-space rescaling,
but convergence to a non-random mass flow, the hydrodynamic limit. In this case one can hope
to get a deeper understanding from the investigation of fluctuations around this limit. Such
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fluctuations were studied by Holley and Stroock (HS78) and Dawson (Daw78), and their results
were later refined and extended, e.g. by Dittrich (Dit87). There is also a large body of literature
on hydrodynamic limits of interacting particle systems, see e.g. (DMP91; KL99; Spo91). Our
main motivation behind this paper is to investigate the possible effects on fluctuations around
the hydrodynamic limit if the original process is influenced by a random medium, which in our
model acts as a catalyst for the local branching rates.

In Dawson et al. (DFG89), fluctuations under mass-time-space rescaling were derived for a
class of spatial infinite branching particle systems in Rd (with symmetric α–stable motion and
(1 + β)–branching) in supercritical dimensions in a random medium with finite overall density.
This leads to generalized Ornstein-Uhlenbeck processes which are the same as for the model in the
constant (averaged) medium. In other words, for the log-Laplace equation the governing effect
is homogenization: After rescaling, the equation approximates an equation with homogeneous
branching rate, the medium is simply averaged out. The nature of the fluctuations for the case
of a medium with infinite overall density remained unresolved over the years.

The purpose of the present paper is to get progress in this direction. Our main result shows that
a medium with an infinite overall density can have a drastic effect on the fluctuation behaviour
of the model under critical rescaling in supercritical dimensions, and homogenization is no longer
the effect governing the macroscopic behaviour. In fact, despite the infinite overall density of
the medium, we still have a law of large numbers under a certain mass-time-space rescaling. But
under this scaling, the variances (given the medium) blow up, and the related fluctuations do
not obey a central limit theorem. However, fluctuations can be described to some degree by a
stable process.

To be more precise, we start with a branching system with finite variance given the medium,
considered as a branching process with a random law, where this randomness of the laws comes
from the randomness of the medium (quenched approach). Under a mass-time-space rescaling,
the random laws of the fluctuations are asymptotically bounded from above and below by the
laws of constant multiples of a generalized Ornstein-Uhlenbeck process with infinite variance.
Here the ordering of random laws is defined in terms of the random Laplace transforms. The
generalized Ornstein-Uhlenbeck process is the same as the fluctuation limit of a super-Brownian
motion with infinite variance branching in the case of a constant medium. In fact, the branching
mechanism is (1 + γ)–branching, where γ ∈ (0, 1) is the index of the medium. Altogether, the
present result is a big step towards an affirmative answer to the old open problem of under-
standing fluctuations in the case of a random medium with infinite overall density. It also leads
to random medium effects which are in line with experiences concerning the clumping behaviour
in subcritical dimensions as in (DFM02).

1.2 Preliminaries: notation

For λ ∈ R, introduce the reference function

φλ(x) := e−λ|x| for x ∈ Rd.

For f : Rd → R, set
|f |λ := ‖f/φλ‖∞
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where ‖ · ‖∞ refers to the supremum norm. Denote by Cλ the separable Banach space of all
continuous functions f : Rd → R such that |f |λ is finite and that f(x)/φλ(x) has a finite limit
as |x| → ∞. Introduce the space

Cexp = Cexp(Rd) :=
⋃
λ>0

Cλ

of (at least) exponentially decreasing continuous test functions on Rd. An index + as in R+ or
C+

exp refers to the corresponding non-negative members.

Let M = M(Rd) denote the set of all (non-negative) Radon measures µ on Rd and d0

a complete metric on M which induces the vague topology. Introduce the space Mtem =
Mtem(Rd) of all measures µ in M such that 〈µ, φλ〉 :=

∫
dµ φλ < ∞, for all λ > 0. We

topologize this set Mtem of tempered measures by the metric

dtem(µ, ν) := d0(µ, ν) +
∞∑
n=1

2−n
(
|µ− ν|1/n ∧ 1

)
for µ, ν ∈Mtem .

Here |µ− ν|λ is an abbreviation for
∣∣〈µ, φλ〉− 〈ν, φλ〉∣∣. Note that Mtem is a Polish space (that

is, (Mtem ,dtem) is a complete separable metric space), and that µn → µ in Mtem if and only
if

〈µn , ϕ〉 −→
n↑∞

〈µ, ϕ〉 for ϕ ∈ Cexp .

Probability measures will be denoted as P,P,P, whereas E,E, E and Var,Var,Var refer to the
corresponding expectation and variance symbols.

Let p denote the standard heat kernel in Rd given by

pt(x) := (2πt)−d/2 exp
[
− |x|2

2t

]
for t > 0, x ∈ Rd.

Write W =
(
W, (Ft)t≥0 , Px, x ∈ Rd

)
for the corresponding (standard) Brownian motion in Rd

with natural filtration, and S = {St : t ≥ 0} for the related semigroup. Wt and St are formally
set to W0 and S0 , respectively, if t < 0.

Let ` denote the Lebesgue measure on Rd. Write B(x, r) for the closed ball around x ∈ Rd

with radius r > 0. In this paper, G denotes the Gamma function.

With c = c(q) we always denote a positive constant which (in the present case) might depend
on a quantity q and might also change from place to place. Moreover, an index on c as c(#) or
c# will indicate that this constant first occurred in formula line (#) or (for instance) Lemma #,
respectively. We apply the same labelling rules also to parameters like λ and k.

1.3 Modelling of catalyst and reactant

Of course, there is some freedom in choosing the model we want to work with. To avoid unnec-
essary limit procedures, we work on Rd and with continuous-state branching as the branching
system, namely with continuous super-Brownian motion, which is a spatial version of Feller’s
branching diffusion. The branching rate of an intrinsic ‘particle’ varies in space and in fact is
selected from a random field to be specified. In this context, it is convenient to speak also of
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the random field as the catalyst, and of the branching system given the random medium as the
reactant.

First we want to specify the catalyst. In our context, a very natural way is to start from a stable
random measure Γ on Rd with index γ ∈ (0, 1) determined by its log-Laplace functional

− log E exp 〈Γ,−ϕ〉 =
∫
dz ϕγ(z) for ϕ ∈ C+

exp . (1)

(The letter P always stands for the law of the catalyst, whereas P is reserved for the law of the
reactant given the catalyst.) See, for instance, (DF92, Lemma 4.8) for background concerning
Γ. Clearly, Γ is a spatially homogeneous random measure with independent increments and
infinite expectation. Γ has a simple scaling property,

Γ(k dz) L= kd/γ Γ(dz) for k > 0, (2)

where L= refers to equality in law. However, Γ is a purely atomic measure, hence, its atoms
cannot be hit by a Brownian path or a super-Brownian motion in dimensions d ≥ 2. Thus,
Γ cannot serve directly as a catalyst for a non-degenerate reaction model based on Brownian
particles in higher dimensions. Therefore we look at the density function after smearing out Γ
by the (non-normalized) function ϑ1 , where ϑr := 1B(0,r) , r > 0, that is,

Γ1(x) :=
∫

Γ(dz) ϑ1(x− z) for x ∈ Rd. (3)

In the sequel, the unbounded function Γ1 with infinite overall density will play the rôle of the
random medium: It will act as a catalyst that determines the spatially varying branching rate
of the reactant. Once again, smoothing is needed, since otherwise the medium will not be hit by
an intrinsic Brownian reactant particle. In our proofs, the independence and scaling properties
of Γ will be advantageous, though one would expect analogous results to hold for quite general
random media with infinite overall density.

Consider now the continuous super-Brownian motion X = X[Γ1] in Rd, d ≥ 1, with random
catalyst Γ1. More precisely, for almost all samples Γ1, this is a continuous time-homogeneous
Markov process X = X[Γ1] = (X, Pµ, µ ∈Mtem) with log-Laplace transition functional

− log Eµexp 〈Xt ,−ϕ〉 =
〈
µ, u(t, · )

〉
for ϕ ∈ C+

exp , µ ∈Mtem , (4)

where u = u[ϕ,Γ1] =
{
u(t, x) : t ≥ 0, x ∈ Rd

}
is the unique mild non-negative solution of the

reaction diffusion equation

∂

∂t
u(t, x) = 1

2∆u(t, x)− %Γ1(x)u2(t, x) for t ≥ 0, x ∈ Rd, (5)

with initial condition u(0, · ) = ϕ. Here % > 0 is an additional parameter (for scaling purposes).
For background on super-Brownian motion we recommend (Daw93), (Eth00), or (Per02), and
for a survey on catalytic super-Brownian motion, see e.g. (DF02) or (Kle00).

From Dawson and Fleischmann (DF83; DF85) the following dichotomy concerning the long-term
behaviour of X is basically known (although there the phase space is Zd and the processes are
in discrete time): Starting from the Lebesgue measure X0 = `, the process X dies locally in law
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as t ↑ ∞ if d ≤ 2/γ (recall that 0 < γ < 1 is the index of the random medium Γ1), whereas in
all higher dimensions one has persistent convergence in law to a non-trivial limit state denoted
by X∞ . From now on, we restrict our attention to (supercritical) dimensions d > 2/γ.

We are interested in the large scale behaviour of X.

1.4 Main results of the paper

Introduce the scaled processes Xk, k > 0, defined by

Xk
t (B) := k−dXk2t(kB) for t ≥ 0, B ⊆ Rd Borel. (6)

This hydrodynamic rescaling leaves the underlying Brownian motions invariant (in law), and the
expectation of the scaled process is the heat flow:

EµXk
t = St µ

k for X0 = µ ∈Mtem .

In particular, if X is started with the Lebesgue measure `, the expectation is preserved in time.
We also define the critical scaling index

κc :=
γd− 2
1 + γ

> 0. (7)

Theorem 1 (Refined law of large numbers). Suppose d > 2/γ. Start X with k–dependent
initial states X0 = µk ∈Mtem such that Xk

0 = µ ∈Mtem for k > 0. Let t ≥ 0 and κ ∈ [0,κc).
Then

(a) in P-probability, kκ(Xk
t − Stµ

)
=⇒
k↑∞

0 in Pµk
-law;

(b) in EPµk
-law, kκ(Xk

t − Stµ
)

=⇒
k↑∞

0.

The refined law of large numbers is actually a by-product of the proofs of our main result,
Theorem 2, as will be explained immediately after Proposition 15. Convergence in law will be
shown via Laplace transforms, which is in contrast to (DFG89), where Fourier transforms are
used. This is possible although the fluctuations are signed objects. Indeed, these fluctuations
themselves are deviations from non-negative Xk, and related stable limiting quantities have
skewness parameter β = 1, for which Laplace transforms are meaningful. In our main result,
Laplace transforms will enable us to use stochastic ordering (see also Remark 4).

For x ∈ Rd we put

en(x) :=

{
log+

(
|x|−1

)
if d = 4,

|x|4−d if d ≥ 5,
(8)

and for µ ∈Mtem , and λ > 0,

Enλ(µ) :=
∫
µ(dx)φλ(x)

∫
µ(dy)φλ(y) en(x− y). (9)

Note that Enλ(δx) ≡ ∞ if d > 3.
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Theorem 2 (Asymptotic fluctuations). Suppose d > 2/γ. Start X with k–dependent initial
states X0 = µk ∈ Mtem such that Xk

0 = µ ∈ Mtem for k > 0. In the case d > 3, suppose
additionally that µ is a measure of finite energy in the sense that Enλ(µ) < ∞ for all λ > 0.
If κ = κc , then there exists constants c > c > 0 such that for any ϕ1, . . . , ϕn ∈ C+

exp and
0 =: t0 ≤ t1 ≤ · · · ≤ tn , in P–probability,

lim sup
k↑∞

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]

≤ exp

[
c

〈
µ,

n∑
i=1

∫ ti

ti−1

dr Sr

(( n∑
j=i

Stj−rϕj

)1+γ)〉] (10)

and

lim inf
k↑∞

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]

≥ exp

[
c

〈
µ,

n∑
i=1

∫ ti

ti−1

dr Sr

(( n∑
j=i

Stj−rϕj

)1+γ)〉]
.

(11)

Explicit values of c and c are given in (37) and (94), respectively. Clearly, a statement of the
form

lim sup
k↑∞

ξk ≤ c in P–probability

means that
P
(

sup
k≥n

ξk > c+ ε
)
−→
n↑∞

0 for all ε > 0.

Remark 3 (Generalized Ornstein-Uhlenbeck process). The right-hand sides of (10) and
(11) are the Laplace transforms of the finite-dimensional distributions of different multiples of a
process Y taking values in the Schwartz space of tempered distributions. This process Y can be
called a generalized Ornstein-Uhlenbeck process as it solves the generalized Langevin equation,

dYt = 1
2∆Yt dt+ dZt for t ≥ 0, Y0 = 0,

where dZt/dt is a (1 + γ)–stable noise, i.e. Z is the process with independent increments with
values in the Schwartz space such that, for 0 ≤ s ≤ t and ϕ ∈ C+

exp,

Ee−〈Zt−Zs,ϕ〉 = exp
[ ∫ t

s
dr
〈
Srµ, ϕ

1+γ
〉]
.

Y is described in detail in (DFG89, Section 4) in a Fourier setting, where it appeared as the
hydrodynamic fluctuation limit process corresponding to super-Brownian motion with finite
mean branching rate, but with infinite variance (1 + γ)–branching. Recall that the Markov
process Y has log-Laplace transition functional

− logE
{
exp 〈Yt ,−ϕ〉

∣∣ Y0

}
= 〈Y0, Stϕ〉+

〈
µ, v(t, · )

〉
for ϕ ∈ C+

exp ,
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where v = v[ϕ] =
{
v(t, x) : t ≥ 0, x ∈ Rd

}
solves

∂

∂t
v(t, x) = 1

2∆v(t, x) + (Stϕ)1+γ (x)

with initial condition v(0, · ) = 0.
(12)

In particular, in our limit procedure the finite variance property of the original process given
the medium is lost and, by a subtle averaging effect, an index jump of size 1− γ > 0 occurs. 3

Remark 4 (Stochastic ordering). The stochastic ordering of the random laws in our asymp-
totic bounds in (10) and (11) is well-known in queueing and risk theory, see (MS02) for back-
ground. 3

Remark 5 (Existence of a fluctuation limit). Theorem 2 leaves open, whether a fluctuation
limit exists in P–probability. Naturally, one would expect the limit to be an Ornstein-Uhlenbeck
type process driven by a singular process, as the infinite mean fluctuations should produce
singularities which get smoothed out by the rescaled Gaussian dynamics. Since the environment
has independent increments one would expect the same for the singularities due to the high-
dimensional setting. However, the spatial correlations make the random environment setting
harder to study than the analogous infinite variance branching setting. Therefore this heuristic
cannot explain the exact form of limiting fluctuations. 3

Remark 6 (Variance considerations). In the case µk ≡ `, for ϕ ∈ Cexp , the P–random
variance

Var`
[
kκ〈Xk

t − Stµ, ϕ〉
]

= k2κ Var`〈Xk
t , ϕ〉 (13)

= 2% k2κ−2d

∫ k2t

0
ds

∫
dx Γ1(x)

[
Sk2t−sϕ (k−1· )

]2(x)
equals (by scaling) approximately

2% k2κ−2d+2+d/γ

∫ t

0
ds

∫
Γ(dz) [Ssϕ]2(z) as k ↑ ∞.

Hence, for κ satisfying

0 ≤ κ < κvar :=
(2γ − 1)d− 2γ

2γ
, (14)

implying γ ∈ (1
2 , 1) and d > 2γ/(2γ−1), the random variances (13) converge to zero as k ↑ ∞,

yielding the refined law of large numbers, Theorem 1(a), whereas for κ > κvar these variances
explode. Note that κvar < κc , since (γ − 1)(d − 2γ) < 0. Therefore a quenched variance
consideration as in (13) can only imply a law of large numbers in the restricted case (14). Of
course, annealed variances are infinite already for fixed k, which follows from (13). 3

1.5 Heuristics, concept of proof, and outline

For this discussion we first focus on the case n = 1 in Theorem 2. From (4), (5), and scaling,

log Eµk
exp
[
−kκ〈Xk

t − Stµ, ϕ〉
]

=
〈
µ, kκStϕ− uk(t, · )

〉
, (15)
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where uk solves the (scaled) equation

∂

∂t
uk(t, x) = 1

2∆uk(t, x) − k2−d %Γ1(kx)u2
k(t, x)

with initial condition uk(0, · ) = kκϕ.

(16)

Since v(t, x) := kκStϕ (x) is the solution of

∂

∂t
v(t, x) = 1

2∆v(t, x) with initial condition v(0, · ) = kκϕ,

we see that fk(t, x) := kκStϕ (x)− uk(t, x) solves

∂

∂t
fk(t, x) = 1

2∆fk(t, x) + k2−d %Γ1(kx)
[
kκStϕ (x)− fk(t, x)

]2
with initial condition fk(0, · ) = 0.

(17)

Consider now the critical scaling κ = κc . By our claims in Theorem 2, fk should be asymp-
totically bounded in P–law by solutions v of

∂

∂t
v(t, x) = 1

2∆v(t, x) + c (Stϕ)1+γ (x) (18)

for different constants c. Consequently, in a sense, we have to justify the transition from equation
(17) to the log-Laplace equation (18) corresponding to the limiting fluctuations, recall (12). Here
the x 7→ Γ1(kx) entering into equation (17) are random homogeneous fields with infinite overall
density, and the solutions fk depend on Γ1. But the most fascinating fact here seems to be the
index jump from 2 to 1 + γ, which occurs when passing from (17) to (18). Unfortunately, we
are unable to explain this from an individual ergodic theorem acting on the (ergodic) underlying
random measure Γ.

We take another route. For the heuristic exposition, we simplify as follows. First of all, we
restrict our attention to the case ϕ(x) ≡ θ corresponding to total mass process fluctuations.
Clearly, we have the domination

0 ≤ uk(t, x) ≤ kκ θ.

Replacing one of the uk(t, x) factors in the non-linear term of (16) by kκStϕ (x) ≡ kκ θ, and
denoting the solution to the new equation with the same initial condition by wk , then uk ≥ wk ,
and we can explicitly calculate wk by the Feynman-Kac formula,

wk(t, x) = kκ θ Ex exp
[
− k2−d

∫ t

0
ds %Γ1(kWs) kκ θ

]
. (19)

For the upper bound (10), we may work with wk instead of uk . It suffices to show that
〈µ, kκStϕ− wk(t, ·)〉 converges to 〈µ, v〉 in L2(P), where v is the solution to (18) with constant
c = c. We therefore show that the P–expectations converge, and the P–variances go to 0. In
this heuristics we concentrate on the convergence of E–expectations only, and we simplify by
assuming µ = δx (although formally excluded in the theorem by (9) if d > 3 ). We then have
to show that

Ekκ θ Ex
(

1− exp
[
− k2−d+κ θ

∫ t

0
ds %Γ1(kWs)

])
−→
k↑∞

t c θ1+γ . (20)
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By definition (3) of Γ1 and (1) of Γ, the left hand side of (20) can be rewritten as

kκ θ Ex
(

1− E exp
[
−
∫

Γ(dz) k2−d+κ %θ

∫ t

0
ds ϑ1(kWs − z)

])
= kκ θ Ex

(
1− exp

[
−k(2−d+κ)γ+d (%θ)γ

∫
dz
(∫ t

0
ds 1B(z, 1

k
)(Ws)

)γ])
.

We may additionally introduce the indicator 1{τ≤t} where τ = τ z1/k[W ] denotes the first hitting
time of the ball B(z, 1/k) by the path W starting from x, and we continue with

= kκ θ Ex
(
1− exp

[
−k(2−d+κ)γ+d (%θ)γ

∫
dz 1{τ≤t}

(∫ t

0
ds 1B(z, 1

k
)(Ws)

)γ])
.

Now we look at the Ex–expectation of the exponent term. As the probability of hitting the small
ball B(z, 1/k) is of order k2−d if x 6= z, and the time spent afterwards in the ball is of order
k−2, the expectation of the exponent term is of order k(−d+κ)γ+2 = k−κ converging to zero as
k ↑ ∞. Heuristically this justifies the use of the approximation 1− e−x ≈ x. Note that then the
leading factor kκ is cancelled, and we arrive at a constant multiple of θ1+γ .

According to this simplified calculation, the index jump has its origin in an averaging of ex-
ponential functionals of Γ [as in (1)], generating a transition from θ to θγ . Note that the
smallness of the exponent is largely due to the presence of the indicator of {τ ≤ t}. This fact is
also behind our estimates of variances in Section 3.3.

We recall that the simplification uk  wk which we used in the upper bound is basically a
linearization of the problem, that is we pass from the non-linear log-Laplace equation (16) to
the linear equation

∂

∂t
wk(t, x) = 1

2∆wk(t, x) − k2−d %Γ1(kx) kκθ wk(t, x)

with initial condition uk(0, · ) = kκθ.

In the case of a catalyst with finite expectation as in (DFG89), this linearization was a key step
for deriving the limiting fluctuations. The difference between uk and wk was asymptotically
negligible. But in the present model of a catalyst of infinite overall density, this is no longer the
case. In fact, uk(t, x)− wk(t, x) does not converge to 0 in P–probability. Therefore, our upper
bound is not sharp.

For the lower bound, we replace u2
k in (16) by w2

k , and denoting the solution to the new equation
with the same initial condition by mk . Then

kκθ − uk(t, x) ≥ kκθ −mk(t, x) = k2−d% Ex
∫ t

0
ds Γ1(kWs)w2

k(t− s,Ws).

Inserting for wk the Feynman-Kac representation (19) we arrive at an explicit expression. Sim-
ilarly as above, we then show that

〈
µ, kκStϕ−mk(t, ·)

〉
converges to 〈µ, v〉 in L2(P), where v

is the solution to (18) with constant c = c.

The structure of the remaining paper is as follows. After some basic preparations, in Section 3
we concentrate on the upper bound, whereas the lower bound follows in Section 4.
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2 Preparation: Some basic estimates

In this section we provide some simple but useful tools for the main body of the proof. For basic
facts on Brownian motion, see, for instance, (RY91) or (KS91).

2.1 Simple estimates for the Brownian semigroup

We frequently use the argument (based on the triangle inequality) that, for η > 0 and t > 0,
there exists c = c(η, t) such that for all x,

sup
0<s≤t

∫
dy φη(y) ps(x− y) ≤ φη(x) sup

0<s≤t

∫
dy eη|x−y| ps(x− y) = c φη(x). (21)

Let ϕ ∈ C+
exp . Recall that (s, x) 7→ Ssϕ (x) is uniformly continuous, hence for any ε > 0 one

may choose δ > 0 such that∣∣Srϕ (x)− Ssϕ (y)
∣∣ ≤ ε if |r − s| ≤ δ, |x− y| ≤ δ. (22)

For convenience we expose the following simple fact.

Lemma 7 (Brownian semigroup estimate). For t > 0 and ϕ ∈ C+
exp , there is a λ7 =

λ7(t, ϕ) > 0 and a constant c7 = c7(t, ϕ) such that, for every x ∈ Rd,

φ̃(x) := sup
s≤t

sup
y∈B(x,1)

Ssϕ (y) ≤ c7 φλ7(x). (23)

Note that in all dimensions, for each λ > 0,

sup
x∈Rd

∫
dz φλ(z) |z − x|2−d < ∞. (24)

In fact, on the unit ball B(x, 1), use that
∫
|z|≤1dz |z|

2−d < ∞, and outside this ball, exploit
|z − x|2−d ≤ 1.

We continue with the following observation.

Lemma 8. Let d ≥ 5. Then, for some constant c8 and all x, y ∈ Rd,∫
dz |z − x|2−d |z − y|2−d = c8 |x− y|4−d = c8 en(x− y).

Proof. Clearly, using the definition of the Green function as an integral of the transition densities,∫
dz |z − x|2−d |z − y|2−d = c

∫
dz

∫ ∞

0
ds ps(z − x)

∫ ∞

0
dt pt(z − y).

Interchanging integrations, using Chapman-Kolmogorov, substituting, and interchanging again
gives

= c

∫ ∞

0
dt t pt(x− y) = c |x− y|4−d

∫ ∞

0
dt t pt(ι)

with ι any point on the unit sphere. The latter integral is finite since d > 4, finishing the
proof.
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In dimension four, the situation is slightly more involved.

Lemma 9. Let d = 4 and λ > 0. Then, for some constant c9 = c9(λ) and all x, y ∈ R4,∫
dz φλ(z) |z − x|−2 |z − y|−2 ≤ c9

[
1 + log+

(
|x− y|−1

)]
. (25)

Proof. If |x− y| > 2, then the left hand side of (25) is bounded in x, y. In fact, for z in a unit
sphere around a singularity, say x, we use |z − y| ≥ 1 and estimate (24). Outside both unit
spheres, the integrand is bounded by φλ .

Now suppose |x − y| ≤ 2. We may also assume that x 6= y. As in the proof of Lemma 8, the
left hand side of (25) leads to the integral∫ ∞

0
ds

∫ ∞

0
dt

∫
dz φλ(z) ps(z − x) pt(z − y).

First we additionally restrict the integrals to s, t ≤ |x− y|−1. In this case, we drop φλ(z), use
Chapman-Kolmogorov, substitute, and interchange the order of integration to get the bound∫ 2 |x−y|−1

0
dt t pt(x− y) ≤

∫ 2 |x−y|−3

0
dt t pt(ι) ≤ c

[
1 + log

(
|x− y|−1

)]
.

To see the last step, split the integral at t = 1. To finish the proof, by symmetry in x, y, it
suffices to consider ∫ ∞

0
ds

∫ ∞

|x−y|−1

dt

∫
dz φλ(z) ps(z − x) pt(z − y). (26)

Now, by a substitution,∫ ∞

|x−y|−1

dt pt(z − y) ≤ |z − y|−2

∫ ∞

|x−y|−1 |z−y|−2

dt c t−2 = c |x− y| ≤ 2c. (27)

Plugging (27) into (26) and using the Green’s function again gives the bound

c sup
x∈R4

∫
dz φλ(z) |z − x|−2,

which is finite by (24).

