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Abstract

We obtain upper bounds on the spectral gap of Markov chains constructed by parallel and simu-

lated tempering, and provide a set of sufficient conditions for torpid mixing of both techniques.

Combined with the results of [22], these results yield a two-sided bound on the spectral gap of

these algorithms. We identify a persistence property of the target distribution, and show that it

can lead unexpectedly to slow mixing that commonly used convergence diagnostics will fail to

detect. For a multimodal distribution, the persistence is a measure of how “spiky”, or tall and

narrow, one peak is relative to the other peaks of the distribution. We show that this persistence

phenomenon can be used to explain the torpid mixing of parallel and simulated tempering on

the ferromagnetic mean-field Potts model shown previously. We also illustrate how it causes tor-

pid mixing of tempering on a mixture of normal distributions with unequal covariances in R
M , a

previously unknown result with relevance to statistical inference problems. More generally, any-

time a multimodal distribution includes both very narrow and very wide peaks of comparable

probability mass, parallel and simulated tempering are shown to mix slowly.
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1 Introduction

Parallel and simulated tempering [4; 13; 5] are Markov chain simulation algorithms commonly used

in statistics, statistical physics, and computer science for sampling from multimodal distributions,

where standard Metropolis-Hastings algorithms with only local moves typically converge slowly.

Tempering-based sampling algorithms are designed to allow movement between modes (or “energy

wells”) by successively flattening the target distribution. Although parallel and simulated tempering

have distinct constructions, they are known to have closely related mixing times; Zheng [24] bounds

the spectral gap of simulated tempering below by a multiple of that of parallel tempering.

Madras and Zheng [12] first showed that tempering could be rapidly mixing on a target distribution

where standard Metropolis-Hastings is torpidly mixing, doing so for the particular case of the mean-

field Ising model from statistical physics. “Rapid” and “torpid” here are formalizations of the relative

terms “fast” and “slow”, and are defined in Section 2. However, Bhatnagar and Randall [2] show

that for the more general ferromagnetic mean-field Potts model with q ≥ 3, tempering is torpidly

mixing for any choice of temperatures.

Woodard et al. [22] generalize the mean-field Ising example of [12] to give conditions which

guarantee rapid mixing of tempering algorithms on general target distributions. They apply these

conditions to show rapid mixing for an example more relevant to statistics, namely a weighted mix-

ture of normal distributions in R
M with identity covariance matrices. In [22] the authors partition

the state space into subsets on which the target distribution is unimodal. The conditions for rapid

mixing of the tempering chain are that Metropolis-Hastings is rapidly mixing when restricted to any

one of the unimodal subsets, that Metropolis-Hastings mixes rapidly among the subsets at the high-

est temperature, that the overlap between distributions at adjacent temperatures is decreasing at

most polynomially in the problem size, and that an additional quantity γ (related to the persistence

quantity of the current paper) is at most polynomially decreasing. These conditions follow from a

lower bound on the spectral gaps of parallel and simulated tempering for general target distributions

given in [22].

Here we provide complementary results, showing several ways in which the violation of these condi-

tions implies torpid mixing of Markov chains constructed by parallel and simulated tempering. Most

importantly, we identify a persistence property of distributions and show that the existence of any

set with low conductance at low temperatures (e.g. a unimodal subset of a multimodal distribution)

and having small persistence (as defined in Section 3 with interpretation in Section 5), guarantees

tempering will mix slowly for any choice of temperatures. This result is troubling as this mixing

problem will not be detected by standard convergence diagnostics (see Section 6).

We arrive at these results by deriving upper bounds on the spectral gaps of parallel and simulated

tempering for arbitrary target distributions (Theorem 3.1 and Corollary 3.1). Combining with the

lower bound in [22] then yields a two-sided bound.
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In Section 4.2 we show that this persistence phenomenon can explain the torpid mixing of tempering

techniques on the mean-field Potts model. The original result [2] uses a “bad cut” which partitions

the space into two sets that have significant probability at temperature one, such that the boundary

has low probability at all temperatures. We show that one of these partition sets has low persistence,

also implying torpid mixing. We then show the persistence phenomenon for a mixture of normal

distributions with unequal covariances in R
M (Section 4.1), thereby proving that tempering is tor-

pidly mixing on this example. In typical cases such as these, the low-conductance set is a unimodal

subset of a multimodal distribution. Then the persistence measures how “spiky”, or narrow, this

peak is relative to the other peaks of the distribution; this is described in Section 5, where we show

that whenever the target distribution includes both very narrow and very wide peaks of comparable

probability mass, simulated and parallel tempering mix slowly.

2 Preliminaries

Let (X ,F ,λ) be a σ-finite measure space with countably generated σ-algebra F . Often X = R
M

and λ is Lebesgue measure, or X is countable with counting measure λ . When we refer to an

arbitrary subset A⊂ X , we implicitly assume A ∈ F . Let P be a Markov chain transition kernel on

X , defined as in [19], which operates on distributions µ on the left and complex-valued functions

f on the right, so that for x ∈ X ,

(µP)(d x) =

∫

µ(d y)P(y, d x) and (P f )(x) =

∫

f (y)P(x , d y).

If µP = µ then µ is called a stationary distribution of P. Define the inner product ( f , g)µ =
∫

f (x)g(x)µ(d x) and denote by L2(µ) the set of complex-valued functions f such that ( f , f )µ <∞.

P is reversible with respect to µ if ( f , P g)µ = (P f , g)µ for all f , g ∈ L2(µ), and nonnegative definite if

(P f , f )µ ≥ 0 for all f ∈ L2(µ). If P is µ-reversible, it follows that µ is a stationary distribution of P.

We will be primarily interested in distributions µ having a density π with respect to λ, in which case

define π[A] = µ(A) and define ( f , g)π, L2(π), and π-reversibility to be equal to the corresponding

quantities for µ.

