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1 Introduction

Stochastic differential equations (s.d.e.) with boundary conditions driven by a Wiener process
have been extensively studied in the last fifteen years, both in the ordinary and the partial dif-
ferential cases. We highlight the papers of Ocone and Pardoux [13], Nualart and Pardoux [10],
Donati-Martin [6], Buckdahn and Nualart [4], and Alabert, Ferrante and Nualart [1]. These
equations arise from the usual ones when we replace the customary initial condition by a func-
tional relation h(X0, X1) = 0 between two variables of the solution process X, which is only con-
sidered in the bounded time interval [0, 1]. Features that have been considered include existence
and uniqueness, absolute continuity of the laws, numerical approximations, and Markovian-type
properties.

Recently, in our work [2], we have considered boundary value problems where the stochastic
integral with respect to the Wiener process is replaced by an additive Poisson perturbation Nt







Xt = X0 +

∫ t

0
f(r,Xr) dr +Nt , t ∈ [0, 1] ,

X0 = ψ(X1) ,

where the boundary condition is written in a more manageable form. We established an existence
and uniqueness result, studied the absolutely continuity of the laws, and characterized several
classes of coefficients f which lead to the so-called reciprocal property of the solution.

Let us recall that X = {Xt, t ∈ [0, 1]} is a reciprocal process if for all times 0 ≤ s < t ≤ 1,
the families or random variables {Xu, u ∈ [s, t]} and {Xu, u ∈ [0, 1] − [s, t]} are conditionally
independent given Xs and Xt. This property is weaker than the usual Markov property.

Interest in reciprocal processes dates back to Bernstein [3] (they are also called Bernstein
processes by physicists) because of their role in the probabilistic interpretation of quantum
mechanics. It is by far not true that all s.d.e. with boundary conditions give rise to reciprocal
processes and it is also false that a general reciprocal process could be represented as the solution
of some sort of first order boundary value problem, no matter which type of driving process is
taken. Nevertheless, it is interesting to try to find in which cases the probabilistic dynamic
representation given by a first order s.d.e., together with a suitable boundary relation, is indeed
able to represent a reciprocal process.

In this paper, we develop the same program as in our previous paper [2], but with a multi-
plicative Poisson perturbation. Specifically, we consider the equation

(1.1)







Xt = X0 +

∫ t

0
f(r,Xr−) dr +

∫ t

0
F (r,Xr−) dNr , t ∈ [0, 1] ,

X0 = ψ(X1) ,

where f, F : [0, 1]×R → R and ψ : R → R are measurable functions satisfying certain hypotheses,
and N = {Nt, t ≥ 0} is a Poisson process with intensity 1.

Due to the boundary condition, the solution will anticipate any filtration to which N is
adapted, and therefore the stochastic integral appearing in the equation is, strictly speaking, an
anticipating integral. However, the bounded variation character of the Poisson process permits
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to avoid most of the technical difficulties of the anticipating stochastic integrals with respect to
the Wiener process.

Equation (1.1) is a “forward equation”. One can also consider the “backward equation”

(1.2)







Xt = X0 +

∫ t

0
f(r,Xr) dr +

∫ t

0
F (r,Xr) dNr , t ∈ [0, 1] ,

X0 = ψ(X1) ,

and the Skorohod-type equation

(1.3)







Xt = X0 +

∫ t

0
b(r,Xr) dr +

∫ t

0
B(r,Xr) δÑr , t ∈ [0, 1] ,

X0 = ψ(X1) ,

where δÑr denotes the Skorohod integral with respect to the compensated Poisson process.
While the stochastic integrals in (1.1) and (1.2) are no more than Stieljes integrals, the Skorohod
integral operator is defined by means of the chaos decomposition on the canonical Poisson space.
We refer the reader to [8], [12] or [11] for an introduction to the canonical Poisson space, the
chaos decomposition and the Skorohod integral.

The paper is organised as follows. Section 2 is devoted to the study of the stochastic flow
(initial condition problem) associated with s.d.e. (1.1), which will give us the preliminary results
needed for the boundary condition case. In Section 3 we study existence, uniqueness, regularity
and absolute continuity of the solution to the problem (1.1). In both Sections 2 and 3, the
case of linear equations is studied as a special example. In Section 4, we find some sufficient
conditions for the solution of the linear equation to enjoy the reciprocal property. In the final
Section 5, the relation of the forward equation (1.1) with the backward equation (1.2) and the
Skorohod equation (1.3) is established. The linear equation is again considered with particular
attention, and the chaos decomposition of the solution is computed in two very simple special
cases.

We will use the notation ∂ig for the derivative of a function g with respect to the i-th
coordinate, g(s−) and g(s+) for limt↑s g(t) and limt↓s g(t) respectively, and the acronym càdlàg
for “right continuous with left limits”. Throughout the paper, we employ the usual convention
that a summation and a product with an empty set of indices are equal to zero and one,
respectively.

2 Stochastic flows induced by Poisson equations

Let N = {Nt, t ≥ 0} be a standard Poisson process with intensity 1 defined on some probability
space (Ω,F, P ); that means, N has independent increments, Nt − Ns has a Poisson law with
parameter t−s, N0 ≡ 0, and all its paths are integer-valued, non-decreasing, càdlàg, with jumps
of size 1.

Throughout the paper, Sn will denote the n-th jump time of N :

Sn(ω) := inf{t ≥ 0 : Nt(ω) ≥ n} .
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The sequence Sn is strictly increasing to infinity, and {Nt = n} = {Sn ≤ t < Sn+1}.

Let us consider the pathwise equation

(2.1) ϕst(x) = x+

∫ t

s

f(r, ϕsr−(x)) dr +

∫

(s,t]
F (r, ϕsr−(x)) dNr , 0 ≤ s ≤ t ≤ 1 ,

where x ∈ R, and assume that f, F : [0, 1]×R → R are measurable functions such that f satisfies

(H1) ∃K1 > 0 : ∀t ∈ [0, 1], ∀x, y ∈ R, |f(t, x)− f(t, y)| ≤ K1|x− y|,

(H2) M1 := sup
t∈[0,1]

|f(t, 0)| <∞.

For every x ∈ R, denote by Φ(s, t;x) the solution to the deterministic equation

(2.2) Φ(s, t;x) = x+

∫ t

s

f(r,Φ(s, r;x)) dr , 0 ≤ s ≤ t ≤ 1 .

All conclusions of the following lemma are well known or easy to show:

Lemma 2.1 Under hypotheses (H1) and (H2), there exists a unique solution Φ(s, t;x) of equa-
tion (2.2). Moreover:

1) For every 0 ≤ s ≤ t ≤ 1, and every x ∈ R, |Φ(s, t;x)| ≤ (|x|+M1)e
K1(t−s).

2) For every 0 ≤ s ≤ r ≤ t ≤ 1, and every x ∈ R, Φ(r, t; Φ(s, r;x)) = Φ(s, t;x).

3) For every 0 ≤ s ≤ t ≤ 1, and every x1, x2 ∈ R with x1 < x2,

(x2 − x1)e
−K1(t−s) ≤ Φ(s, t;x2)− Φ(s, t;x1) ≤ (x2 − x1)e

K1(t−s) .

In particular, for every s, t, the function x 7→ Φ(s, t;x) is a homeomorphism from R into
R.

