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Abstract

We establish the precise asymptotics of the quantization and entropy coding errors for frac-
tional Brownian motion with respect to the supremum norm and Lp[0, 1]-norm distortions.
We show that all moments in the quantization problem lead to the same asymptotics. Using
a general principle, we conclude that entropy coding and quantization coincide asymptoti-
cally. Under supremum-norm distortion, our proof uses an explicit construction of efficient
codebooks based on a particular entropy constrained coding scheme.
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1 Introduction

Functional quantization and entropy coding concern the identification of “good” discrete ap-
proximations to a non-discrete random signal (original) in a Banach space of functions. These
approximations are required to satisfy a range constraint in the context of quantization and an
entropy constraint in the context of entropy coding. Such discretization problems arise naturally
when digitizing analog signals in order to allow storage on a computer or transmission over a
channel with finite capacity.

As another application, the approximating functions of good quantizers may serve as evaluation
points of quasi Monte Carlo methods. Moreover, some Monte Carlo methods use appropriate
quantizers to carry out a variance reduction (see for instance (18) and the references therein, or
(10)).

Previous research addressed, for instance, the problem of constructing good approximation
schemes, the evaluation of the theoretically best approximation under an information constraint,
existence of optimal quantizers and regularity properties of the paths of optimal approximations.

For Gaussian measures in Hilbert spaces optimal quantizers exist and all its approximating
functions are elements of the reproducing kernel Hilbert space (16). Under mild assumptions
the best achievable distortion in both problems (the quantization and entropy coding problem)
coincide asymptotically and do not depend on the moment under consideration ((17), (4)).
Moreover, this (optimal) approximation error is asymptotically equivalent to the distortion rate
function which can be expressed implicitly in terms of the eigenvalues of the covariance operator.

When the underlying space is a Banach space, the approximation errors of both problems are
weakly asymptotically equivalent to the inverse of the small ball function in many cases ((8),
(5)). Thus asymptotic estimates for the small ball function can be translated into asymptotic
estimates for the above coding problems (see for instance (15) for a summary of results on small
ball probabilitites). Moreover, many approximation quantities of Gaussian measures are tightly
connected to the quantization numbers (see (14), (2)). See also (12) for existence and pathwise
regularity results of optimal quantizers.

The above questions are treated for Gaussian measures in Hilbert spaces by Luschgy and Pagès
((16), (17)) and by the first-named author in (4). For Gaussian originals in Banach spaces, these
problems have been addressed by the authors and collaborators in (8), (9), (4), (5) and by Graf,
Luschgy and Pagès in (12). For general accounts on quantization and coding theory in finite
dimensional spaces, see (11) and (1) (see also (13)).

In this article, we consider the asymptotic coding problem for fractional Brownian motion under
supremum and Lp[0, 1]-norm distortion. We derive the asymptotic quality of optimal approx-
imations. In particular, we show that efficient entropy constrained quantizers can be used to
construct close to optimal high resolution quantizers when considering the supremum norm.
Moreover, for all of the above norm-based distortions, all moments and both information con-
straints lead to the same asymptotic approximation error. In particular, quantization is asymp-
totically just as efficient as entropy coding. The main impetus to the present work was provided
by the necessity to understand the coding complexity of Brownian motion in order to solve the
quantization (resp. entropy constrained coding) problem for diffusions (see (7) and (6)).

Let (Ω,A,P) be a probability space, let H ∈ (0, 1) and let X = (Xt)t≥0 denote fractional
Brownian motion with Hurst index H on (Ω,A,P), i.e. (Xt)t≥0 is a centered continuous Gaussian
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process with covariance kernel

K(t, u) =
1
2
[t2H + u2H − |t− u|2H ], t, u ≥ 0.

For a > 0, let C[0, a] and D[0, a] denote the space of continuous real-valued functions on the
interval [0, a] and the space of càdlàg functions on [0, a], respectively. Moreover, we let (Lp[0, a], ‖·
‖Lp[0,a]) denote the standard Lp-space of real-valued functions defined on [0, a]. Finally, ‖ · ‖s,
s ∈ (0,∞], denotes the Ls-norm induced by the probability measure P on the set of real-valued
random variables.

Let us briefly introduce the concepts of quantization and entropy coding. For fixed a > 0 let
d : C[0, a]×D[0, a] → [0,∞) be a measurable function For a C[0, a]-valued r.v. Y (original) and
moment s > 0, the aim is to minimize ∥∥d(Y, π(Y ))

∥∥
s

(1)

over all measurable functions π : C[0, a] → D[0, a] with discrete image (strategies) that satisfy a
particular information constraint parameterized by the rate r ≥ 0.

Often we associate a sequence of probability weights (pw)w∈im(π) to a strategy π. Then due
to Kraft’s inequality, there exists a prefix-free representation for im(π) which needs less than
(− log2 pw) + 1 bits to represent w ∈ im(π). Thus the pair (π, (pw)) corresponds to a coding
scheme translating the original symbol x into a prefix-free representation for π(x). The best
average code length is achieved for pw = P(π(Y ) = w), which leads to an average code length of
about H(π(Y ))/ log 2 (see for instance (1), Theorem 5.2.1).

Entropy coding (also known as entropy constrained quantization in the literature) concerns the
minimization of (1) over all strategies π having entropy H(π(Y )) at most r. Recall that the
entropy of a discrete r.v. Z with probability weights (p(Z)

w ) is defined as

H(Z) = −
∑
w

p(Z)
w log p(Z)

w = E[− log p(Z)
Z ].

The entropy constraint represents an average case complexity constraint.

In the quantization problem, one is considering strategies π satisfying the range constraint:
| range (π(Y ))| ≤ er which is a static complexity constraint. The corresponding approximation
quantities are the entropy-constrained quantization error

D(e)(r|Y, d, s) := inf
π

∥∥d(Y, π(Y ))
∥∥

s
, (2)

where the infimum is taken over all strategies π with entropy rate r ≥ 0, and the quantization
error

D(q)(r|Y, d, s) := inf
π

∥∥d(Y, π(Y ))
∥∥

s
, (3)

the infimum being taken over all strategies π having quantization rate r ≥ 0. Often, all or
some of the parameters Y , d, s are clear from the context, and will therefore be omitted. The
quantization information constraint is more restrictive, so that the quantization error always
dominates the entropy coding error. Moreover, the coding error increases with the moment
under consideration.
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Unless otherwise stated, we choose as original the fractional Wiener process Y = X. We are
mainly concerned with two particular choices for the distortion d. First we analyse the supremum
norm distortion that is d(f, g) = ‖f − g‖[0,1]. In this setting we find:

Theorem 1.1. There exists a constant κ = κ(H) ∈ (0,∞) such that for all s1 ∈ (0,∞] and
s2 ∈ (0,∞),

lim
r→∞

rH D(e)(r|s1) = lim
r→∞

rH D(q)(r|s2) = κ.

Remark 1.2. In the above theorem, general càdlàg functions are allowed as reconstructions.
Since the original process is continuous, it might seem more natural to use continuous functions
as approximations. The following argument shows that confining oneself to continuous approx-
imants does not change the corresponding quantization and entropy quantity, when s ∈ [1,∞).
Let π : C[0, 1] → D[0, 1] be an arbitrary strategy and let τn : D[0, 1] → C[0, 1] denote the linear
operator mapping f to its piecewise linear interpolation with supporting points 0, 1

n ,
2
n . . . , 1.

Then ∥∥‖X − τn ◦ π(X)‖[0,1]

∥∥
s
≤

∥∥‖τn(X)− τn ◦ π(X)‖[0,1]

∥∥
s
+

∥∥‖X − τn(X)‖[0,1]

∥∥
s

≤
∥∥‖X − π(X)‖[0,1]

∥∥
s
+

∥∥‖X − τn(X)‖[0,1]

∥∥
s
.

Note that the second term vanishes when n tends to infinity and that τn ◦ π satisfies the same
information constraint as π. The argument can be easily modified in order to show the statement
for s ∈ (0, 1).

Under Lp[0, 1]-norm distortion (p ≥ 1) that is d(f, g) = ‖f − g‖Lp[0,1], we prove the following
analog to Theorem 1.1:

Theorem 1.3. For every p ≥ 1 there exists a constant κp = κp(H) ∈ (0,∞) such that for all
s ∈ (0,∞),

lim
r→∞

rH D(e)(r|s) = lim
r→∞

rH D(q)(r|s) = κp.

As in Remark 1.2, a simple convolution type argument shows that allowing Lp[0, 1]-
approximations yields the same coding errors as restricting oneself to C[0, 1]-approximations.

For ease of notation, the article is restricted to the analysis of 1-dimensional processes. However,
when replacing (Xt) by a process (X(1)

t , . . . , X
(d)
t ) consisting of d independent fractional Brown-

ian motions, the proofs can be easily adapted, and one obtains analogous results. In particular,
it is possible to prove analogs of the above theorems for a multi-dimensional Brownian motion.

Let us summarize some of the known estimates for the constant κ in the case whereX is standard
Brownian motion, i.e. H = 1/2.

• Under supremum-norm distortion, the relationship between the small ball function and
the quantization problem (see (8)) shows that

κ ∈
[ π√

8
, π

]
.

• Under Lp[0, 1]-norm distortion, κp may again be estimated via a connection to the small
ball function. Indeed, letting

λ1 = inf
{∫ ∞

−∞
|x|pϕ2(x) dx+ 1

2

∫ ∞

−∞
(ϕ′(x))2 dx

}
,
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where the infimum is taken over all weakly differentiable ϕ ∈ L2(R) with unit norm, one
has

κp ∈ [c,
√

8 c]

for c = 21/p√p
(

λ1
2+p

)(2+p)/2p.

In the case where p = 2, the constant κ2 is known explicitly: κ2 =
√

2
π (see (17) and (4)).

The article is organized as follows. In Sections 2 to 5 we consider the approximation problems
under the supremum norm. We start in Section 2 by introducting a coding scheme which plays
an important role in the sequel. In Section 3, we use the construction of Section 2 and the
self similarity of X to establish a polynomial decay for D(e)(·|∞). In the following section,
the asymptotics of the quantization error are computed. The proof relies on a concentration
property for the entropies of “good” coding schemes (Proposition 4.4). In Section 5, we use the
equivalence of moments in the quantization problem to establish a lower bound for the entropy
coding problem. In the last section, we treat the case where the distortion is based on the
Lp[0, 1]-norm, i.e. d(f, g) = ‖f − g‖Lp[0,1]; we introduce the distortion rate function and prove
Theorem 1.3 with the help of Shannon’s source coding theorem.

It is convenient to use the symbols ∼, . and ≈. We write f ∼ g iff lim f
g = 1, while f . g

stands for lim sup f
g ≤ 1. Finally, f ≈ g means

0 < lim inf
f

g
≤ lim sup

f

g
<∞ .

2 The coding scheme

This section is devoted to the construction of strategies π(n) : C[0, n] → D[0, n] which we will
need later in our discussion. The construction depends on three parameters: M ∈ N\{1}, d > 0
and a strategy π : C[0, 1] → D[0, 1].

The coding scheme is motivated as follows: Due to the self similarity of the fractional Wiener
process, coding X on [0, 1] with accuracy εn−H is as hard as coding X on the time interval
[0, n] with accuracy ε (see the argument at the end of the proof of Lemma 3.4). Intuitively, one
may decompose the coding scheme for (Xt)t∈[0,n] into two steps. First store information on the
values (Xj)j=1,...,n−1 and then approximate the paths X(j) = (Xj+t −Xj)t∈[0,1) by π(X(j)) for
j = 0, . . . , n− 1. The parameter M governs the rate spent on coding the first part, and we shall
see that for ε small most rate is spent for coding the second part. As in Shannon’s source coding
theorem, the ergodicity of (X(j))j∈N0 can be used to construct close to optimal codebooks when
n is large. This will be done in the proof of Theorem 4.1 to derive an upper bound for the
quantization error. Moreover, the coding scheme leads to a weak form of subadditivity which
we use to prove polynomial decay of D(e)(·|∞) (see Theorem 3.1 and Lemma 3.4).

We define the maps π(n) by induction. Let w ∈ C[0,∞) and set (w(n)
t )t∈[0,1] := (wt+n−wn)t∈[0,1]

and ŵt := π(w(0))(t) for t ∈ [0, 1). Assume that (ŵt)t∈[0,n) (n ∈ N) has already been defined.
Then we choose ξn to be the smallest number in {−d + 2kd/(M − 1) : k = 0, . . . ,M − 1}
minimizing

|wn − (ŵn− + ξn)|,
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and extend the definition of ŵ on [n, (n+ 1)) by setting

ŵn+t := ŵn− + ξn + π(w(n))(t), t ∈ [0, 1).

Note that (ŵt)t∈[0,n) depends only upon (wt)t∈[0,n), so that the above construction induces strate-
gies

π(n) : C[0, n] → D[0, n], w 7→ (w̄(n)
t )t∈[0,n],

where w̄(n)
t = ŵt for t ∈ [0, n) and w̄(n)

n = ŵn−. Moreover, we can write

(w̄(n)
t )t∈[0,n] = π(n)(w) = ϕn(π(w(0)), . . . , π(w(n−1)), ξ1, . . . , ξn−1) (4)

for an appropriate measurable function ϕn : (D[0, n])n × Rn−1 → D[0, n].

The main motivation for this construction is the following property. If one has, for some (wt) ∈
C[0,∞) and n ∈ N,

‖w − π(n)(w)‖[0,n] ≤
M

M − 1
d

and ‖w(n) − π(w(n))‖[0,1] ≤ d, then

|wn − (ŵn− + ξn)| ≤ d

M − 1
,

whence,

‖w − ŵ‖[n,n+1) = ‖wn + w
(n)
t − (ŵn− + ξn + π(w(n))(t))‖[0,1)

≤ |wn − (ŵn− + ξn)|+ ‖w(n) − π(w(n))‖[0,1)

≤ d/(M − 1) + d =
M

M − 1
d.

In particular, if π : C[0, 1] → D[0, 1] satisfies∥∥‖X − π(X)‖[0,1]

∥∥
∞ ≤ d,

then for any n ∈ N, ∥∥‖X − π(n)(X)‖[0,n]

∥∥
∞ ≤ M

M − 1
d. (5)

3 Polynomial decay of D(e)(r|∞)

The objective of this section is to prove the following theorem.

Theorem 3.1. There exists a constant κ = κ(H) ∈ (0,∞) such that

lim
r→∞

rH D(e)(r|∞) = κ. (6)

Thereafter, κ = κ(H) will always denote the finite constant defined via equation (6). In order
to simplify notation, we abridge ‖ · ‖ = ‖ · ‖[0,1].
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Remark 3.2. It was found in (4) (see Theorem 3.5.2) that for finite moments s ≥ 1 the entropy
coding error is related to the asymptotic behavior of the small ball function of the Gaussian
measure. In particular, for fractional Brownian motion, one obtains that

D(e)(r|s) ≈ 1
rH

, r →∞.

In order to show that D(e)(r|∞) is of the order r−H , we still need to prove an appropriate upper
bound. We prove a stronger statement which will be useful later on.

Lemma 3.3. There exist strategies π(r) : C[0, 1] → D[0, 1], r ≥ 0, and probability weights
(p(r)

w )w∈im(π(r)) such that for any s ≥ 1,

∥∥‖X − π(r)(X)‖
∥∥
∞ ≤ 1

rH
and E[(− log p(r)

π(r)(X)
)s]1/s ≈ r. (7)

In particular, D(e)(r|∞) ≈ r−H .

The proof of the lemma is based on an asymptotic estimate for the mass concentration in
randomly centered small balls, to be found in (9). Let X̃1 denote a fractional Brownian motion
that is independent of X with L(X) = L(X̃1). Then, for any s ∈ [1,∞), one has

E[(− log P(‖X − X̃1‖ ≤ ε|X))s]1/s ≈ − log P(‖X‖ ≤ ε) ≈ ε−1/H (8)

as ε ↓ 0 (see (9), Theorem 4.2 and Corollary 4.4).

Proof. For a given D[0, 1]-valued sequence (w̃n)n∈N∪{∞}, we consider the following coding
strategy π(r)(·|(w̃n)): let

T (r)(w) := T (r)(w|(w̃n)) := inf{n ∈ N : ‖w − w̃n‖ ≤ 1/rH},

with the convention that the infimum of the empty set is ∞, and set

π(r)(w) := π(r)(w|(w̃n)) := w̃T (r)(w).

Moreover, let (pn)n∈N denote the sequence of probability weights defined as

pn =
6
π2

1
n2
, n ∈ N,

and set p∞ := 0.

Now we let (X̃n)n∈N∪{∞} denote independent FBM’s that are also independent ofX, and analyze
the random coding strategies π(r)(·) := π(r)(·|(X̃n)). With T (r) := T (r)(X|(X̃n)) we obtain

X̂(r) := π(r)(X) = X̃T (r) ,

and

E[(− log pT (r))s]1/s ≤ 2E[(log T (r))s]1/s + log
π2

6
. (9)
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Given X, the random time T (r) is geometrically distributed with parameter P(‖X − X̃1‖ ≤
1/rH |X), and due to Lemma A.2 there exists a universal constant c1 = c1(s) <∞ for which

E[(log T (r))s|X]1/s ≤ c1 [1 + log E[T (r)|X]] = c1 [1 + log 1/P(‖X − X̃1‖ ≤ 1/rH |X)].

Consequently,

E[(log T (r))s]1/s = E
[
E[(log T (r))s|X]

]1/s

≤ c1 E[(1 + log 1/P(‖X − X̃1‖ ≤ 1/rH |X))s]1/s

≤ c1 (1 + E[(− log P(‖X − X̃1‖ ≤ 1/rH |X))s]1/s).

(10)

Due to (8), one has
E[(− log P(‖X − X̃1‖ ≤ 1/rH |X))s]1/s ≈ r,

so that (9) and (10) imply that E[(− log pT (r))s]1/s . c2r for some appropriate constant c2 <∞.
In particular, for any r ≥ 0, we can find a C[0, 1]-valued sequence (w̃(r))n∈N of pairwise different
elements such that

E[(− log p
T (r)(X|(w̃(r)

n ))
)s]1/s ≤ E[(− log pT (r))s]1/s . c2 r.

Now the strategies π(r)(·|(w̃(r)
n )) with associated probability weights p(r)

w̃
(r)
n

:= pn (n ∈ N) satisfy

(7). Moreover, D(e)(r|∞) ≈ r−H follows since

H(π(r)(X|(w̃(r)
n ))) ≤ E

[
− log p(r)

π(r)(X|(w̃(r)
n ))

]
.

�

Next we use the coding scheme of Section 2 to prove

Lemma 3.4. Let n ∈ N, r ≥ 0 and ∆r ≥ 1. Then

D(e)(n(r + ∆r)|∞) ≤ n−H e∆r

e∆r − 2
D(e)(r|∞). (11)

Proof. Fix ε > 0 and let π : C[0, 1] → D[0, 1] be a strategy satisfying∥∥‖X − π(X)‖[0,1]

∥∥
∞ ≤ (1 + ε)D(e)(r|∞) =: d

and
H(π(X)) ≤ r.

Choose M := be∆rc and let π(n) be as in Section 2. