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Abstract

In this paper we study the limiting behavior of sums of extreme values of long range depen-
dent sequences defined as functionals of linear processes with finite variance. If the number
of extremes in a sum is large enough, we obtain asymptotic normality, however, the scaling
factor is relatively bigger than in the i.i.d case, meaning that the maximal terms have rel-
atively smaller contribution to the whole sum. Also, it is possible for a particular choice of
a model, that the scaling need not to depend on the tail index of the underlying marginal
distribution, as it is well-known to be so in the i.i.d. situation. Furthermore, subordination
may change the asymptotic properties of sums of extremes .
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1 Introduction

Let {ǫi,−∞ < i < ∞} be a centered sequence of i.i.d. random variables. Consider the class of
stationary linear processes

Xi =

∞
∑

k=0

ckǫi−k, i ≥ 1. (1)

We assume that the sequence ck, k ≥ 0, is regularly varying with index −β, β ∈ (1/2, 1). This
means that ck ∼ k−βL0(k) as k → ∞, where L0 is slowly varying at infinity. We shall refer to
all such models as long range dependent (LRD) linear processes. In particular, if the variance
of ǫ1 exists (which is assumed throughout the whole paper), then the covariances ρk := EX0Xk

decay at the hyperbolic rate, ρk = k−(2β−1)L(k), where limk→∞ L(k)/L2
0(k) = B(2β − 1, 1 − β)

and B(·, ·) is the beta-function. Consequently, the covariances are not summable (cf. [11]).

Assume that X1 has a continuous distribution function F . For y ∈ (0, 1) define
Q(y) = inf{x : F (x) ≥ y} = inf{x : F (x) = y}, the corresponding quantile function,
which is assumed to be differentiable. Given the ordered sample X1:n ≤ · · · ≤ Xn:n of
X1, . . . , Xn, let Fn(x) = n−1

∑n
i=1 1{Xi≤x} be the empirical distribution function and Qn(·) be

the corresponding left-continuous sample quantile function, i.e. Qn(y) = Xk:n for k−1
n < y ≤ k

n .
Define Ui = F (Xi) and En(x) = n−1

∑n
i=1 1{Ui≤x}, the associated uniform empirical distribution

function. Denote by Un(·) the corresponding uniform sample quantile function.

Assume that Eǫ21 < ∞. Let r be a positive integer and define

Yn,r =

n
∑

i=1

∑

1≤j1<···≤jr<∞

r
∏

s=1

cjsǫi−js , n ≥ 1,

so that Yn,0 = n, and Yn,1 =
∑n

i=1 Xi. If p < (2β − 1)−1, then

σ2
n,p := Var(Yn,p) ∼ n2−p(2β−1)L2p

0 (n). (2)

Define now the general empirical, the uniform empirical, the general quantile and the uniform
quantile processes respectively as follows:

βn(x) = σ−1
n,1n(Fn(x) − F (x)), x ∈ IR,

αn(y) = σ−1
n,1n(En(y) − y), y ∈ (0, 1),

qn(y) = σ−1
n,1n(Q(y) − Qn(y)), y ∈ (0, 1),

un(y) = σ−1
n,1n(y − Un(y)), y ∈ (0, 1).

The aim of this paper is to study the asymptotic behavior of trimmed sums based on the ordered
sample X1:n ≤ · · · ≤ Xn:n coming from the long range dependent sequence defined by (1).

Let Tn(m, k) =
∑n−k

j=m+1 Xj:n and note that (see below for a convention concerning integrals)

Tn(m, k) = n

∫ 1−k/n

m/n
Qn(y)dy. (3)
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Ho and Hsing observed in [13] that, under appropriate conditions on F , as n → ∞,

sup
y∈[y0,y1]

∣

∣

∣

∣

∣

qn(y) + σ−1
n,1

n
∑

i=1

Xi

∣

∣

∣

∣

∣

= oP (1), (4)

where 0 < y0 < y1 < 1. Equation (4) means that, in principle, the quantile process can be
approximated by partial sums, independently of y. This observation, together with (3), yields
the asymptotic normality of the trimmed sums in case of heavy trimming m = mn = [δ1n],
k = kn = [δ2n], where 0 < δ1 < δ2 < 1 and [·] is the integer part (see [13, Corollary 5.2] and
[25]). This agrees with the i.i.d. situation (see [23]).

However, the representation (3) requires some additional assumptions on F . In order to
avoid them, we may study asymptotics for the trimmed sums via the integrals of the form
∫

αn(y)dQ(y). This approach was initiated in two beautiful papers by M. Csörgő, S. Csörgő,
Horváth and Mason, [2], [3]. Then, S. Csörgő, Haeusler, Horváth and Mason took this route to
provide the full description of the weak asymptotic behavior of the trimmed sums in the i.i.d.
case. The list of the papers written by these authors on this particular topic is just about as
long as this introduction. Therefore we refer to [7] for an extensive up-to-date discussion and a
survey of results.

