
E l e c t r o n i c

J
o

u
r n a l

o
f

P
r o b a b i l i t y

Vol. 11 (2006), Paper no. 25, pages 655–669.

Journal URL
http://www.math.washington.edu/~ejpecp/

Transience of percolation clusters on wedges

Omer Angel
University of British Columbia

angel@math.ubc.ca

Itai Benjamini
The Weizmann Institute

itai@wisdom.weizmann.ac.il

Noam Berger
University of California, Los Angeles

berger@math.ucla.edu

Yuval Peres∗

The University of California, Berkeley
peres@stat.berkeley.edu

Abstract

We study random walks on supercritical percolation clusters on wedges in Z3, and show
that the infinite percolation cluster is (a.s.) transient whenever the wedge is transient. This
solves a question raised by O. Häggström and E. Mossel. We also show that for convex gauge
functions satisfying a mild regularity condition, the existence of a finite energy flow on Z2

is equivalent to the (a.s.) existence of a finite energy flow on the supercritical percolation
cluster. This answers a question of C. Hoffman
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1 Introduction

For simple random walk in the Zd lattice, Polya [21] showed in 1920 that the transition from
recurrence to transience occurs when d increases from 2 to 3. The transition boundary is more
sharply delineated by a 1983 result of T. Lyons, concerning wedges. For an increasing positive
function h, the wedge Wh is the subgraph of Z3 induced by the vertices

V (Wh) = {(x, y, z) | x ≥ 0 and |z| ≤ h(x)} .

T. Lyons [17] proved that Wh is transient if and only if

∞∑
j=1

1
jh(j)

< ∞. (1)

(A locally finite graph is called transient or recurrent according to the type of simple random
walk on it.) It is well-known (see, e.g., [6] or [20]) that if G is recurrent then so is any subgraph
of G.

In [8] Grimmett, Kesten and Zhang proved that the infinite cluster of supercritical percolation in
Zd is transient when d ≥ 3. A different proof and some extensions were given in [3]. Häggström
and Mossel [10] sharpened the methods of [3] and showed that if the increasing positive function
h satisfies

∞∑
j=1

1
j
√

h(j)
< ∞ , (2)

then the infinite cluster of supercritical percolation in Wh is transient.

The condition (2) is strictly stronger than Lyons’ condition (1); in particular, the function
h(j) = hr(j) = logr(j) satisfies (2) if and only if r > 2, while it satisfies (1) for all r > 1.
Häggström and Mossel asked what is the type of percolation clusters in wedges Wh where h
satisfies Lyons’ condition (1) , but does not satisfy condition (2).

Our main result answers this question:

Theorem 1. Let h be a positive increasing function. The infinite cluster of supercritical perco-
lation on the wedge Wh is transient if and only if Wh is transient, i.e., if and only if h satisfies
(1).

A useful notion will be that of the core of a subgraph. The core consists of those vertices which
are in some sense far from the boundary:

Definition 2. Let A be a subgraph of a graph G, and v0 be a fixed vertex in G. For C > 0
define the C-core of A to be the subgraph of A induced by{

v ∈ A|d(v,AC) > C log d(v, v0)
}

,

where d denotes the graph metric on G, and AC is the subgraph containing all edges not in A,
and their endpoints.

Theorem 1 is a consequence of the following more general statement:
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Theorem 3. Let d ≥ 3 and let p > pc(Zd). There exists a constant C = Cd,p with the following
property: if A is a subgraph of Zd s.t. (I) the C-core of A is transient, and (II) bond p-percolation
on A has, a.s., a unique infinite cluster, then, a.s., the infinite p-percolation cluster of A is
transient.

We will show that for every h satisfying (1) and every C > 0, the C-core of Wh is transient.
This combined with Theorem 3 provides a proof of Theorem 1.

We will restate and prove Theorem 3 as a theorem about flows. Consider each undirected edge
of a graph G as two directed edges, one in each direction. Let vw be the directed edge from v
to w. A flow F on G with source v0 is an edge function such that F (vw) = −F (wv) and such
that for any vertex v 6= v0:

∑
w F (vw) = 0. Recall the following definitions [12].

Definition 4. Let g : R → R be a function. The g-energy of a flow F on a graph, denoted by
Hg(F ), is defined to be ∑

e∈E

g(|F (e)|).