If P is aperiodic and φ-irreducible as defined in [16], µ-reversible, and nonnegative definite, then

the Markov chain with transition kernel P converges in distribution to µ at a rate related to the

spectral gap:

Gap(P) = inf
f ∈L2(µ)

Varµ( f )>0

�

E ( f , f )

Varµ( f )

�

(1)

where E ( f , f ) = ( f , (I − P) f )µ is a Dirichlet form, and Varµ( f ) = ( f , f )µ− ( f , 1)2µ is the variance of

f . It can easily be shown that Gap(P) ∈ [0,1] (for P not nonnegative definite, Gap(P) ∈ [0,2]).
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For any distribution µ0 having a density π0 with respect to µ, define the L2-norm ‖µ0‖2 =
(π0,π0)

1/2
µ . For the Markov chain with P as its transition kernel, define the rate of convergence

to stationarity as:

r = inf
µ0

lim
n→∞

− ln(‖µ0Pn−µ‖2)
n

(2)

where the infimum is taken over distributions µ0 that have a density π0 with respect to µ such that

π0 ∈ L2(µ). The rate r is equal to − ln(1−Gap(P)), where we define − ln(0) =∞; for every µ0 that

has a density π0 ∈ L2(µ),

‖µ0Pn−µ‖2 ≤ ‖µ0−µ‖2e−rn ∀n ∈ N,

and r is the largest quantity for which this holds for all such µ0. These are facts from functional

analysis (see e.g. [23; 11; 17]). Analogous results hold if the chain is started deterministically at x0

for µ-a.e. x0 ∈ X , rather than drawn randomly from a starting distribution µ0 [17]. Therefore for

a particular such starting distribution µ0 or fixed starting state x0, the number of iterations n until

the L2-distance to stationarity is less than some fixed ε > 0 is O(r−1 ln(‖µ0 − µ‖2)). Similarly, [11]

show that the autocorrelation of the chain decays at a rate r. Their proof is stated for finite state

spaces but applies to general state spaces as well. Therefore, informally speaking, the number of

iterations of the chain required to obtain some number N0 of approximately independent samples

from µ is O(N0r−1 ln(‖µ0−µ‖2)).
The quantity r =− ln(1−Gap(P)) is monotonically increasing with Gap(P); therefore lower (upper)

bounds on Gap(P) correspond to lower (upper) bounds on r. In addition, − ln(1−Gap(P))/Gap(P)

approaches 1 as Gap(P)→ 0. Therefore the order at which Gap(P)→ 0 as a function of the problem

size is equal to the order at which the rate of convergence to stationarity approaches zero. When

Gap(P) (and thus r) is exponentially decreasing as a function of the problem size, we call P torpidly

mixing. When Gap(P) (and thus r) is polynomially decreasing as a function of the problem size,

we call P rapidly mixing. The rapid / torpid mixing distinction is a measure of the computational

tractability of an algorithm; polynomial factors are expected to be eventually dominated by increases

in computing power due to Moore’s law, while exponential factors are presumed to cause a persistent

computational problem.

2.1 Metropolis-Hastings

The Metropolis-Hastings algorithm provides a common way of constructing a transition kernel that

is π-reversible for a specified density π on a spaceX with measure λ. Start with a “proposal” kernel

P(w, dz) having density p(w, ·) with respect to λ for all w ∈ X , and define the Metropolis-Hastings

kernel as follows: Draw a “proposal” move z ∼ P(w, ·) from current state w, accept z with probability

ρ(w, z) =min

�

1,
π(z)p(z, w)

π(w)p(w, z)

�

and otherwise remain at w. The resulting kernel is π-reversible.

784



2.2 Parallel and Simulated Tempering

If the Metropolis-Hastings proposal kernel moves only locally in the space, and if π is multimodal,

then the Metropolis-Hastings chain may move between the modes of π infrequently. Tempering is a

modification of Metropolis-Hastings wherein the density of interest π is “flattened” in order to allow

movement among the modes of π. For any inverse temperature β ∈ [0,1] such that
∫

π(z)βλ(dz)<

∞, define

πβ(z) =
π(z)β

∫

π(w)βλ(dw)
∀z ∈ X .

For any z and w in the support of π, the ratio πβ(z)/πβ(w) monotonically approaches one as β

decreases, flattening the resulting density. For any β , define Tβ to be the Metropolis-Hastings chain

with respect to πβ , or more generally assume that we have some way to specify a πβ -reversible

transition kernel for each β , and call this kernel Tβ .

Parallel tempering. Let B =
¦

β ∈ [0,1] :
∫

π(z)βλ(dz)<∞
©

. The parallel tempering algorithm

[4] simulates parallel Markov chains Tβk
at a sequence of inverse temperatures β0 < . . . < βN = 1

with β0 ∈ B . The inverse temperatures are commonly specified in a geometric progression, and

Predescu et al. [15] show an asymptotic optimality result for this choice.

Updates of individual chains are alternated with proposed swaps between temperatures, so that the

process forms a single Markov chain with state x = (x[0], . . . , x[N]) on the space Xpt = X N+1 and

stationary density

πpt(x) =

N
∏

k=0

πβk
(x[k]) x ∈ Xpt

with product measure λpt(d x) =
∏N

k=0λ(d x[k]). The marginal density of x[N] under stationarity is

π, the density of interest.

A holding probability of 1/2 is added to each move to guarantee nonnegative definiteness. The

update move T chooses k uniformly from {0, . . . , N} and updates x[k] according to Tβk
:

T (x , d y) =
1

2(N + 1)

N
∑

k=0

Tβk
(x[k], d y[k])δ(x[−k] − y[−k])d y[−k] x , y ∈ Xpt

where x[−k] = (x[0], . . . , x[k−1], x[k+1], . . . , x[N]) and δ is Dirac’s delta function.

The swap move Q attempts to exchange two of the temperature levels via one of the following

schemes:

PT1. sample k, l uniformly from {0, . . . , N} and propose exchanging the value of x[k] with that of

x[l]. Accept the proposed state, denoted (k, l)x , according to the Metropolis criteria preserving

πpt :

ρ(x , (k, l)x) =min

¨

1,
πβk
(x[l])πβl

(x[k])

πβk
(x[k])πβl

(x[l])

«

785



PT2. sample k uniformly from {0, . . . , N − 1} and propose exchanging x[k] and x[k+1], accepting

with probability ρ(x , (k, k+ 1)x).

Both T and either form of Q are πpt -reversible by construction, and nonnegative definite due to

their 1/2 holding probability. Therefore the parallel tempering chain defined by Ppt = QTQ is

nonnegative definite and πpt -reversible, and so the convergence of Pn
pt to πpt may be bounded

using the spectral gap of Ppt .

The above construction holds for any densities φk that are not necessarily tempered versions of π,

by replacing Tβk
by any φk-reversible kernel Tk; the densities φk may be specified in any convenient

way subject to φN = π. The resulting chain is called a swapping chain, with Xsc, λsc , Psc and πsc

denoting its state space, measure, transition kernel, and stationary density respectively. Just as for

parallel tempering, a swapping chain can be defined using swaps between adjacent levels only, or

between arbitrary levels, and the two constructions will be denoted SC2 and SC1, analogously to

PT2 and PT1 for parallel tempering. Although the terms “parallel tempering” and “swapping chain”

are used interchangeably in the computer science literature, we follow the statistics literature in

reserving parallel tempering for the case of tempered distributions, and use swapping chain to refer

to the more general case.