2.2 Brownian hitting and occupation time estimates

Further key tools are the asymptotics of the hitting times of small balls. Recall that τ = τ z1/k[W ]
denotes the first hitting time of the closed ball B(z, 1/k) by the Brownian motion W started
in x. The following results are taken from (LG86), see formula (0a) and Lemma 2.1 there.

Lemma 10 (Hitting time asymptotics and bounds). Suppose d ≥ 3 and fix t > 0. Then
the following results hold.

(a) There is a constant c(28), which depends only on the dimension d, such that

Px(τ <∞) ≤ c(28) k
2−d |z − x|2−d for x, z ∈ Rd. (28)
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(b) There are constants c(29) and λ(29) > 0, depending on d and t, such that for x, z ∈ Rd,

kd−2 Px(τ ≤ t) ≤ c(29)

[
|z − x|2−d + 1

]
exp
[
−λ(29)|z − x|2

]
. (29)

(c) The following convergence holds uniformly in x, z whenever |x− z| is bounded away from
zero,

lim
k↑∞

kd−2 Px(τ ≤ t) = c(30)

∫ t

0
ds ps(z − x), (30)

where c(30) := (d−2)πd/2

G(d/2) (and G is the Gamma function).

(d) Finally, writing τ i := τ zi
1 [W ] for i = 1, 2, there are constants c(31) and λ(31) > 0, depending

on d and t, such that for x, z1, z2 ∈ Rd,

Px
(
τ1 < τ2 < k2t

)
≤ c(31) k

4−2d
(∣∣(z1 − x)/k

∣∣2−d + 1
)

exp
[
− λ(31)

∣∣(z1 − x)/k
∣∣2]

×
(∣∣(z2 − z1)/k

∣∣2−d + 1
)

exp
[
− λ(31)

∣∣(z2 − z1)/k
∣∣2].

(31)

The following two lemmas are consequences of Lemma 10.

Lemma 11. Let d ≥ 3. Fix ϕ ∈ C+
exp , η ≥ 0, and t > 0. Then there are constants c11 and

λ11 such that for x, z ∈ Rd with |x− z| ≥ 1
k ,

Exϕ(Wt)1{τ≤t}
(
k2

∫ t

0
ds ϑ1(kWs − kz)

)η
≤ c11k

2−dφλ7(z)
[
|z − x|2−d + 1

]
exp
[
−λ11|z − x|2

]
. (32)

Proof. Initially, let ϕ be any non-negative function. Using the strong Markov property at time
τ ,

Exϕ(Wt) 1{τ≤t}

(
k2

∫ t

0
ds ϑ1(kWs − kz)

)η
= Ex ϕ(Wt) 1{τ≤t} Ex

{(
k2

∫ t

0
ds ϑ1(kWs − kz)

)η ∣∣∣∣ Fτ} (33)

= Ex ϕ(Wt) 1{τ≤t} g(τ,Wτ ),

where

g(r, y) := Ey
(
k2

∫ t−r

0
ds ϑ1(kWs − kz)

)η
for 0 ≤ r ≤ t and y ∈ ∂B(z, 1/k). But,

g(r, y) ≤ Ey
(∫ ∞

0
ds ϑ1(kWk−2s − kz)

)η
= Eky

(∫ ∞

0
ds ϑ1(Ws − kz)

)η
.
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Note that the right hand side is independent of k, z, y (in the considered range of y), and finite
since in d ≥ 3 all such moments are finite. Consequently, there is a constant c such that
g(r, y) ≤ c. If now ϕ ∈ C+

exp , by the strong Markov property at time τ ,

Exϕ(Wt) 1{τ≤t} = Ex 1{τ≤t} EWτϕ(W̃t−τ ) ≤ Px(τ ≤ t)φλ7(z), (34)

using (23) in the second step. Here the Brownian variable W̃ is subject to the internal expec-
tation operator EWτ . By (29),

Px(τ ≤ t) ≤ c(29)k
2−d[|z − x|2−d + 1

]
exp
[
−λ(29)|z − x|2

]
. (35)

The result follows by combining (34) and (35).

Lemma 12. Let d ≥ 3. Fix η ≥ 0, ϕ ∈ C+
exp, and t > 0. Then there is a constant c12 such that

(a) Ex
(
k2

∫ t

0
ds ϑ1(kWs − kz)

)η
≤ c12 k

2−d |z − x|2−d,

for all x, z ∈ Rd and k ≥ 1.

(b)
∫
dz Exϕ(Wt)1{τ≤t}

(
k2

∫ t

0
ds ϑ1(kWs − kz)

)η
≤ c12k

2−dφλ7(x),

for all x ∈ Rd and k ≥ 1.

Proof. The proof of (a) follows from (33) for ϕ ≡ 1 and (28), the proof of (b) by integrating (32)
and applying (21).

3 Upper bound: Proof of (10)

3.1 Parabolic Anderson model with stable random potential

As motivated in Section 1.5, for κ = κc , ϕ ∈ C+
exp , and k > 0, we look at the mild solution to

the linear equation on R+ × Rd,

∂

∂t
wk(t, x) = 1

2∆wk(t, x)− k2−d %Γ1(kx) kκStϕ (x)wk(t, x)

with initial condition wk(0, · ) = kκϕ.

(36)

This is a parabolic Anderson model with the time-dependent scaled stable random potential
−k2−d %Γ1(kx) kκStϕ (x). We study its fluctuation behaviour around the heat flow:

Proposition 13 (Limiting fluctuations of wk ). Under the assumptions of Theorem 2, for
any ϕ ∈ C+

exp and t ≥ 0, in P–probability,〈
µ, kκStϕ− wk(t, ·)

〉
−→
k↑∞

c
〈
µ,

∫ t

0
dr Sr

(
(St−rϕ)1+γ

)〉
,

where the constant c = c(γ, %) is given by

c := %γ
(d− 2)πd/2

G(d/2)
Eı
(∫ ∞

0
ds ϑ1(Ws)

)γ
, (37)

where ı is any point on the unit sphere of Rd.
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To see how the case n = 1 of (10) follows from Proposition 13, we fix a sample Γ. For ϕ ∈ C+
exp ,

we use the abbreviation

ϕk(x) := ϕ(x/k) for k > 0, x ∈ Rd. (38)

Formulas (4) and (6) give

log Eµk
exp
[
kκ(〈Xk

t ,−ϕ〉 − 〈Stµ,−ϕ〉
)]

= log Eµk
exp
[
〈Xk2t ,−kκ−dϕk〉+ kκ〈Stµ, ϕ〉

]
= −

〈
µk, vk(k2t)

〉
+ kκ〈Stµ, ϕ〉 = 〈µ, kκStϕ〉 −

〈
µkk , k

d vk(k2t, k · )
〉
,

(39)

with vk the mild solution to (5) with initial condition vk(0) = kκ−dϕk . Setting

uk(t, x) := kd vk(k2t, kx) for t ≥ 0, x ∈ Rd, (40)

uk solves

uk(t, x) = kκStϕ (x) − k2−d%

∫ t

0
ds Ss

(
Γ1(k · )u2

k(t− s, · )
)
(x). (41)

Recall that this can be rewritten in Feynman-Kac form as

kκStϕ (x)− uk(t, x)

= kκExϕ(Wt)
(

1− exp
[
− k2−d%

∫ t

0
ds Γ1(kWs)uk(t− s,Ws)

])
.

(42)

Using uk(t− s,Ws) ≤ kκSt−sϕ (Ws) in (42), and the Feynman-Kac representation

wk(t, x) := kκExϕ(Wt) exp
[
− k2−d%

∫ t

0
ds Γ1(kWs) kκSt−sϕ (Ws)

]
, (43)

we arrive at
0 ≤ kκStϕ (x)− uk(t, x) ≤ kκStϕ (x)− wk(t, x). (44)

Hence, the case n = 1 of (10) follows from Proposition 13.

At this point we make the following easy observation on the right hand side of (44), which follows
immediately from (43).

Lemma 14 (Monotone dependence on ϕ). For the solution wk of (36) we have that ϕ 7→
kκStϕ (x)− wk(t, x) is non-decreasing.

Proposition 13 is proved in two steps: In Section 3.2 we show that the expectations converge,
and in Section 3.3 that the variances vanish asymptotically. For this we fix t > 0 and ϕ ∈ C+

exp .
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3.2 Convergence of expectations

Proposition 15 (Convergence of expectations). Let κ = κc . There exists a λ15 > 0 such
that for every ε > 0 there is a k15 = k15(ε) > 0 with∣∣∣∣E(kκStϕ (x)− wk(t, x)

)
− c

∫ t

0
dr Sr(St−rϕ)1+γ(x)

∣∣∣∣ ≤ εφγλ15(x)

for x ∈ Rd, k ≥ k15 , where the constant c is as in (37).

We now show how Theorem 1 follows from this proposition. Turning back to the situation
κ < κc , for both parts of the theorem it suffices to show that in P-probability, for all ε > 0,

Pµk

( ∣∣∣kκ〈Xk
t − Stµ, −ϕ〉

∣∣∣ > ε
)
−→
k↑∞

0.

Abbreviate ξk := 〈Xk
t − Stµ, −ϕ〉. Given δ > 0, we take C > 1 and estimate

P
(
Pµk

(
|kκξk| > ε

)
> δ
)

≤ P
(
Eµk

ek
κcξk > C

)
+ P

(
Pµk

(
|kκξk| > ε

)
> δ, Eµk

ek
κcξk ≤ C

)
. (45)

We first show that C can be chosen such that the first term in (45) is small for all k. Note
from (39) and (44) that

0 ≤ log Eµk
ek

κcξk =
〈
µ, kκcStϕ− uk(t, · )

〉
≤
〈
µ, kκcStϕ− wk(t, · )

〉
.

By Proposition 15, the E-expectation of the right hand term remains bounded in k. By Cheby-
shev’s inequality,

P
(
Eµk

ek
κcξk > C

)
≤ 1

logC
sup
k

E log Eµk
ek

κcξk ,

hence the first term in (45) can be made arbitrarily small, uniformly in k. For the second term,
we first observe

Pµk
(kκξk > ε) = Pµk

(
kκcξk > εkκc−κ) ≤ e−εk

κc−κ
Eµk

ek
κcξk , (46)

and therefore, for sufficiently large k,

P
(
Pµk

(
kκξk > ε

)
> δ

2 , Eµk
ek

κcξk ≤ C
)
≤ P

(
C e−εk

κc−κ
> δ

2

)
= 0. (47)

On the other hand, on the event Eµk
ek

κcξk ≤ C, by (46) we have

Eµk
{kκξk; ξk ≥ 0} =

∫ ∞

0
Pµk

(kκξk > y) dy ≤ C

∫ ∞

0
e−yk

κc−κ
dy = C k−(κc−κ).

Since Eµk
kκξk = 0, the latter implies

−Eµk
{kκξk; ξk ≤ 0} = Eµk

{kκξk; ξk ≥ 0} ≤ C k−(κc−κ),
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and therefore, by Chebychev’s inequality,

Pµk

(
kκξk < −ε

)
≤ −ε−1 Eµk

{kκξk; ξk ≤ 0} ≤ ε−1C k−(κc−κ).

From this we get, for sufficiently large k,

P
(
Pµk

(
kκξk < −ε

)
> δ

2 , Eµk
ek

κcξk ≤ C
)
≤ P

(
ε−1C k−(κc−κ) > δ

2

)
= 0. (48)

Combining (47) and (48), we see that the second term in (45) disappears. This completes the
proof of Theorem 1.

The rest of this section is devoted to the proof of Proposition 15. From now on we assume
κ = κc , which is defined in (7). The proof is prepared by six lemmas. In all these lemmas,
τ = τy1/k[W ] denotes the first hitting time of the ball B(y, 1/k) by the Brownian motion W, and
πx the law of τy1/k[W ] if W is started in x.

Lemma 16. There exists a constant c16 > 0 such that

kd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

(
k2

∫ ∞

M/k2

ds ϑ1/k(W̃s − y)φλ7(y)
)γ

≤ c16M
γ(1−d/2)φγλ7(x) for M > 1, k > 0, x ∈ Rd.

Proof. Note that, for any ι ∈ ∂B(0, 1), by Brownian scaling,

Eι/k k2

∫ ∞

M/k2

ds ϑ1/k(Ws) = Eι
∫ ∞

M
ds ϑ1(Ws)

=
∫ ∞

M
ds Pι

(
|Ws| ≤ 1

)
≤
∫
|y|≤1

dy

∫ ∞

M
ds ps(y) ≤ cM1−d/2. (49)

We now use ϕ ≤ c, Jensen’s inequality, (49), (29), and (21), to get

kd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

(
k2

∫ ∞

M/k2

ds ϑ1/k(W̃s − y)φλ7(y)
)γ

≤ c kd−2

∫
dy φγλ7(y) Ex1τ≤t Eι/k

(
k2

∫ ∞

M/k2

ds ϑ1/k(W̃s)
)γ

≤ cMγ(1−d/2)
∫
dy φγλ7(y)

[
|x− y|2−d + 1

]
exp
[
−λ(29)|x− y|2

]
≤ cMγ(1−d/2)φγλ7(x).