4) If G : [0, 1]× R → R has continuous partial derivatives, then for every 0 ≤ s ≤ t ≤ 1,

G(t,Φ(s, t;x)) = G(s, x) +

∫ t

s

[

∂1G(r,Φ(s, r;x)) + ∂2G(r,Φ(s, r;x))f(r,Φ(s, r;x))
]

dr .

Using Lemma 2.1 one can prove easily the following analogous properties for equation (2.1):

Proposition 2.2 Assume that f satisfies hypotheses (H1) and (H2) with constants K1,M1.
Then, for each x ∈ R, there exists a unique process ϕ(x) = {ϕst(x), 0 ≤ s ≤ t ≤ 1} that solves
(2.1). Moreover:

(1) If F satisfies hypotheses (H1) and (H2) with constants K2 and M2, then for every 0 ≤
s ≤ t ≤ 1 and every x ∈ R:

|ϕst(x)| ≤
[

|x|+ (M1 +M2)(Nt −Ns + 1)
]

(1 +K2)
(Nt−Ns)eK1 .
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(2) For every 0 ≤ s ≤ r ≤ t ≤ 1 and every x ∈ R, ϕrt(ϕsr(x)) = ϕst(x).

(3) If there exist constants −1 ≤ k2 ≤ K2 such that

k2(x− y) ≤ F (t, x)− F (t, y) ≤ K2(x− y) , t ∈ [0, 1] , x > y ,

then for all 0 ≤ s ≤ t ≤ 1, and all x1, x2 ∈ R with x1 < x2,

(1 + k2)
Nt−Nse−K1(t−s) ≤

ϕst(x2)− ϕst(x1)

x2 − x1
≤ (1 +K2)

Nt−NseK1(t−s) ,

with the convention 00 = 1. In particular, if k2 > −1, then for each 0 ≤ s ≤ t ≤ 1 the
function x 7→ ϕst(x) is a random homeomorphism from R into R.

(4) Suppose that G : [0, 1]× R → R has continuous partial derivatives. Then, for all 0 ≤ s ≤
t ≤ 1,

G(t, ϕst(x)) = G(s, x)+

∫ t

s

[

∂1G(r, ϕsr−(x)) + ∂2G(r, ϕsr−(x))f(r, ϕsr−(x))
]

dr

+

∫

(s,t]

[

G(r, ϕsr−(x) + F (r, ϕsr−(x)))−G(r, ϕsr−(x))
]

dNr .

By solving equation (2.2) between jumps, the value ϕst(ω, x) can be found recursively in terms
of Φ: If s1 = S1(ω), . . . , sn = Sn(ω) are the jump times of the path N(ω) on (s, 1], then

ϕst(x) = Φ(s, t;x)1[s,s1)(t) +
n−1
∑

i=1

Φ(si, t;ϕss−i
(x) + F (si, ϕss−i

(x)))1[si,si+1)(t)

+ Φ(sn, t;ϕss−n
(x) + F (sn, ϕss−n

(x)))1[sn,1](t) .(2.3)

Notice that the paths t 7→ ϕst(x) (t ≥ s) are càdlàg and ϕst(x)−ϕst−(x) = F (t, ϕst−)(Nt−N
−
t ).

In the sequel, when s = 0, we will write ϕt(x) in place of ϕ0t(x).

Example 2.3 (Linear equation). Let f1, f2, F1, F2 : [0, 1] → R be continuous functions, and
x ∈ R. Consider equation (2.1) with s = 0 and linear coefficients:

(2.4) ϕt(x) = x+

∫ t

0
[f1(r) + f2(r)ϕr−(x)] dr +

∫ t

0
[F1(r) + F2(r)ϕr−(x)] dNr , 0 ≤ t ≤ 1 .

We can describe the solution of this equation as follows: Set S0 := 0 and let 0 < S1 < S2 < ...
be the jumps of Poisson process. For t ∈ [Si, Si+1), i = 0, 1, 2, . . . ,

ϕt(x) = ϕSi
(x) +

∫ t

Si

[f1(r) + f2(r)ϕr−(x)] dr .

Applying Proposition 2.2(4) with G(t, x) = A(t)−1x, where

A(t) = exp
{

∫ t

0
f2(r) dr

}

,
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we obtain

(2.5)
ϕt(x)

A(t)
=
ϕSi

(x)

A(Si)
+

∫ t

Si

f1(r)

A(r)
dr .

On the other hand, for i = 1, 2, 3, . . . ,

ϕSi
(x) = ϕS−

i
(x) + F1(Si) + F2(Si)ϕS−

i
(x)

= F1(Si) + [1 + F2(Si)]ϕS−
i
(x) .(2.6)

¿From (2.5) and (2.6), it follows that, for t ∈ [0, S1),

ϕt(x)

A(t)
= x+

∫ t

0

f1(r)

A(r)
dr ,

and that for t ∈ [Si, Si+1), i = 1, 2, . . . ,

ϕt(x)

A(t)
=
[

x+

∫ S1

0

f1(r)

A(r)
dr
]

i
∏

j=1

(1 + F2(Sj)) +
[F1(S1)

A(S1)
+

∫ S2

S1

f1(r)

A(r)
dr
]

i
∏

j=2

(1 + F2(Sj)) + · · ·

· · ·+
[F1(Si−1)

A(Si−1)
+

∫ Si

Si−1

f1(r)

A(r)
dr
]

i
∏

j=i

(1 + F2(Sj)) +
[F1(Si)

A(Si)
+

∫ t

Si

f1(r)

A(r)
dr
]

.

When F2(t) 6= −1 for almost all t ∈ [0, 1] with respect to Lebesgue measure, we can also
write the solution as follows:

ϕt(x) = ηt

[

x+

∫ t

0

f1(r)

ηr
dr +

∫ t

0

F1(r)

ηr
dNr

]

, a.s.,

where
ηt = A(t)

∏

0<Si≤t

[1 + F2(Si)] .

Under differentiability assumptions on f and F we obtain differentiability properties of the
solution to (2.1):

Proposition 2.4 Assume that f satisfies the stronger hypotheses:

(H ′1) f , ∂2f are continuous functions.

(H ′2) ∃K > 0 : |∂2f | ≤ K.

Then

(1) For every ω ∈ Ω and every x ∈ R, the function t 7→ ϕst(ω, x) is differentiable on [s, 1] −
{s1, s2, . . . }, where s1, s2, . . . are the jump times of N(ω) on (s, 1], and

dϕst(x)

dt
= f(t, ϕst(x)) .
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(2) If moreover F and ∂2F are continuous functions, then for every ω ∈ Ω and every 0 ≤ s ≤
t ≤ 1, the function x 7→ ϕst(ω, x) is continuously differentiable and

dϕst(ω, x)

dx
= exp

{

∫ t

s

∂2f(r, ϕsr(ω, x)) dr
}

∏

s<si≤t

[1 + ∂2F (si, ϕss−i
(ω, x))] .

In particular, when ∂2F > −1, x 7→ ϕst(x) is a random diffeomorphism from R into R.