For the i.i.d. random variables the above mentioned authors approximated the uniform
empirical process by an appropriately constructed Brownian bridge B0(·) and then concluded
asymptotic results for the integrals via those for

∫

B0(y)dQ(y). In the LRD case, we will use
the reduction principle for empirical processes as studied in [11], [13], [15] or [24] (see Lemma
10 below). We can then use an approach that is similar to that of the above mentioned authors
to establish asymptotic normality in case of moderate and heavy trimming with the scaling
factor σ−1

n,1, which is the same as for the whole partial sum. So, in this context the situation is
similar to the i.i.d. case and for details we refer the reader to [16].

The most interesting phenomena, however, occur when one deals with the kn-extreme sums,
∑n

j=n−kn+1 Xj:n. If F (0) = 0 and 1 − F (x) = x−α, α > 2, then in the i.i.d situation we have

an

n
∑

j=n−kn+1

Xj:n − cn
d
→ Z,

where the scaling factor is an =
(

nk−1
n

)1/2−1/α
n−1/2, cn is a centering sequence and Z is a

standard normal random variable (see [9]). In the LRD case we still obtain asymptotic normality.
However, although the Ho and Hsing result (4) does not say anything about the behavior of the
quantile process in the neighborhood of 0 and 1, the somewhat imprecise statement that the
quantile process can be approximated by partial sums, independently of y suggests that

• a required scaling factor would not depend on the tail index α.

Indeed, we will show in Theorem 1 that, under some conditions on kn, the appropriate scaling
in case 1−F (x) = x−α is (nk−1

n )σ−1
n,1. Removing the scaling for the whole sums (n−1/2 and σ−1

n,1

in the i.i.d. and LRD cases, respectively), we also see that
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• the scaling in the LRD situation is greater, meaning that the kn-extreme sums contribute
relatively less to the whole sum compared to the i.i.d situation. This also is quite intuitive.
Since the dependence is very strong, it is very unlikely that we have few big observations,
which is a typical case in the i.i.d. situation. Rather, if we have one big value, we have a
lot of them.

One may ask, whether such phenomena are typical for all LRD sequences. Not likely. Define Yi =
G(Xi), i ≥ 1, with some real-valued measurable function G. In particular, taking G = F−1

Y F we
may obtain a LRD sequence with the arbitrary marginal distribution function FY . Assume for
a while that F , the distribution of X1, is standard normal and that qn(·) is the quantile process
associated with the sequence {Yi, i ≥ 1}. Following [6] we observed in [4, Section 2.2] and [5]
that qn(·) is, up to a constant, approximated by φ(Φ−1(y))/fY (F−1

Y (y))σ−1
n,1

∑n
i=1 Xi. Here, fY

is the density of FY and φ, Φ are the standard normal density and distribution, respectively. In
the non-subordinated case, Yi = Xi, the factor φ(Φ−1(y))/fY (F−1

Y (y)) disappears. Nevertheless,
from this discussion it should be clear that the limiting behavior of the extreme sums in the
subordinated case Yi = G(Xi) is different, namely (see Theorem 1)

• the scaling depends on the marginal distributions of both Xi and Yi.

In particular, if the distribution F of X1 belongs to the maximal domain of attraction of the
Fréchet distribution Φα, then though the distribution FY of Y1 belongs to the maximal domain of
attraction of the Gumbel distribution, the scaling factor depends on α. This cannot happen in the
i.i.d. situation and, intuitively, it means that in the subordinated case the long range dependent
sequence {Xi, i ≥ 1} also contributes information to the asymptotic behavior of extreme sums.

Moreover, we may have two LRD sequences {Xi, i ≥ 1}, {Yi, i ≥ 1}, the first one as in (1),
the second one defined by Yi = G(X ′

i) with a sequence {X ′
i, i ≥ 1} defined as in (1), with the

same covariance, with the same marginals, but different behavior (i.e., the different scaling) of
extremal terms.

It should be pointed out that the above mentioned phenomena for extremal sums of LRD
sequences are valid if the number of extremes, kn, is big enough. In Theorem 1 we have
assumed, in particular, that kn = [nξ], ξ > β. A natural question arises, what happens if ξ < β.
To answer this partially, we assume that {ǫi,−∞ < i < ∞} is an i.i.d. sequence of standard
normal random variables. We observe that if kn = [nξ], ξ < 2β − 1, the sums of extremes grow
at the same rate as in the corresponding i.i.d. case. However, we are not able to prove the
asymptotic normality. We refer to Remark 4 for further discussion.

Of course, it would be desirable to obtain some information about limiting behavior not only of
extreme sums, but for sample maxima as well. It should be pointed out that our method is not
appropriate. This is still an open problem to derive limiting behavior of maxima in the model
(1). A Gaussian case is covered in [17, Chapter 4]. In a different setting, the case of stationary
stable processes generated by conservative flow, the problem is treated in [21].

We will use the following convention concerning integrals. If −∞ < a < b < ∞ and h, g are
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left-continuous and right-continuous functions, respectively, then

∫ b

a
gdh =

∫

[a,b)
gdh and

∫ b

a
hdg =

∫

(a,b]
hdg,

whenever these integrals make sense as Lebesgue-Stjeltjes integrals. The integration by parts
formula yields

∫ b

a
gdh +

∫ b

a
hdg = h(b)g(b) − h(a)g(a).

We shall write g ∈ RVα (g ∈ SV ) if g is regularly varying at infinity with index α (slowly varying
at infinity).

In what follows C will denote a generic constant which may be different at each of its appearances.
Also, for any sequences an and bn, we write an ∼ bn if limn→∞ an/bn = 1. Further, let ℓ(n)
be a slowly varying function, possibly different at each place it appears. On the other hand,
L(·), L0(·), L1(·), L∗

1(·), etc., are slowly varying functions of fixed form wherever they appear.
Moreover, g(k) denotes the kth order derivative of a function g and Z is a standard normal
random variable. For any stationary sequence {Vi, i ≥ 1}, we will denote by V the random
variable with the same distribution as V1.

2 Statement of results

Let Fǫ be the marginal distribution function of the centered i.i.d. sequence {ǫi,−∞ < i < ∞}.

Also, for a given integer p, the derivatives F
(1)
ǫ , . . . , F

(p+3)
ǫ of Fǫ are assumed to be bounded

and integrable. Note that these properties are inherited by the distribution function F of X1

as well (cf. [13] or [24]). Furthermore, assume that Eǫ41 < ∞. These conditions are needed to
establish the reduction principle for the empirical process and will be assumed throughout the
paper.

To study sums of kn largest observations, we shall consider the following forms of F . For the
statements below concerning regular variation and domain of attractions we refer to [10, Chapter
3], [12] or [14].

The first assumption is that the distribution F satisfies the following Von-Mises condition:

lim
x→∞

xf(x)

1 − F (x)
= α > 0. (5)

Using notation from [10], the condition (5) will be referred as X ∈ MDA(Φα), since (5) implies
that X belongs to the maximal domain of attraction of the Fréchet distribution with index α.
Then

Q(1 − y) = y−1/αL1(y
−1), as y → 0, (6)

and the density-quantile function fQ(y) = f(Q(y)) satisfies

fQ(1 − y) = y1+1/αL2(y
−1), as y → 0, (7)

where L2(u) = α(L1(u))−1.
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The second type of assumption is that F belongs to the maximal domain of attraction of the
double exponential Gumbel distribution, written as X ∈ MDA(Λ). Then the corresponding
Von-Mises condition implies

lim
y→0

fQ(1 − y)
∫ 1
1−y(1 − u)/fQ(u)du

y2
= 1. (8)

Thus, with L3(y
−1) =

(

y−1
∫ 1
1−y(1 − u)/fQ(u)du

)−1
one has

fQ(1 − y) = yL3(y
−1),

and L3 is slowly varying at infinity.

We note in passing that the conditions on f can be expressed (in certain cases) in terms of
those for fǫ (see Remark 9).

To study the effect of subordination, we will consider the corresponding assumptions on FY and
QY = F−1

Y , referred to later as Y ∈ MDA(Φα0
) and Y ∈ MDA(Λ), respectively:

QY (1 − y) = y−1/α0L∗
1(y

−1) and fY QY (1 − y) = y1+1/α0L∗
2(y

−1), as y → 0, (9)

with L∗
2(u) = α0(L

∗
1(u))−1, and

fY QY (1 − y) = yL∗
3(y

−1),

where L∗
3 is defined in the corresponding way as L3.

Recall that Qn(y) = inf{x : Fn(x) ≥ y} = Xk:n if k−1
n < y ≤ k

n . Let Tn(m, k) =
∑n−k

j=m+1 Yj:n

and

µn(m, k) = n

∫ 1−k/n

m/n
QY (y)dy.

The main result of this paper is the following theorem.

Theorem 1. Let G(x) = QY (F (x)). Let kn = [nξ], where ξ ∈ (0, 1) is such that

ξ >























β+1/α
1+1/α−1/α0

, if X ∈ MDA(Φα), Y ∈ MDA(Φα0
), (∗)

β+1/α
1+1/α , if X ∈ MDA(Φα), Y ∈ MDA(Λ), (∗∗)

β
1−1/α0

, if X ∈ MDA(Λ), Y ∈ MDA(Φα0
), (∗ ∗ ∗)

β, if X ∈ MDA(Λ), Y ∈ MDA(Λ), (∗ ∗ ∗∗).

Assume that EY < ∞. Let p be the smallest positive integer such that (p + 1)(2β − 1) > 1 and
assume that for r = 1, . . . , p,

∫ 1

1/2
F (r)(Q(y))dQY (y) =

∫ 1

1/2

F (r)(Q(y))

fY QY (y)
dy < ∞. (10)
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Let

An =



































(

n
kn

)1+1/α−1/α0

L21

(

n
kn

)

, if X ∈ MDA(Φα), Y ∈ MDA(Φα0
),

(

n
kn

)1+1/α
L22

(

n
kn

)

, if X ∈ MDA(Φα), Y ∈ MDA(Λ),
(

n
kn

)1−1/α0

L23

(

n
kn

)

, if X ∈ MDA(Λ), Y ∈ MDA(Φα0
),

(

n
kn

)

L24

(

n
kn

)

, if X ∈ MDA(Λ), Y ∈ MDA(Λ).

where L21, L22, L23, L24 are slowly varying functions to be specified later on. Then

Anσ−1
n,1





n
∑

j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy





d
→ Z.