This is the required statement.

Lemma 17. For every δ > 0, there exists a constant c17 = c17(δ) > 0 such that

Exϕ(Wt)
[ ∫

dy
(∫ t

0
ds ϑ1(kWs − y)St−sϕ (Ws)

)γ]2

≤ c17 k
4−4γ+δφγλ7(x),

for all x ∈ Rd and k ≥ 1.
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Proof. Using Brownian scaling in the second, substitution and (23) in the last step, we estimate,

Exϕ(Wt)
[ ∫

dy
(∫ t

0
ds ϑ1(kWs − y)St−sϕ (Ws)

)γ]2

≤ ‖ϕ‖∞
∫∫

dy1dy2 Ex
2∏
i=1

(∫ t

0
ds ϑ1(kWs − yi)St−sϕ (Ws)

)γ
= ‖ϕ‖∞

∫∫
dy1dy2 E0

2∏
i=1

(∫ t

0
ds ϑ1(Wk2s + kx− yi)St−sϕ ( 1

kWk2s + x)
)γ

≤ k−4γ ‖ϕ‖∞
∫∫

dy1dy2 E0

2∏
i=1

(∫ k2t

0
ds ϑ1(Ws − yi) φ̃(yi/k + x)

)γ
. (50)

To study the double integral, denote by τ1, τ2 the first hitting times of the balls B(y1, 1)
respectively B(y2, 1) by the Brownian path W . Pick p > 1 such that 2d + 2(2 − d)/p < 4 + δ,
and q such that 1/p+ 1/q = 1. By Hölder’s inequality,

E0

2∏
i=1

(∫ k2t

0
ds ϑ1(Ws − yi) φ̃(yi/k + x)

)γ
≤
[
P0

(
τ1 < k2t, τ2 < k2t

)]1/p
×
[
E0

2∏
i=1

(∫ ∞

0
ds ϑ1(Ws − yi) φ̃(yi/k + x)

)γq]1/q
.

For the second factor on the right hand side we get, using Cauchy-Schwarz, and the maximum
principle to pass from yi to 0,[

E0

2∏
i=1

(∫ ∞

0
ds ϑ1(Ws − yi) φ̃(yi/k + x)

)γq]1/q
≤

2∏
i=1

(
E0

(∫ ∞

0
ds ϑ1(Ws − yi) φ̃(yi/k + x)

)2γq)1/2q

≤ φ̃γ(y1/k + x) φ̃γ(y2/k + x)
(
E0

(∫ ∞

0
ds ϑ1(Ws)

)2γq)1/q

.

Recall from Lemma 12(a) that the total occupation times of Brownian motion in the unit ball
in d ≥ 3 have moments of all orders. Hence, the latter expectation is finite.

By (31) using substitution in the y-variables,∫∫
dy1dy2 φ̃

γ(y1/k + x) φ̃γ(y2/k + x)
[
P0

(
τ1 < k2t, τ2 < k2t

)]1/p
≤ c

1/p
(31) k

2d+2(2−d)/p
∫
dy1 φ̃

γ(y1 + x)
(
|y1|2−d + 1

)1/p exp
[
−λ(31)|y1|2/p

]
×
∫
dy2 φ̃

γ(y2 + x)
(
|y2|2−d + 1

)1/p exp
[
−λ(31)|y2|2/p

]
≤ c k4+δφγλ7(x), (51)

using (21) in the last step. Plugging (51) into (50) completes the proof.
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Lemma 18. For all ε > 0 there exists δ = δ(ε) > 0 and k18 = k18(ε) > 0, such that

kd−2

∫
dy Ex1t−δ≤τ≤t EWτ

(
k2

∫ t−τ

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
≤ εφγλ7(x) for k ≥ k18 and x ∈ Rd.

Proof. For any δ,M > 0 we have,

kd−2

∫
dy Ex1t−δ≤τ≤t EWτ

(
k2

∫ t−τ

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
≤ kd−2

∫
dy φγλ7(y) Ex1t−δ≤τ≤t EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
(52a)

+ kd−2

∫
dy φγλ7(y) Ex1τ≤t EWτ

(
k2

∫ ∞

M/k2

ds ϑ1/k(W̃s − y)
)γ
. (52b)

We look at (52b) and choose M such that this term is small. Indeed, the inner expectation in
(52b) can be made arbitrarily small (simultaneously for all k and y) by choice of M . Hence we
can use (29) to see that this term can be bounded by εφγλ7(x), for all sufficiently large k, by
choice of M (and independently of δ).

We look at (52a) and choose δ > 0 such that

c(30)M
γ

∫ t

t−δ
ds

∫
dy φγλ7(y) ps(y − x) < εφγλ7(x). (53)

The term (52a) can be bounded from above by

Mγkd−2

∫
dy φγλ7(y)πx[t− δ, t]. (54)

By (30) there exists A ⊂ Rd and k18 ≥ 0 such that, for all x− y ∈ A and k ≥ k18,

kd−2πx[t− δ, t] − c(30)

∫ t

t−δ
ds ps(y − x) < ε

∫ t

0
ds ps(y − x)

and ∫
Ac

dz
[
|z|2−d + 1

]
exp
[
λ7|z| − λ(29)|z|2

]
< ε. (55)

We can thus bound (54), for all k ≥ k18 and x ∈ Rd by

Mγkd−2

∫
dy φγλ7(y)πx[t− δ, t] ≤ c(30)M

γ

∫
x+A

dy φγλ7(y)
∫ t

t−δ
ds ps(y − x)

+ εMγ

∫
dy φγλ7(y)

∫ t

0
ds ps(y − x) + Mγ

∫
x+Ac

dy φγλ7(y) k
d−2πx[0, t].

By (53) the first term is bounded by εφγλ7(x), as is the second term. For the last term we use
the upper bound (29) for kd−2πx[0, t] and then (55) to see the upper bound of εφγλ7(x).
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Lemma 19. For every M > 1 and ε > 0, there exists a k19 = k19(M, ε) > 0 such that

kd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

∣∣∣∣(k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
−
(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τϕ (y)

)γ∣∣∣∣ ≤ εφγλ7(x) for k ≥ k19 , x ∈ R.

Proof. Recall that |aγ − bγ | ≤ |a− b|γ . We use (22) to choose k19 > 1/M such that∣∣Srϕ (x)− Ssϕ (y)
∣∣ ≤ ε1/γ if |r − s| ≤M/k2

19 , |x− y| ≤ 1/k19 .

Hence, for all k ≥ k19 and x ∈ Rd,

kd−2

∫
dy Ex1τ≤tEWτϕ(W̃t−τ )

∣∣∣∣(k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
−
(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τϕ (y)

)γ∣∣∣∣
≤ kd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

×
∣∣St−τ−sϕ (W̃s)− St−τϕ (y)

∣∣)γ
≤ εkd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
.

To complete the proof use Cauchy-Schwarz, (23), (29), and (21), to get

kd−2

∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
≤ kd−2

∫
dy Ex1τ≤t

(
EWτϕ

2(W̃t−τ )
)1/2

×
[
EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)2γ]1/2
≤ c kd−2

∫
dy φλ7(y) Ex1τ≤t

[
E0

(∫ ∞

0
ds ϑ1(Ws)

)2γ]1/2
≤ c

∫
dy φλ7(y)

[
|x− y|2−d + 1

]
exp
[
−λ(29)|x− y|2

]
≤ c φγλ7(x).

This gives the required statement (renaming ε).

Lemma 20. Let M > 1 and c20 := Eι
{
(
∫M
0 ds ϑ1(Ws))γ

}
for ι ∈ ∂B(0, 1). For every ε > 0

there exists a k20 = k20(ε,M) > 0 such that, for all k ≥ k20 and x ∈ Rd,

kd−2

∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ
×
∣∣∣∣EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
EW̃M/k2

ϕ( ˜̃Wt−τ−M/k2)− c20St−τϕ (y)
∣∣∣∣

≤ εφγλ7(x).
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Proof. In a first step we note that, by Brownian scaling, for fixed Wτ ,

EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
EW̃M/k2

ϕ( ˜̃Wt−τ−M/k2)

= E0

(
k2

∫ M/k2

0
ds ϑ1/k( 1

kW̃sk2 − y +Wτ )
)γ
EWτ+ 1

k
W̃M

ϕ( ˜̃Wt−τ−M/k2).

The main contribution to the E0-expectation is coming from the paths W̃ with |W̃M | ≤√
k. Indeed, the remaining part of the integral can be estimated by a constant multiple of

MγP0

{
|W̃M | >

√
k
}
. Therefore we can estimate, with constants c depending on M,

kd−2

∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ
Mγ P0

(
|W̃M | >

√
k
)

≤ c e−k/2M kd−2

∫
dy Px(τ ≤ t)

(
sup
r≤t

Srϕ (y)
)γ

≤ c e−k/2M
∫
dy φγλ7(y)

[
|x− y|2−d + 1

]
exp
[
− λ(29)|x− y|2

]
≤ εφγλ7(x),

for sufficiently large values of k, recalling (29), (23), and (21).

Coming back to the main contribution, we use (22) to choose k large enough such that∣∣Srϕ (w + z)− Ssϕ (y)
∣∣ ≤ ε if |r − s| ≤M/k2, |z| ≤ 1/

√
k, |w − y| ≤ 1/k.

Using this with z = 1
kW̃M and w = Wτ , by (23),

kd−2

∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ E01|W̃M |<
√
k

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
×
∣∣∣E
Wτ+

1
k W̃M

ϕ( ˜̃Wt−τ−M/k2)− Eyϕ( ˜̃Wt−τ )
∣∣∣

≤ εkd−2

∫
dy φγλ7(y) Ex1τ≤t EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
≤ ε

∫
dy φγλ7(y)k

d−2Px (τ ≤ t) E0

(∫ ∞

0
ds ϑ1(W̃s)

)γ
.

The last line is ≤ ε c φγλ7(x) by (29) and (21).

Now it remains to observe that, by Brownian scaling,

kd−2

∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
Eyϕ( ˜̃Wt−τ )

= kd−2

∫
dy Ex1τ≤t

(
St−τϕ (y)

)1+γ EkWτ

(∫ M

0
ds ϑ1(W̃s − y)

)γ
.

For y 6∈ B(x, 1/k) the inner expectation is constant and equals c20 . The contribution coming
from y ∈ B(x, 1/k) is very easily seen to be bounded by a constant multiple of k−2φγλ7(x). This
completes the proof.
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The following lemma is at the heart of our proof of Proposition 15. Recall that πx denotes the
law of τ = τy1/k[W ] for W starting in x.

Lemma 21 (A hitting time statement). For every ε > 0 there exists a k21 = k21(ε) > 0
such that ∣∣∣∣kd−2

∫
dy

∫ t

0
πx(ds)

(
St−sϕ (y)

)1+γ − c(30)

∫ t

0
ds Ss(St−sϕ)1+γ(x)

∣∣∣∣
≤ εφλ7(x) for x ∈ Rd, k ≥ k21 .

Proof. Fix ε > 0. Recall that (s, y) 7→ Ssϕ (y) is uniformly continuous and bounded, and that
there exists R > 0 (dependent on ε) such that

(
Ssϕ (y)

)1+γ ≤ εφλ7(y) for all s ≤ t, |y| > R. We
can therefore choose 0 = t0 ≤ · · · ≤ tn = t such that, for all tj ≤ r, s ≤ tj+1 and y ∈ Rd,∣∣∣(St−sϕ (y)

)1+γ − (St−rϕ (y)
)1+γ∣∣∣ ≤ εφλ7(y). (57)

Using (30) we may find k21 such that, for all k ≥ k21,∣∣∣kd−2πx[tj , tj+1]− c(30)

∫ tj+1

tj

ds ps(x, y)
∣∣∣ < εkd−2πx[tj , tj+1] (58)

for all 0 ≤ j ≤ n− 1 and all x− y ∈ A, where A ⊂ Rd is a set with∫
Ac

dz
[
|z|2−d + 1

]
exp
[
λ7|z| − λ(29)|z|2

]
< ε. (59)

Now we show that for all x ∈ Rd, and k ≥ k21,

kd−2

∫
dy

∫ t

0
πx(ds)

(
St−sϕ (y)

)1+γ
≤ c(30)

∫ t

0
ds
(
Ss(St−sϕ)1+γ

)
(x) + ε φλ7(x). (60)

Indeed, using (57) and (58), we can estimate

kd−2

∫
dy

∫ t

0
πx(ds)

(
St−sϕ (y)

)1+γ
≤ kd−2

∫
dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
]
πx[tj , tj+1]

≤ c(30)

∫
dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
] ∫ tj+1

tj

ds ps(x, y) (61a)

+ ε

∫
dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
]
kd−2πx[tj , tj+1] (61b)

+
∫
x+Ac

dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
]
kd−2πx[tj , tj+1]. (61c)
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We give estimates for the two final summands, the error terms. (61b) can be estimated, using
(29) and (21), by

ε

∫
dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
]
kd−2πx[tj , tj+1] ≤ εc

∫
dy φλ7(y)k

d−2πx[0, t]

≤ εc

∫
dy φλ7(y)

[
|x− y|2−d + 1

]
exp
[
− λ(29)|x− y|2

]
≤ εc φλ7(x).