(3) Assume moreover that F , ∂1F and ∂2F are continuous functions. Fix 0 ≤ s < t ≤ 1
and n ∈ {1, 2, . . . }. On the set {Nt − Ns = n}, the mapping ω 7→ ϕst(ω, x) regarded
as a function ϕst(s1, s2, . . . , sn;x) defined on {s < s1 < s2 < · · · < sn ≤ t} (where
sj = Sj(ω) are the jump times of N(ω) on (s, t]), is continuously differentiable and, for
every j ∈ {1, . . . , n},

∂ϕst(x)

∂sj
=exp

{

∫ t

sj

∂2f(r, ϕsr(x)) dr
}

n
∏

i=j+1

[1 + ∂2F (si, ϕss−i
(x))]

×
[

− f(sj , ϕssj
(x)) + ∂1F (sj , ϕss−j

(x)) + f(sj , ϕss−j
(x))[1 + ∂2F (sj , ϕss−j

(x))]
]

.

Proof: It is easy to see for the solution Φ of (2.2) that

∂1Φ(s, t;x) = −f(s, x) exp
{

∫ t

s

∂2f(r,Φ(s, r;x)) dr
}

,

∂2Φ(s, t;x) = f(t,Φ(s, t;x)) ,

∂3Φ(s, t;x) = exp
{

∫ t

s

∂2f(r,Φ(s, r;x)) dr} ,

and that these derivatives are continuous on {0 ≤ s ≤ t ≤ 1} × R. Claims (1) and (2) follow
from here and representation (2.3).

The existence and regularity of the function ϕst(s1, . . . , sn;x) of (3) are also clear from (2.3).
We compute now its derivative with respect to sj . For n = 1, we get

dϕst(x)

ds1
= ∂1Φ(s1, t;ϕss1(x)) + ∂3Φ(s1, t;ϕss1(x))

dϕss1(x)

ds1

= exp
{

∫ t

s1

∂2f(r, ϕsr(x)) dr
}

×
[

− f(s1, ϕss1(x)) + ∂1F (s1, ϕss−1
(x)) + f(s1, ϕss−1

(x))[1 + ∂2F (s1, ϕss−1
(x))]

]

.

Suppose that (3) holds for n = k. Then, for n = k + 1 and j = 1, . . . , k,

∂ϕst(x)

∂sj
= ∂3Φ(sk+1, t;ϕssk+1

(x))
∂ϕssk+1

(x)

∂sj

= exp
{

∫ t

sj

∂2f(r, ϕsr(x)) dr
}

k+1
∏

i=j+1

[1 + ∂2F (si, ϕss−i
(x))]

×
[

− f(sj , ϕssj
(x)) + ∂1F (sj , ϕss−j

(x)) + f(sj , ϕss−j
(x))[1 + ∂2F (sj , ϕss−j

(x))]
]

.
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Taking into account that

ϕssk+1
(x) = ϕss−

k+1
(x) + F (sk+1, ϕss−

k+1
(x)) ,

∂ϕssk+1
(x)

∂sk+1
= [1 + ∂2F (sk+1, ϕss−

k+1
(x))]f(sk+1, ϕss−

k+1
(x)) + ∂1F (sk+1, ϕss−

k+1
(x)) ,

we obtain, for j = k + 1,

∂ϕst(x)

∂sk+1
= ∂1Φ(sk+1, t;ϕssk+1

(x)) + ∂3Φ(sk+1, t;ϕssk+1
(x))

∂ϕssk+1
(x)

∂sk+1

= exp
{

∫ t

sk+1

∂2f(r, ϕsr(x)) dr
}

×
[

− f(sk+1, ϕssk+1
(x)) + ∂1F (sk+1, ϕss−

k+1
(x))

+ f(sk+1, ϕss−
k+1

(x))[1 + ∂2F (sk+1, ϕss−
k+1

(x))]
]

.

In the next proposition we find that under the regularity hypotheses of Proposition 2.4 and
an additional condition relating f and F , the law of ϕt(x) is a weighted sum of a Dirac-δ and
an absolutely continuous probability.

Proposition 2.5 Let f satisfy hypotheses (H ′
1) and (H ′2) of Proposition 2.4, and assume that

F , ∂1F and ∂2F are continuous functions. Assume moreover that

(2.7) |f(t, x+ F (t, x))− f(t, x)[1 + ∂2F (t, x)]− ∂1F (t, x)| > 0 , ∀t ∈ [0, 1], ∀x ∈ R .

Let ϕ(x) = {ϕt(x), t ∈ [0, 1]} be the solution to (2.1) for s = 0. Then, for all t > 0, the
distribution function L of ϕt(x) can be written as

L(y) = e−tLD(y) + (1− e−t)LC(y) ,

with
LD(y) = 1[Φ(0,t;x),∞)(y) ,

and

LC(y) = (et − 1)−1
∫ y

−∞

∞
∑

n=1

tn

n!
hn(r) dr ,

where hn is the density function of the law of ϕt(x) conditioned to Nt = n.

Proof: Let S1, S2, . . . be the jump times of {Nt, t ∈ [0, 1]}. From Proposition 2.4(3), on the
set {Nt = n} (n = 1, 2, . . . ) we have ϕt(x) = G(S1, . . . , Sn) for some continuously differentiable
function G, and that

∂nG(s1, ..., sn) = exp
{

∫ t

sn

∂2f(r, ϕr(x)) dr
}

×
[

− f(sn, ϕsn(x)) + ∂1F (sn, ϕs−n
(x)) + f(sn, ϕs−n

(x))[1 + ∂2F (sn, ϕs−n
(x))]

]

.
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Using ϕsn(x) = ϕs−n
(x) + F (sn, ϕs−n

(x)) and condition (2.7), we obtain |∂nG| > 0.
It is known that, conditionally to {Nt = n}, (S1, . . . , Sn) follows the uniform distribution

on Dn = {0 < s1 < · · · < sn < t}. If we define T (s1, . . . , sn) = (z1, . . . , zn), with zi = si,
1 ≤ i ≤ n − 1, and zn = G(s1, . . . , sn), then (Z1, . . . , Zn) = T (S1, . . . , Sn) is a random vector
with density

h(z1, . . . , zn) = n! t−n
∣

∣∂nsn(z1, . . . , zn)
∣

∣1T (Dn)(z1, . . . , zn) ,

and therefore ϕt(x) is absolutely continuous on {Nt = n}, for every n ≥ 1, with conditional
density

hn(y) = 1G(Dn)(y)

∫ ∫

· · ·

∫

h(z1, . . . , zn−1, y) dz1 . . . dzn−1 .

Now,

L(y) =
∞
∑

n=0

P
{

ϕt(x) ≤ y/Nt = n
}

P{Nt = n}

= e−tP
{

ϕt(x) ≤ y/Nt = 0
}

+ e−t
∞
∑

n=1

tn

n!

∫ y

−∞
hn(r) dr

= e−t1[Φ(0,t;x),∞)(y) + e−t

∫ y

−∞

∞
∑

n=1

tn

n!
hn(r) dr ,

and the result follows.

Remark 2.6 When f(t, x) ≡ f(x), F (t, x) ≡ F (x) and f ′′ is continuous, condition (2.7) is
satisfied if

|f ′F − fF ′| >
1

2
‖f ′′‖∞‖F‖

2
∞ ,

which is the hypothesis used by Carlen and Pardoux in [5] (Theorem 4.3) to prove that, in the
autonomous case, the law of ϕ1(x) is absolutely continuous on the set {N1 ≥ 1}.

3 Equations with boundary conditions

In this section we establish first an easy existence and uniqueness theorem, based on Proposition
2.2 above, when the initial condition is replaced by a boundary condition. Then we prove in this
situation the analogue of Propositions 2.4(3) and 2.5 on the differentiability with respect to the
jump times and the absolute continuity of the laws (Proposition 3.4 and Theorem 3.5 below,
respectively).

Theorem 3.1 Let f, F : [0, 1]×R → R be measurable functions such that f satisfies hypotheses
(H1) and (H2) of Section 2, with constants K1 and M1 respectively, F (t, ·) is continuous for
each t, and there exists a constant k2 ≥ −1 such that F (t, x) − F (t, y) ≥ k2(x − y), ∀t ∈ [0, 1],
x > y. Assume that ψ : R → R satisfies

(H3) ψ is a continuous and non-increasing function.
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Then

(3.1)







Xt = X0 +

∫ t

0
f(r,Xr−) dr +

∫ t

0
F (r,Xr−) dNr , t ∈ [0, 1] ,

X0 = ψ(X1) ,

admits a unique solution X, which is a càdlàg process.

Proof: By Proposition 2.2, for each x ∈ R there exists a unique càdlàg process ϕ(x) = {ϕt(x), t ∈
[0, 1]} that satisfies the equation

ϕt(x) = x+

∫ t

0
f(r, ϕr−(x)) dr +

∫ t

0
F (r, ϕr−(x)) dNr , t ∈ [0, 1] .

¿From part (3) of the same proposition, for each ω ∈ Ω, the function x 7→ ϕ1(ω, x) is non-
decreasing. Thus, by hypothesis (H3), the function x 7→ ψ(ϕ1(ω, x)) has a unique fixed point,
that we define as X0(ω). It follows that (3.1) has the unique solution Xt(ω) = ϕt(ω,X0(ω)).

Remark 3.2 In general, the condition k2 ≥ −1 cannot be relaxed. For instance, the problem











Xt = X0 +

∫ t

0
Xr− dr +

∫ t

0
−2Xr− dNr ,

X0 = 1− 1
e
X1 , t ∈ [0, 1] ,

has no solutions. Indeed, the first equality implies Xt = X0e
t(−1)Nt (see Example 2.3), which

gives X1 = −X0e for N1 ∈ {1, 3, 5, . . . }, and this is incompatible with the boundary condition.
On the other hand, if we change the boundary condition to X0 = −1

e
X1 the new problem

has an infinite number of solutions:

Xt(ω) =

{

0 , if N1(ω) = 0, 2, 4, . . .

x(ω)et(−1)Nt(ω) , if N1(ω) = 1, 3, 5, . . .

where x(ω) is an arbitrary real number.
Notice that the purpose of (H3) is to ensure that x 7→ ψ(ϕ1(x)) has a unique fixed point.

Alternative hypotheses that lead to the same consequence may be used instead for particular
cases. See for instance the comments at the end of Example 3.3.

Example 3.3 (Linear equation). Consider the linear equation

(3.2)







Xt = X0 +

∫ t

0
[f1(r) + f2(r)Xr− ] dr +

∫ t

0
[F1(r) + F2(r)Xr− ] dNr ,

X0 = ψ(X1) , t ∈ [0, 1] ,

where f1, f2, F1, F2 : [0, 1] → R are continuous functions, and ψ : R → R is a continuous and
non-increasing function. Assume F2(t) ≥ −1 for all t ∈ [0, 1]. By Theorem 3.1 there is a unique
solution, and using Example 2.3 we can describe it as follows:

240



For ω ∈ {S1 > 1},

Xt = A(t)
[

x∗ +

∫ t

0

f1(r)

A(r)
dr
]

,

where A(t) = exp{
∫ t

0 f2(r) dr}, and x
∗ solve

x = ψ
(

A(1)
[

x+

∫ 1

0

f1(r)

A(r)
dr
])

.

For ω ∈ {Sn < 1 < Sn+1} (n ≥ 1) and t ∈ [Si, Si+1) we have

Xt

A(t)
=
[

X0 +

∫ S1

0

f1(r)

A(r)
dr
]

i
∏

j=1

(1 + F2(Sj)) +
[F1(S1)

A(S1)
+

∫ S2

S1

f1(r)

A(r)
dr
]

i
∏

j=2

(1 + F2(Sj)) + · · ·

· · ·+
[F1(Si−1)

A(Si−1)
+

∫ Si

Si−1

f1(r)

A(r)
dr
]

i
∏

j=i

(1 + F2(Sj)) +
[F1(Si)

A(Si)
+

∫ t

Si

f1(r)

A(r)
dr
]

.

where X0 solve x = ψ(ϕ1(x)), with

ϕ1(x)

A(1)
=
[

x+

∫ S1

0

f1(r)

A(r)
dr
]

n
∏

j=1

(1 + F2(Sj)) +
[F1(S1)

A(S1)
+

∫ S2

S1

f1(r)

A(r)
dr
]

n
∏

j=2

(1 + F2(Sj)) + · · ·

· · ·+
[F1(Si−1)

A(Si−1)
+

∫ Si

Si−1

f1(r)

A(r)
dr
]

n
∏

j=i

(1 + F2(Sj)) +
[F1(Si)

A(Si)
+

∫ 1

Si

f1(r)

A(r)
dr
]

.

When F2(t) > −1 for almost all t ∈ [0, 1] with respect to Lebesgue measure, we can also
write the solution as follows:

(3.3) Xt = ηt

[

X0 +

∫ t

0

f1(r)

ηr
dr +

∫ t

0

F1(r)

ηr
dNr

]

, a.s.,

where

ηt = A(t)
∏

0<Si≤t

[1 + F2(Si)] = exp
{

∫ t

0
f2(r) dr +

∫ t

0
log(1 + F2(r)) dNr

}

.

Finally, we remark that if −1 ≤ F2 ≤ 0, the monotonicity condition on ψ can be relaxed to

x > y ⇒ ψ(x)− ψ(y) ≤ α(x− y) ,

with αA(1) < 1, because in this case the mapping x 7→ ψ(ϕ1(ω, x)) has still a unique fixed point.
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Under differentiability assumptions on f , F and ψ, we will obtain differentiability properties of
the solution to (3.1). Denote

A(sj , t,X) := exp
{

∫ t

sj

∂2f(r,Xr) dr
}

∏

sj<si≤t

[1 + ∂2F (si, Xs−i
)]

×
[

− f(sj , Xsj
) + f(sj , Xs−j

)[1 + ∂2F (sj , Xs−j
)] + ∂1F (sj , Xs−j

)
]

,

and

B(t,X) := exp
{

∫ t

0
∂2f(r,Xr) dr

}

∏

0<si≤t

[1 + ∂2F (si, Xs−i
)] .

Proposition 3.4 Let f, F : [0, 1] × R → R and ψ : R → R be measurable functions such that
f satisfies hypotheses (H ′

1), (H
′
2) of Section 2; F , ∂1F and ∂2F are continuous functions with

∂2F ≥ −1, and

(H ′3) ψ is a continuously differentiable function with ψ′ ≤ 0.

Let X = {Xt, t ∈ [0, 1]} be the solution to (3.1). Then:

(1) Fix n ∈ {1, 2, . . . }. On the set {N1 = n}, X0 can be regarded as a function X0(s1, s2, ..., sn),
defined on {0 < s1 < · · · < sn < 1}, where sj = Sj(ω) are the jumps of N(ω) in [0, 1].
This function is continuously differentiable, and for any j = 1, 2, . . . , n,

∂X0
∂sj

=
ψ′(X1)A(sj , 1, X)

1− ψ′(X1)B(1, X)
.