Simulated tempering. An alternative to simulating parallel chains is to augment a single chain by

an inverse temperature index k to create states (z, k) ∈ Xst =X ⊗{0, . . . , N} with stationary density

πst(z, k) =
1

N + 1
φk(z) (z, k) ∈ Xst .

The resulting simulated tempering chain [13; 5] alternates two types of moves: T ′ samples z ∈ X
according to Tk, conditional on k, while Q′ attempts to change k via one of the following schemes:

ST1. propose a new temperature level l uniformly from {0, . . . , N} and accept with probability

min
n

1,
φl (z)

φk(z)

o

.

ST2. propose a move to l = k − 1 or l = k + 1 with equal probability and accept with probability

min
n

1,
φl (z)

φk(z)

o

, rejecting if l =−1 or N + 1.

As before, a holding probability of 1/2 is added to both T ′ and Q′; the transition kernel of simulated

tempering is defined as Pst =Q′T ′Q′. For a lack of separate terms, we use “simulated tempering” to

mean any such chain Pst , regardless of whether or not the densities φk are tempered versions of π.
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3 Upper Bounds on the Spectral Gaps of Swapping and Simulated

Tempering Chains

The parallel and simulated tempering algorithms described in Section 2.2 are designed to sample

from multimodal distributions. Thus when simulating these chains, it is typically assumed that if the

temperature swaps between all pairs of adjacent temperatures are occurring at a reasonable rate,

then the chain is mixing well. However, Bhatnagar and Randall [2] show that parallel tempering is

torpidly mixing for the ferromagnetic mean-field Potts model with q ≥ 3 (Section 4.2), indicating

that tempering does not work for all target distributions. It is therefore of significant practical in-

terest to characterize properties of distributions which may make them amenable to, or inaccessible

to, sampling using tempering algorithms.

In this Section we provide conditions for general target distributions π under which rapid mixing

fails to hold. In particular, we identify a previously unappreciated property we call the persistence,

and show that if the target distribution has a subset with low conductance for β close to one and

low persistence for values of β within some intermediate β -interval, then the tempering chain mixes

slowly. Somewhat more obviously, the tempering chain will also mix slowly if the inverse tempera-

tures are spaced too far apart so that the overlap of adjacent tempered distributions is small.

Consider sets A⊂ X that contain a single local mode of π along with the surrounding area of high

density. If π has multiple modes separated by areas of low density, and if the proposal kernel makes

only local moves, then the conductance of A with respect to Metropolis-Hastings will be small at low

temperatures (β ≈ 1). The conductance of a set A⊂X with 0< µ(A)< 1 is defined as:

ΦP(A) =
(1A, P1Ac )µ

µ(A)µ(Ac)

for P any µ-reversible kernel onX , where 1A is the indicator function of A. ΦP(A) provides an upper

bound on Gap(P) [9]. Note that P reversible implies (1A, P1Ac )µ = (1Ac , P1A)µ, so

ΦP(A) =
(1A, P1Ac )µ

µ(A)
+
(1Ac , P1A)µ

µ(Ac)
(3)

and so ΦP(A)≤ 2.

We will obtain upper bounds on the spectral gap of a parallel or simulated tempering chain in terms

of an arbitrary subset A ofX . Conceptually the case where π|A (the restriction of π to A) is unimodal

as described above is the most insightful, but the bounds hold for all A⊂X such that 0< π[A]< 1.

The bounds will involve the conductance of A under the chain Tβ defined in Section 2.2, as well as

the persistence of A under tempering by β . For any A⊂ X such that 0 < π[A] < 1 and any density

φ on X , we define the quantity

γ(A,φ) =min

�

1,
φ[A]

π[A]

�

(4)
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and define the persistence of A with respect to πβ as γ(A,πβ), also to be denoted by the shorthand

γ(A,β). The persistence measures the decrease in the probability of A between π and πβ . If A has

low persistence for small values of β , then a parallel or simulated tempering chain starting in Ac

may take a long time to discover A at high temperatures (β near zero). If A is a unimodal subset

of a multimodal distribution, then it typically has low conductance for low temperatures (β ≈ 1),

so the tempering chain may take a long time to discover A at all temperatures even when π[A]

is large. This leads to slow mixing, and contradicts the common assumption in practice that if

swapping acceptance rates between temperatures are high, the chain is mixing quickly. A key point

is that, due to the low persistence of the set, this problem does not manifest as low conductance of

the high-temperature chain which may well be rapidly mixing on πβ . Nevertheless, it does lead to

slow mixing. This contradicts the common assumption in practice that if the highest temperature is

rapidly mixing, and swapping acceptance rates between temperatures are high, then the tempering

chain is rapidly mixing.

Even if every subset A⊂X has large persistence for high temperatures, it is possible for some subset

to have low persistence within an intermediate temperature-interval. This causes slow mixing by

creating a bottleneck in the tempering chain, since swaps between non-adjacent β and β ′ typically

have very low acceptance probability. The acceptance probability of such a swap in simulated tem-

pering, given that z ∈ A, is given by the overlap of πβ and πβ ′ with respect to A. The overlap of two

distributions φ and φ′ with respect to a set A⊂X is given by [22]:

δ(A,φ,φ′) = φ[A]−1

∫

A

min
�

φ(z),φ′(z)
	

λ(dz) (5)

which is not symmetric. When considering tempered distributions πβ we will use the shorthand

δ(A,β ,β ′) = δ(A,πβ ,πβ ′).

The most general results are given for any swapping or simulated tempering chain with a set of

densities φk not necessarily tempered versions of π. For any level k ∈ {0, . . . , N}, let γ(A, k) and

δ(A, k, l) be shorthand for γ(A,φk) and δ(A,φk,φl), respectively.

The following result, involving the overlap δ(A, k, l), the persistence γ(A, k), and the conductance

ΦTk
(A), is proven in the Appendix:

Theorem 3.1. Let Psc be a swapping chain using scheme SC1 or SC2, and Pst a simulated tempering

chain using scheme ST1. For any A⊂X such that 0< φk[A]< 1 for all k, and for any k∗ ∈ {0, . . . , N},
we have

Gap(Psc)≤ 12 max
k≥k∗,l<k∗

¦

γ(A, k)max
¦

ΦTk
(A),δ(A, k, l),δ(Ac, k, l)

©©

Gap(Pst)≤ 192
�

max
k≥k∗,l<k∗

¦

γ(A, k)max
¦

ΦTk
(A),δ(A, k, l)

©©
�1/4
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where for k∗ = 0 we take this to mean:

Gap(Psc)≤ 12 max
k
{γ(A, k)ΦTk

(A)}

Gap(Pst)≤ 192
�

max
k
{γ(A, k)ΦTk

(A)}
�1/4

.