The error term (61c) can be estimated as follows,∫
x+Ac

dy

n−1∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
]
kd−2πx[tj , tj+1]

≤ c(29)

∫
x+Ac

dy φλ7(y)
[
|x− y|2−d + 1

]
exp
[
− λ(29)|x− y|2

]
≤ c φλ7(x)

∫
x+Ac

dy
[
|x− y|2−d + 1

]
exp
[
λ7|x− y| − λ(29)|x− y|2

]
,

and the integral is smaller than ε by (59). For the first summand, the main term (61a), we argue
that ∫

dy

n∑
j=0

[(
St−tjϕ (y)

)1+γ + εφλ7(y)
] ∫ tj+1

tj

ds ps(x, y)

≤
∫
dy

∫ t

0
ds
[
(St−sϕ (y))1+γ + 2ε φλ7(y)

]
ps(x, y)

≤
∫ t

0
ds Ss

(
(St−sϕ (x))1+γ

)
+ 2ε

∫
dy φλ7(y)

∫ t

0
ds ps(x, y).

The last summand is again bounded by a constant multiple of εφλ7(x). Hence we have verified
(60) and by the analogous argument one can see that, for all k ≥ k21 and x ∈ Rd,

kd−2

∫
dy

∫ t

0
πx(ds)

(
St−sϕ (y)

)1+γ ≥ c(30)

∫ t

0
ds
(
Ss(St−sϕ)1+γ

)
(x)− ε φλ7(x).

This completes the proof.

Proof of Proposition 15. Recall from (43) that

E
(
kκStϕ (x)− wk(t, x)

)
= kκ EExϕ(Wt)

(
1− exp

[
− k2−d+κ%

∫ t

0
ds Γ1(kWs)St−sϕ (Ws)

])
.

We use (1) to evaluate the expectation with respect to the medium.

EkκExϕ(Wt)
(

1− exp
[
− k2−d+κ%

∫ t

0
ds Γ1(kWs)St−sϕ (Ws)

])
(62)

= kκExϕ(Wt)

×
(

1− exp
[
− k(2+κ−d)γ%γ

∫
dy
(∫ t

0
ds ϑ1(kWs − y)St−sϕ (Ws)

)γ])
.

746



We now compare (62) to

kκExϕ(Wt)k(2+κ−d)γ%γ
∫
dy
(∫ t

0
ds ϑ1(kWs − y)St−sϕ (Ws)

)γ
. (63)

Clearly,
x− x2 ≤ 1− e−x ≤ x for x ≥ 0.

By the second inequality, the term (63) is always an upper bound for (62). On the other hand, by
the first inequality and Lemma 17, the difference is bounded from above by a constant multiple
of

kκExϕ(Wt)k2(2+κ−d)γ
[ ∫

dy
(∫ t

0
ds ϑ1(kWs − y)St−sϕ (Ws)

)γ]2
≤ c17k

κ+2(2+κ−d)γ+4−4γ+δ φγλ7(x).

Note that the exponent is negative iff dγ > 2 + δ[1 + γ], hence choosing δ > 0 sufficiently small
justifies the approximation of (62) by (63).

Recall that τ = τy1/k[W ] denotes the first hitting time of the ball B(y, 1/k) by our Brownian
motion W started in x. Now note that (63) equals

kd−2%γ
∫
dy Ex1τ≤t EWτ ϕ(W̃t−τ )

(
k2

∫ t−τ

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
, (64)

where the strong Markov property was used and the value for κ was plugged in. By Lemma 16
we may choose (and henceforth fix) a value M > 1 such that contributions to the innermost
integral coming from s > M/k2, can be bounded by εφγλ7

(x), and additionally that

Eι
(∫ ∞

0
ds ϑ1(W̃s)

)γ
− Eι

(∫ M

0
ds ϑ1(W̃s)

)γ
< ε. (65)

Denoted by c(65) the first expectation in (65). By Lemma 18, if k ≥ k18 , the contribution to (64)
coming from t− δ ≤ τ ≤ t can be made smaller than εφγλ7(x) by choice of δ > 0. Additionally,
by Lemma 7, the δ can be chosen small enough such that

c

∫ t

t−δ
dr Sr(St−rϕ)1+γ(x) < εφλ7(x) for x ∈ Rd.

Fix such a δ from now on.

We let
k(66) :=

√
M/δ (66)

and note that t− τ ≥M/k2 whenever t− δ ≥ τ and k ≥ k(66). Now let k15 := k18 ∨ k19 ∨ k20 ∨
k21 ∨ k(66). It remains to show that∣∣∣∣kd−2%γ

∫
dy Ex1τ≤t−δ EWτϕ(W̃t−τ )

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
− c

∫ t−δ

0
dr Sr(St−rϕ)1+γ(x)

∣∣∣∣ < εφγλ7(x) for k ≥ k15 , x ∈ Rd.
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This will be done in three steps by the triangle inequality. The steps are prepared in Lemmas 19
to 21.

In the first step note that by Lemma 19 we have, for all k ≥ k15 and x ∈ Rd,

kd−2%γ
∫
dy Ex1τ≤t EWτϕ(W̃t−τ )

∣∣∣∣(k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τ−sϕ (W̃s)

)γ
−
(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τϕ (y)

)γ∣∣∣∣ ≤ εφγλ7(x).

We may therefore continue, using the Markov property,

kd−2%γ
∫
dy Ex1τ≤t−δ EWτϕ(W̃t−τ )

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)St−τϕ (y)

)γ
= kd−2%γ

∫
dy Ex1τ≤t−δ

(
St−τϕ (y)

)γ EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
× EW̃M/k2

ϕ( ˜̃Wt−τ−M/k2)

As a second step, by Lemma 20 we have, for all k ≥ k15 and x ∈ Rd,

kd−2%γ
∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ
×
∣∣∣∣EWτ

(
k2

∫ M/k2

0
ds ϑ1/k(W̃s − y)

)γ
EW̃M/k2

ϕ( ˜̃Wt−τ−M/k2)− c20St−τϕ (y)
∣∣∣∣

≤ ε φγλ7(x).

By (65),

kd−2%γ
∫
dy Ex1τ≤t

(
St−τϕ (y)

)γ ∣∣∣c20St−τϕ (y)− c(65)St−τϕ (y)
∣∣∣ < εφγλ7(x).

In the third step we recall that, by Lemma 21, for all k ≥ k19, and x ∈ Rd,∣∣∣∣%γc(65)kd−2

∫
dy

∫ t−δ

0
πx(dr)

(
St−rϕ (y)

)1+γ − c %γ
∫ t−δ

0
Sr(St−rϕ)1+γ(x)

∣∣∣∣< εφγλ7(x),

with c = c(30)c(65) . This completes the proof of Proposition 15. �

3.3 Convergence of variances

In this section we establish that the variances with respect to the medium for the solutions of
the linearized integral equation vanish asymptotically. Recall that t > 0 and ϕ ∈ C+

exp .

Proposition 22 (Convergence of variances). For every µ ∈Mtem satisfying the assumption
in Theorem 2,

lim
k↑∞

Var kκ
∫
µ(dx) Exϕ(Wt) exp

[
− k2−d+κ%

∫ t

0
ds Γ1(kWs)St−sϕ (Ws)

]
= 0.
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The remainder of this section is devoted to the proof of this proposition. Recalling the definition
(3) of Γ1, the variance expression in Proposition 22 equals

k2κ
∫
µ(dx)

∫
µ(dy) Ex⊗Ey ϕ(W 1

t )ϕ(W 2
t ) (67)

×

(
E exp

[
−
∫

Γ(dz) k2−d+κ%
∑
i=1,2

∫ t

0
ds ϑ1(kW i

s − z)St−sϕ (W i
s)
]

−
∏
i=1,2

E exp
[
−
∫

Γ(dz) k2−d+κ%

∫ t

0
ds ϑ1(kW i

s − z)St−sϕ (W i
s)
])
,

where (W 1,W 2) is distributed according to Px⊗Py . Exploiting the Laplace functional (1) of
Γ, (67) can be rewritten as

k2κ
∫
µ(dx)

∫
µ(dy) Ex⊗Ey ϕ(W 1

t )ϕ(W 2
t ) (68)

×

(
exp
[
−
∫
dz k(κ−d)γ%γ

( ∑
i=1,2

k2

∫ t

0
ds ϑ1(kW i

s − z)St−sϕ (W i
s)
)γ]

− exp
[
−
∫
dz k(κ−d)γ%γ

∑
i=1,2

(
k2

∫ t

0
ds ϑ1(kW i

s − z)St−sϕ (W i
s)
)γ])

.

Note that by the elementary inequality

(a+ b)γ ≤ aγ + bγ for a, b ≥ 0, (69)

the argument in the first exponential expression is not smaller than the argument in the second
one. Therefore we may apply the elementary inequality

e−a − e−b ≤ b− a for 0 ≤ a ≤ b, (70)

and a z substitution to get for the non-negative total expression in (68) the upper bound (we
may drop from now on the factor %γ)

k2κ+(κ−d)γ+d
∫
dz

∫
µ(dx)

∫
µ(dy) Ex⊗Ey ϕ(W 1

t )ϕ(W 2
t ) (71)

×
[ ∑
i=1,2

(
k2

∫ t

0
ds ϑ1/k(W

i
s − z)St−sϕ (W i

s)
)γ

−
( ∑
i=1,2

k2

∫ t

0
ds ϑ1/k(W

i
s − z)St−sϕ (W i

s)
)γ]

.

It remains to show that (71) converges to zero as k ↑ ∞. The proof rests solely on the fact that
the square bracket expression vanishes if one of the motions does not hit the ball B(z, 1/k). For
simplification, write now τ [W i] for the first hitting time τ z1/k[W

i] of B(z, 1/k) by the Brownian
motion W i. Hence, we get the bound

k2κ+(κ−d)γ+d
∫
dz

∫
µ(dx)

∫
µ(dy) Ex⊗Ey 1{τ [W 1]≤t} 1{τ [W 2]≤t}

× ϕ(W 1
t )ϕ(W 2

t )
∑
i=1,2

(
k2

∫ t

0
ds ϑ1/k(W

i
s − z)St−sϕ (W i

s)
)γ
,
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where we dropped the subtracted term. Interchanging expectation and summation, and using
independence, we obtain

k2κ+(κ−d)γ+d
∫
dz

∫
µ(dx)

∫
µ(dy)

∑
i=1,2

Ex1{τ [W i]≤t} ϕ(W i
t ) (72)

×
(
k2

∫ t

0
ds ϑ1/k(W

i
s − z)St−sϕ (W i

s)
)γ
Ey1{τ [W j ]≤t} ϕ(W j

t ),

where j = 3− i. Then we may bound (72) by

cγ7k
2κ+(κ−d)γ+d

∫
dz φ̃γ(z)

∫
µ(dx)

∫
µ(dy)

∑
i=1,2

Ex1{τ [W i]≤t} ϕ(W i
t ) (73)

×
(
k2

∫ t

0
ds ϑ1/k(W

i
s − z)

)γ
Ey1{τ [W j ]≤t} ϕ(W j

t ).

By Lemma 11, for all x, y ∈ Rd,

Ey1{τ [W j ]≤t} ϕ(W j
t ) ≤ c k2−dφλ7(z)

[
|z − y|2−d + 1

]
, (74)

and

Ex1{τ [W i]≤t}

(
k2

∫ t

0
ds ϑ1/k(W

i
s − z)

)γ
ϕ(W i

t ) (75)

≤ c φλ7(x)
[
1 + |z − x|2−d

]
k2−d.

Assume for the moment that d ≥ 5. Then, by (24) and Lemma 8, for each λ > 0 there is a
constant c = c(λ), such that∫

dz φλ(z)
[
1 + |z − x|2−d

] [
1 + |z − y|2−d

]
≤ c

[
1 + |x− y|4−d

]
. (76)

If d = 3, the left hand side of (76) is even bounded in x, y. In fact by statement (24) and
Cauchy-Schwarz, it suffices to consider the singularity

∫
|z|≤1dz |z|

2(2−d) <∞. Finally, if d = 4,
by (24) and Lemma 9, estimate (76) holds if |x − y|4−d is replaced by log+

(
|x− y|−1

)
. If we

extend definition (8) by setting en(x) :≡ 1 in the case d = 3, then we can combine the last
three steps to obtain that for each λ > 0 there is a constant c = c(λ), so that for all d ≥ 3,∫

dz φλ(z)
[
1 + |z − x|2−d

] [
1 + |z − y|2−d

]
≤ c

[
1 + en(x− y)

]
. (77)

Based on (74), (75) and (77), from (73) we get the upper bound

c k2κ+(κ−d)γ+d k4−2d

∫
µ(dx)φλ7(x)

∫
µ(dy)φλ7(y)

[
1 + en(x− y)

]
.