For d and α we define Ψd,α to be

Ψd,α(x) =
|x|d/(d−1)

log(1 + |x|−1)α
.

.

Definition 5. The (d, α)-energy of a flow F on a graph, denoted Hd,α(f) is the Ψd,α-energy
of F , i.e.

Hd,α(f) =
∑
e∈E

Ψd,α(F (e))

It is well known that a graph is transient if and only if it has a flow with finite (2, 0)-energy
(since Ψ2,0(x) = x2; see [17, 6, 20]). It is also known that on Zd there are flows with finite
(d, 1 + ε)-energy but no flow with finite (d, 1)-energy (see [17] and [14]). In [14] Hoffman and
Mossel (refining an earlier result of Levin and Peres [15]) proved that the same is true for the
infinite cluster of supercritical percolation in Zd, provided that d ≥ 3.

In [12] Hoffman proved that on the infinite cluster in Z2 there are flows with finite (2, 2 + ε)-
energy. For Z2 itself, there are flows with finite (2, 1 + ε)-energy. In his paper, Hoffman asks
whether there are flows with finite (2, 1+ ε)-energy on the infinite percolation cluster. We prove
the following:

Theorem 6. The infinite cluster of supercritical bond percolation in Z2 a.s. supports a flow of
finite (2, 1 + ε)-energy.

Theorem 6 is a corollary of a more general result.

Theorem 7. Let ϕ : [0,∞] → [0,∞] be a convex function s.t.
(I) There exists l ∈ N such that x−lϕ(x) is decreasing.
(II) Z2 supports a flow with finite ϕ-energy.
Then, for every p > 1

2 , a.s. the infinite cluster for bond percolation (with parameter p) in Z2,
supports a flow of finite ϕ-energy.
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In Section 2 we give a proof of Theorem 3 and show that it implies Theorem 1. The argument
is based on large deviation results by Antal-Pisztora [1].

In Section 3 we give an alternative proof of Theorem 1 for large values of the percolation
parameter p. This proof relies on connectivity properties of Zd instead of the Antal-Pisztora
Theorem and can be extended to other graphs. This alternative approach also yields a new
proof of the following theorem due to Benjamini and Schramm [4]:

Theorem 8. Let G be the Cayley graph of a finitely generated group of polynomial growth which
is not a finite extension of Z or Z2. Then for p sufficiently close to 1, the infinite p-percolation
cluster on G is transient.

In Section 4 we prove Theorems 7 and 6.

2 Proof of Theorems 3 and 1

We begin by stating known lemmas that we need. First (see e.g. Chapter 2 of [19] or [20]):

Lemma 9. Let G be a graph, and let v0 ∈ G. Then, G is transient if and only if there exists
a probability measure µ on self-avoiding paths in G starting at v0 s.t. if P and Q are two paths
chosen independently according to µ, the expected number of edges in P ∩Q is finite.

We identify µ with the flow that it induces, i.e. the expectation of a unit flow through a path
chosen by µ. Note that the condition on µ is equivalent to the condition:

H2,0(µ) =
∑

e

µ({P |e ∈ P})2 < ∞. (3)

We also need the next lemma which is proved (though not stated in this form) by Antal and
Pisztora [1]. In this form it appears as Lemma 2.13 of [5].

For two vertices in the same connected component, x and y, denote by D(x, y) the length of the
shortest path between them.

Lemma 10. Let p > pc(Zd). There exist ρ = ρ(p, d) and C > 0 such that for every integer m
and any v, w ∈ Λm := [−m,m]d:

Pp(v ↔ w and D(v, w) > ρm) ≤ e−Cm. (4)

We will use the following equivalent form of this lemma:

Lemma 11. If p > pc(Zd) then there exist ρ, θ > 0 determined by p and d such that if v, w are
both in the infinite cluster then for all m > ρ|v − w|

Pp(D(v, w) > m) ≤ e−θm.

The idea of the proof of Theorem 3 is to construct a measure on paths in the infinite percolation
cluster of A by taking the measure µ supported on paths in the core, and modifying the paths to
be in the percolation cluster. A path chosen by µ will typically have gaps where it passes through
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closed edges or non-percolating vertices. We will replace the gap in the path by a “bridge”which
will be a shortest path in the infinite cluster which connects the ends of the gap. Since more than
one shortest path exists, we choose the one that is smallest in the lexicographic ordering obtained
by writing the path as a list of vertices (themselves ordered by the lexicographic ordering of Zd).
We will see that with positive probability all the gaps that are inside the C-core of G will have
bridges within G.