One can obtain an alternative bound for the swapping chain by combining the bound for simulated

tempering with the results of [24]. However, the alternative bound has a superfluous factor of N so

we prefer the one given here.

For the case where tempered distributions φk = πβk
are used, the bounds in Theorem 3.1 show that

the inverse temperatures βk must be spaced densely enough to allow sufficient overlap between

adjacent temperatured distributions. If there is an A ⊂ X and a level k∗ such that the overlap

δ(A, k, l) is exponentially decreasing in M for every pair of levels l < k∗ and k ≥ k∗, and the

conductance ΦTβk
(A) of A is exponentially decreasing for k ≥ k∗, then the tempering chain is torpidly

mixing. An example is given in Section 4.3.

The bounds in Theorem 3.1 are given for a specific choice of densities {φk}Nk=0
. When tempered

densities are used, the bounds can be stated independent of the number and choice of inverse

temperatures:

Corollary 3.1. Let Ppt be a parallel tempering chain using scheme PT1 or PT2, and let Pst be a

simulated tempering chain using scheme ST1, with densities φk chosen as tempered versions of π. For

any A⊂X such that 0< π[A]< 1, and any β∗ ≥ inf{β ∈B}, we have

Gap(Ppt)≤ 12 sup
β∈[β∗,1]∩B
β ′∈[0,β∗)∩B

n

γ(A,β)max
n

ΦTβ
(A),δ(A,β ,β ′),δ(Ac,β ,β ′)

oo

Gap(Pst)≤ 192

�

sup
β∈[β∗,1]∩B
β ′∈[0,β∗)∩B

n

γ(A,β)max
n

ΦTβ
(A),δ(A,β ,β ′)

oo

�1/4

.

where for β∗ = inf{β ∈B} we take this to mean:

Gap(Ppt)≤ 12 sup
β∈B

n

γ(A,β)ΦTβ
(A)
o

Gap(Pst)≤ 192
�

sup
β∈B

n

γ(A,β)ΦTβ
(A)
o

�1/4
.

This is a corollary of Theorem 3.1, verified by setting k∗ =min{k : βk ≥ β∗}.

Recall from Section 2 that torpid mixing of a Markov chain means that the spectral gap of the

transition kernel is exponentially decreasing in the problem size. Then Corollary 3.1 implies the

following result:
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Corollary 3.2. Assume that there exist inverse temperatures β∗ < β∗∗ such that:

1. the conductance sup
β∈[β∗∗,1]

ΦTβ
(A) is exponentially decreasing,

2. the persistence sup
β∈[β∗,β∗∗)∩B

γ(A,β) is exponentially decreasing, and

3. β∗ = inf{β ∈ B} or the overlap sup
β∈[β∗∗,1]
β ′∈[0,β∗)∩B

max{δ(A,β ,β ′),δ(Ac,β ,β ′)} is exponentially de-

creasing.

Then parallel and simulated tempering are torpidly mixing.

In Sections 4.1 and 4.2 we will give two examples where we use this corollary with β∗ = inf{β ∈B}
to show torpid mixing of parallel and simulated tempering. For this choice of β∗, condition 3 is

automatically satisfied. Condition 3 is presumed to hold for most problems of interest, even when

β∗ > inf{β ∈B}; otherwise, intermediate β values would not be needed at all. Thus the existence of

a set A (e.g. with π|A unimodal) with low conductance for β close to 1, and low persistence for β in

some intermediate β -interval, induces slow mixing of parallel and simulated tempering. It is possible

to have a set A with low persistence in some intermediate β -interval and higher persistence for small

β , since πβ[A] is not necessarily a monotonic function of β (e.g. X = {1,2,3}, π= (0.01,0.8,0.19),

and A= {1,2}).
The quantities in the upper bounds of this section are closely related to the quantities in the lower

bounds on the spectral gaps of parallel and simulated tempering given in Woodard et al. [22]. The

overlap quantity δ({A j}) used by Woodard et al. [22] for an arbitrary partition {A j}Jj=1
of X is

simply given by

δ({A j}) = min
|k−l|=1, j

δ(A j , k, l).

The quantity γ({A j}) defined in [22] is related to the persistence of the current paper. If φk[A j] is a

monotonic function of k for each j, then

γ({A j}) =min
k, j
γ(A j , k).

In addition, the conductance ΦTk
(A) of the current paper is exactly the spectral gap of the projection

matrix T̄k for Tk with respect to the partition {A,Ac}, as defined in [22]. Since T̄k is a 2× 2 matrix,

its spectral gap is given by the sum of the off-diagonal elements, which is precisely ΦTk
(A) written

in the form (3).

The lower bound given in [22] is, for any partition {A j}Jj=1
of X ,

Gap(Psc),Gap(Pst)≥
�

γ({A j})J+3δ({A j})3

214(N + 1)5J3

�

Gap(T̄0)min
k, j

Gap(Tk|A j
)
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where Tk|A j
is the restriction of the kernel Tk to the set A j . Note the upper and lower bounds are

stated for arbitrary sets and partitions respectively, and so also hold for the inf over sets A and sup

over partitions {A j}, respectively. The lower bound shows that if there is a partition {A j} of the

space such that γ({A j}) is large and such that Metropolis-Hastings restricted to any one of the sets

A j is rapidly mixing, and if Metropolis-Hastings is rapidly mixing at the highest temperature and the

overlap δ({A j}) of adjacent levels is high, then the tempering chains Psc and Pst are rapidly mixing.

The conditions on γ({A j}) and the overlap are the important ones, since the other two conditions

are typically satisfied for multimodal distributions of interest. By comparison, Theorem 3.1 shows

that both the persistence γ(A j , k) and the overlap δ(A j , k, l) must be large for each j in order to

have rapid mixing (by setting A = A j). Although the persistence γ(A j , k) is closely related to the

quantity γ({A j}), the two are not identical so we do not have a single set of necessary and sufficient

conditions for rapid mixing. However, our results suggest that the bounds in the current paper and

in [22] contain the important quantities and no unnecessary quantities.

4 Examples

4.1 Torpid Mixing for a Mixture of Normals with Unequal Variances in R
M

Consider sampling from a target distribution given by a mixture of two normal densities in R
M :

π(z) =
1

2
NM (z;−1M ,σ2

1IM ) +
1

2
NM (z; 1M ,σ2

2IM )

where NM (z;ν ,Σ) denotes the multivariate normal density for z ∈ R
M with mean vector ν and

M × M covariance matrix Σ, and 1M and IM denote the vector of M ones and the M × M identity

matrix, respectively. Let S be the proposal kernel that is uniform on the ball of radius M−1 centered

at the current state. When σ1 = σ2, Woodard et al. [22] have given an explicit construction of

parallel and simulated tempering chains that is rapidly mixing. Here we consider the case σ1 6= σ2,

assuming without loss of generality that σ1 > σ2.

For technical reasons, we will use the following truncated approximation to π, where A1 = {z ∈
R

M :
∑

i zi < 0} and A2 = {z ∈ R
M :
∑

i zi ≥ 0}:

π̃(z)∝
1

2
NM (z;−1M ,σ2

1IM )1A1
(z) +

1

2
NM (z; 1M ,σ2

2IM )1A2
(z). (6)

Figure 1 shows π̃β[A2] as a function of β for M = 35. It is clear that for β < 1

2
, π̃β[A2] is much

smaller than π̃[A2]. This effect becomes more extreme as M increases, so that the persistence of A2

is exponentially decreasing for β < 1

2
, as we will show. We will also show that the conductance of A2

under Metropolis-Hastings for S with respect to π̃β is exponentially decreasing for β ≥ 1

2
, implying

the torpid mixing of parallel and simulated tempering.
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Figure 1: The probability of A2 under π̃β as a function of β , for the mixture of normals with M = 35,

σ1 = 6, and σ2 = 5.

The Metropolis-Hastings chains for S with respect to the densities restricted to each individual mode

π̃|A1
(z)∝ NM (z;−1M ,σ2

1IM )1A1
(z)

π̃|A2
(z)∝ NM (z; 1M ,σ2

2IM )1A2
(z)

are rapidly mixing in M , as implied by results in Kannan and Li [8] (details are given in Woodard

[21]). As we will see however, Metropolis-Hastings for S with respect to π̃ itself is torpidly mixing

in M . In addition, we will show that parallel and simulated tempering are also torpidly mixing for

this target distribution for any choice of temperatures.

First, calculate π̃β[A2] as follows. Let F be the cumulative normal distribution function in one

dimension. Consider any normal distribution in R
M with covariance σ2IM for σ > 0. The probability

under this normal distribution of any half-space that is Euclidean distance d from the center of

the normal distribution at its closest point is F(−d/σ). This is due to the independence of the

dimensions and can be shown by a rotation and scaling in R
M .

The distance between the half-space A2 and the point −1M is equal to
p

M . Therefore

∫

A1

N(z;−1M ,σ2
1IM )

βλ(dz) = (2πσ2
1)
− Mβ

2

∫

A1

exp
�

−
β

2σ2
1

∑

i

�

zi + 1
�2 	
λ(dz)

= (2πσ2
1)

M(1−β)
2 β−

M

2

∫

A1

N(z;−1M ,
σ2

1

β
IM )λ(dz)

= (2πσ2
1)

M(1−β)
2 β−

M

2 F

�

(Mβ)
1

2

σ1

�

,
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and similarly
∫

A2

N(z; 1M ,σ2
2IM )

βλ(dz) = (2πσ2
2)

M(1−β)
2 β−

M

2 F

�

(Mβ)
1

2

σ2

�

.

Therefore

π̃β[A2]

π̃β[A1]
=

�

σ2

σ1

�M(1−β) F
� (Mβ)

1
2

σ2

�

F
� (Mβ)

1
2

σ1

�

.

Recall the definition of B from Section 2.2; for the mixture π̃, we have B = (0,1]. We will apply

Corollary 3.2 with A= A2, β∗ = 0, and β∗∗ = 1

2
to show that parallel and simulated tempering are

torpidly mixing on the mixture π̃.

Looking first at the persistence γ(A2,β), since F
� (Mβ)1/2

σ1

�

> 1

2
we have

sup
β∈(0,β∗∗)

π̃β[A2]≤ sup
β∈(0,β∗∗)

π̃β[A2]

π̃β[A1]
< 2 sup

β∈(0,β∗∗]

�

σ2

σ1

�M(1−β)

= 2

�

σ2

σ1

�M(1−β∗∗)

which is exponentially decreasing in M . Therefore since π̃[A2]>
1

2
,

sup
β∈[0,β∗∗)∩B

γ(A2,β)≤ sup
β∈[0,β∗∗)∩B

π̃β[A2]

π̃[A2]
< 2 sup

β∈[0,β∗∗)∩B
π̃β[A2] (7)

is also exponentially decreasing.

Turning now to the conductance ΦTβ
(A2), define the boundary ∂ A2 of A2 with respect to the

Metropolis-Hastings kernel Tβ as the set of z ∈ A2 such that it is possible to move to A1 via one

move according to Tβ . Then ∂ A2 contains only z ∈ A2 within distance M−1 of A1. Therefore

sup
β∈[β∗∗,1]

π̃β[∂ A2]

π̃β[A2]
= sup
β∈[β∗∗,1]







F
� (Mβ)

1
2

σ2

�

− F
� (M

1
2−M−1)β

1
2

σ2

�

F
� (Mβ)

1
2

σ2

�







≤ 2 sup
β∈[β∗∗,1]

�

F
�(Mβ)

1

2

σ2

�

− F
�(M

1

2 −M−1)β
1

2

σ2

�

�

≤ 2 sup
β∈[β∗∗,1]

�

1− F
�(M

1

2 −M−1)β
1

2

σ2

�

�

= 2 sup
β∈[β∗∗,1]

�

F
�

−
(M

1

2 −M−1)β
1

2

σ2

�

�

= 2F
�

−
(M

1

2 −M−1)(β∗∗)
1

2

σ2

�

.
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For M > 1, this is bounded above by

2F
�

−
(Mβ∗∗)

1

2

2σ2

�

. (8)

Analytic integration shows for any a > 0 that F(−a) ≤ N1(a; 0, 1)/a. Therefore 8 is exponentially

decreasing in M . Analogously, for the boundary ∂ A1 of A1 with respect to the Metropolis-Hastings

kernel,

sup
β∈[β∗∗,1]

π̃β[∂ A1]

π̃β[A1]

is exponentially decreasing. Therefore the conductance

sup
β∈[β∗∗,1]

ΦTβ
(A2) (9)

is exponentially decreasing. In particular, ΦTβ
(A2) is exponentially decreasing for β = 1, so the

standard Metropolis-Hastings chain is torpidly mixing. Using the above facts that (7) and (9) are

exponentially decreasing, Corollary 3.2 implies that parallel and simulated tempering are also tor-

pidly mixing for any number and choice of temperatures.

4.2 Small Persistence for the Mean-Field Potts Model

The Potts model is a type of discrete Markov random field which arises in statistical physics, spatial

statistics, and image processing [1; 3; 7]. We consider the ferromagnetic mean-field Potts model

with q ≥ 2 colors and M sites, having distribution:

π(z)∝ exp

�

α

2M

∑

i, j

1(zi = z j)

�

for z ∈ {1, . . . ,q}M

with interaction parameter α ≥ 0. The mean-field Potts model exhibits a phase transition phe-

nomenon similar to the more general Potts model, where a small change in the value of the pa-

rameter α near a critical value αc causes a dramatic change in the asymptotic behavior of π in

M .

We will use the proposal kernel S that changes the color of a single site, where the site and color

are drawn uniformly at random. It is well-known that Metropolis-Hastings for S with respect to

π is torpidly mixing for α ≥ αc [6]. Bhatnagar and Randall [2] show that parallel and simulated

tempering are also torpidly mixing on the mean-field Potts model with q = 3 and α = αc (their

argument may extend to q ≥ 3 and α≥ αc). Here we show that this torpid mixing can be explained

using the persistence phenomenon described in Section 3. We use the same cut of the state space

as do Bhatnagar and Randall [2], since it has low conductance for β close to 1. Our torpid mixing

explanation will be stated for q ≥ 3 and α ≥ αc . Our initial definitions will be given for q ≥ 2 to

allow us to address the case q = 2 in Section 4.3.
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Define σ(z) = (σ1(z), . . . ,σq(z)) to be the vector of sufficient statistics, where σk(z) =
∑

i 1(zi = k).

Then π can be written as

π(z)∝ exp

�

α

2M

q
∑

k=1

σk(z)
2

�

,

and the marginal distribution of σ is given by

ρ(σ)∝
�

M

σ1, . . . ,σq

�

exp

�

α

2M

q
∑

k=1

σ2
k

�

.

For q ≥ 3 define the “critical” parameter value αc =
2(q−1) ln(q−1)

q−2
; for q = 2 set αc = 2. Let a =

(a1, . . . , aq) = σ/M be the proportion of sites in each color. Using Stirling’s formula, Gore and

Jerrum [6] write
� M

σ1,...,σq

�

as:

�

M

σ1, . . . ,σq

�

= exp

�

−M

q
∑

k=1

ak ln ak +∆(a)

�

(10)

where ∆(a) is an error term satisfying

sup
a
|∆(a)|= O(ln M). (11)

Gore and Jerrum [6] apply (10) to rewrite ρ as:

ρ(σ)∝ exp
�

fα(a)M +∆(a)
	

where fα(a) =

q
∑

k=1

gα(ak)

and gα(x) =
α

2
x2 − x ln x . Observe that fα does not depend on M . It is also shown in [6] that any

local maximum of fα is of the form m = (x , 1−x

q−1
, . . . , 1−x

q−1
) for some x ∈ [1

q
, 1) satisfying g ′α(x) =

g ′α(
1−x

q−1
), or a permutation thereof (the apostrophe denoting the first derivative). Gore and Jerrum

also show that at α= αc the local maxima occur for x = 1

q
and x =

q−1

q
.

Letting m1 = (1

q
, . . . , 1

q
), m2 = (

q−1

q
, 1

q(q−1)
, . . . , 1

q(q−1)
), and m3 equal to m2 with the first two ele-

ments permuted, note that

fαc
(m1) = fαc

(m2)

and that for any a, fα(a) is invariant under permutation of the elements of a. Therefore the q+ 1

local maxima of the function fαc
are also global maxima (for q = 2 there is a single global maximum).

For M large enough the q+1 global maxima of fαc
correspond to q+1 local maxima of ρ(σ); Figure 2

shows the 4 modes of ρ(σ) for the case q = 3.

We will additionally need the following results. The proofs are given in the thesis by Woodard [20].

Proposition 4.1. For any q ≥ 3 and α < αc , fα has a unique global maximum at m1, while for α > αc

every global maximum of fα is of the form (x , 1−x

q−1
, . . . , 1−x

q−1
) for some x ∈

� q−1

q
, 1
�

, or a permutation

thereof.
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Figure 2: A contour plot of the marginal distribution ρ(σ) of the sufficient statistic vector σ, as a

function of σ1 and σ2, for the mean-field Potts model with q = 3, M = 100, and α≈ αc .

Asymptotically in M , the distribution of a(z) concentrates near the global maxima of fα(a) in the

following sense:

Proposition 4.2. (Gore and Jerrum 1999) For any fixed q ≥ 2, α≥ 0 and ε > 0, let

Cα,ε = {a : ‖a−m‖< ε for some m ∈M}

where M are the global maxima of fα and ‖‖ indicates Euclidean distance. Then Pr(a(z) ∈ C c
α,ε) is

exponentially decreasing in M, while for any specific m ∈ M , Pr(‖a(z)− m‖ < ε) decreases at most

polynomially in M.

Gore and Jerrum state this result for α= αc , but their argument can be extended in a straightforward

manner; details are given in [20].

As in Bhatnagar and Randall [2], define the set A = {z : σ1(z) >
M

2
}. Then we have the following

two results, also shown in [20].

Proposition 4.3. For any fixed q ≥ 3 and α ≥ αc , π[A] and π[Ac] decrease at most polynomially in

M. For any q ≥ 3 and α < αc , π[A] is exponentially decreasing in M. Furthermore, for any q ≥ 3 and

τ ∈ (0,αc), supα<αc−τπ[A] is also exponentially decreasing.

Proposition 4.4. For q ≥ 3 there exists some τ ∈ (0,αc) such that the supremum over α ≥ αc − τ of

the conductance of A under Metropolis-Hastings is exponentially decreasing.

Now consider any q ≥ 3 and α ≥ αc . For any β , the density πβ is equal to the mean-field Potts

density with parameter αβ . Recall that Tβ is the Metropolis-Hastings kernel for S with respect to

πβ . Take the value of τ from Proposition 4.4. Define the inverse temperature β∗∗ = αc/α− τ/α.

Propositions 4.3 and 4.4 imply that

sup
β∈[β∗∗,1]

ΦTβ
(A)
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and

sup
β∈[0,β∗∗)

γ(A,β)≤ sup
β∈[0,β∗∗)

πβ[A]

π[A]

are exponentially decreasing. Therefore Corollary 3.2 can be used to show the torpid mixing of

parallel and simulated tempering on the mean-field Potts model with q ≥ 3 and α ≥ αc , for any

number and choice of inverse temperatures.

4.3 Torpid Mixing on the Mean-Field Ising Model using Fixed Temperatures

Consider the mean-field Ising model, which is simply the mean-field Potts model from Section 4.2

with q = 2. Recall the definitions from that section. Madras and Zheng [12] show that parallel and

simulated tempering with N = M and βk = k/N are rapidly mixing on the mean-field Ising model,

while Metropolis-Hastings is torpidly mixing for α > αc . As a demonstration of the importance of

the overlap quantity in Theorem 3.1, we show here that if instead the number N of temperatures

does not grow with M , then parallel and simulated tempering are torpidly mixing. We will need the

following result, proven in the thesis [20]:

Proposition 4.5. For q = 2 and α≤ αc , fα has a unique global maximum at a = (1

2
, 1

2
). For q = 2 and

α > αc the global maxima occur at (x , 1− x) and (1− x , x) for some x > 1

2
that is strictly increasing

in α.

Now consider any α1, α2 such that αc < α2 and α1 < α2. If α1 ≤ αc , let x1 =
1

2
; otherwise, let x1 be

the value of x in Proposition 4.5 for α1. Let x2 be the value of x in Proposition 4.5 for α2, so that

x1 < x2. Let ε= (x2− x1)/2. Recalling the definition of Cα,ε from Proposition 4.2, Cα1,ε∩Cα2,ε = ;.
Letting π and π′ be the mean-field Ising model density at α1 and α2 respectively, Proposition 4.2

implies that π[{z : a(z) ∈ C c
α1,ε}] and π′[{z : a(z) ∈ C c

α2,ε}] are exponentially decreasing. Therefore
∑

z min{π(z),π′(z)} is exponentially decreasing.

Parallel and simulated tempering with N = 0 are equivalent to Metropolis-Hastings with respect

to π, so they are torpidly mixing for α > αc . Now consider the case where N > 0. Note that

for l ∈ {0, . . . , N − 1}, πβl
is the mean-field Ising model with parameter αβl and πβN

= π is the

mean-field Ising model with parameter α. Therefore with βl fixed in M ,
∑

z min{πβl
(z),πβN

(z)} is

exponentially decreasing. Note that π[A] ∈ [1

4
, 3

4
] for all M . Therefore δ(A, N , l) and δ(Ac, N , l)

are exponentially decreasing. By Theorem 3.1 with k∗ = N , parallel and simulated tempering are

torpidly mixing.

5 Interpretation of Persistence

As described in Section 3, tempering algorithms mix slowly when there is a set A⊂X which has low

conductance under the low-temperature (β = 1) chain and has small persistence for some range of
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β -values. Here small persistence means πβ[A]/π[A] near zero. To understand how the existence of

such a set depends on the properties of π, we can rewrite this ratio as:

πβ[A]

π[A]
=

∫

A
π(z)βλ(dz)/

∫

X π(z)
βλ(dz)

∫

A
π(z)λ(dz)/

∫

X π(z)λ(dz)

=

∫

A
π(z)βλ(dz)/

∫

A
π(z)λ(dz)

∫

X π(z)
βλ(dz)/

∫

X π(z)λ(dz)

=
Eπ|A(π(Z)

β−1)

Eπ(π(Z)
β−1)

(12)

where π|A is the restriction of π to A. Here Eπ(π(Z)
β−1) denotes the expected value of the random

variable W = π(Z)β−1 where Z has distribution π.

Let Z1 and Z2 be random variables with distributions π|A and π, respectively, and define random

variables W1 = π(Z1)
β−1 and W2 = π(Z2)

β−1. One way in which the ratio (12) may be smaller

than one is if W2 stochastically dominates W1, or equivalently if the random variable Y1 = π(Z1)

stochastically dominates Y2 = π(Z2). This means that within the set A the probability mass is

concentrated in places where the density is high relative to those places where mass is concentrated

for the rest of the space Ac . For example, if π consists of two peaks, one in A and the other in Ac ,

and π(A) = π(Ac), then loosely speaking the peak in A is more “spiky”, or tall and narrow, than the

peak in Ac .

As a concrete example, consider π an equal mixture of two trivariate normal distributions, with

component means µ1 = (10,10,10) and µ2 = −µ1 and covariance matrices Σ1 = 2I and Σ2 = 10I .

Define the set A = {z ∈ R
3 :
∑

i zi ≥ 0}, which contains almost all of the probability mass of the

first component and almost no mass from the second component. Figure 3 shows the cumulative

distribution functions of the random variables Y1 and Y2 defined above, where it can be seen that

Y1 stochastically dominates Y2. Intuitively this is because π has two peaks, one primarily in A and

the other in Ac , with the first taller and more narrow than the other. As shown above, this stochastic

dominance implies that the persistence γ(A,β) is less than one for any β ∈ (0,1).

More generally, the persistence of a set A can be less than one whenever Y1 tends to be larger than Y2,

in the sense that the transformation W1 = Y
β−1

1 has a smaller expectation than W2 = Y
β−1

2 . Again

this occurs when the probability mass within A is concentrated in regions of high density relative to

the regions where mass concentrates in Ac . Again, if π consists of two peaks, one in A and one in Ac ,

and π(A) = π(Ac), then informally speaking the peak in A is taller and more narrow than the peak

in Ac .

Now take the more interesting case where π consists of multiple peaks of comparable probability,

some of which are much taller than others; then the tallest peaks are also the narrowest peaks.

Define A to contain one of these tall, narrow peaks. Since there are other peaks of the distribution

that are much lower and wider, and none that are much taller and narrower, the expectation of
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Figure 3: The cumulative distribution functions of Y1 (left) and Y2 (right), for the trivariate normal

mixtures example.

W1 is much smaller than that of W2. The persistence of A is therefore small, and since A is a

set having low conductance at low temperatures, the results in Section 3 imply that parallel and

simulated tempering mix slowly. Here we mean slow mixing in a relative sense, that the smaller the

persistence the slower the mixing, when other factors are held constant.

6 Conclusion

We have seen that if the multimodal target distribution has very wide peaks and very narrow peaks

of comparable probability, then parallel and simulated tempering mix slowly. This means that if the

simulated tempering chain is initialized in one of the wide peaks, or for parallel tempering if every

level of the tempering chain is initialized in a wide peak, then the tempering chain will take a very

large number of iterations to discover the narrow peaks of the distribution.

During application of simulated or parallel tempering, the acceptance rate of swap or temperature

change moves is monitored, as are standard Markov chain convergence diagnostics. If the con-

vergence diagnostics do not detect a problem, and if the acceptance rate for swap or temperature

changes is high, then the tempering chain is presumed to be mixing well among the modes of the

target distribution. However, we have shown that small persistence can cause slow mixing even

when the acceptance rate for swaps or temperature changes, as measured by the quantity δ, is

large. Additionally, standard Markov chain convergence diagnostics will rarely detect the problem;

convergence diagnostics based on the history of the chain cannot detect the fact that there are undis-

covered modes, unless they take into account some specialized knowledge about the distribution.