By our condition on µ, the latter integral is finite. Moreover, 2κ+(κ−d)γ+d+4−2d < 2−d+κ.
But the last expression is negative, finishing the proof. �
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3.4 Upper bound for finite-dimensional distributions

We use an induction argument to extend the result from the convergence of one-dimensional
distributions to all finite dimensional distributions. Recall that we have to show that, for any
ϕ1, . . . , ϕn and 0 = t0 < t1 < · · · < tn, in P–probability,

lim sup
k↑∞

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]

≤ exp

[
c

〈
µ,

n∑
i=1

∫ ti

ti−1

dr Sr

(( n∑
j=i

Stj−rϕj
)1+γ)〉]

.

(78)

The case n = 1 was shown in the previous paragraphs, so we may assume that it holds for
n− 1 and show that it also holds for n. By conditioning on {Xk(t) : t ≤ tn−1} and applying the
transition functional we get

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]
= Eµk

exp
[ n−1∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ〈Stn−1µ, Stn−tn−1ϕn

〉
−
〈
Xk
tn−1

, uk(tn − tn−1)
〉]
,

where uk is the solution of (41) with ϕ replaced by ϕn . Separating the non-random terms yields

= exp
[〈
Stn−1µ, k

κStn−tn−1ϕn − uk(tn − tn−1)
〉]

× Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ

〈
Xk
tn−1

− Stn−1µ, −ϕn−1 − k−κuk(tn − tn−1)
〉]
.

By (44) and Proposition 13 with starting measure Stn−1µ, in P–probability,

lim sup
k↑∞

exp
[〈
Stn−1µ, k

κStn−tn−1ϕn − uk(tn − tn−1)
〉]

≤ exp
[
c
〈
Stn−1µ,

∫ tn−tn−1

0
dr Sr(Stn−tn−1−rϕn)

1+γ
〉]

= exp
[
c
〈
µ,

∫ tn

tn−1

dr Sr(Stn−rϕn)
1+γ
〉]
.

(79)

It remains to deal with

Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
(80)

+ kκ〈Xk
tn−1

− Stn−1µ, −ϕn−1 − k−κuk(tn − tn−1)
〉]
.
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We first show that (80) is bounded in k in P-probability. Indeed, if non-negative p1, . . . , pn−1

satisfy 1
p1

+ · · ·+ 1
pn−1

= 1, then by Hölder’s inequality we get the upper bound

n−2∏
i=1

(
Eµk

exp
[
pik

κ〈Xk
ti − Stiµ, −ϕi

〉])1/pi

×
(

Eµk
exp
[
pn−1k

κ〈Xk
tn−1

− Stn−1µ, −ϕn−1 − k−κuk(tn − tn−1)
〉])1/pn−1

.

By (10) in the case n = 1, the first line is bounded in P-probability. To deal with the second
line, denote ψ := pn−1

(
ϕn−1 + k−κuk(tn − tn−1)

)
. Calculating the Laplace transform and using

(44), we get the upper bound exp
〈
µ, kκStn−1ψ − wk(tn−1)

〉
, where wk is the solution of (43)

with ϕ replaced by ψ. By the monotonicity in Lemma 14, we can replace ψ by the upper bound
pn−1

(
ϕn−1 + Stn−tn−1ϕn

)
, which does not depend on k. Hence, boundedness in P-probability

follows from Proposition 15.

To identify the lim sup of (80), we rewrite it as

Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ〈Xk

tn−1
− Stn−1µ, −ϕn−1 − Stn−tn−1ϕn

〉
(81)

+ kκ
〈
Xk
tn−1

− Stn−1µ, Stn−tn−1ϕn − k−κuk(tn − tn−1)
〉]
.

Observe that, by the induction assumption, in P–probability,

lim sup
k↑∞

Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ〈Xk

tn−1
− Stn−1µ, −ϕn−1 − Stn−tn−1ϕn

〉]
≤ exp

[
c
〈
µ,

n−2∑
i=1

∫ ti

ti−1

dr Sr

(( n−1∑
j=i

Stj−rϕj
)1+γ) (82)

+
∫ tn−1

tn−2

dr Sr

((
Stn−1−rϕn−1 + Stn−1−rStn−tn−1ϕn

)1+γ)〉]
.

We show below that, for any q ≥ 1,

Eµk
exp
[
qkκ

〈
Xk
tn−1

−Stn−1µ, −Stn−tn−1ϕn + k−κ uk(tn−tn−1)
〉]

=⇒
k↑∞

1. (83)

Let us first see, how (78) follows from this. We denote by Zk the term in the exponent on
the left hand side of (82), by Z the exponent on the right hand side of (82), and by −qYk the
exponent on the left hand side of (83). Note that (82) implies that, in P-probability,

lim sup
k↑∞

Eµk
epZk ≤ ep

1+γZ for all p ≥ 1. (84)
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Applying Cauchy-Schwarz we get

Eµk
eZk+Yk ≤ Eµk

eZk + Eµk
eZk+Yk(1− e−Yk) 1{Yk≥0}

≤ Eµk
eZk +

(
Eµk

e2(Zk+Yk)
)1/2 (

Eµk
(1− e−Yk)2

)1/2
.

By (84), the lim sup of the first term of the second line is bounded by eZ . The second factor in
the second term converges to zero by (83), while the first factor is bounded as seen after (80).
Hence, in P-probability,

lim sup
k↑∞

Eµk
eZk+Yk ≤ eZ , (85)

in other words, (81) is asymptotically bounded from above by

exp
[
c
〈
µ,

n−2∑
i=1

∫ ti

ti−1

dr Sr

(( n−1∑
j=i

Stj−rϕj
)1+γ)

+
∫ tn−1

tn−2

dr Sr

((
Stn−1−rϕn−1 + Stn−rϕn

)1+γ)〉]
.

(86)

Putting together (79) and (86) yields the claimed statement (78) subject to the proof of (83).

To prove (83), we use the Feynman-Kac representation (42). The expectation in (83) equals

exp
〈
µ, qkκEx

(
Stn−tn−1ϕn(Wtn−1)− k−κ uk(tn − tn−1,Wtn−1)

)
×
(
1− exp

[
− k2−d%

∫ tn−1

0
dr Γ1(kWr)Uk(tn−1 − r,Wr)

])〉
,

where Uk is the solution of (41) with ϕ replaced by q
(
Stn−tn−1ϕn − k−κ uk(tn − tn−1)

)
. It

therefore suffices to show that〈
µ, qkκEx

(
Stn−tn−1ϕn(Wtn−1)− k−κ uk(tn − tn−1,Wtn−1)

)
×
(
1− exp

[
− k2−d%

∫ tn−1

0
dr Γ1(kWr)Uk(tn−1 − r,Wr)

])〉
converges in L1(P) to zero. As this term is non-negative and as

Uk(tn−1 − r) ≤ qkκStn−r

(
Stn−tn−1ϕn − k−κ uk(tn − tn−1)

)
≤ qkκStn−rϕn ,

it finally suffices to show that

E

〈
µ, qkκEx

(
Stn−tn−1ϕn(Wtn−1)− k−κ uk(tn − tn−1,Wtn−1)

)
×
(
1− exp

[
− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−rϕn(Wr)

])〉 (87)
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converges to zero. The first factor in the expectation can be expressed using the Feynman-Kac
representation (42) of uk , which gives

q

∫
µ(dx) EEx

(
kκEWtn−1

ϕn(W̃tn−tn−1)

×
(
1− exp

[
− k2−d%

∫ tn−tn−1

0
dr Γ1(kW̃r)uk(tn − tn−1 − r, W̃r)

])
×
(
1− exp

[
− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−rϕn(Wr)

]))
,

which again is dominated by

q

∫
µ(dx) EEx

(
kκEWtn−1

ϕn(W̃tn−tn−1)

×
(
1− exp

[
− qk2−d+κ%

∫ tn−tn−1

0
dr Γ1(kW̃r)Stn−tn−1−rϕn(W̃r)

])
×
(
1− exp

[
− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−rϕn(Wr)

]))
.

We can now multiply the factors out and obtain

q

∫
µ(dx) EExkκEWtn−1

ϕn(W̃tn−tn−1)

×
[(

1− exp
[
− qk2−d+κ%

∫ tn−tn−1

0
dr Γ1(kW̃r)Stn−tn−1−rϕn(W̃r)

])
(88a)

+
(
1− exp

[
− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−rϕn(Wr)

])
(88b)

−
(
1− exp

[
− qk2−d+κ%

∫ tn−tn−1

0
dr Γ1(kW̃r)Stn−tn−1−rϕn(W̃r) (88c)

− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−rϕn(Wr)

])]
.

We can now determine the limit in each of the summands (88a) to (88c) separately. For the first
one we obtain from Proposition 15, as k ↑ ∞,

q

∫
µ(dx) EExkκEWtn−1

ϕn(W̃tn−tn−1)

×
(
1− exp

[
− qk2−d+κ%

∫ tn−tn−1

0
dr Γ1(kW̃r)Stn−tn−1−rϕn(W̃r)

])
=⇒
k↑∞

q

∫
µ(dx) Ex c

∫ tn−tn−1

0
dr Sr

(
q%Stn−tn−1−rϕn

)1+γ(Wtn−1)

= c q2+γ%1+γ
〈
µ,

∫ tn

tn−1

dr Sr
(
Stn−rϕn

)1+γ〉
.

(89)
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Similarly, the second one, (88b), converges by Proposition 15, as k ↑ ∞,

q

∫
µ(dx) EExkκEWtn−1

ϕn(W̃tn−tn−1)

×
(
1− exp

[
− qk2−d+κ%

∫ tn−1

0
dr Γ1(kWr)Stn−1−r

(
Stn−tn−1ϕn

)
(Wr)

])
=⇒
k↑∞

q

∫
µ(dx) c

∫ tn−1

0
dr Sr

(
Stn−1−r(q%Stn−tn−1ϕn)

)1+γ(x)}
= c q2+γ%1+γ

〈
µ,

∫ tn−1

0
dr Sr

(
Stn−rϕn

)1+γ〉
.

(90)

Finally, the last expression (88c) equals

−q
∫
µ(dx) EExkκϕn(Wtn)

×
(
1− exp

[
− qk2−d+κ%

∫ tn

0
dr Γ1(kWr)Stn−rϕn(Wr)

])
(91)

=⇒
k↑∞

− c q2+γ%1+γ
〈
µ,

∫ tn

0
dr Sr

(
Stn−rϕn

)1+γ〉
,

where the limit statement follows from Proposition 15. Comparing the right hand sides of (89)
to (91) shows that they cancel completely, which proves (87) and completes the argument.

4 Lower bound: Proof of (11)

4.1 A heat equation with random inhomogeneity

As motivated in Section 1.5, for κ = κc , ϕ ∈ C+
exp , and k > 0, we look at the mild solution mk

to the linear equation on R+ × Rd,

∂

∂t
mk(t, x) = 1

2∆mk(t, x)− k2−d %Γ1(kx)w2
k(t, x)

with initial condition mk(0, · ) = kκϕ.

(92)

This is a heat equation with the time-dependent scaled random inhomogeneity
−k2−d %Γ1(kx)w2

k(t, x). We study its asymptotic fluctuation behaviour around the heat flow:

Proposition 23 (Limiting fluctuations of mk ). Under the assumptions of
Theorem 2, for any ϕ ∈ C+

exp and t ≥ 0, in P–probability,

lim inf
k↑∞

〈
µ, kκStϕ−mk(t, ·)

〉
≥ c

〈
µ,

∫ t

0
dr Sr

(
(St−rϕ)1+γ

)〉
, (93)

where the constant c = c(γ, %) is given by

c := γ %γ
2πd/2

dG(d/2)
E0 ⊗ E0

[ ∫ ∞

0
dr ϑ2(W 1

r ) +
∫ ∞

0
dr ϑ2(W 2

r )
]γ−1

. (94)

755



To see how the case n = 1 of (11) follows from Proposition 23, we fix a sample Γ. Recall that

log Eµk
exp
[
kκ(〈Xk

t ,−ϕ〉 − 〈Stµ,−ϕ〉
)]

=
〈
µ, kκStϕ− uk(t, · )

〉
,

where uk solves

kκStϕ (x) − uk(t, x) = k2−d%

∫ t

0
ds Ss

(
Γ1(k · )u2

k(t− s, · )
)
(x).

As u2
k ≥ w2

k , we obtain from (92),

kκStϕ (x)− uk(t, x) ≥ kκStϕ (x)−mk(t, x). (95)

Hence, the case n = 1 of (11) follows from Proposition 23.

Proposition 23 is proved in two steps: In Section 4.2 we show that the right hand side of (93)
is an asymptotic lower bound of the expectations of the left hand side, and in Section 4.3 that
the variances vanish asymptotically.