Definition 12. A gap in a percolation configuration is (the set of vertices and the set of edges
of) a connected cluster in the complement of the infinite cluster.

Clearly a gap consists of a closed cluster and anything separated by it from the infinite cluster.
Therefore if in some configuration large closed clusters are rare then so are large gaps. This will
be formally stated later.

We first proceed to prove Theorem 3 for p close to 1:

Lemma 13. Let d ≥ 3. Then there exist pd < 1 and C = Cd with the following property: If
p ≥ pd, and A is a subgraph of Zd s.t. (I) the C-core of A is transient, and (II) bond (resp. site)
p-percolation on A has, a.s., a unique infinite cluster, then, a.s., the infinite bond (resp. site)
p-percolation cluster of A is transient.

Proof. Choose pd close enough to 1, so that (1− pd)-percolation is sub-critical. Consider perco-
lation on A as a restriction to A of Bernoulli percolation on all of Zd. Denote by I the infinite
percolation cluster in A, and by J ⊇ I the infinite percolation cluster in Zd.

A.s., A \ J has only finite clusters. Moreover, if for a vertex x we use C(x) to denote the cluster
of A \ J containing x, then there exist δ and α > 0 such that for every x,

P(|C(x)| > n) < δe−nα
. (5)

For the diameter we have an exponential bound: There exists a constant γ such that

P(diam(C(x)) > n) < e−γn. (6)

Let

β > max
(

1
γ

,
1
θ

)
(7)

be so large that

1− C1

∞∑
R=2

1
R1+d(γβ−1)

− C1βd2d
∞∑

R=2

(log R)2d

R1+d(θβ−1)
> 0 (8)

where ρ and θ are from Lemma 11, γ is from (6) and C1 = C1(d) is a constant so that there are
no more than C1R

d−1 vertices at distance R from the origin.

We then take Cd = l > ρβd.

The l-core of A is transient. Lemma 9 states that there is a probability measure µ, satisfying
(3), on paths in the core starting at some v0. Since transience of I is a 0-1 event, and v0 ∈ I
with positive probability, we may condition on the event that v0 ∈ I.

Let P = (v0, v1, v2, v3, ...) be a path (chosen according to µ). A.s., P intersects J infinitely often,
so we may restrict ourselves to paths that intersect J infinitely often. We modify P to get P ′,
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a path in J , as follows: If P enters a gap at x and leaves the gap at y, then we replace the part
of P from x to y by the shortest open path from x to y around the gap, with ties broken in
an arbitrary manner. Such replacements will be denoted as bridges over the gap. Let µ′ be the
resulting measure on paths (or, more precisely, if φ is the function which assigns P ′ to each P ,
then let µ′ = µ ◦ φ−1).

Clearly, µ′ is supported on paths in J starting at v0. These paths are not necessarily self-avoiding.
To overcome this problem we may loop-erase the paths.

To conclude the proof of the transience of I we will prove the following two lemmas:

Lemma 14. In the above setting, with positive probability µ′ is supported on paths in I.

Lemma 15. In the above setting, a.s. µ′ has finite energy (i.e. satisfies (3)).

From these two lemmas it follows that with positive probability we have constructed a measure
on paths in I satisfying (3), so with positive probability I is transient. Since transience of I is
a 0-1 event we are done.

Proof of Lemma 14. Define a point x ∈ Zd to be α-bad if x 6∈ J , and some bridge over the
gap containing x leaves the ball B(x, α). We show that for some constant C, with positive
probability for any R there are no (C log R)-bad points in B(v0, R). If this is the case, then
every bridge used to fix a path in the C-core of A remains in A, and therefore the fixed path is
in I.

We estimate the probability that a point x is α-bad: Let γ be the constant from (6) ρ, θ be as in
Lemma 11. Note that w.log. we can assume ρ > 2. Let G be the gap containing x (G is empty
if x ∈ J). The gap is unlikely to be large:

P(diam(G) > α/ρ) < e−γα/ρ.

Otherwise, suppose diam(G) ≤ α/ρ < α/2. There are at most αd vertices that could be in G,
and therefore at most α2d pairs of vertices that could be the endpoints of a bridge over G. Each
of these pairs has |u − v| ≤ α/ρ, so by Lemma 11, each bridge has length greater than α with
probability at most e−θα.

If additionally all bridges over G have length at most α, then a point on a bridge is at distance
at most α/2 from one of the endpoints, which in turn is at distance at most α/2 from x, and so
x is not α-bad. A union bound gives for α = C log R:

P(x is α-bad) ≤ e−γα/ρ + (α/2)2de−θα = R−Cγ/ρ + (C/2 log R)2dR−Cθ.

Since the number of points at distance R from v0 is O(Rd−1), for some large enough C, with
high probability there are no (C log R)-bad points in B(v0, R).

Proof of Lemma 15. Define the functions

F (e) = µ(paths which go through e)

and
F ′(e) = µ′(paths which go through e).
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The µ-expected (resp. µ′-expected) size of the intersection between independently chosen paths
is exactly

∑
e F (e)2 (resp.

∑
e F ′(e)2).

We show that

E

(∑
e

F ′(e)2
)

< ∞,

and thus a.s.
∑

e F ′(e)2 < ∞.

We say that an edge e is projected on an edge f (denoted e ; f) if either e = f or if some path
with a gap including e has a bridge over it passing through f . It is clear that

F ′(f) ≤
∑
e;f

F (e).

We define a second relation: For edges e and f in Zd, we say that e is potentially projected on f
if e = f or if e is not in J and f is on a shortest path in J between two points on the boundary
of the component of Zd − J containing e.

Clearly, the relation → (thought of as a set) contains the relation ;, so

F ′(f) ≤
∑
e→f

F (e).

Another useful fact is that the (disribution of) → is invariant under all automorphisms of the
graph Zd.

Define S(e) = {f |e → f} and T (f) = {e|e → f}. Then we have the bound:

∑
f∈E

F ′(f)2 ≤
∑
f∈E

 ∑
e∈T (f)

F (e)

2

≤
∑
f∈E

|T (f)|
∑

e∈T (f)

F (e)2

=
∑
e∈E

F (e)2 ·
∑

f∈S(e)

|T (f)|

 .

This separates the energy of µ′ into the energy of µ, with weight determined only by the per-
colation configuration. If we show that E

∑
f∈S(e) |T (f)| < ∞, then we are done since this

expectation is the same for all e, and
∑

F (e)2 < ∞.

To this end, note that if e → f , then the endpoints of e are d(e, f)-bad, and the probability of
this is exponentially small in the distance:

P(e → f) < Ce−ad(e,f).

Consequently, P(|T (f)| > n) < e−αnβ
for some constants α, β, and in particular |T (f)| has all

finite moments.
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Now, the quantity we wish to bound can be written as

E
∑

f∈S(e)

|T (f)| =
∑
f,g

P(e → f, g → f).

For every pair of edges e, f there exist C = 2(d−1)! automorphisms that maps f to e. For every
such σ we have

P(e → f, g → f) = P (σ(e) → σ(f), σ(g) → σ(f))
= P (σ(e) → e, σ(g) → e) .

Therefore,

E
∑

f∈S(e)

|T (f)| =
∑
f,g

P(e → f, g → f)

=
1
C

∑
σ,g

P(σ(e) → e, σ(g) → e)

=
∑
f ′,g′

P(f ′ → e, g′ → e)

= E
(
|T (e)|2

)
< ∞.

Proof of Theorem 3. Lemma 13 is just Theorem 3 for high enough retention probabilities, say
above p̂. To extend the result to any p > pc(Zd) we use a renormalization argument that was
used by Häggström and Mossel in [10].

Let p ∈ (pc, 1]. N is a (large) positive integer, divisible by 8, which will be determined later.
Define QN (v) to be the cube of side-length 5N/4, centered at v. Let A be a subgraph of Zd such
that its CN -core is transient for C = Cd as in Lemma 13. Consider the renormalized graph

AN = N−1
{

v ∈ NZd
∣∣QN (v) ⊂ A

}
.

AN has a transient C-core, and therefore there is (a.s.) a transient infinite cluster in the p̂-site
percolation on An.