(2) Take t ∈ (0, 1] and n, k ∈ {0, 1, . . . } such that n+k ≥ 1. On the set {Nt = n}∩{N1−Nt =
k}, Xt can be regarded as a function Xt(s1, . . . , sn+k) defined on {0 < s1 < · · · < sn+k <
1}, where sj = Sj(ω) are the jumps of N(ω) in [0, 1]. This function is continuously
differentiable, and for any j = 1, 2, . . . , n+ k,

∂Xt

∂sj
= B(t,X)

∂X0
∂sj

1{1,...,n+k}(j) +A(sj , t,X)1{1,...,n}(j) .

Proof: Since X0 = ψ(ϕ1(X0)), Proposition 2.4 and the Implicit Function Theorem ensure that
X0 is continuously differentiable, and we have

∂X0
∂sj

=
ψ′(ϕ1(X0))

∂ϕ1(x)
∂sj

∣

∣

∣

x=X0

1− ψ′(ϕ1(X0))
dϕ1(x)

dx

∣

∣

∣

x=X0

=
ψ′(X1)A(sj , 1, X)

1− ψ′(X1)B(1, X)
.
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On the other hand, for Xt = ϕt(X0),

∂Xt

∂sj
=
dϕt(x)

dx

∣

∣

∣

x=X0

∂X0
∂sj

+
∂ϕt(x)

∂sj

∣

∣

∣

x=X0

=B(t,X)
∂X0
∂sj

1{1,...,n+k}(j) +A(sj , t,X)1{1,...,n}(j) .

The following theorem is the counterpart of Proposition 2.5 for the case of boundary conditions.
The proof follows the same lines but using at the end the decomposition

LXt
(x) = P{Xt ≤ x, N1 = 0}

+
∞
∑

n=1

P
{

Xt ≤ x/Nt = 0, N1 −Nt = n
}

e−1
(1− t)n

n!

+
∞
∑

n=1

P
{

Xt ≤ x/Nt = n
}

e−t t
n

n!
.

In order to apply the same change of variables of Proposition 2.5 we remark that, on the set
{0 < s1 < · · · < sn < t < sn+1 < · · · < sn+k < 1},

∂Xt

∂sj
=

A(sj , t,X)

1− ψ′(X1)B(1, X)
6= 0 , j = 1, 2, . . . , n .

Theorem 3.5 Let f, F : [0, 1]×R → R and ψ : R → R satisfy the hypotheses of Proposition 3.4.
Assume in addition that ∂2F > −1, ψ′ < 0, and that condition (2.7) holds. Let x∗ be the unique
solution to x = ψ(Φ(0, 1;x)), and X the solution to (3.1). Then, the distribution function of
Xt, t ∈ (0, 1], is

LXt
(x) = e−1LD

Xt
(x) + (1− e−1)LC

Xt
(x) ,

with
LD

Xt
(x) = 1[Φ(0,t;x∗),∞)(x)

and

LC
Xt
(x) =

e−t

1− e−1

[

e−(1−t)

∫ x

−∞

∞
∑

n=1

(1− t)n

n!
h0n(r) dr +

∫ x

−∞

∞
∑

n=1

tn

n!
hn(r) dr

]

,

where h0n is the density of Xt conditioned to Nt = 0, N1 = n, and hn is the density of Xt

conditioned to Nt = n. For t = 0, the formula is also valid taking hn ≡ 0.

4 The reciprocal property

Let (Ω,F, P ) be a probability space and let A1, A2 and B be sub-σ-fields of F such that P (A1 ∩
A2|B) = P (A1|B)P (A2|B) for any A1 ∈ A1, A2 ∈ A2. Then the σ-fields A1 and A2 are said to
be conditionally independent with respect to B.
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Definition 4.1 We say that X = {Xt, t ∈ [0, 1]} is a reciprocal process if for every 0 ≤ a < b ≤
1, the σ-fields generated by {Xt, t ∈ [a, b]} and {Xt, t ∈ (a, b)c} are conditionally independent
with respect to the σ-field generated by {Xa, Xb}.

One can show that if X is a Markov process then X is reciprocal, and that the converse is not
true. For a proof of this fact, we refer the reader to Alabert and Marmolejo [2] (Proposition
4.2), where we also established the next lemma (Lemma 4.6 of [2]).

Lemma 4.2 If ξ = {ξt, t ∈ [0, 1]} has independent increments and g is a Borel function, then
X := {g(ξ1) + ξt, t ∈ [0, 1]} is a reciprocal process.

In our previous work [2], we obtained several sufficient conditions on f for the solution to
enjoy the reciprocal property when the Poisson noise appears additively, namely in







Xt = X0 +

∫ t

0
f(r,Xr) dr +

∫ t

0
dNr ,

X0 = ψ(X1) , t ∈ [0, 1] .

The main classes of functions f leading to this property are those of the form f(t, x) = f1(t) +
f2(t)x and those which are 1-periodic in the second variable, f(t, x) = f(t, x + 1). But we
showed with examples that there are many more; we also obtained conditions on f ensuring
that the solution will not be reciprocal. In contrast, for equations driven by the Wiener process,
conditions which are at the same time necessary and sufficient have been obtained in a wide
variety of settings, even with multiplicative noise.

With a multiplicative Poisson noise, the techniques currently known do not seem to allow
a general analysis. We will restrict ourselves to linear equations. The main result contained
in the next theorem is that if both coefficients are truly linear in the second variable (i.e.
f(t, x) = f2(t)x, and F (t, x) = F2(t)x) then the solution is reciprocal. We have not been able to
obtain necessary conditions, even when considering only the class of linear equations. Thus, we
have to leave open the study of the general linear case, which for white noise driven equations
(with boundary conditions also linear) was studied thoroughly in the seminal paper of Ocone
and Pardoux [13].

Theorem 4.3 Let f1, f2, F1, F2 : [0, 1] → R be continuous functions with F2(t) ≥ −1 for all
t ∈ [0, 1], and ψ : R → R a continuous and non-increasing function. Let X = {Xt, t ∈ [0, 1]} be
the solution of







Xt = X0 +

∫ t

0
[f1(r) + f2(r)Xr− ] dr +

∫ t

0
[F1(r) + F2(r)Xr− ] dNr ,

X0 = ψ(X1), t ∈ [0, 1] .

In each of the following cases, X is a reciprocal process:

(1) ψ is constant.

(2) ψ(0) = 0, f1 ≡ F1 ≡ 0.
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(3) F2 ≡ 0.

(4) F2 > −1, f1 = F1 ≡ 0.

(5) F2 ≡ −1, f1 = F1 ≡ 0.

Proof: (1) reduces to the case of initial condition, while in (2) the solution is identically zero.
Thus in both situations we obtain a Markov process.

(3) In this case the solution is

Xt = A(t)
[

X0 +

∫ t

0

f1(r)

A(r)
dr +

∫ t

0

F1(r)

A(r)
dNr

]

,

where A(t) = exp{
∫ t

0 f2(r) dr} as before, and X0 solves

X0 = ψ
(

A(1)
[

X0 +

∫ 1

0

f1(r)

A(r)
dr +

∫ 1

0

F1(r)

A(r)
dNr

])

.

Defining Yt :=
Xt

A(t) , we can write Yt = ξt + g(ξ1), where g is a Borel function and

ξt =

∫ t

0

f1(r)

A(r)
dr +

∫ t

0

F1(r)

A(r)
dNr .

Since ξ has independents increments, Lemma 4.2 implies that Y , and therefore X, is a
reciprocal process.

(4) Here the solution is given by

Xt = X0 exp
{

∫ t

0
f2(r) dr +

∫ t

0
log(1 + F2(r)) dNr

}

,

where X0 satisfies

X0 = ψ
(

X0 exp
{

∫ 1

0
f2(r) dr +

∫ 1

0
log(1 + F2(r)) dNr

})

.

When ψ(0) = 0, we are in case (2). If ψ(0) > 0, then X0 > 0, and setting Yt := log(Xt)
we obtain Yt = g(ξ1) + ξt , where g is a measurable function and ξt =

∫ t

0 f2(r) dr +
∫ t

0 log[1 +F2(r)] dNr. We reach the conclusion as in case (3). If ψ(0) < 0, we can proceed
analogously.

(5) In this situation, we obtain

Xt(ω) =

{

x∗A(t) , if S1(ω) > 1
ψ(0)A(t)1[0,S1(ω))(t) , if S1(ω) ≤ 1 ,

where x∗ solves x = ψ(xA(1)). This process can be thought as the solution to the initial
value problem

Xt = η +

∫ t

0
f2(r)Xr− dr −

∫ t

0
Xr− dNr ,
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where η is the random variable

η(ω) =

{

x∗ , if S1(ω) > 1
ψ(0) , if S1(ω) ≤ 1 .

Although η anticipates the Poisson process, X not only has the reciprocal property, but
it is in fact a Markov process. Indeed, it is immediate to check that Yt := Xt/A(t) is a
Markov chain taking at most three values.

5 Backward and Skorohod equations

In this Section we consider the backward and Skorohod versions of our boundary value problems.
There are very simple cases where the backward equation, even in the initial condition situation,
does not possess a solution. For example, for k ∈ R, the equation

ϕt = 1 +

∫ t

0
kϕs dNs ,

leads to ϕS1
= 1 + kϕS1

at t = S1, which is absurd for k = 1. In general, for the existence of a
solution of

(5.1) ϕt(x) = x+

∫ t

0
f(r, ϕr(x)) dr +

∫ t

0
F (r, ϕr(x)) dNr , t ∈ [0, 1] ,

it is necessary that the mapping Ar(y) := y − F (r, y) be invertible for each r.
Assume now that f : [0, 1]×R → R satisfies the hypotheses (H1) and (H2) of Section 2, and

that either

(5.2) ∀t ∈ [0, 1], ∃α(t) < 1 : x > y ⇒ F (t, x)− F (t, y) ≤ α(t)(x− y) ,

or

(5.3) ∀t ∈ [0, 1], ∃α(t) > 1 : x > y ⇒ F (t, x)− F (t, y) ≥ α(t)(x− y) .

Then there exists a unique process ϕ(x) = {ϕt(x), t ∈ [0, 1]} that satisfies the backward equation
(5.1). This follows from Theorem 5.1 of León, Solé and Vives [8], where it is shown that ϕ is a
solution to (5.1) if and only if ϕ is a solution to the forward equation

ϕt(x) = x+

∫ t

0
f(r, ϕr−(x)) dr +

∫ t

0
F (r,A−1r (ϕr−(x))) dNr .

The existence of A−1r is assured by (5.2) or (5.3).
We consider now the backward equation with boundary condition

(5.4)







Xt = X0 +

∫ t

0
f(r,Xr) dr +

∫ t

0
F (r,Xr) dNr ,

X0 = ψ(X1) , t ∈ [0, 1] .
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Theorem 5.1 Assume that f satisfies hypotheses (H1) and (H2) of Section 2 and that

(5.5) β(t)(x− y) ≤ F (t, x)− F (t, y) ≤ α(t)(x− y) , t ∈ [0, 1] , x > y ,

for some functions α and β such that α − 1 ≤ β ≤ α < 1. Assume moreover that ψ satisfies
hypothesis (H3) of Theorem 3.1. Then (5.4) admits a unique solution X = {Xt, t ∈ [0, 1]},
which is a càdlàg process.

Proof: By the relation between the forward and the backward equations with initial condition
given above, the solution to (5.4) coincides with the solution to the forward equation with
boundary condition

(5.6)







Xt = X0 +

∫ t

0
f(r,Xr−) dr +

∫ t

0
F (r,A−1r (Xr−)) dNr ,

X0 = ψ(X1) , t ∈ [0, 1] ,

provided it exists. By Theorem 3.1, it is enough to show there exists a constant k2 ≥ −1 such
that F̃ (t, x) := F (t, A−1t (x)) satisfies F̃ (t, x)− F̃ (t, y) ≥ k2(x−y), ∀t ∈ [0, 1], x > y. From (5.5),

0 < (1− α(t))(x− y) ≤ At(x)−At(y) ≤ (1− β(t))(x− y) ,

hence
x− y

1− β(t)
≤ A−1t (x)−A−1t (y) ≤

x− y

1− α(t)
.

We find

F̃ (t, x)− F̃ (t, y) ≥















β(t)

1− β(t)
(x− y) , if β(t) ≥ 0 ,

β(t)

1− α(t)
(x− y) , if β(t) < 0 ,

and the conclusion follows.

The study of the properties of backward equations can thus be reduced to the case of the
forward equations when the above condition (5.5) on F holds. In particular, when F (t, x) =
F1(t) + F2(t)x, we obtain

F̃ (t, x) =
F1(t)

1− F2(t)
+

F2(t)

1− F2(t)
x ,

and condition (5.5) reduces to F2 < 1.

Example 5.2 (Linear backward equation). Now consider the problem







Xt = X0 +

∫ t

0
[f1(r) + f2(r)Xr] dr +

∫ t

0
[F1(r) + F2(r)Xr] dNr ,

X0 = ψ(X1) , t ∈ [0, 1] ,
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where f1, f2, F1, F2 : [0, 1] → R are continuous functions with F2 < 1 and ψ : R → R is a
continuous and non-increasing function. By Theorem 5.1, this problem has unique solution,
given by (see Example 3.3)

Xt = ηt

[

X0 +

∫ t

0

f1(r)

ηr
dr +

∫ t

0

F1(r)

(1− F2(r))ηr
dNr

]

,

where

ηt = exp
{

∫ t

0
f2(r) dr −

∫ t

0
log(1− F2(r)) dNr

}

,

and X0 solves

x = ψ
(

η1

[

x+

∫ 1

0

f1(r)

ηr
dr +

∫ 1

0

F1(r)

(1− F2(r))ηr
dNr

])

.

We turn now to the Skorohod equation with boundary condition

(5.7)







Xt = X0 +

∫ t

0
f(r,Xr) dr +

∫ t

0
F (r,Xr) δÑr ,

X0 = ψ(X1) , t ∈ [0, 1] .

