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Abstract

We consider random selection processes of weighted elements in an arbitrary set. Their condi-

tional distributions are shown to be a generalization of the hypergeometric distribution, while

the marginal distributions can always be chosen as generalized binomial distributions. Then we

propose sufficient conditions on the weight function ensuring that the marginal distributions are

necessarily of the generalized binomial form. In these cases, the corresponding indicator random

variables are conditionally independent (as in the classical De Finetti theorem) though they are

neither exchangeable nor identically distributed.
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1 Introduction

The De Finetti theorem states that any infinite sequence of exchangeable random variables is con-

ditionally i.i.d. This result was first proved for {0,1}-valued random variables (see, e.g., [4]), and

it was then extended to sequences of exchangeable random variables taking values in more general

domains; see, for instance, [5; 7; 8].

Our main result is the construction of a class of {0,1}-valued non identically distributed random

variables that satisfy a De Finetti-type result. More precisely, we consider random selection processes

under fairly general conditions, and we show that, in some cases, their associated indicator random

variables are conditionally independent though not identically distributed.

In order to give a precise definition of a random selection process, let E be an arbitrary nonempty

set. For simplicity, one can think of E as a denumerable set, but this is by no means necessary. We

are interested in random selection procedures of elements of E that will be characterized by a family

of random variables

N(x) =

¨

1 if x is selected

0 otherwise,
(x ∈ E)

defined on a common probability space (Ω,F , P). We will write N ≡ {N(x)}x∈E . For each finite

subset A⊆ E, we define the random variable

N(A) =
∑

x∈A

N(x).

Let us also consider a weight function m : E→ (0,∞) which assigns to each element x of E a weight

m(x) > 0. We will say that N is a random selection process, with respect to m, if the following

conditions are satisfied for every finite and nonempty A⊆ E:

(a) Conditional on N(A), {N(x)}x∈A and {N(x)}x∈Ac are independent.

(b) P{N(x) = 1 | N(A) = 1}=
m(x)

m(A)
for all x ∈ A, where m(A) =

∑

x∈A m(x).

The motivation of the above assumptions is clear. Assumption (a) states a Markovian property: once

we know the number of elements selected in A, the choices inside A are independent of the choices

outside A. Assumption (b) means, roughly speaking, that an element is chosen with a probability

proportional to its weight.

In Section 2 we prove the existence of a family of such random selection processes for any set E

and any weight function m. In terms of the {0,1}-valued stochastic process {N(x)}x∈E , this means

being able to specify a set of compatible finite-dimensional distributions satisfying the Assumptions

(a) and (b). We will also analyze the conditional and marginal distributions of N. This gives rise to

interesting generalizations of the hypergeometric and binomial distributions, respectively, in which

the weight function is involved.

In Section 3 we prove two De Finetti-type results on the conditional independence of the indicator

variables {N(x)}x∈E . The first one assumes the existence of a sequence of elements of E with the

same weight (the corresponding N(x) are then exchangeable) and the conditional independence

property is extended to the remaining variables that are no longer identically distributed.
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The second De Finetti-type result assumes the existence of a sequence of elements in E with weights

in IN , and then proves the conditional independence of the whole family of random variables

{N(x)}x∈E , which are not identically distributed.

In Section 4 we explore the relations of our setting with the generalized Stirling triangles of the first

kind, and we conclude in Section 5 with some general remarks.

2 Generalized hypergeometric and binomial distributions

Let us consider a random selection process N on a set E with positive weights {m(x)}x∈E . In the

sequel, for a finite subset A of E, we will denote by #A the cardinal of A.

Conditional distributions of N

Our first result is a generalization of Assumption (b).

Proposition 2.1. Let A⊆ E be finite and, for each 1≤ r ≤ #A, let x1, x2, . . . , xr be distinct elements

of A. Then

P{N(x1) = 1, N(x2) = 1, . . . , N(xr) = 1 | N(A) = r}=
1

Mr(A)

r
∏

j=1

m(x j), (2.1)

where Mr(A) is the sum of the products
∏r

j=1 m(x j) over all the subsets {x1, . . . , xr} of A with r

elements.

Proof: We will make the proof by induction on r. For r = 1, (2.1) holds as a direct consequence of

Assumption (b). Suppose now that (2.1) holds for r−1. Fix A⊆ E with #A≥ r and r distinct points

x1, x2, . . . , xr in A. We have

P{N(x1) = 1, . . . , N(xr) = 1 | N(A) = r}=

= P{N(x1) = 1 | N(A) = r} P{N(x2) = 1, . . . , N(xr) = 1 | N(A) = r, N(x1) = 1}

= P{N(x1) = 1 | N(A) = r} P{N(x2) = 1, . . . , N(xr) = 1 | N(A− {x1}) = r − 1}

= P{N(x1) = 1 | N(A) = r}
1

Mr−1(A−{x1})

r
∏

j=2

m(x j)

=
P{N(x1) = 1 | N(A) = r}

m(x1)Mr−1(A− {x1})

r
∏

j=1

m(x j)

(where the second equality follows from Assumption (a) and the third equality from the induction

hypothesis). Now, x1 may be replaced with any other x j and thus the left-hand term of the last

expression must necessarily have the same value, say C , for any element of A. Therefore,

P{N(x1) = 1, . . . , N(xr) = 1 | N(A) = r}= C

r
∏

l=1

m(x l).

Since the above expressions sum up to one (for all possible x1 6= . . . 6= xr in A), we get C = 1/Mr(A),

which completes the proof.
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Remark 2.2. The values M0(A) = 1, M1(A) = m(A), M2(A), . . . , M#A(A) =
∏

x∈A m(x) can be easily

determined as the successive coefficients of the polynomial
∏

x∈A

[1+m(x)z].