Apply p-percolation on A, and consider a vertex v ∈ AN to be open if QN (v) contains a connected
component which connects all 2d faces of QN (v) but all other connected components in QN (v)
have diameter less than N/4 (which is the overlap between adjacent cubes). Denote the set of
open vertices by AN,p. It follows from Proposition 2.1 in Antal-Pisztora [1] that if N is large
enough then AN,p dominates p̂-site percolation on AN . A connected component in AN,p implies
a connected component in the percolation on A, and therefore p-percolation on A has a transient
infinite cluster.

Proof of Theorem 1. To deduce the Theorem from Theorem 3 it suffices to show that for any
monotone function h s.t. Wh is transient, and any C, the C-core of Wh (denoted by W(h, C))
is transient as well.
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Recall Lyons’ criterion: Wh is transient if and only if
∞∑

j=1

1
jh(j)

< ∞

Lyons also proved that if the wedge Wh is transient, then its subgraph

Vh = Wh ∩ {(x, y, z)|x ≥ 0 and |y| ≤ x}

is also transient.

Now, let C be arbitrary and let h be an increasing function such that Wh is transient. Lyons’
criterion implies that there exists x0 s.t. for all x > x0, h(x) > 4C log(3x). Indeed, if there were
a sequence xn with h(xn) ≤ 4C log(3xn), then w.log. assume xn > x2

n−1, and then

xn∑
j=xn−1

1
jh(j)

≥
xn∑

j=xn−1

1
j · 4C log(3xn)

>
log xn − log xn−1

4C log(3xn)
>

1− o(1)
8C

,

and the sum over all of N would be infinite.

Claim 16. We may assume, w.log., that h(x + 1)− h(x) ∈ {0, 1} for every x.

For such h, we conclude the proof by showing that the C core of Wh contains all but finitely
many vertices of Vh/2. Indeed, assume a = (x, y, z) ∈ Vh/2, and that x > x0. Since y ≤ x and
z ≤ x we have |a| ≤ 3x. For vertex a + ∆a at distance at most C log 3x from a we have:

z ≤ h(x)/2,

2C log 3x ≤ h(x)/2,

|∆x|+ ∆z ≤ 2C log 3x,

h(x)− |∆x| ≤ h(x + ∆x).

Summing up these bounds gives
z + ∆z ≤ h(x + ∆x),

and so a + ∆a ∈ Wh.

Proof of Claim 16. From the definition of wedges, clearly we can assume that h is integer valued.
Given h, define f inductively by: f(0) = h(0) and

f(n + 1) = min(h(n + 1), f(n) + 1).

Let A = {j : f(j) = h(j)} and B = {j|f(j) = f(j − 1) + 1}. For indices in A we have

∑
j∈A

1
jf(j)

=
∑
j∈A

1
jh(j)

≤
∞∑

j=1

1
jh(j)

< ∞. (9)

Let B = {b1, b2, . . .}. Clearly bj ≥ j. Since {bk} are the increase points of f and so f(bk) =
f(0) + k ≥ k. Thus ∑

j∈B

1
jf(j)

=
∞∑

k=1

1
bkf(bk)

≤
∞∑

k=1

k−2 < ∞. (10)
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Combining the two sums, since A ∪B = N, we find that
∑

(jf(j))−1 < ∞, and therefore Wf is
transient.
If Theorem 1 holds for Wf , then (since Wf ⊆ Wg) the Theorem holds for Wg as well.

3 General Graphs

If the percolation parameter p is close enough to 1, specifically if p > 1− pc, then a.s. the closed
edges compose only finite closed clusters. If p > ps for some (larger) critical ps then the closed
clusters will not only be finite, but they will also be isolated from each other, and then a path
that passes through a gap C can be bridged without leaving its boundary ∂C. This notion will
lead us to another proof for “nice” graphs.

Definition 17. The k-boundary of a set A in a graph G consists of all vertices outside A but
at distance at most k from A:

Bk(A) =
{
v
∣∣d(v,A) < k

}
\A.

The inner k-boundary of a set A in a graph G is the k-boundary of G − A, i.e. {x ∈ A :
d(x,G \A) < k}.

Definition 18. A graph G is said to have connected k-boundaries if for any connected set
of vertices A s.t. G \A is also connected, the subgraph spanned by its k-boundary is connected.

The property of having connected k-boundaries is rather general and holds for many graphs.
For example, if a planar graph G which can be embedded in the plane so that all faces have at
most 2k + 1 edges, then G has connected k-boundaries, since if a set A includes a vertex from
a face, then all other vertices of that face will be within distance k from A. (See, for example,
Lemma 4.4 of [11]).
The lattice Zd has connected 3-boundaries. This follows from a special case of a result in [2]
that tells us that minimal cut sets in Zd are half-connected (i.e. together with their neighbors
they form connected sets).
We say that an edge is k-strongly open if it is open and so are all the edges at distance up to
k from it. An edge is k-weakly closed if it is not k-strongly open. A similar definition is used
for vertices in site percolation. C(v) denotes the k-weakly closed cluster of v.

Lemma 19. If a graph G has degrees bounded by d, there exists ps = ps(k) such that for p > ps,
the weakly closed clusters C(v) are a.s. finite. Moreover, for appropriate γ = γ(p),

P(diam(C(v)) > n) < e−γn,

and γ(p) →∞ as p → 1.

Proof. Since whether an edge (or site) is k-weakly closed depends only on those edges up to
distance k from it, by the results of [16] the configuration of k-strongly open edges dominates
bond-percolation with parameter q = q(p), and, moreover, q(p) → 1 as p → 1. If p > ps such that
q(ps) > 1 − d−1, then the weakly closed clusters are dominated by sub-critical Galton-Watson
trees, and so

P(diam(C(v)) > n) < e−γn. (11)

If q is large, the Galton-Watson trees become smaller, and γ can be made arbitrarily large.
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Lemma 20. Let G be a graph with connected k-boundaries. Let B̄ be a connected component of
the complement of the k-strongly open cluster. Let U be the inner k-boundary of B̄. Then
(A) U is in the (regular) open cluster.
(B) U is connected.

Proof. (A) follows from the definition of the inner boundary and of k-strongly open edges. (B)
follows from the fact that U is the k-boundary of G − B̄ and the fact that G has connected
k-boundaries.

Theorem 21. Let G be a transient graph with bounded degrees and connected k-boundaries.
Assume also that for p close enough to 1, the p-percolation on G has, a.s., a unique infinite
cluster. Under those conditions, if p is close enough to 1, then the infinite p-percolation cluster
of G is transient.

Note that Theorem 1 follows as a corollary, since transient wedges in Z3 satisfy the requirements
of the Theorem.

Proof. As before, the argument involves bridging gaps in paths. Take p > ps where ps is as
defined in Lemma 19. Denote by I the infinite percolation cluster in G. If C(v) is the k-weakly
closed cluster containing v, then we know that P(diam(C(v)) > n) < e−γn.

Lemma 9 states that there is a probability measure µ, satisfying (3), on paths in G starting
at some v0. Since transience of I is a 0-1 event, and v0 ∈ I with positive probability, we may
assume that v0 ∈ I.

Let P = (v0, v1, v2, v3, ...) be a path (chosen according to µ). A.s., P intersects I infinitely many
times, so we may restrict ourselves to such paths. Now, we modify P to get P ′, a path in I,
as follows: At any time at which P enters a gap B, we consider the k-weakly closed extension
of the gap, B̄, and we replace the part of the path from the first time P reaches B̄ until the
last time it leaves it, by a shortest path in the inner k-boundary of B̄. Such a bridge exists by
Lemma 20 (B). If φ is the function which assigns P ′ to each P , then let µ′ = µ ◦ φ−1. By part
(A) of the lemma, µ′ is supported on paths in I.

In place of the Antal-Pisztora bound on the length of bridges, we now use the trivial bound that
the length of a bridge over a gap is bounded by the size of the gap’s k-boundary.

We now need to show that almost surely µ′ has finite energy. To do that, we repeat and slightly
modify the calculation from the proof of Lemma 15. Recall the notations S(e) = {f |e → f} and
T (f) = {e|e → f}. We’ve seen that

∑
f∈E

F ′(f)2 ≤
∑
e∈E

F (e)2 ·
∑

f∈S(e)

|T (f)|

 .

It now suffices to show that for p large enough, for any edge e,

E
∑

f∈S(e)

|T (f)| < D < ∞,

for some uniform bound D.
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In order for e → f to occur, f must be in the k-boundary of C(e), and therefore diam(C(e)) ≥
d(e, f)− k. By the exponential bound on the diameters of weakly closed clusters,

P(e → f) ≤ Ce−γd(e,f).