We place ourselves in the canonical Poisson space (Ω,F, P ) (see e.g. [8], [12] or [11] for a
more detailed introduction to the analysis in this space). The elements of Ω are sequences
ω = (s1, . . . , sn), n ≥ 1, with sj ∈ [0, 1], together with a special point a. The canonical Poisson
process is defined in (Ω,F, P ) as the measure-valued process

N(ω) =

{

0 , if ω = a ,
∑n

i=1 δsi
, if ω = (s1, . . . , sn) ,

where δsi
means the Dirac measure on si. Any square integrable random variable H in this space

can be decomposed in Poisson-Itô chaos H =
∑∞

n=0 In(hn), where In(hn) is the n-th multiple
Poisson-Itô integral of a symmetric kernel hn ∈ L2([0, 1]n) with respect to the compensated
Poisson process Ñ . For u ∈ L2(Ω×[0, 1]) with decomposition ut =

∑∞
n=0 In(u

t
n) for almost all t ∈

[0, 1], Nualart and Vives [12] define its Skorohod integral as δ(u) :=
∫ 1
0 us δÑs :=

∑∞
n=0 In+1(ũn),

where ũn is the symmetrization of un with respect to its n + 1 variables, provided u ∈ Dom δ,
that means, if

∑∞
n=0(n+ 1)! ‖ũn‖

2
L2([0,1]n+1) <∞.

For a process u with integrable paths, define the random variable

φ(u)(ω) :=











−
∫ 1
0 ut(a) dt , if ω = a ,

us1(a)−
∫ 1
0 ut(s1) dt , if ω = (s1) ,

∑n
j=1 usj

(ω̂j)−
∫ 1
0 ut(ω) dt , if ω = (s1, . . . , sn), n > 1 ,

where ω̂j means (s1, . . . , sj−1, sj+1, . . . , sn). One can also consider, for any random variable H
and for almost all t ∈ [0, 1], the random variable

(ΨtH)(ω) =

{

H(t)−H(a) , if ω = a
H(s1, . . . , sn, t)−H(ω) , if ω = (s1, . . . , sn) .

The following Lemma is shown in Nualart and Vives [12].
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Lemma 5.3 With the notations introduced above, we have

(a) If u ∈ L2(Ω × [0, 1]), then φ(u) ∈ L2(Ω) if and only if u ∈ Dom δ, and in that case
δ(u) = φ(u).

(b) If H =
∑∞

n=0 In(hn) ∈ L
2(Ω), then ΨH ∈ L2(Ω×[0, 1]) if and only if

∑∞
n=0 nn! ‖hn‖

2
L2([0,1]n) <

∞, and in that case ΨtH =
∑∞

n=0(n+ 1)In(hn+1(t, ·)).

Two concepts of solution for initial value Skorohod equations were introduced in [7] by
León, Ruiz de Chávez and Tudor, which they called “strong solution” and “φ-solution”. In the
latter, the process F (r,Xr) is only required to have square integrable paths, and its integral
is interpreted as φ(F (r,Xr)). If F (r,Xr) belongs to Dom δ, Lemma 5.3 (a) ensures that both
concepts coincide. We only need here a version of the first notion, which we will call simply
“solution”. We supplement the definition in [7] with the requirement of càdlàg paths, for the
boundary condition to be meaningful.

Definition 5.4 A measurable process X is a solution of (5.7), if

(1) f(·, X·) ∈ L
1([0, 1]) with probability 1.

(2) 1[0,t](·)F (·, X·) ∈ Dom δ for almost all t ∈ [0, 1].

(3) The first equality in (5.7) is satisfied with probability 1, for almost all t ∈ [0, 1].

(4) With probability 1, X is càdlàg and X0 = ψ(X1).

Theorem 5.5 Let f, F : [0, 1] × R → R satisfy hypotheses (H1) and (H2) of Section 2 with
constants K1, M1 and K2, M2, respectively. Assume moreover that ψ : R → R satisfies

(H ′′3 ) ψ is a continuous and bounded function that verifies one of the following Lipschitz-type
conditions:

(i) x > y ⇒ ψ(x)− ψ(y) ≤ η · (x− y), for some real constant η < e−K̃ ,

(ii) x > y ⇒ ψ(x)− ψ(y) ≥ η · (x− y), for some real constant η > eK̃ ,

where K̃ = K1 +K2.

Then (5.7) admits a unique solution.

Proof: Under our hypotheses, we can apply Theorems 3.7 and 3.13 of [7] to the equation

(5.8) Xt = ζ +

∫ t

0
f(r,Xr) dr +

∫ t

0
F (r,Xr) δÑr ,

where ζ is a given bounded random variable, and the solution has a càdlàg version given by

Xt =

∞
∑

n=0

Xn
t (ω)1[0,1]n(ω) ,
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where [0, 1]0 = {a}, and Xn are the respective unique solutions of

(5.9) X0
t (a) = ζ(a) +

∫ t

0
(f − F )(r,X0

r (a)) dr ,

(5.10) X1
t (s1) = ζ(s1) +

∫ t

0
(f − F )(r,X1

r (s1)) dr + 1[0,t](s1)F (s1, X
0
s1
(a)) ,

and for n ≥ 2,

(5.11) Xn
t (ω) = ζ(ω) +

∫ t

0
(f − F )(r,Xn

r (ω)) dr +
n
∑

j=1

1[0,t](sj)F (sj , X
n−1
sj

(ω̃j)) ,

with ω = (s1, . . . , sn) and ω̂j = (s1, . . . , sj−1, sj+1, . . . , sn).
Denoting by X0(a, x) the solution of (5.9) starting at ζ(a) = x ∈ R, from Lema 2.1, for any

x1, x2 ∈ R with x1 < x2,

(x2 − x1)e
−K̃t ≤ X0

t (a, x2)−X
0
t (a, x1) ≤ (x2 − x1)e

K̃t .

These inequalities and (H ′′
3 ) imply that there exists a unique point x∗ such that

x∗ = ψ(X0
1 (a, x

∗)) ,

which we define asX0(a). Then, X
0(a,X0(a)) satisfies (5.9) with ζ(a) = X0(a) and the boundary

condition of (5.7).
Once we know the path X0, and given ω = s1, denoting by X1(s1, x) the solution of (5.10)

starting at ζ(s1) = x ∈ R, one gets for any x1, x2 ∈ R with x1 < x2,

(x2 − x1)e
−K̃t ≤ X1

t (s1, x2)−X
1
t (s1, x1) ≤ (x2 − x1)e

K̃t .

Together with (H ′′
3 ), this implies that there exists a unique point x∗ such that

x∗ = ψ(X1
1 (s1, x

∗)) ,

which we define as X0(s1). Then, X1(s1, X0(s1)) satisfies (5.10) with ζ(s1) = X0(s1) and the
boundary condition of (5.7).

In general, once we know the set of paths Xn−1, and given ω = (s1, . . . , sn), using equation
(5.11) one shows analogously that there exists a unique point x∗ such that

x∗ = ψ(Xn
1 (ω, x

∗)) ,

which we define as X0(ω). We have then that Xn(ω,X0(ω)) satisfies (5.11) with ζ(ω) = X0(ω)
and the boundary condition of (5.7).

Since ψ is bounded, X0 is a bounded random variable. The process thus constructed clearly
satisfies (5.8) together with the boundary condition, and the theorem is proved.
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Remark 5.6 Skorohod equations can be converted to forward ones in special situations: When
F (t, x) ≡ F (t) or when ψ ≡ x0 ∈ R, the solution of (5.7) coincides with the solution of







Xt = X0 +

∫ t

0
(f − F )(r,Xr−) dr +

∫ t

0
F (r,Xr−) dNr ,

X0 = ψ(X1) , t ∈ [0, 1] .