The corresponding cases concerning assumptions on X and Y will be referred as Case 1, Case
2, Case 3 and Case 4.

In the non-subordinated case we have the following result.

Corollary 2. Under the conditions of Theorem 1, if either X ∈ MDA(Φα) or X ∈ MDA(Λ),
then

(

n

kn

)

σ−1
n,1





n
∑

j=n−kn+1

Xj:n − n

∫ 1

1−kn/n
Q(y)dy





d
→ Z.

In the subordinated case we have chosen to work with G = QY F to illustrate phenomena
rather then deal with technicalities. One could work with general functions G, but then one
would need to assume that G has the power rank 1 (see [13] for the definition). Otherwise the
scaling σ−1

n,1 is not correct. To see that G(·) = QY F (·) has the power rank 1, note that for

G∞(x) :=
∫ ∞
−∞ G(x + t)dF (t) we have

d

dx
G∞(x) =

∫ ∞

−∞

f(x + t)

fY QY F (x + t)
dF (t).

Substituting x = 0 and changing variables y = F (t) we obtain

d

dx
G∞(x)|x=0 =

∫ 1

0

fQ(y)

fY QY (y)
dy 6= 0.

Furthermore, we must assume that the distribution of Y = G(X) belongs to the appropriate
domain of attraction. For example, if X ∈ MDA(Φα) and Yi = Xρ

i , ρ being a positive integer,
then Y ∈ MDA(Φα/ρ), provided that the map x → xρ is increasing on IR. Otherwise, if for
example ρ = 2, one needs to impose conditions not only on the right tail of X, but on the left
one as well.

Nevertheless, to illustrate flexibility for the choice of G, let G(x) = log(x+)α, α > 0. If X ∈
MDA(Φα), then Y = G(X) belongs to MDA(Λ). Further, since EX = 0, the quantile function
Q(u) of X must be positive for u > u0 with some u0 ∈ (0, 1). Since the map x → log(x+)α is
increasing, QY (u) = Qα log(X+)(u) = α log Q(u) for u > u0. Consequently, from Theorem 1 we
obtain the following corollary.
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Corollary 3. If (**) holds and X ∈ MDA(Φα), then

Anσ−1
n,1





n
∑

j=n−kn+1

log(X+
j:n)α − n

∫ 1

1−kn/n
log Q(y)dy





d
→ Z,

where An =
(

n
kn

)1+1/α
L22

(

n
kn

)

.

2.1 Remarks

Remark 4. To see what happens if the number of extremes is small, let us assume that
{ǫi,−∞ < i < ∞} is an i.i.d. sequence of standard normal random variables,

∑∞
k=0 c2

k = 1
and supk≥1 |ρk| < 1. Let G(x) = QY (Φ(x)) and kn = [nξ], where ξ ∈ (0, 1) is such that
ξ < 2β − 1. Let

Bn =











(

n
kn

)1/2−1/α0
(

L∗
1

(

n
kn

))−1
c−1
α0

, if Y ∈ MDA(Φα0
),

(

n
kn

)1/2
, if Y ∈ MDA(Λ),

where c2
α0

= 2(1/α0)2

(1−1/α0)(1−2/α0) . Then

Bnn−1/2





n
∑

j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy



 = OP (1).

The meaning of this is that for small ξ extremal sums grow at the same rate as in the cor-
responding i.i.d. situation. It follows from the Normal Comparison Lemma, see e.g. [17, p.
81].

This is not quite unexpected. In view of Theorem 4.3.3 in [17], asymptotic distribution of
properly normalized maxima of LRD Gaussian sequences (with a covariance ρk decaying faster
than (log k)−1) is the same as for the corresponding i.i.d. sequences (i.e., Gaussian sequences
with the same marginals as Xi). In particular, large values of the sequence {Xi, i ≥ 1} do not
cluster. We conjecture that OP (1) above can be replaced with an asymptotic normality. On
the other hand, however, it is not clear if the similar statement will be valid if we assume that
ǫ ∈ MDA(Φα) (which implies that X ∈ MDA(Φα), see Remark 9 below). It is well known that
if

∞
∑

k=0

|ck|
min(α,1) < ∞, (11)

then large values cluster and the asymptotic distribution of max(X1, . . . , Xn) is different from
the corresponding i.i.d. sequence (see [10] for more details). Thus, clustering of extremes should
influence the asymptotic behavior of sums of extremes even in the short range dependent case
(11).

Remark 5. Wu in his paper [24] considered a weighted approximation of empirical processes.
In principle, using a weighted version of Lemma 10 below, one could expect to have weaker
constraints on ξ in Theorem 1. However, this is not the case and with this method we cannot
go beyond ξ > β. See Remark 14 below for more details.
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Remark 6. From the beginning we assumed that Eǫ41 < ∞, thus, in Cases 1 and 2 we have
the requirement α ≥ 4 and this is the only constraint on this parameter. Condition EY < ∞
requires α0 > 1 in case of Y ∈ MDA(Φα0

). In view of (*), to be able to choose ξ < 1 we need
to have α0 > (1 − β)−1 > 2. The same restriction appears in Case 3.