As before we write
E
∑

f∈S(e)

|T (f)| =
∑
f,g

P(e → f, g → f),

and use the exponential bound:

P(e → f, g → f) ≤ exp(−γ max(d(e, f), d(g, f))).

Since there are at most Cdk edges f at distance k from e, and at most Cdl edges g at distance
l from any of these f ’s, we have:∑

f,g

P(e → f, g → f) ≤
∑
k,l

C2dl+ke−γ max(k,l)

≤ 2
∑
k<l

C2dl+ke−γl

≤ 2
∑

l

C2ld2le−γl.

This is bounded, uniformly for all edge e, whenever d2e−γ . Lemma 19, guarantees this holds for
p large enough.

Now we can prove Theorem 8.

Proof of Theorem 8. By Gromov’s theorem (see [9]), any finitely generated group of polynomial
growth is a finite extension of a finitely presented group. Corollary 4 of [2] tells us that the
Cayley graph of such a group has connected k-boundaries for some k (depending on the lengths
of the relations). Corollary 10 of the same paper tells us that for p close enough to 1, the infinite
cluster is unique. Since G is not a finite extension of Z or Z2, by a theorem of Varopoulos, G is
transient (see [22]). Thus all the conditions of Theorem 21 are satisfied.

4 Flows on percolation clusters in Z2

We first restate and prove Theorem 7.
Theorem 7. Let ϕ : [0,∞] → [0,∞] be a convex function s.t.
(I) There exists l ∈ N such that x−lϕ(x) is decreasing.
(II) Z2 supports a flow with finite ϕ-energy.
Then, for every p > 1

2 , a.s. the infinite percolation cluster supports a flow with finite ϕ-energy.

Proof. First, we note that ϕ is increasing, because ϕ(0) = 0, ϕ(x) ≥ 0 for every x and ϕ is
convex. Throughout the proof the term energy will refer to ϕ-energy. We begin with a flow F
on Z2 with finite energy with the source at 0. Such a flow exists by condition (II) of the theorem.
The function ϕ is increasing and convex in the flow on each edge, so the flow F can be made
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acyclic (i.e. a flow s.t. there is no cycle s.t. all of its edges get positive flow) without increasing
its energy. Normalize the flow so that the total flow out of 0 is 1 and the energy is finite. Since
F is an acyclic flow with source at 0, it induces a probability measure µ on self-avoiding paths
starting at 0, see e.g. [18]. The µ-measure of the set of paths passing through e is exactly |F (e)|.
As before, note that the existence of a flow with finite energy on the percolation cluster is a 0-1
event, so we can assume that 0 belongs to the infinite cluster. Since in Z2 we have pc = 1

2 our
condition p > 1− pc is equivalent to p > pc. We construct as before a new measure µ′, by using
a shortest bridge over any gap in a path. We wish to show that µ′ a.s. has finite energy.

The function ϕ is increasing and convex in [0, 1], and, moreover,

ϕ

(
n∑

i=1

xi

)
= ϕ

(
n−1

n∑
i=1

nxi

)

≤ n−1
n∑

i=1

ϕ(nxi)

≤ n−1
n∑

i=1

nlϕ(xi)

= nl−1
n∑

i=1

ϕ(xi). (12)

We now proceed to estimate the energy of F ′. Using the notation from the proof of Lemma 15:

ϕ(F ′(f)) ≤ ϕ(
∑
e→f

F (e))

≤ |S(f)|l−1
∑
e→f

ϕ(F (e)).

Summing over f we get:

Hϕ(F ′) =
∑

f

ϕ(F ′(f))

≤
∑

f

|S(f)|l−1
∑
e→f

ϕ(F (e))

=
∑

e

ϕ(F (e))×

 ∑
f∈S(e)

|T (f)|l−1


As in the proof of Lemma 15 (where l was 1), we have by transitivity

E
∑

f∈S(e)

|T (f)|l−1 = E|T (f)|l.

Since |T (f)| has all finite moments, we have

EHϕ(F ′) ≤ Hϕ(F )E|T (f)|l < ∞,

and thus a.s. F ′ has finite energy.
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Proof of Theorem 6. This follows from Theorem 7 once we notice that the function Ψ2,1+ε =
|x|2

log(1+|x|−1)1+ε corresponding to (2, 1 + ε)-energy satisfies the conditions of the Theorem with
l = 4.
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