4.2 Convergence of expectations

Fix again t ≥ 0 and ϕ ∈ C+
exp .

Proposition 24 (Convergence of expectations). For µ ∈Mtem and c as in (94),

lim inf
k↑∞

E
〈
µ, kκStϕ−mk(t, ·)

〉
≥ c

〈
µ,

∫ t

0
dr Sr

(
(St−rϕ)1+γ

)〉
.

The remainder of this section is devoted to the proof of this proposition. Set

M1(x) := E
(
kκStϕ(x)−mk(t, x)

)
for x ∈ Rd,

and for y ∈ Rd, 0 ≤ s ≤ t,

Is(y,W ) :=
∫ t−s

0
dr ϑ1(kWr − y)St−s−rϕ (Wr) ≥ 0.

Lemma 25 (Dropping the exponential). For each δ > 0 and for c17 from Lemma 17,∣∣∣∣M1(x) − k2γ−2 γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
∣∣∣∣ ≤ c17 2%2γ kδ−κ φγλ7(x),

for all x ∈ Rd and k ≥ 1.
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Proof. By (92) and the Feynman-Kac representation (43),

E
(
kκStϕ (x)−mk(t, x)

)
= k2−d %EEx

∫ t

0
ds Γ1(kWs)w2

k(t− s,Ws)

= k2−d+2κ %EEx
∫ t

0
ds Γ1(kWs) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

× exp
[
− k2−d+κ%

∫ t−s

0
dr Γ1(kW 1

r )St−s−rϕ (W 1
r )

− k2−d+κ%

∫ t−s

0
dr Γ1(kW 2

r )St−s−rϕ (W 2
r )
]
,

where W 1 and W 2 are independent Brownian motions starting from Ws . By the definition
(3) of Γ1 this equals

k2−d+2κ %E

∫
Γ(dz) Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s) (96)

× exp
[
−
∫

Γ(dy) k2−d+κ%
(
Is(y,W 1) + Is(y,W 2)

)]
.

Recall that for measurable ϕ,ψ ≥ 0,

E 〈Γ, ϕ〉 e−〈Γ,ψ〉 = γ

∫
dz ϕ(z)ψγ−1(z) exp

[
−
∫
dy ψγ(y)

]
(97)

(cf. (DF92, Section 4)) and k2−d+2κk(2−d+κ)(γ−1) = k2γ−2 for κ = κc . Applying this to (96)
yields

k2γ−2 γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1 exp
[
−
∫
dy k(2−d+κ)γ%γ

(
Is(y,W 1) + Is(y,W 2)

)γ]
.

By the inequality 1− e−a ≤ a we have∣∣∣∣M1(x) − k2γ−2 γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
∣∣∣∣

≤ k2γ−2k(2−d+κ)γ γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
∫
dy %γ

(
Is(y,W 1) + Is(y,W 2)

)γ
.

Applying (69) to the last integrand and using the symmetry in W 1,W 2, we see that the right
hand side in the former display does not exceed

2k2γ−2k(2−d+κ)γ γ %2γ

∫
dz

∫
dy Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
Is(y,W 1)γ .
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We now drop Is(z,W 2) and evaluate the expectation with respect to W 2, obtaining the upper
bound

2k2γ−2k(2−d+κ)γ γ %2γ

∫
dz

∫
dy Ex

∫ t

0
ds ϑ1(kWs − z)St−sϕ (Ws)

× EWsϕ(W 1
t−s) Is(z,W

1)γ−1Is(y,W 1)γ .

Applying the Markov property at time s and time-homogeneity, this equals

2k2γ−2k(2−d+κ)γ γ %2γ

∫
dz

∫
dy Ex

∫ t

0
ds ϑ1(kWs − z)St−sϕ (Ws)

× ϕ(Wt)
(∫ t

s
dr ϑ1(kWr − z)St−rϕ (Wr)

)γ−1(∫ t

s
dr ϑ1(kWr − y)St−rϕ (Wr)

)γ
.

The last factor can be bounded by ( I0(y,W ))γ . Then we integrate with respect to s and obtain

2k2γ−2k(2−d+κ)γ %2γ

∫
dz

∫
dy Exϕ(Wt)

(∫ t

0
dr ϑ1(kWr − z)St−rϕ (Wr)

)γ
× ( I0(y,W ))γ = 2k2γ−2k(2−d+κ)γ %2γExϕ(Wt)

[ ∫
dy I0(y,W )γ

]2
.

Using now Lemma 17, we arrive at∣∣∣∣M1(x) − k2γ−2 γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
∣∣∣∣

≤ c17 2%2γ k2γ−2k(2−d+κ)γ k4−4γ+δ φγλ7(x) = c17 2%2γ kδ−κ φγλ7(x),

finishing the proof.

It remains to find the limit of

k2γ−2 γ %γ
∫
dz Ex

∫ t

0
ds ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1
.

Substituting z  kz gives

k2γ−2+d γ %γ
∫
dz Ex

∫ t

0
ds ϑ1/k(Ws − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(∫ t−s

0
dr
[
ϑ1/k(W

1
r − z)St−s−rϕ (W 1

r ) + ϑ1/k(W
2
r − z)St−s−rϕ (W 2

r )
])γ−1

.

Fix x, z ∈ Rd and 0 < s < t for a while and consider

gk(s, x, z) := k2γ−2+d γ Ex ϑ1/k(Ws − z) EWsϕ(W 1
t−s) EWsϕ(W 2

t−s)

×
(∫ t−s

0
dr
[
ϑ1/k(W

1
r − z)St−s−rϕ (W 1

r ) + ϑ1/k(W
2
r − z)St−s−rϕ (W 2

r )
])γ−1

.
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Lemma 26.
lim inf
k↑∞

gk(s, x, z) ≥ c ps(x− z) (St−sϕ (z))1+γ .

The lemma immediately implies Proposition 24. Indeed, applying Fatou’s lemma we get

lim inf
k↑∞

∫
µ(dx)

∫
dz

∫ t

0
ds gk(s, x, z) ≥

∫
µ(dx)

∫
dz

∫ t

0
ds lim inf

k↑∞
gk(s, x, z)

≥ c

∫ t

0
ds
〈
µ, Ss(St−sϕ)1+γ

〉
.

Proof of Lemma 26. Shifting the Brownian motions,

gk(s, x, z) = k2γ−2+d γ Exϑ1/k(Ws − z) Ezϕ(W 1
t−s +Ws − z) Ezϕ(W 2

t−s +Ws − z)

×
(∫ t−s

0
dr ϑ1/k(W

1
r +Ws − 2z)St−s−rϕ (W 1

r +Ws − z)

+
∫ t−s

0
dr ϑ1/k(W

2
r +Ws − 2z)St−s−rϕ (W 2

r +Ws − z)
)γ−1

,

where the expectation operators Ex , Ez , Ez apply to W,W 1,W 2, respectively. By the uniform
continuity of ϕ,

lim
k↑∞

sup
|Ws−z|≤1/k

∣∣ϕ(W i
t−s +Ws − z)− ϕ(W i

t−s)
∣∣ = 0,

and by (22),

lim
k↑∞

sup
|Ws−z|≤1/k

∣∣St−s−rϕ(W i
t−s +Ws − z)− St−s−rϕ(W i

t−s)
∣∣ = 0, (98)

we get

gk(s, x, z) = k2γ−2+d
(
γ + o(1)

)
Ex ϑ1/k(Ws − z) Ezϕ(W 1

t−s) Ezϕ(W 2
t−s)

×
(∫ t−s

0
dr ϑ1/k(W

1
r +Ws − 2z)St−s−rϕ (W 1

r )

+
∫ t−s

0
dr ϑ1/k(W

2
r +Ws − 2z)St−s−rϕ (W 2

r )
)γ−1

.

By the triangle inequality, ϑ1/k(W i
r +Ws − 2z) ≤ ϑ2/k(W i

s − z). Hence,

gk(s, x, z) ≥ k2γ−2+d
(
γ + o(1)

)
Ex ϑ1/k(Ws − z) Ezϕ(W 1

t−s) Ezϕ(W 2
t−s)

×
(∫ t−s

0
dr ϑ2/k(W

1
r − z)St−s−rϕ (W 1

r )

+
∫ t−s

0
dr ϑ2/k(W

2
r − z)St−s−rϕ (W 2

r )
)γ−1

.

Calculating the expectation with respect to W gives

Ex ϑ1/k(Ws − z) =
πd/2

G(1 + d/2)
k−d ps(x− z)

(
1 + o(1)

)
.
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Using (98) once more we obtain

gk(s, x, z) ≥ k2γ−2
(
γ + o(1)

) πd/2

G(1 + d/2)
ps(x− z) Ezϕ(W 1

t−s) Ezϕ(W 2
t−s)

×
(∫ t−s

0
dr
[
ϑ2/k(W

1
r − z) + ϑ2/k(W

2
r − z)

]
St−s−rϕ (z)

)γ−1
.

Define events
Aik(z) :=

{
|W i

r − z| > 1/k ∀r > 1/k
}
.

Evidently,

Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)
(∫ t−s

0
dr
[
ϑ2/k(W

1
r − z) + ϑ2/k(W

2
r − z)

]
St−s−rϕ (z)

)γ−1

≥ Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)

×
(∫ 1/k

0
dr
[
ϑ2/k(W

1
r − z) + ϑ2/k(W

2
r − z)

]
St−s−rϕ (z)

)γ−1
1A1

k(z)1A2
k(z)

≥ Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)
(∫ 1/k

0
dr
[
ϑ2/k(W

1
r − z) + ϑ2/k(W

2
r − z)

]
St−s−rϕ(z)

)γ−1

− 2Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)
(∫ 1/k

0
dr ϑ2/k(W

1
r − z)St−s−rϕ (z)

)γ−1
(1− 1A1

k(z)).

We calculate the expressions in the last two lines separately. For the first line we get, by the
Markov property at time 1/k,

Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)
(∫ 1/k

0
dr
[
ϑ2/k(W

1
r − z) + ϑ2/k(W

2
r − z)

]
St−s−rϕ (z)

)γ−1

= E0 ⊗ E0

(∫ 1/k

0
dr
[
ϑ2/k(W

1
r ) + ϑ2/k(W

2
r )
]
St−s−rϕ (z)

)γ−1

× St−s−1/kϕ (z +W 1
1/k)St−s−1/kϕ (z +W 2

1/k).

By (22), this equals asymptotically(
St−sϕ (z)

)1+γ E0 ⊗ E0

(∫ 1/k

0
dr
[
ϑ2/k(W

1
r ) + ϑ2/k(W

2
r )
] )γ−1

=
(
St−sϕ (z)

)1+γ
k2−2γ E0 ⊗ E0

(∫ k

0
dr
[
ϑ2(W 1

r ) + ϑ2(W 2
r )
] )γ−1

,

where in the last step Brownian scaling was used. Therefore the first line is asymptotically
equivalent to (

St−sϕ (z)
)1+γ

k2−2γE0 ⊗ E0

(∫ ∞

0
dr
[
ϑ2(W 1

r ) + ϑ2(W 2
r )
] )γ−1

. (99)

Turning now to the second line,

2Ezϕ(W 1
t−s) Ezϕ(W 2

t−s)
(∫ 1/k

0
dr ϑ2/k(W

1
r − z)St−s−rϕ (z)

)γ−1
(1− 1A1

k(z))

= 2
(
St−sϕ (z)

)γ (1 + o(1)
)
Ezϕ(W 1

t−s)
(∫ 1/k

0
dr ϑ2/k(W

1
r − z)

)γ−1
(1− 1A1

k(z)),
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where the expectation with respect to W 2 was evaluated, and (22) was used. Recalling that ϕ is
bounded and applying Cauchy-Schwarz we obtain an upper bound, which is a constant multiple
of (

P0

(
A1
k(0)c

))1/2 [E0

(∫ 1/k

0
dr ϑ2/k(W

1
r )
)2γ−2

]1/2

(100)

= k2−2γ
[
P0

(
∃r > k : |Wr| ≤ 1

)]1/2 [
E0

(∫ k

0
dr ϑ2(W 1

r )
)2γ−2

]1/2

.

Since the expectation is bounded and the probability goes to zero, (100) is o(k2−2γ). Together
with (99) this proves the lemma. �

4.3 Convergence of variances

Proposition 27 (Convergence of variances). For every µ ∈Mtem satisfying the assumption
in Theorem 2, for ϕ ∈ C+

exp and t > 0,

lim
k↑∞

Var
∫
µ(dx)

[
kκStϕ(x)−mk(t, x)

]
= 0.

The remainder of this section is devoted to the proof of this proposition. For simplification, we
set % = 1. Recall that

kκStϕ(x)−mk(t, x) = k2−d+2κ Ex
∫ t

0
ds

∫
Γ(dz) ϑ1(kWs − z)

× EWs ⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) exp
[
− k2−d+κ

∫
Γ(dz)

(
Is(z,W 1) + Is(z,W 2)

)]
.