Remark 7. The conditions Dr :=
∫ 1
1/2 F (r)(Q(y))/fY QY (y)dy < ∞ are not restrictive at all,

since they are fulfilled for most distributions with a regularly varying density-quantile function
fQ(1−y), for those we refer to [20]. Consider for example Case 1, and assume that the density f
is non-increasing on some interval [x0,∞). Then F (r) is regularly varying at infinity with index
r + α. Thus, for some x1 > x0

∫ 1

1/2∨x1

F (r)(Q(y))/fY QY (y)dy =

∫ 1

1/2∨x1

(1 − y)r/α−1/α0ℓ(y)dy < ∞

for all r ≥ 1 provided α0 > 1. If, additionally, we impose the following Csörgő-Révész-type
conditions (cf. [1, Theorem 3.2.1]):

(CsR1): fY exists on (a, b), where −∞ ≤ a < b ≤ ∞, a = sup{x : F (x) = 0},
b = inf{x : F (x) = 1},

(CsR2): fY (x) > 0 for x ∈ (a, b),

then in view of (CsR2) and the assumed boundness of derivatives F (r)(·), the integral Dr is
finite.

Remark 8. In the proof of Theorem 1 we have to work with both Q(·) and fQ(·). Therefore,
we assumed the Von-Mises condition (5) since it implies both (6) and (7). If one assumes only
(6), then (5) and, consequently, (7) hold, provided a monotonicity of f is assumed. Moreover,
the von-Mises condition is natural, since the existence of the density f is explicitly assumed.

Remark 9. In some applications one knows the properties of fǫ, rather than of f .

Assume that Fǫ ∈ MDA(Φα). Then also F ∈ MDA(Φα) since

lim
x→∞

P (X1 > x)

P (|ǫ| > x)
= const. ∈ (0,∞).

For α > 2 the above result is valid as long as
∑∞

j=0 c2
j < ∞, in particular, in case of long range

dependence (see [19] for details).

If ǫ1 is normally distributed, then X too, thus in this special case both Fǫ and F belong to
MDA(Λ).

Furthermore, as for the condition
∫ 1
0 F (r)(Q(y))dQ(y) < ∞. Once again, if Fǫ ∈ MDA(Φα)

then the latter condition is fulfilled for both Fǫ and F in view of the discussion in the previous
remark.
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3 Proofs

3.1 Consequences of the reduction principle

Let p be a positive integer and let

Sn,p(x) =
n

∑

i=1

(1{Xi≤x} − F (x)) +

p
∑

r=1

(−1)r−1F (r)(x)Yn,r

=:

n
∑

i=1

(1{Xi≤x} − F (x)) + Vn,p(x),

where F (r) is the rth order derivative of F . Setting Ui = F (Xi) and x = Q(y) in the definition
of Sn(·), we arrive at its uniform version,

S̃n,p(y) =
n

∑

i=1

(1{Ui≤y} − y) +

p
∑

r=1

(−1)r−1F (r)(Q(y))Yn,r

=:
n

∑

i=1

(1{Ui≤y} − y) + Ṽn,p(y).

Denote

dn,p =

{

n−(1−β)L−1
0 (n)(log n)5/2(log log n)3/4, (p + 1)(2β − 1) ≥ 1

n−p(β− 1

2
)Lp

0(n)(log n)1/2(log log n)3/4, (p + 1)(2β − 1) < 1
.

We shall need the following lemma, referred to as the reduction principle.

Lemma 10 ([24]). Let p be a positive integer. Then, as n → ∞,

E sup
x∈IR

∣

∣

∣

∣

∣

n
∑

i=1

(1{Xi≤x} − F (x)) +

p
∑

r=1

(−1)r−1F (r)(x)Yn,r

∣

∣

∣

∣

∣

2

= O(Ξn + n(log n)2),

where

Ξn =

{

O(n), (p + 1)(2β − 1) > 1

O(n2−(p+1)(2β−1)L
2(p+1)
0 (n)), (p + 1)(2β − 1) < 1

.

Using Lemma 10 we obtain (cf. [4])

σ−1
n,p sup

x∈IR
|Sn(x)|

=

{

Oa.s(n
−( 1

2
−p(β− 1

2
))L−p

0 (n)(log n)5/2(log log n)3/4), (p + 1)(2β − 1) > 1

Oa.s(n
−(β− 1

2
)L0(n)(log n)1/2(log log n)3/4), (p + 1)(2β − 1) < 1

.

Since (see (2))
σn,p

σn,1
∼ n−(β− 1

2
)(p−1)Lp−1

0 (n)
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we obtain

sup
x∈IR

|βn(x) + σ−1
n,1Vn,p(x)| =

=
σn,p

σn,1
sup
x∈IR

∣

∣

∣

∣

∣

σ−1
n,p

n
∑

i=1

(1{Xi≤x} − F (x)) + σ−1
n,pVn,p(x)

∣

∣

∣

∣

∣

= oa.s(dn,p).

Consequently, via {αn(y), y ∈ (0, 1)} = {βn(Q(y)), y ∈ (0, 1)},

sup
y∈(0,1)

|αn(y) + σ−1
n,1Ṽn,p(y)| = Oa.s(dn,p). (12)

We have for any an → 0 and by (10),

Anσ−1
n,1

∫ 1−1/n

1−an/n
Ṽn,p(y)dQY (y) = Anσ−1

n,1

∫ 1−1/n

1−an/n

Ṽn,p(y)

fY QY (y)
dy (13)

= −

(

An

∫ 1−1/n

1−an/n

fQ(y)

fY QY (y)
dy

) [(

σ−1
n,1

n
∑

i=1

Xi

)

+ oP (σ−1
n,1)

]

.

Let
L11(u) = L∗

2(u)/L2(u), L21(u) = (1/α − 1/α0 + 1)L11(u),

L12(u) = L∗
3(u)/L2(u), L22(u) = (1/α + 1)L12(u),

L13(u) = L∗
2(u)/L3(u), L23(u) = (−1/α + 1)L13(u),

L14(u) = L∗
3(u)/L3(u), L24(u) = L14(u).

Lemma 11. Let p be a positive integer. Assume that (10) holds for r = 1, . . . , p. Then

Anσ−1
n,1

∫ 1−1/n

1−kn/n
Ṽn,p(y)dQY (y)

d
→ Z.

Proof. In view of (13), we need only to study the asymptotic behavior, as n → ∞, of

An

∫ 1−1/n
1−kn/n

fQ(y)
fY QY (y)dy =: AnKn and to show that AnKn ∼ 1.

We have by Karamata’s Theorem:

In Case 1,

Kn =

∫ 1−1/n

1−kn/n
(1 − y)1/α−1/α0

(

L11((1 − y)−1)
)−1

dy

∼ (1/α − 1/α0 + 1)−1

(

kn

n

)1+1/α−1/α0
(

L11

(

n

kn

))−1

∼

(

kn

n

)1+1/α−1/α0
(

L21

(

n

kn

))−1

.
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In Case 2,

Kn =

∫ 1−1/n

1−kn/n
(1 − y)1/α

(

L12((1 − y)−1)
)−1

dy

∼ (1/α + 1)−1

(

kn

n

)1+1/α (

L12

(

n

kn

))−1

∼

(

kn

n

)1+1/α (

L22

(

n

kn

))−1

.

In Case 3,

Kn =

∫ 1−1/n

1−kn/n
(1 − y)−1/α0

(

L13((1 − y)−1)
)−1

dy

∼
1

−1/α0 + 1

(

kn

n

)1−1/α0
(

L13

(

n

kn

))−1

∼

(

kn

n

)1−1/α0
(

L23

(

n

kn

))−1

.

In Case 4,

Kn =

∫ 1−1/n

1−kn/n

(

L14((1 − y)−1)
)−1

dy

∼

(

kn

n

) (

L14

(

n

kn

))−1

∼

(

kn

n

) (

L14

(

n

kn

))−1

.

Thus, in either case, AnKn ∼ 1.
2

Lemma 12. For any kn → ∞, kn = o(n)

Un−kn:n

1 − kn/n

p
→ 1.

Proof. In view of (12) one obtains

sup
y∈(0,1)

|un(y)| = sup
y∈(0,1)

|αn(y)| = OP (1).

Consequently,

sup
y∈(0,1)

|y − Un(y)| = sup
y∈(0,1)

σn,1n
−1|un(y)| = sup

y∈(0,1)
σn,1n

−1|αn(y)|

= OP (σn,1n
−1).

Thus, the result follows by noting that Un(1 − kn/n) = Un−kn:n.
2

An easy consequence of (12) is the following result.

Lemma 13. For any kn → 0,

sup
y∈(1−kn/n,1)

|αn(y)| = Oa.s.(dn,p) + OP (f(Q(1 − kn/n))).
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3.2 Proof of Theorem 1

To obtain the limiting behavior of sums of extremes, we shall use the following decomposition:
Since En(·) has no jumps after Un:n and Yj = QY F (Xj) = QY (Uj), we have

Anσ−1
n,1





n
∑

j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy





= Anσ−1
n,1





n
∑

j=n−kn+1

QY (Uj:n) − n

∫ 1

1−kn/n
QY (y)dy





= Anσ−1
n,1

(

n

∫ Un:n

Un−kn:n

QY (y)dEn(y) − n

∫ 1

1−kn/n
QY (y)dy

)

= Anσ−1
n,1

(

n

∫ 1

Un−kn:n

QY (y)dEn(y) − n

∫ 1

1−kn/n
QY (y)dy

)

= Anσ−1
n,1n

{

∫ 1− 1

n

1− kn
n

(y − En(y))dQY (y)

+

∫ 1

1− 1

n

(y − En(y))dQY (y) +

∫ 1−kn/n

Un−kn:n

(1 −
kn

n
− En(y))dQY (y)

}

= −An

∫ 1− 1

n

1− kn
n

αn(y)dQY (y) − An

∫ 1

1−1/n
αn(y)dQY (y)

+Anσ−1
n,1n

∫ 1−kn/n

Un−kn:n

(1 −
kn

n
− En(y))dQY (y) =: I1 + I2 + I3.

We will show that I1 yields the asymptotic normality. Further, we will show that the latter two
integrals are asymptotically negligible.

Each term will be treated in a separate section. Let p be the smallest integer such that (p +
1)(2β − 1) > 1, so that dn,p = n−(1−β)ℓ(n).

3.2.1 First term

Let ψµ(y) = (y(1 − y))µ, y ∈ [0, 1], µ > 0.

For kn = [nξ] and arbitrary small δ > 0 one has by (12),

An sup
y∈(0,1)

∣

∣

∣
αn(y) + σ−1

n,1Ṽn,p(y)
∣

∣

∣
= Oa.s (Andn,p)

=















n−(ξ+ξ/α−ξ/α0−1/α+1/α0−β−δ), if X ∈ MDA(Φα), Y ∈ MDA(Φα0
),

n−(ξ+ξ/α−1/α−β−δ), if X ∈ MDA(Φα), Y ∈ MDA(Λ),

n−(ξ−ξ/α0+1/α0−β−δ), if X ∈ MDA(Λ), Y ∈ MDA(Φα0
),

n−(ξ−β−δ), if X ∈ MDA(Λ), Y ∈ MDA(Λ).
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Let

Jn = An

∣

∣

∣

∣

∣

∣

∫ 1− 1

n

1− kn
n

∣

∣

∣αn(y) + σ−1
n,1Ṽn,p(y)

∣

∣

∣

ψµ(y)
ψµ(y)dQY (y)

∣

∣

∣

∣

∣

∣

.

Case 1: Since condition (*) on ξ holds,

1/α0 < ξ + ξ(1/α − 1/α0) − 1/α + 1/α0 − β.

Set µ = (α0 − δ)−1 with δ > 0 so small that

µ < ξ + ξ(1/α − 1/α0) − 1/α + 1/α0 − β − δ.

Then, we have E(Y +)1/µ+δ/2 < ∞. The latter condition is sufficient for the finiteness of
∫ 1
x1

ψµ(y)dQY (y), where x1 = inf{y : QY (y) ≥ 0}, (see [22, Remark 2.4]). Thus,

Jn = oa.s(Andn,pn
µ)

∫ 1

x1

ψµ(y)dQY (y) = oa.s(1)O(1).

Since in Case 3, (***) holds, a similar approach yields that in this case Jn = oa.s(1).

Case 2: If Y ∈ MDA(Λ) then E(Y +)α0 < ∞ for all α > 0 (see [10, Corollary 3.3.32]). Thus, in
view of (**), choose arbitrary small δ > 0 and α0 so big that E(Y +)α0 < ∞ and

1

α0 − δ
< ξ + ξ/α − 1/α − β − δ.

Set µ = (α0−δ)−1 and continue as in the Case 1. A similar reasoning applies to Case 4, provided
ξ > β. Thus, in either case

An

∣

∣

∣

∣

∣

∫ 1− 1

n

1− kn
n

(

αn(y) + σ−1
n,1Ṽn,p(y)

)

dQY (y)

∣

∣

∣

∣

∣

= oa.s(1).

Now, the asymptotic normality of I1 follows from Lemma 11.

3.2.2 Second term

We have

An

∫ 1

1−1/n
αn(y)dQY (y)

= −Anσ−1
n,1n

∫ 1

1−1/n
(1 − En(y))dQY (y) + Anσ−1

n,1n

∫ 1

1−1/n
(1 − y)dQY (y)

:= J1 + J2.

Since EJ1 = J2, it suffices to show that J2 = o(1).
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Case 1: We have by Karamata’s Theorem

J2 = Anσ−1
n,1n

∫ 1

1−1/n

(1 − y)

(1 − y)1+1/α0L∗
2(y

−1)
dy

∼

(

n

kn

)1+1/α−1/α0

nβ−3/2n(
1

n
)1−1/α0ℓ(n)ℓ(n/kn)

which converges to 0 using the assumption (*).

Likewise, in Case 3,

J2 ∼

(

n

kn

)1−1/α0

nβ−3/2n(
1

n
)1−1/α0ℓ(n)ℓ(n/kn)

which converges to 0 using the assumption (***).

Case 2: We have,

J2 = Anσ−1
n,1n

∫ 1

1−1/n

1 − y

fY QY (y)
dy ∼ Anσ−1

n,1ℓ(n)ℓ(n/kn)

which converges to 0, using the assumption (**). The same argument applies to Case 4. There-
fore, in either case, I2 = oP (1).

3.2.3 Third term

To prove that I3 = oP (1), let y be in the interval with the endpoints Un−kn:n and 1 − kn/n.
Then

∣

∣

∣

∣

1 − En(y) −
kn

n

∣

∣

∣

∣

≤ |En(1 − kn/n) − (1 − kn/n)|.

Case 1: By Lemma 12 and Y ∈ MDA(Φα0
), we have

QY (1 − kn/n)/QY (Un−kn:n)
p
→ 1. (14)

Hence, by condition (*),

(

n

kn

)1+1/α−1/α0

ℓ(n/kn)QY (1 − kn/n)dn,p

= n1+1/αℓ(n)ℓ(n/kn)n−ξ(1+1/α)dn,p → 0. (15)

Also, by (7) and (9),

AnQY (1 − kn/n)fQ(1 − kn/n) ∼ CL21

(

n

kn

)

L∗
1(n/kn)

L1(n/kn)
∼ C (16)
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Thus, by (14), (15), (16) and Lemma 13

I3 ≤ AnQY (1 − kn/n)|αn(1 − kn/n)|
|QY (1 − kn/n) − QY (Un−kn:n)|

QY (1 − kn/n)

= AnQY (1 − kn/n)αn(1 − kn/n)op(1)

= op (AnQY (1 − kn/n)fQ(1 − kn/n)) + op (AnQ(1 − kn/n)dn,p) = oP (1).

Case 3: By Lemma 12 and Y ∈ MDA(Φα0
) we have (14). Since ξ > β > β/(1 − 1/α0),

(

n

kn

)1−1/α0

ℓ(n/kn)QY (1 − kn/n)dn,p = nβ−ξ → 0. (17)

Also, by (8) and (9),

(

n

kn

)1−1/α0

L23

(

n

kn

)

QY (1 − kn/n)fQ(1 − kn/n)

∼ CL23

(

n

kn

)

L3(n/kn)

L∗
2(n/kn)

∼ C. (18)

Thus, by (17), (18), we conclude as above that I3 = oP (1).

Cases 2 and 4:
Tn(λ) = An|αn(1 − kn/n)|

∣

∣QY (r+
n (λ)) − QY (r−n (λ))

∣

∣ ,

where r+
n (λ) = 1 − kn

λn , r−n (λ) = 1 − λkn
n and 1 < λ < ∞ is arbitrary. Applying an argument as

in the proof of Theorem 1 in [8], we have

lim inf
n→∞

P (|I3| < |Tn(λ)|) ≥ lim inf
n→∞

P (r−n (λ) ≤ Un−kn:n ≤ r+
n (λ)).

In view of Lemma 12, the lower bound is 1. Thus, limn→∞ P (|I3| < |Tn(λ)|) = 1. Further, by
Lemma 4 in [18],

lim
n→∞

(QY (r+
n (λ)) − QY (r−n (λ)))L∗

3(n/kn) = − log λ.

Thus, for large n,

Tn(λ) = An|αn(1 − kn/n)|(L∗
3(n/kn))−1|QY (r+

n (λ)) − QY (r−n (λ))|L∗
3(n/kn)

≤ C1
An

L∗
3(n/kn)

fQ(1 − kn/n)(log λ) + C2
An

L∗
3(n/kn)

dn,p log λ

almost surely with some constants C1, C2. The second term, for arbitrary λ, converges to 0 by
the choice of ξ. Also,

An
fQ(1 − kn/n)

L∗
3(n/kn)

≤



















(

n
kn

)1+1/α
L22

(

n
kn

) ( kn
n )

1+1/α
L2

“

n
kn

”

L∗

3

“

n
kn

” , in Case 2,

(

n
kn

)

L24

(

n
kn

) ( kn
n )L3

“

n
kn

”

L∗

3

“

n
kn

” , in Case 4.
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In either case, the above expressions are asymptotically equal to 1. Thus, we have for sufficiently
large n, Tn(λ) ≤ C1 log λ almost surely. Thus, limn→∞ P (|Tn(λ)| ≤ C1 log λ) = 1. Consequently,

lim
n→∞

P (|I3| > C1 log λ) =

≤ lim
n→∞

P (|I3| > C1 log λ, |Tn(λ)| ≤ C1 log λ) + lim
n→∞

P (|Tn(λ)| > C1 log λ)

≤ lim
n→∞

P (|I3| > |Tn(λ)|) + 0 = 0

and thus I3 = oP (1) by taking λ → 1.
2

Remark 14. Wu [24] proved a stronger version of Lemma 10 above:

E sup
x∈IR

(1 + |x|)γ

∣

∣

∣

∣

∣

n
∑

i=1

(1{Xi≤x} − F (x)) +

p
∑

r=1

(−1)r−1F (r)(x)Yn,r

∣

∣

∣

∣

∣

2

= O(Ξn + n(log n)2),

where γ > 0 is such that E|ǫ1|
4+γ < ∞. Applying it to the uniform random variables Ui = F (Xi),

E sup
y∈(0,1)

(1 + |Q(y)|)γ

∣

∣

∣

∣

∣

n
∑

i=1

(1{Ui≤y} − y) +

p
∑

r=1

(−1)r−1F (r)(Q(y))Yn,r

∣

∣

∣

∣

∣

2

= O(Ξn + n(log n)2).

Now, let’s look at Case 4. The constraint ξ > β comes from the estimation of the third term:
we need to control Anαn(1− kn/n) and thus, in view of Lemma 13, we have to estimate Andn,p.
This converges to 0 if ξ > β.

Using the weighted version of Lemma 10, we would have obtained in Lemma 13:

sup
y∈(1−kn/n,1)

(1 + Q(y))γ/2|αn(y)| = Oa.s.(dn,p) + OP (fQ(1 − kn/n)).

However, in Case 4, Q(·) is slowly varying at 1. Consequently, the approach via weighted
approximation does not improve constraints on ξ. (A slight improvement can be achieved in
Cases 1 and 2, where Q(·) is regularly varying at 1).
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