For instance, if m(x) = 1 for all x ∈ A, then Mr(A) is the binomial coefficient Mr(A) =
�#A

r

�

.

Proposition 2.3 below gives an explicit expression for the conditional distributions of N.

Proposition 2.3. Let B ⊆ A be finite subsets of E and fix 1≤ r ≤ #A. For each s such that 0≤ s ≤ #B

P{N(B)=s |N(A)= r}=

(

Ms(B)Mr−s(A− B)/Mr(A) if r +#B−#A≤ s ≤ r,

0 otherwise.
(2.2)

Proof: The result easily follows by summing up (2.1) for all the r-uples in A with x1, . . . , xs ∈ B and

xs+1, . . . , xr ∈ A− B.

It is worth noting that the distribution (2.2) is a generalization of the hypergeometric distribution,

to which it reduces when m(x) = 1 for all x ∈ A, and thus it could be named “hypergeometric

distribution with weights”. As a first conclusion, we have proved that the Assumptions (a) and (b)

uniquely determine the conditional distribution of N(B) given N(A) (for all finite sets B ⊆ A), which

coincides with the above mentioned “hypergeometric distribution”.

Marginal distributions of N

In case that E is a finite set, the distribution of N(E) can be arbitrarily fixed (among the distributions

on {0,1, . . . ,#E}) and then the distribution of N(B), for any subset B, can be deduced from (2.2).

The set of all possible distributions for N(B) will be the convex hull of the extreme “hypergeometric

distributions”
�

P{N(B) = s |N(E) = r} :s = 0,1, . . . ,#B
	

with r = 0,1, . . . ,#E. Observe that each of

these distributions depends on the weights of all the elements in E (as well on the weights in B as

on those in Bc).

If E is not finite, the key issue is to determine a family of marginal distributions P{N(B) = s} that are

compatible with the conditional distributions given in Proposition 2.3, that is, a family of marginal

distributions satisfying the total probability rule

P{N(B) = s}=

#C
∑

r=0

P{N(B ∪ C) = s+ r}
Ms(B)Mr(C)

Ms+r(B ∪ C)
(2.3)

for every finite sets B and C ⊆ Bc , and every 0 ≤ s ≤ #B. For future reference, we state this result,

without proof, in our next lemma.

Lemma 2.4. A family of probability distributions {p j(A)}0≤ j≤#A, for each finite A ⊆ E, are the

marginal distributions of a random selection process N (that is, P{N(A) = j} = p j(A)) with respect

to a weight function m, if and only if

ps(B) =

#C
∑

r=0

ps+r(B ∪ C)
Ms(B)Mr(C)

Ms+r(B ∪ C)
(2.4)
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for every finite sets B and C ⊆ Bc and every 0≤ s ≤ #B.

In this case, P{N(A) = j} = p j(A) for each finite A ⊆ E and 0 ≤ j ≤ #A, together with (2.2),

gives the joint distribution of (N(A1), . . . , N(Ak)) for any finite sets A1, . . . ,Ak and, therefore, the

finite-dimensional distributions of {N(x)}x∈E .

Obviously, there are two degenerate solutions: N(B) = 0, ∀ B, and N(B) = #B, ∀ B, in which

nothing is random. For the existence of a (properly speaking) random selection process, we are

interested in solutions such that p j(A)> 0 for some finite A and some 0< j < #A.

The following theorem gives a universal solution to the existence problem.

Theorem 2.5. Let m be a weight function on an infinite set E, and fix an arbitrary ξ ∈ [0,1]. For

any finite B ⊆ E and s = 0,1, . . . ,#B define ps(B) as

ps(B) =
Ms(B) ξ

s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]
. (2.5)

Then the ps(B) verify Lemma 2.4. Similarly, given any fixed distribution F on [0,1], the family

ps(B) =

∫ 1

0

Ms(B) ξ
s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]
F(dξ) (2.6)

also verifies Lemma 2.4, so that there exists a random selection process N with marginal distribu-

tions given by (2.6).

Remark 2.6. Note that the obvious equality

#B
∑

s=0

Ms(B)ξ
s(1− ξ)#B−s =

∏

x∈B

[1− ξ+ ξm(x)]

ensures that (2.5) is a probability distribution. The distribution (2.5) is a generalization of the

ordinary binomial distribution, which is obtained when m(x) = 1 for all x ∈ B. It can be observed

that (2.5) only depends on the weights of the elements in B (and is independent of those in Bc). The

set of solutions given in (2.6) is the convex hull of the extreme “generalized binomial distributions”

(2.5). The two degenerate solutions correspond, respectively, to ξ = 0 and ξ = 1, and for any

ξ ∈ (0,1) we get a non-degenerate solution.

Proof: In (2.4), we replace ps(B) and ps+r(B ∪ C) with their values taken from (2.5), and it follows

that (2.4) is equivalent to the identity

∏

x∈B∪C

[1− ξ+ ξm(x)] =
∏

x∈B

[1− ξ+ ξm(x)]

#C
∑

r=0

Mr(C)ξ
r(1− ξ)#C−r .

By averaging (2.4) with respect to an arbitrary distribution F(dξ), it follows that (2.4) also holds

when the ps(B) are defined as in (2.6).

Remark 2.7. For any fixed ξ ∈ [0,1], the distributions in (2.5) give, for all x ∈ E,

P{N(x) = 0}=
1− ξ

1− ξ+ ξm(x)
and P{N(x) = 1}=

ξm(x)

1− ξ+ ξm(x)
, (2.7)
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while if B = {x1, . . . , xn}, according to Proposition 2.1 we have

P{N(x1) = 1, . . . , N(xs) = 1, N(xs+1) = 0, . . . , N(xn) = 0}=

= P{N(B) = s} P{N(x1) = 1, . . . , N(xs) = 1 | N(B) = s}

=
Ms(B) ξ

s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]

∏s

j=1 m(x j)

Ms(B)
(2.8)

=

s
∏

j=1

P{N(x j) = 1}

n
∏

j=s+1

P{N(x j) = 0}.

Hence, under (2.5), the random variables {N(x)}x∈E are independent but not identically distributed

(indeed, the distributions (2.7) depend on m(x)). When ξ has a certain distribution F , as in

(2.6), independence usually does not hold, and the average of (2.8) yields a wide class of finite-

dimensional distributions for the process {N(x)}x∈E . Now, the obvious question is whether there

exist further classes of distributions satisfying Lemma 2.4 (as in the case of a finite E, where the

ps(E) can be arbitrarily chosen, yielding marginal distributions ps(B) that depend on the weights in

Bc).

The above Remark 2.7 bears in mind De Finetti’s theorem for exchangeable sequences of random

variables (see, e.g., [1, Section 7.3], [5, Chapter 27] or [8, Chapter 9]). In fact, if E = IN and the

weight function were a constant m, then {N(x)}x∈IN would be a sequence of exchangeable random

variables and De Finetti’s theorem would ensure that, necessarily, the distribution of {N(x)}x∈E

corresponds to the choice of a value θ , with any distribution F on [0,1], while, conditional on θ , the

N(x) are independent with common distribution: P{N(x) = 1 | θ}= θ = ξm/(1−ξ+ξm). A similar

result will hold provided that we can prove that the distributions described in Theorem 2.5 are the

only possible marginal distributions for a random selection process. This issue will be analyzed in

Section 3.

3 Extensions of De Finetti’s theorem

Thus, our goal is to give conditions on the weight function m ensuring that the marginal probability

distributions of the random selection process are precisely of the form (2.6) for some distribution F

on [0,1].

But first we need some preliminary results. In the following we suppose that the ps(B), for finite

B ⊆ E and s = 0,1, . . . ,#B, verify the hypotheses of Lemma 2.4.

Lemma 3.1. Let B = {x1, . . . , xk} and B′ = {x ′1, . . . , x ′
k
} be finite subsets of E and suppose that

there exists a permutation π of {1, . . . , k} such that m(x j) = m(x ′
π( j)
) for each 1 ≤ j ≤ k. Then

ps(B) = ps(B
′) for every 0≤ s ≤ k. (In short, this lemma states that ps(B) is a symmetric function of

the weights in B.)

Proof: Let C = B′− B and C ′ = B− B′. Then (2.4) gives

ps(B) =

#C
∑

r=0

ps+r(B ∪ C)
Ms(B)Mr(C)

Ms+r(B ∪ C)
=

#C ′
∑

r=0

ps+r(B
′ ∪ C ′)

Ms(B
′)Mr(C

′)

Ms+r(B
′ ∪ C ′)

= ps(B
′)
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since B ∪ C = B′ ∪ C ′ and the weights in B and C are the same as those in B′ and C ′, respectively.

This completes the proof.

As a consequence of Lemma 3.1, we may write ps(B) = ps(m1, . . . , mk) as a function of the weights

in B.

Lemma 3.2. Suppose that the families {ps(B)} and {ps(B)} satisfy Lemma 2.4, and that p0(B) =

p0(B) for every finite set B ⊆ E. Then {ps(B)} ≡ {ps(B)}. (Loosely speaking, this lemma shows that

{ps(B)} is uniquely determined by {p0(B)}.)

Proof: We will show that ps(B) = ps(B) for every finite set B by induction on s. The case s = 0 is

precisely the hypothesis of this lemma. Suppose now that the stated property holds for some s ≥ 0.

Given a finite subset B of E and x ∈ B, we have

ps(B− {x}) = ps(B)
Ms(B− {x})

Ms(B)
+ ps+1(B)

Ms(B− {x})m(x)

Ms+1(B)

and

ps(B− {x}) = ps(B)
Ms(B− {x})

Ms(B)
+ ps+1(B)

Ms(B− {x})m(x)

Ms+1(B)
,

which proves that ps+1(B) = ps+1(B).

The next result exploits the well known result for exchangeable sequences.

Theorem 3.3. Consider a random selection process N with marginal distributions ps(B) satisfying

Lemma 2.4, and let us assume that there exists a denumerable subset E⋆ = {x⋆1, x⋆2, . . .} of E with

m(x⋆i ) = h for every i ≥ 1 and some h > 0. Then, there exists a probability distribution F on [0,1]

such that

ps(B) =

∫ 1

0

Ms(B)ξ
s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]
F(dξ) (3.1)

for every finite B ⊆ E and 0 ≤ s ≤ #B. Hence the random variables {N(x)}x∈E are conditionally

independent given ξ and satisfy (2.7).

Proof: Without any loss of generality we can assume that h= 1, since a change of the weights scale

leaves the problem unaffected.

First of all, observe that the sequence of random variables {N(x⋆)}x⋆∈E⋆ is exchangeable. Indeed,

according to (2.1) and letting E⋆n = {x
⋆
1, . . . , x⋆n}, we have that ps(E

⋆
n)/Ms(E

⋆
n) is the probability that

s arbitrary variables among {N(x⋆)}x⋆∈E⋆n
take the value 1 while the remaining n− s take the value

0. Therefore (cf. [4, p. 228]), there exists a probability distribution F on [0,1] such that

ps(E
⋆
n)

Ms(E
⋆
n)
=

∫ 1

0

ξs(1− ξ)n−s F(dξ). (3.2)

Next, we will focus on the extreme points of (3.2), that is, we will assume that F is concentrated at

some ξ ∈ [0,1) (the case ξ= 1 will be analyzed later). We thus have

ps(E
⋆
n) =

�

n

s

�

ξs(1− ξ)n−s for some ξ ∈ [0,1),
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so that the random variables N(x⋆) for x ∈ E⋆ are i.i.d. with P{N(x⋆) = 1}= ξ, for x⋆ ∈ E⋆.

Now, let B be a finite subset of E − E⋆. The strong law of large numbers ensures that

N(B ∪ E⋆n)

n

a.s.
−→ ξ as n→∞. (3.3)

On the other hand, for each y ∈ [0,1] and n≥ 1, we define

hn(y) =



1+

#B∧yn
∑

s=1

Ms(B)
Γ(yn+ 1)Γ(n− yn+ 1)

Γ(yn− s+ 1)Γ(n− yn+ s+ 1)





−1

. (3.4)

The hn are continuous functions bounded by 1. The Stirling approximation easily gives that, when-

ever yn→ y ∈ [0,1), the coefficient of Ms(B) in (3.4) converges to y s/(1− y)s and, therefore,

hn(yn)−→

�

1+

#B
∑

s=1

Ms(B)
y s

(1− y)s

�−1

=

�

∏

x∈B

�

1+m(x)
y

1− y

�

�−1

=
(1− y)#B

∏

x∈B[1− y +m(x)y]
.

Now, according to (2.4), the value of p0(B) is given, for every n, by

p0(B) =

n
∑

r=0

pr(B ∪ E⋆n)
Mr(E

⋆
n)

Mr(B ∪ E⋆n)
=

n
∑

r=0

pr(B ∪ E⋆n)hn(r/n)

since Mr(B ∪ E⋆n) =
∑#B∧r

s=0 Ms(B)
� n

r−s

�

. Therefore, we have

p0(B) = E

�

hn

�

N(B ∪ E⋆n)

n

�

1{N(B∪E⋆n)≤n}

�

for every n. Then, by dominated convergence and (3.3),

p0(B) =
(1− ξ)#B

∏

x∈B[1− ξ+m(x)ξ]
,

as we wanted to prove. In case that ξ = 1, pn(E
⋆
n) = 1 and we easily obtain p0(B) = 0. The stated

result is now derived from Lemma 3.2.

To conclude the proof, note that the extreme points of the convex set of solutions ps(B) are given by

the integrand of (3.1), and then (3.1) is the general solution.

In summary, using the classical result about conditional independence of the random variables

N(x⋆), we have established the additional conditional independence of the remaining variables

N(x) that are no longer identically distributed. Now, our purpose is to show that the same result

may be established without any reference to exchangeability properties, though this will require

further efforts.

For finite B ⊆ E and 0≤ s ≤ #B, we define gs(B) = ps(B)/Ms(B), for which the equation (2.4) gives

gs(B) =

#C
∑

r=0

gs+r(B ∪ C)Mr(C). (3.5)

By Lemma 3.1, gs is a symmetric function of the weights of the elements in B. Thus, we will also

write gs(m1, . . . , mn) when m1, . . . , mn are the weights of the elements in B.
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Lemma 3.4. Suppose that E′ ⊆ E is such that m(x) 6= m(x ′) for x 6= x ′ ∈ E′. Then the functions

gs(B), for finite B ⊆ E′, are determined by the function g1(m) by means of the recursive formulas

gk+1(m1, m2, . . . , mn+1) =
gk(m1, . . . , mn)− gk(m2, . . . , mn+1)

mn+1−m1

(3.6)

gk(m1, m2, . . . , mn+1) =
mn+1 gk(m2, . . . , mn+1)−m1 gk(m1, . . . , mn)

mn+1−m1

. (3.7)

Proof: The equations (3.6) and (3.7) are directly obtained from the particular cases of (3.5):

gk(m1, . . . , mn) = gk(m1, . . . , mn+1) + gk+1(m1, . . . , mn+1)mn+1

gk(m2, . . . , mn+1) = gk(m1, . . . , mn+1) + gk+1(m1, . . . , mn+1)m1.

By means of the preceding lemma, we will now examine the case E = IN and m(i) = i for i ≥ 1.

Proposition 3.5. If {N(i)}i∈IN is a random selection process on IN with m(i) = i and marginal

distributions ps(B), there exists a probability distribution F on [0,1] such that

ps(B) =

∫ 1

0

Ms(B)ξ
s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]
F(dξ). (3.8)

Proof: Consider the sequence ai = g1(i + 1), for i ≥ 0, and note that, as a consequence of Lemma

3.4, it satisfies

g2(i + 1, i + 2) =−∆ai , g3(i + 1, i + 2, i + 3) =
1

2
∆2ai

and, in general,

gk(i+ 1, i + 2, . . . , i + k) =
(−1)k−1

(k− 1)!
∆k−1ai for i ≥ 1.

Since the left hand side of the above equation is nonnegative, it follows that {ai}i≥0 is a completely

monotone sequence that can be expressed (see [4, Section VII.3]) as

ai = a0

∫ 1

0

θ i
A(dθ)

for a unique probability distribution A on [0,1]; also, A is the weak limit, as n→∞, of the discrete

distributions giving probability

p
(n)

i
= a−1

0

�

n

i

�

(−1)n−i∆n−iai (3.9)

to each point i/n, for 0≤ i ≤ n. Note that

pk(i + 1, . . . , i + k) =
(i + k)!

i!(k− 1)!
(−1)k−1∆k−1ai = a0 p

(i+k−1)

i
(i + k)

is less than or equal to 1, so that

p
(n)

i
=

pn+1−i(i + 1, . . . , n+ 1)

a0(n+ 1)
≤

1

a0(n+ 1)
.
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Then A is absolutely continuous with respect to the Lebesgue measure and its density, denoted by

a, is bounded above by a−1
0 (see [2, Theorem 6] for a detailed proof). Moreover, since pn−i(i +

2, . . . , n+ 1) ≥ pn−i+1(i + 1, . . . , n+ 1), the terms p
(n)

i
are increasing in i and the density a is an

increasing function (see [2, Theorem 10] and [2, Proposition 2]).

We have thus proved that

g1(i + 1) = a0

∫ 1

0

θ i
a(θ) dθ

and

(i + 1)g1(i + 1) = a0a(1)− a0

∫ 1

0

θ i+1
a(dθ), (3.10)

where (3.10) is obtained after integration by parts.

Now, the sequence bi = g1(i+1, i+2) = (i+2)g1(i+2)−(i+1)g1(i+1), defined for i ≥ 0, satisfies

(recall (3.6))

gk−1(i + 1, . . . , i + k) =
(−1)k−2

(k− 1)!
∆k−2 bi ≥ 0 for every k ≥ 2.

Thus the completely monotone sequence {bi}i≥0 has the form

bi = b0

∫ 1

0

θ i
B(dθ)

where B is the distribution function on [0,1] obtained as the weak limit of (3.9) with the ai replaced

with the bi , that is,

p
(n)

i
= b−1

0

�

n

i

�

(−1)n−i∆n−i bi for 0≤ i ≤ n and n≥ 1.

We also have

1≥ pk−1(i + 1, . . . , i + k) = Mk−1(i + 1, . . . , i + k)
(−1)k−2

(k− 1)!
∆k−2 bi

=
(i + k)!

i!(k− 1)!

�

1

i + 1
+ · · ·+

1

i + k

�

b0 p
(i+k−2)

i
�i+k−2

i

�

=

�

1

i + 1
+ · · ·+

1

i + k

�

b0 p
(i+k−2)

i

(i+ k)(i+ k− 1)

k− 1

≥ b0 p
(i+k−2)

i
(i + k− 1)

and, therefore, p
(n)

i
≤ b−1

0 /(n+ 1). Again, B has a density b which is bounded above by b−1
0 . The

definition of bi yields

(i + 2)g1(i + 2)− (i + 1)g1(i + 1) = b0

∫ 1

0

θ i
b(θ) dθ (3.11)
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and, summing these equalities from some i onwards, we obtain

(i + 1)g1(i + 1) = p1(∞)− b0

∫ 1

0

θ i
b(θ)

1− θ
dθ (3.12)

where p1(∞) is the limit of the increasing function p1. Comparing this expression with (3.10), we

conclude that a0a(1) = p1(∞) and that a
′(θ) exists and verifies

a0 θa
′(θ) = b0

b(θ)

1− θ
.

Our next step is to show that θa
′(θ), or b(θ)/(1− θ), is an increasing function. To this end, let

{bk}k≥0 be the moments of b(θ)/(1− θ) and define

p
(n+1)

i
=

p
(n)

i

1− i/(n+ 1)
= b−1

0

(n+ 1)!

i!
gn−i+1(i + 1, . . . , n+ 2),

which verifies

p
(n+1)
0 ≤ p

(n+1)
1 ≤ . . .≤ p(n+1)

n . (3.13)

On the other hand,

p
(n+1)

i
=

1

b0

�

n+ 1

i

�

(−1)n−i+1∆n−i+1 bi for 0≤ i ≤ n+ 1.

Therefore, if the inequalities in (3.13) were also true for p
(n+1)
n+1 , by [2, Theorem 10], the density of

b(θ)/(1− θ), would be increasing. In fact, this can be overcome (and we skip the details) just by

defining p
(n+1)
n+1 as p(n+1)

n , so that the whole sequence (3.13) is now increasing, and then by suitably

rescaling the p
(n+1)

i
. Thus, we conclude that b(θ)/(1− θ) increases with θ .

Once we know that θa
′(θ) is an increasing function, we perform another integration by parts in

(3.10) in order to get

(i+ 1)2 g1(i + 1) = (i + 1)p1(∞)− a0a
′(1) + a0

∫ 1

0

θ i+1 d
�

θa
′(θ)
�

. (3.14)

Define now ci = 2g1(i+1, i+2, i+3) = (i+3)2 g1(i+3)−2(i+2)2 g1(i+2)+ (i+1)2 g1(i+1) for

i ≥ 0. This sequence verifies

0≤ gk+1(i + 1, . . . , i + k+ 3) =
1

(k+ 2)!
(−1)k∆kci for k ≥ 0,

so that {ci} is a completely monotone sequence, and it can be written

ci = c0

∫ 1

0

θ i
C(dθ), for i ≥ 0,

where C is a probability distribution on [0,1] which is the weak limit of (3.9) with ai replaced with

ci , that is

p
(n)

i
= c−1

0

�

n

i

�

(−1)n−i∆n−ici .
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Since

pk−2(i+ 1, . . . , i + k) =
Mk−2(i + 1, . . . , i + k)

(k− 1)!

c0 p
(i+k−3)

i
�i+k−3

i

�

=
(i + k)!

i!(k− 1)!

k
∑

j>l=1

1

(i + j)(i+ l)

c0 p
(i+k−3)

i
i!(k− 3)!

(i+ k− 3)!

≥
c0

2
p
(i+k−3)

i
(i+ k− 2),

we have p
(n)

i
≤ 2c−1

0 /(n+ 1) and C has a density c bounded above by 2c−1
0 . Hence,

(i + 3)2 g1(i + 3)− 2(i + 2)2 g1(i + 2) + (i + 1)2 g1(i + 1) = c0

∫ 1

0

θ i
c(θ) dθ ,

and summing these inequalities from i onwards, yields

(i + 2)2 g1(i+ 2)− (i + 1)2 g1(i+ 1) = p1(∞)− c0

∫ 1

0

θ i
c(θ)

1− θ
dθ .

Combining this equation with (3.14), we derive that

p1(∞)− c0

∫ 1

0

θ i
c(θ)

1− θ
dθ = p1(∞)− a0

∫ 1

0

θ i+1(1− θ) d
�

θa
′(θ)
�

.

This proves that a
′′(θ) exists and verifies

a0 θ [a
′(θ) + θa

′′(θ)] = c0

c(θ)

(1− θ)2
.

Since
p
(n)

i

(1− i/(n+ 1))(1− i/(n+ 2))
= c−1

0

(n+ 2)!

i!
gn+1−i(i + 1, . . . , n+ 3)

increases with 0 ≤ i ≤ n, we can prove as we did before that c(θ)/(1− θ)2 or θa
′(θ) + θ 2

a
′′(θ)

are increasing functions. The reasoning can then be pursued iteratively.

As a first conclusion, we have that a(θ) possesses derivatives of all orders, whose properties are

more easily analyzed if we transform (3.10) by means of the change of variable θ = e−λ. We thus

have

g1(i+ 1) = a0

∫ ∞

0

e−λ(i+1)
ã(λ) dλ

where ã(λ) = a(e−λ) is a decreasing function on [0,∞) with first derivative

ã
′(λ) =−e−λa

′(e−λ) =−θa
′(θ)≤ 0,

which is an increasing function of λ. In turn,

ã
′′(λ) = e−λa

′(e−λ) + e−2λ
a
′′(e−λ) = θa

′(θ) + θ 2
a
′′(θ)≥ 0
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is a decreasing function of λ; therefore ã
′′′(λ) ≤ 0, etc. We conclude that ã(λ) is a completely

monotone function that can be therefore expressed as

ã(λ) =

∫ ∞

0

e−λρH(dρ)

where H is a measure on [0,∞) with H(∞) = ã(0) = a(1). Recalling that a0a(1) = p1(∞) and

letting H̄(ρ) = H(ρ)/H(∞), we have

g1(i) = p1(∞)

∫ ∞

0

e−λi

∫ ∞

0

e−λρ H̄(dρ) dλ= p1(∞)

∫ ∞

0

1

i +ρ
H̄(dρ).

If F̄ is the probability distribution function on (0,1] associated to H̄ by means of the change of

variable ξ= (1+ρ)−1, we have

g1(i) = p1(∞)

∫

(0,1]

ξ

1− ξ+ ξi
F̄(dξ) =

∫ 1

0

ξ

1− ξ+ ξi
F(dξ)

where F gives probability 1− p1(∞) to ξ = 0 and coincides with p1(∞)F̄ on (0,1]. According to

Lemma 3.4, this identifies the solution (3.8).

Finally, we extend the result to the case of a set E including a sequence with natural weights.

Theorem 3.6. Consider a random selection process N with marginal distributions ps(B) satisfying

Lemma 2.4, and let us assume that there exists a denumerable subset E⋆ = {x⋆1, x⋆2, . . .} of E with

m(x⋆i ) = ih for every i ≥ 1 and some h> 0. Then, there exists a probability distribution F on [0,1]

such that

ps(B) =

∫ 1

0

Ms(B)ξ
s(1− ξ)#B−s

∏

x∈B[1− ξ+ ξm(x)]
F(dξ) (3.15)

for every finite B ⊆ E and 0 ≤ s ≤ #B. Hence the random variables {N(x)}x∈E are conditionally

independent given ξ and they satisfy (2.7).

Proof: We can assume that h= 1. According to Proposition 3.5, there exists a random variable Ξ in

[0,1], with distribution F , such that, conditional on Ξ = ξ, the random variables {N(x⋆j )}x⋆j∈E⋆ are

independent with

P{N(x⋆j ) = 1}=
ξ j

1− ξ+ ξ j
.

Let E⋆n = {x
⋆
1, . . . , x⋆n} and assume ξ ∈ (0,1). Since σ2[N(x⋆j )] = ξ(1− ξ) j/(1− ξ+ ξ j)2 and

∞
∑

j=2

σ2[N(x⋆j )]

(log j)2
<∞

the strong law of large numbers, applied to the sequence 1− N(x⋆j ), gives

N̄(E⋆n)

log n
−

1

log n

n
∑

j=1

1− ξ

1− ξ+ ξ j

a.s.
−→ 0 as n→∞
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where N̄(E⋆n) = n− N(E⋆n) is the number of elements not selected in E⋆n. In other words

N̄(E⋆n)

log n

a.s.
−→

1− ξ

ξ
and thus

N(E⋆n)

n

a.s.
−→ 1 as n→∞. (3.16)

We now need to show that, if r varies with n in such a way that yn = rn/ log n−→ y ∈ (0,∞), it is

Mn−r−s(E
⋆
n)

Mn−r(E
⋆
n)
−→ y−s.

This will be proved in Lemma 3.7 below and gives, for any finite set B ⊂ E − E⋆,

hn(yn) =

�

1+

#B∧(n−rn)
∑

s=1

Ms(B)
Mn−rn−s(E

⋆
n)

Mn−rn
(E⋆n)

�−1

−→
y#B

∏

x∈B[y +m(x)]
.

But, according to (2.4), for all n, it is

p0(B) =

n
∑

r=0

pn−r(B ∪ E⋆n)hn

� r

log n

�

= E

�

hn

�

N̄(B ∪ E⋆n)

log n

�

1N̄(B∪E⋆n)≤n

�

hence, since (3.16) shows that N̄(B ∪ E⋆n)/ log n
a.s.
−→ (1− ξ)/ξ, we get

p0(B) =
(1− ξ)#B

∏

x∈B[1− ξ+ ξm(x)]
.

In case that ξ = 0, it is P{N(x⋆j ) = 0} = 1 or p0( j) = 1 for all j ≥ 1. But p0(m) is a non increasing

function of m, since (2.4) gives

p0(m1)− p0(m2) = p1(m1, m2)
m2−m1

m1+m2

.

Thus p0(m) ≡ 1 and p0(B) = 1. Similarly, when ξ = 1, it is P{N(x⋆j ) = 1} = 1, thus p0(m) ≡ 0 and

p0(B) = 0.

Lemma 3.7. Under the hypotheses of Theorem 3.6, if s is fixed and r varies with n in such a way

that rn/ log n→ y ∈ (0,∞), then
Mn−r−s(E

⋆
n)

Mn−r(E
⋆
n)
−→ y−s.

Proof: Let be

mn(r) =
Mn−r(E

⋆
n)

n!
=
∑

1≤ j1<···< jr≤n

1

j1 j2 · · · jr

and observe that

∑

1≤ j1<···< jr≤n

1

j1 j2 · · · jr

� n
∑

j=1

1

j
−

r
∑

i=1

1

ji

�

= (r + 1)mn(r + 1)
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We thus have

mn(r)

n
∑

j=r+1

1

j
≤ (r + 1)mn(r + 1)≤ mn(r)

n−r
∑

j=1

1

j

or as well
r + 1
∑n−r

j=1 1/ j
≤

mn(r)

mn(r + 1)
≤

r + 1
∑n

j=r+1 1/ j
.

But
∑n−r

j=1 1/ j ∼ log(n− r) and
∑n

j=r+1 1/ j ∼ log n− log r; and, if r/ log n → y , both extremes of

the inequality converge to y . Therefore

Mn−r−s(E
⋆
n)

Mn−r(E
⋆
n)
=

mn(r + s)

mn(r)
−→ y−s.

In summary, Theorem 3.6 states a De Finetti-type theorem for a class of non exchangeable and non

identically distributed {0,1}-valued random variables.

Example 3.8. If E is an interval in IR and the weight function satisfies either

• m(x) takes some value infinitely often or

• m(x) is continuous and unbounded

then either Theorem 3.3 or Theorem 3.6 hold. That is to say that real numbers can only be “ran-

domly selected”, according to their weights m(x), if each one is independently chosen with proba-

bility
ξm(x)

1− ξ+ ξm(x)

for some fixed or random value of ξ.

4 Relations with generalized Stirling triangles of the first kind

An anonymous referee has brought to our attention the fact that our setting is intimately related to

the generalized Stirling triangles of the first kind, as defined in [9, Section 1.4]. We now summarize

this point of view, with a terminology that emphasizes the relation with our model.

Let E⋆ = {x⋆1, x⋆2, . . .} be any fixed sequence in E. A generalized Stirling triangle of the first kind

is a branching graph, with rows corresponding to successive x⋆n, in which each vertex (x⋆n−1, k)

(0≤ k ≤ n−1) is connected to (x⋆n, k) and (x⋆n, k+1), and these edges have attributed multiplicities

a(x⋆n) and b(x⋆n), respectively. A path from the initial vertex (0,0) to (x⋆n, k) may be interpreted

as the successive selections or rejections of the elements (x⋆1, . . . , x⋆n). More precisely, such a path

(x⋆i , ki) selects those x⋆i with ki = ki−1 + 1 and rejects x⋆i if ki = ki−1. Thus ki gives the number of

selected elements among x⋆1, . . . , x⋆i .

Kerov [9] associates to each path a weight given by the product of the multiplicities of its edges and

defines the dimension of the vertex (x⋆n, k) as the sum of the weights of all paths from (0,0) to (x⋆n, k).
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Since there is a bijective correspondence between these paths and the subsets B of E⋆n = {x
⋆
1, . . . , x⋆n}

with #B = k, in our terms:

w(B) =
∏

x∈B

b(x)
∏

x∈E⋆n−B

a(x) =
∏

x∈E⋆n

a(x)
∏

x∈B

m(x) with m(x) = b(x)/a(x)

gives the weight of each path and the dimension of the vertex (x⋆n, k) is

dim(n, k) = Mk(E
⋆
n)
∏

x∈E⋆n

a(x).

Following [6, Section 3], we can consider the Markovian process {Kn}, with 0≤ Kn ≤ n, such that

P{K1 = k1, K2 = k2, . . . , Kn−1 = kn−1 | Kn = k}=

∏

x∈B m(x)

Mk(E
⋆
n)

where B = {x⋆j ∈ E⋆n : k j − k j−1 = 1}, which is the weight of the path associated with B divided by

the dimension of the last vertex. Thus

P{Km = j | Kn = k}=
M j(E

⋆
m)Mk− j(E

⋆
n − E⋆m)

Mk(E
⋆
n)

for m ≤ n and with Mi(A) = 0 if i 6∈ {1, . . . #A}. Obviously the last two formulas are closely

related to (2.1) and (2.2), respectively. The distribution of the random walk {Kn} depends on a

family of marginal distributions, P{Kn = k}, which have a meaning similar to that of our marginal

distributions ps(B) and analogous requirements of compatibility:

Vn,k = a(x⋆n+1)Vn+1,k + b(x⋆n+1)Vn+1,k+1 where Vn,k =
P{Kn = k}

dim(n, k)
.

The functions V = (Vn,k) satisfying the preceding backward recurrence are called harmonic (for the

generalized Stirling triangle) and they constitute a convex set V . Its extremes may be characterized

in terms of the Martin boundary of the chain {Kn} (cf. [6, Lemma 5]). Specifically, each extreme of

V can be obtained as the limit

Vn,k = lim
ν→∞

Mkν−k(E
⋆
ν − E⋆n)

Mkν
(E⋆ν)

along a suitable sequence kν . Thus, the analysis in [6, Section 3] is mainly concerned with the

Martin boundary of the Markov chain {Kn} and its properties. In this context, a proof of Proposition

3.5 is given in [6, Section 4.3] (together with similar results for the case where m(x⋆n) = n− αk

(α < 1) depends also on k). More generally, Kerov conjectures in [9, Section 1.4] that, under the

hypothesis
∑∞

i=1 1/m(x⋆i ) =∞, the extremes of V are given by

Vn,k(θ) =
θ n−k

∏n

i=1[a(x i)θ + b(x i)]
for each θ ∈ [0,∞].

With the change of variables ξ = 1/(θ + 1), this yields the marginal distributions of the random

walk

Pξ{Kn = k}=
Mk(E

⋆
n)ξ

k(1− ξ)n−k

∏n

i=1[1− ξ+ ξm(x i)]
for each ξ ∈ [0,1]

in total concordance with (2.5). In this sense, the Kerov conjecture asserts that a De Finetti-type

result holds for any random selection process on (E, m) if E is countable and
∑∞

i=1 1/m(i) =∞.
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5 Conclusions

Before knowing the connection of our framework with the generalized Stirling triangles of the first

kind, our own conjecture was that a De Finetti-like theorem should hold “for a large variety of

weights functions”. Kerov asserts that, for the case E = IN , the divergence of
∑

i∈E 1/m(i) is a

necessary condition and shows, in fact, that, when this series converges, the result does not hold (cf.

[9, Theorem 5 p. 71]). However, our recent research suggests that the assumption
∑

i∈E 1/m(i) =∞

is somehow inappropriate:

– As the problem arises from combinatorial problems, Kerov wishes to control the “rate of

growth of the sequence m(i)”. For us, m(i) may be as well increasing or decreasing and,

in this last case, the appropriate condition is
∑

i∈E m(i) = ∞. In fact, there is an obvious

duality between these two cases, that can be observed from the symmetry of the generalized

Stirling triangle: the change of selections/rejections and the interchange of a(x) and b(x)

(in the description of the last section) leaves the problem invariant; while, if a(x) and b(x)

remain unchanged, m(x) = b(x)/a(x) is replaced with a(x)/b(x).

– For the general case (E uncountable), the divergence of
∑

k 1/m(xk) along some subsequence

xk would suffice to establish the desired result. If E is countable there is no difference between

both assumptions. But, if E is uncountable, it is easy to see that this second assumption is

always satisfied.

It seems that Kerov’s conjecture, stated in 1989, has been verified in a few number of cases. Kerov

himself (cf. [9, Section 1.4]) refers to the case where all weights m(i) appear infinitely often. Our

Theorem 3.3 shows that only a single weight needs to be infinitely repeated. As just said, the case

E = IN , m(i) = i was proved in [6, Section 4.3] (and now, independently of the results therein, in

Proposition 3.5).

An interesting contribution of this paper is that the weights of a suitable subsequence {x⋆i }i≥1 in E

(in case that either m(x⋆i ) = h or m(x⋆i ) = ih for all i ≥ 1 and some h> 0) suffices to determine the

extreme probability distributions of the whole random selection process N. In particular, Theorem

3.6 shows that the Kerov conjecture is also true for E = IN , m(i) = i1/q or m(i) = logq i (with

q ∈ IN ,q ≥ 2 fixed) since m(iq) = i and m(qi) = i, respectively.

When dealing with an arbitrary weight function, it seems that the Martin boundary approach has

not been fruitful. An approach through the techniques used in Proposition 3.5, seemingly requires

more general tools than the characterization of completely monotone sequences given in [2; 3] and

[4]. More specifically, it would be desirable to dispose of analogous results for which difference

ratios

∆hi
a(x) = [a(x i + hi)− a(x i)]/hi,

with different spans hi , are allowed. We think that a new approach will be, therefore, needed

because the methods used in [1; 5; 8] for exchangeable random variables seem definitely adapted

to this case and useless in the present context, and the reference [10] neither seems to be useful

for the proposed problem. Thus, our current research is focused on a generalization of the results

obtained in the present paper, which in particular would establish the Kerov conjecture.

On the other hand, in the same way that the classical De Finetti theorem was first stated for {0,1}-

valued random variables and then vastly extended in [7], more general cases are currently being
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studied. Results on a De Finetti theorem for families of {0,1, . . . ,ℓ}-valued random variables are

given in [11]. These results can be seen in the context of a multidimensional Stirling “triangle”,

with several edges in different directions which have multiplicities depending of the vertex and the

direction. We also hope that this would be a fruitful line of investigation.
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