The results of Sections 3 and 4 are automatically translated to Skorohod equations in the
situations of the previous remark. In other cases, the inductive construction of the solution X,
in which the value of Xt(ω) (with ω ∈ [0, 1]n) depends on the values Xt(ω) (with ω ∈ [0, 1]n−1),
does not allow the equivalence.

In the last five years there have been some interest in finding the chaos decomposition of
solutions to several type of equations in Poisson space (see e.g. [9], [8]). For instance, for

Xt = x+

∫ t

0
f2(r)Xr dr +

∫ t

0
F2(r)Xr δÑr , x ∈ R ,

one can find, using Lemma 3.10 of [9], the decomposition

Xt = x exp
{

∫ t

0
f2(r) dr

}

∞
∑

n=0

In[(1[0,t](·)F2(·))
⊗n]/n! .

We will give the chaos decomposition of the solution of two very specific linear equations with
boundary conditions. First we discuss the resolution of Skorohod linear equations.

Example 5.7 (Linear Skorohod equation). Consider the problem






Xt = X0 +

∫ t

0
[f1(r) + f2(r)Xr] dr +

∫ t

0
[F1(r) + F2(r)Xr]δÑr ,

X0 = ψ(X1) , t ∈ [0, 1] ,

where f1, f2, F1, F2 : [0, 1] → R are continuous functions, and ψ : R → R satisfies (H ′′
3 ) of the

Theorem 5.5. To describe X, let Yt(ω) =
∑∞

n=0 Y
n
t (ω)1[0,1]n(ω), the solution to

Yt =

∫ t

0
[f1(r) + f2(r)Yr] dr +

∫ t

0
[F1(r) + F2(r)Yr] δÑr .

Taking into account Remark 5.6, Y is the solution to the forward equation

Yt =

∫ t

0
[(f1 − F1)(r) + (f2 − F2)(r)Yr− ] dr +

∫ t

0
[F1(r) + F2(r)Yr− ] dNr ,

which is given in Example 3.3. Then Xt = Yt + Zt, where Zt satisfies






Zt = Z0 +

∫ t

0
f2(r)Zr dr +

∫ t

0
F2(r)ZrδÑr ,

Z0 = ψ(Y1 + Z1) , t ∈ [0, 1] .
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We know (see proof of Theorem 5.5) that Zt =
∑∞

n=0 Z
n
t (ω)1[0,1]n(ω), where, writing Ã(t) :=

exp{
∫ t

0 (f2 − F2)(r) dr},

Z0t (a)

Ã(t)
= Z0(a)

and Z0(a) is the solution to
x = ψ(Ã(1)x+ Y1(a)) .

For ω = (s1),
Z1t (s1)

Ã(t)
= Z0(s1)1[0,s1)(t) + [Z0(s1) + F2(s1)Z0(a)]1[s1,1](t)

and Z0(s1) solves
x = ψ

(

Ã(1)[x+ F2(s1)Z0(a)] + Y1(s1)
)

.

In general, for ω = (s1, . . . , sn) with 0 < s1 < · · · < sn < 1 we have

Zn
t (ω)

Ã(t)
= Z0(ω)1[0,s1)(t) + . . .

· · ·+
[

Z0(ω) +
i
∑

k=1

i
∑

j1,...,jk=1
distinct

F2(sj1) . . . F2(sjk
)Z0(ω̃(sj1

,...,sjk
))
]

1[si,si+1)(t) + . . .

· · ·+
[

Z0(ω) +

n
∑

k=1

n
∑

j1,...,jk=1
distinct

F2(sj1) . . . F2(sjk
)Z0(ω̃(sj1

,...,sjk
))
]

1[sn,1](t) ,

where
ω̂(sj1

,...,sjk
) = (. . . , sj1−1, sj1+1, . . . , sjk−1, sjk+1, . . . ) , ω̂(s1,...,sn) = a ,

and Z0(ω) is the solution to

x = ψ
(

Ã(1)
[

x+
n
∑

k=1

n
∑

j1,...,jk=1
distinct

F2(sj1) . . . F2(sjk
)Z0(ω̃(sj1

,...,sjk
))
]

+ Y1(ω)
)

.

Example 5.8 (Chaos decompositions)

(1) Consider the problem






Xt = X0 +

∫ t

0
[f1(r) + f2(r)Xr] dr +

∫ t

0
F1(r) δÑr ,

X0 = aX1 + b , t ∈ [0, 1] ,

where f1, f2, F1 are continuous functions, and a, b ∈ R with a 6= exp{−
∫ 1
0 f2(r) dr}. Its

solution coincides with the solution of the forward equation






Xt = X0 +

∫ t

0
[(f1 − F1)(r) + f2(r)Xr− ] dr +

∫ t

0
F1(r) dNr ,

X0 = aX1 + b , t ∈ [0, 1] ,
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which is

Xt = A(t)
[

X0 +

∫ t

0

(f1 − F1)(r)

A(r)
dr +

∫ t

0

F1(r)

A(r)
dNr

]

,

where A(t) = exp{
∫ t

0 f2(r) dr} and

X0 =
aA(1)

1− aA(1)

[

∫ 1

0

(f1 − F1)(r)

A(r)
dr +

∫ 1

0

F1(r)

A(r)
dNr

]

+
b

1− aA(1)
.

Therefore the chaos decomposition of Xt is

Xt =
bA(t)

1− aA(1)
+

∫ 1

0
A(t)

(

1[0,t](r) +
aA(1)

1− aA(1)

)f1(r)

A(r)
dr

+ I1

[

A(t)
(

1[0,t](·) +
aA(1)

1− aA(1)

)F1(·)

A(·)

]

.

(2) Consider the problem







Xt = X0 +

∫ t

0
f2(r)Xr− dr −

∫ t

0
Xr− dNr ,

X0 = ψ(X1) , t ∈ [0, 1] ,

where f2 : [0, 1] → R is a continuous function, and ψ : R → R is a continuous and non-
increasing function. The solution is

Xt(ω) =

{

x∗A(t) , if S1(ω) > 1
ψ(0)A(t)1[0,S1(ω))(t) , if S1(ω) ≤ 1 ,

where x∗ is the unique solution to x = ψ(xA(1)). We can write in the Poisson space

Xt = A(t)
[

(x∗ − ψ(0))1{a} + ψ(0)1{t<S1}

]

.

Using Lemma 5.3 (b) one obtains the following chaos decomposition:

X0 = ψ(0) + (x∗ − ψ(0))e−1
∞
∑

n=0

(−1)n

n!
In(1) ,

X1 = A(1)x∗e−1
∞
∑

n=0

(−1)n

n!
In(1) ,

and for t ∈ (0, 1) we have

Xt = A(t)
{

(x∗ − ψ(0))e−1
∞
∑

n=0

(−1)n

n!
In(1) + ψ(0)e−t

∞
∑

n=0

(−1)n

n!
In
[

(1[0,t](·))
⊗n
]

}

.
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Birkhaüser, pages 205–213, 1995.

[13] D. Ocone and E. Pardoux. Linear stochastic differential equations with boundary conditions.
Probab. Theory Related Fields, 82:489–526, 1989.

254