Define
M2(x, x̃) := E

(
kκStϕ(x)−mk(t, x)

) (
kκStϕ(x̃)−mk(t, x̃)

)
.

Similarly to (97), for measurable ϕ1, ϕ2, ψ ≥ 0,

E 〈Γ, ϕ1〉 〈Γ, ϕ2〉 e−〈Γ,ψ〉 = γ(1− γ)
∫
dz ϕ1(z)ϕ2(z)ψγ−2(z) exp

[
−
∫
dy ψγ(y)

]
+ γ2

∫
dz1 ϕ1(z1)ψγ−1(z1)

∫
dz2 ϕ2(z2)ψγ−1(z2) exp

[
−
∫
dy ψγ(y)

]
.

Applying this formula, we get

M2(x, x̃) = M21(x, x̃) +M22(x, x̃),

where

M21(x, x̃) := γ(1− γ) k4−2d+4κ k(2−d+κ)(γ−2) Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz

ϑ1(kWs − z)ϑ1(kW̃s̃ − z) EWs⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) EW̃s̃
⊗ EW̃s̃

ϕ(W̃ 1
t−s̃)ϕ(W̃ 2

t−s̃)

×
(
Is(z,W 1) + Is(z,W 2) + Is̃(z, W̃ 1) + Is̃(z, W̃ 2)

)γ−2

× exp
[
− kγ(2−d+κ)

∫
dy
(
Is(y,W 1) + Is(y,W 2) + Is̃(y, W̃ 1) + Is̃(y, W̃ 2)

)γ ]
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and

M22(x, x̃) := γ2 k4−2d+4κ k(2−d+κ)(2γ−2) Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz

∫
dz̃

ϑ1(kWs − z)ϑ1(kW̃s̃ − z̃) EWs⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) EW̃s̃
⊗ EW̃s̃

ϕ(W̃ 1
t−s̃)ϕ(W̃ 2

t−s̃)

×
(
Is(z,W 1) + Is(z,W 2) + Is̃(z, W̃ 1) + Is̃(z, W̃ 2)

)γ−1

×
(
Is(z̃,W 1) + Is(z̃,W 2) + Is̃(z̃, W̃ 1) + Is̃(z̃, W̃ 2)

)γ−1

× exp
[
−kγ(2−d+κ)

∫
dy
(
Is(y,W 1) + Is(y,W 2) + Is̃(y, W̃ 1) + Is̃(y, W̃ 2)

)γ ]
.

The following Lemmas 28 and 29 together directly imply Proposition 27.

Lemma 28.
lim
k↑∞

∫
µ(dx)

∫
µ(dx̃)M21(x, x̃) = 0

Lemma 29.
lim sup
k↑∞

∫
µ(dx)

∫
µ(dx̃) [M22(x, x̃)−M1(x)M1(x̃)] ≤ 0.

Proof of Lemma 28. By definition of the critical index κ = κc ,

4− 2d+ 4κ + (γ − 2)(2− d+ κ) = κ − 2 + 2γ.

Dropping the exponential in M21(x, x̃) and Is(z,W 2) + Is(z,W 2) gives

M21(x, x̃) ≤ kκ−2+2γγ(1− γ) Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz ϑ1(kWs − z)ϑ1(kW̃s̃ − z)

EWs⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) EW̃s̃
⊗ EW̃s̃

ϕ(W̃ 1
t−s̃)ϕ(W̃ 2

t−s̃)
(
Is(z,W 1)+Is̃(z, W̃ 1)

)γ−2
.

By independence of all Brownian paths, it follows that the expression in the second line in the
previous formula is bounded by

St−sϕ(Ws)St−s̃ϕ(W̃s̃)EWsϕ(W 1
t−s)EW̃s̃

ϕ(W̃ 1
t−s̃)

(
Is(z,W 1) + Is̃(z, W̃ 1)

)γ−2
.

By the Markov property,

M21(x, x̃) ≤ kκ−2+2γγ(1− γ) Ex ⊗ Ex̃ϕ(Wt)ϕ(W̃t)

×
∫
dz

∫ t

0
ds

∫ t

0
ds̃ ϑ1(kWs − z)ϑ1(kW̃s̃ − z)St−sϕ(Ws)St−s̃ϕ(W̃s̃)

×
(∫ t

s
dr ϑ1(kWr − z)St−rϕ(Wr) +

∫ t

s̃
dr ϑ1(kW̃r − z)St−rϕ(W̃r)

)γ−2

.

Carrying out the integration over s and s̃ gives

kκ−2+2γ Ex ⊗ Ex̃ϕ(Wt)ϕ(W̃t)∫
dz
(
I0(z,W )γ + I0(z, W̃ )γ −

(
I0(z,W ) + I0(z, W̃ )

)γ)
.
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Changing the integration variable k  kz, we obtain∫
µ(dx)

∫
µ(dx̃)M21(x, x̃) ≤ kκ−2+d

∫
dz

∫
µ(dx)

∫
µ(dx̃) Ex ⊗ Ex̃ϕ(Wt)ϕ(W̃t)

×

[(
k2

∫ t

0
ds ϑ1/k(Ws − z)St−sϕ (Ws)

)γ
+
(
k2

∫ t

0
ds ϑ1/k(W̃s − z)St−sϕ (W̃s)

)γ
−
(
k2

∫ t

0
ds
[
ϑ1/k(Ws − z)St−sϕ (Ws) + ϑ1/k(W̃s − z)St−sϕ (W̃s)

])γ]
.

The right hand side of this inequality coincides with (71), since 2κ + (κ − d)γ + d = κ − 2 + d,
hence converges to zero. �

Proof of Lemma 29. Dropping some non-negative summands, we get

M22(x, x̃) ≤ k4γ−4 γ2 Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz

∫
dz̃

ϑ1(kWs − z)ϑ1(kW̃s̃ − z̃) EWs ⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) EW̃s̃
⊗ EW̃s̃

ϕ(W̃ 1
t−s̃)ϕ(W̃ 2

t−s̃)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1 (
Is̃(z̃, W̃ 1) + Is̃(z̃, W̃ 2)

)γ−1

× exp
[
− kγ(2−d+κ)

∫
dy
(
Is(y,W 1) + Is(y,W 2) + Is̃(y, W̃ 1) + Is̃(y, W̃ 2)

)γ ]
.

On the other hand,

M1(x) = k2γ−2 γ Ex
∫ t

0
ds

∫
dz ϑ1(kWs − z) EWsϕ(W 1

t−s) EWsϕ(W 2
t−s)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1 exp
[
−
∫
dy k(2−d+κ)γ

(
Is(y,W 1) + Is(y,W 2)

)γ]
.

Taking the difference, applying inequality (70) and using symmetry, we get

M22(x, x̃)−M1(x)M1(x̃) ≤ k4γ−4 γ2 Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz

∫
dz̃

ϑ1(kWs − z)ϑ1(kW̃s̃ − z̃) EWs⊗ EWsϕ(W 1
t−s)ϕ(W 2

t−s) EW̃s̃
⊗ EW̃s̃

ϕ(W̃ 1
t−s̃)ϕ(W̃ 2

t−s̃)

×
(
Is(z,W 1) + Is(z,W 2)

)γ−1 (
Is̃(z̃, W̃ 1) + Is̃(z̃, W̃ 2)

)γ−1

× k(2−d+κ)γ 4
∫
dy
(
Is(y,W 1)

)γ
.

Dropping further non-negative summands and using again the Markov property, we get the
bound

4 k4γ−4k(2−d+κ)γ γ2 Ex ⊗ Ex̃
∫ t

0
ds

∫ t

0
ds̃

∫
dz

∫
dz̃

ϑ1(kWs − z)ϑ1(kW̃s̃ − z̃)St−sϕ(Ws) St−s̃ϕ(W̃s̃)ϕ(Wt)ϕ(W̃t)

×
(∫ t

s
dr ϑ1(kWr − z)St−rϕ(Wr)

)γ−1(∫ t

s̃
dr ϑ1(kW̃r − z̃)St−rϕ(W̃r)

)γ−1

×
∫
dy
(∫ t

0
dr ϑ1(kWr − y)St−rϕ(Wr)

)γ
.
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Carrying out the s and s̃ integration, we obtain

4 k4γ−4k(2−d+κ)γ Ex ⊗ Ex̃ϕ(Wt)ϕ(W̃t)
∫
dz

∫
dz̃

×
(∫ t

0
dr ϑ1(kWr − z)St−rϕ(Wr)

)γ(∫ t

0
dr ϑ1(kW̃r − z̃)St−rϕ(W̃r)

)γ
×
∫
dy
(∫ t

0
dr ϑ1(kWr − y)St−rϕ(Wr)

)γ
.

We collect identical terms, use the boundedness of ϕ, and obtain, up to a constant factor, the
bound

k4γ−4k(2−d+κ)γ Exϕ(Wt)
[ ∫

dz
(∫ t

0
dr ϑ1(kWr − z)St−rϕ(Wr)

)γ]2

× Ex̃ ϕ(W̃t)
∫
dz̃
(∫ t

0
dr ϑ1(kW̃r − z̃)

)γ
.

By Lemma 12(b) with η = γ,

Ex̃ ϕ(W̃t)
∫
dz̃
(∫ t

0
dr ϑ1(kW̃r − z̃)

)γ
= kd−2γ

∫
dz̃ Ex̃ ϕ(W̃t)

(
k2

∫ t

0
dr ϑ1(kW̃r − kz̃)

)γ
≤ c12 k

2−2γ φλ7(x̃),

and by Lemma 17,

Exϕ(Wt)
[ ∫

dz
(∫ t

0
dr ϑ1(kWr − z)St−rϕ(Wr)

)γ]2

≤ c17 k
4−4γ+δ φλ7(x).

Noting that 4γ − 4 + (2 − d + κ)γ + 6 − 6γ = −κ and choosing δ < κ, we obtain, up to a
constant factor, the upper bound kδ−κφλ7(x)φλ7(x̃). The proof is completed by integration.�

4.4 Lower bound for finite-dimensional distributions

The proof is analogous to the upper bound in Section 3.4. Again we use induction to show that,
for any ϕ1, . . . , ϕn and 0 = t0 < t1 < · · · < tn, in P–probability,

lim inf
k↑∞

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]

≥ exp

[
c

〈
µ,

n∑
i=1

∫ ti

ti−1

dr Sr

(( n∑
j=i

Stj−rϕj
)1+γ)〉]

.

(101)

For the case n = 1 this was shown in the previous paragraphs, so we may assume that it holds
for n− 1 and show that it also holds for n. By conditioning on {Xk(t) : t ≤ tn−1} and applying
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the transition functional we get

Eµk
exp
[ n∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉]
= exp

[〈
Stn−1µ, k

κStn−tn−1ϕn − uk(tn − tn−1)
〉]

× Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ

〈
Xk
tn−1

− Stn−1µ, −ϕn−1 − k−κuk(tn − tn−1)
〉]
,

where uk is the solution of (41) with ϕ replaced by ϕn . By (95) and Proposition 23, in P–
probability,

lim inf
k↑∞

exp
[〈
Stn−1µ, k

κStn−tn−1ϕn − uk(tn − tn−1)
〉]

≥ exp
[
c
〈
µ,

∫ tn

tn−1

dr Sr(Stn−rϕn)
1+γ
〉]
.

(102)

The remaining expectation can be written as

Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ〈Xk

tn−1
− Stn−1µ, −ϕn−1 − Stn−tn−1ϕn

〉
(103)

+ kκ
〈
Xk
tn−1

− Stn−1µ, Stn−tn−1ϕn − k−κuk(tn − tn−1)
〉]
.

Observe that, by the induction assumption, in P–probability,

lim inf
k↑∞

Eµk
exp
[ n−2∑
i=1

kκ〈Xk
ti − Stiµ, −ϕi

〉
+ kκ〈Xk

tn−1
− Stn−1µ, −ϕn−1 − Stn−tn−1ϕn

〉]
≥ exp

[
c
〈
µ,

n−2∑
i=1

∫ ti

ti−1

dr Sr

(( n−1∑
j=i

Stj−rϕj
)1+γ) (104)

+
∫ tn−1

tn−2

dr Sr

((
Stn−1−rϕn−1 + Stn−1−rStn−tn−1ϕn

)1+γ)〉]
.

Define again Zk to be the exponent on the left hand side of (104), Z to be the exponent on
the right hand side of (104), and Yk as after (83). Note that Zk + Yk is the exponent in (103).
Applying Hölder’s inequality, we get

Eµk
e

1
p
Zk ≤

(
Eµk

eZk+Yk
)1/p (Eµk

e−
q
p
Yk
)1/q

,

whenever 1
p + 1

q = 1. Hence, combining (83) and (104), we have in P-probability

lim inf
k↑∞

Eµk
eZk+Yk ≥ lim inf

k↑∞

(
Eµk

e
1
p
Zk
)p(Eµk

e−
q
p
Yk
)−p/q ≥ (

ep
−γZ

)p
,
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which converges to eZ as p ↓ 1. Combining this with (102) proves (101), and this completes
the proof. �
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