Widely-used convergence diagnostics, such as time-series plots and autocorrelation plots, make few

assumptions about the target distribution; these convergence diagnostics cannot infer features of the
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distribution in parts of the space that have not been explored. Even the Gelman-Rubin diagnostic,

which is specifically designed to detect lack of convergence due to multimodality, works very poorly

when some modes have a much smaller “basin of attraction” than others [21]. This is typically the

case for the narrow peaks with which we are concerned.

When there are undiscovered modes, inferences based on samples from the tempering chain can

be inaccurate. Practitioners should therefore be cautious about inferences that have been obtained

using parallel and simulated tempering, just as for Metropolis-Hastings, and not presume that all

the modes of the distribution have been discovered.

This slow mixing result is not surprising, since narrow peaks that have a small basin of attraction are

extremely difficult to find in a large space. This has been called the “needle in a haystack” or “witch’s

hat” problem in the statistics literature, where it is recognized as causing difficulty for Metropolis-

Hastings and Gibbs samplers [14]. We suspect that the problem of approximately sampling from

a multimodal distribution containing very narrow peaks at unknown locations can be shown to be

NP-complete (this question is addressed in [18]). If so, then parallel and simulated tempering fail in

exactly the same situation that all other sampling methods would fail, namely for high-dimensional

multimodal distributions with some very narrow peaks.
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Appendix A: Proof of the Spectral Gap Bounds

We will prove the bound in Theorem 3.1 for the swapping chain. The proof for simulated tempering

is similar; see [20] for details. We will use the following results, which hold for any transition

kernels P and Q that are reversible with respect to distributions µP and µQ on a space X with

countably generated σ-algebra F .

Lemma 6.1. Let µP = µQ. If Q(x ,A\{x}) ≤ P(x ,A\{x}) for every x ∈ X and every A ⊂ X , then

Gap(Q)≤ Gap(P).

Proof. As in Madras and Randall [10], write Gap(P) and Gap(Q) in the form

Gap(P) = inf
f ∈L2(µP )

VarµP
( f )>0

 ∫ ∫

| f (x)− f (y)|2µP(d x)P(x , d y)
∫ ∫

| f (x)− f (y)|2µP(d x)µP(d y)

!

and the result is immediate. �

Lemma 6.2. (Madras and Zheng 2003)

Gap(P)≥
1

n
Gap(Pn) ∀n ∈ N.
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Although Madras and Zheng [12] state Lemma 6.2 for finite state spaces, their proof extends easily

to general spaces.

To prove Theorem 3.1, start by noting that by the definition of the spectral gap, Gap(Psc) =

Gap(QTQ) = 8Gap(1

8
QTQ+ 7

8
I) for a swapping chain Psc as defined in Section 2.2. By Lemma 6.1,

Gap(1

8
QTQ+ 7

8
I)≤ Gap((1

2
T + 1

2
Q)3). By Lemma 6.2, Gap((1

2
T + 1

2
Q)3)≤ 3Gap(1

2
T + 1

2
Q). There-

fore

Gap(Psc)≤ 24Gap(
1

2
T +

1

2
Q). (13)

Take any A ⊂ X such that 0 < φk[A] < 1 for all k, and any k∗ ∈ {0, . . . , N}. Define the set

B = {x ∈ Xsc : ∀k ≥ k∗, x[k] ∈ Ac} for which all low-temperature chains are in Ac , so πsc[B
c] =

1−
∏

k≥k∗ φk[A
c]. Gap(1

2
T + 1

2
Q) is bounded above by the conductance of B under (1

2
T + 1

2
Q):

Gap(
1

2
T +

1

2
Q)≤ Φ( 1

2
T+ 1

2
Q)(B)

=
1

2
ΦT (B) +

1

2
ΦQ(B). (14)

For any k ≥ k∗ we have πsc[B
c]≥max{φk[A],φN[A]}; therefore

ΦT (B) =
1

πsc[B
c]

Pr(moving to Bc via T | in B)

=
1

πsc[B
c]

1

2(N + 1)

∑

k≥k∗

(1Ac , Tk1A)φk

φk[A
c]

≤
1

2πsc[B
c]

max
k≥k∗

¨

(1Ac , Tk1A)φk

φk[A
c]

«

≤
1

2
max
k≥k∗

¨

1

max{φk[A],φN[A]}
(1Ac , Tk1A)φk

φk[A
c]

«

=
1

2
max
k≥k∗

¦

γ(A, k)ΦTk
(A)
©

. (15)

First consider k∗ = 0. In this case (1B,Q1Bc ) = 0, so combining (13-15) yields Theorem 3.1. Now
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consider k∗ > 0. For swapping scheme SC1, we have

ΦQ(B) =
1

πsc[B
c]

Pr(moving to Bc via Q| in B)

=
1

πsc[B
c]

∑

k≥k∗,l<k∗

1

(N + 1)2

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w),φk(w)φl(z)}λ(dw)λ(dz)

φk[A
c]

≤
1

4πsc[B
c]

max
k≥k∗,l<k∗

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w),φk(w)φl(z)}λ(dw)λ(dz)

φk[A
c]

≤
1

4
max

k≥k∗,l<k∗

φk[A]

max{φk[A],φN[A]}

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w),φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[A
c]

=
1

4
max

k≥k∗,l<k∗
γ(A, k)

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w),φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[A
c]

.

Consider k, l such that φl[A
c]< φk[A

c]; then,

∫

z∈Ac

∫

w∈A

min{φk(z)φl(w),φk(w)φl(z)}λ(dw)λ(dz)

φk[A]φk[A
c]

≤

∫

z∈Ac

∫

w∈A

min{φl(w),φk(w)}
�

φk(z) +φl(z)
�

λ(dw)λ(dz)

φk[A]φk[A
c]

=

(φk[A
c] +φl[A

c])
∫

w∈A

min{φl(w),φk(w)}λ(dw)

φk[A]φk[A
c]

≤ 2

∫

w∈A

min{φl(w),φk(w)}λ(dw)

φk[A]
= 2δ(A, k, l).

Similarly, exchanging the roles of A and Ac yields an upper bound of 2δ(Ac, k, l) when φl[A
c] ≥

φk[A
c]. Therefore

ΦQ(B)≤
1

2
max

k≥k∗,l<k∗

�

γ(A, k)max {δ(A, k, l),δ(Ac , k, l)}
�

. (16)

Combining (13-16), we get that for k∗ > 0, Gap(Psc) is bounded above by

12 max

�

max
k≥k∗
γ(A, k)ΦTk

(A), max
k≥k∗,l<k∗

γ(A, k)max{δ(A, k, l),δ(Ac , k, l)}
�

which implies Theorem 3.1 for the swapping chain that uses scheme SC1. With only minor modifi-

cation, this proof also applies to the swapping scheme SC2. �
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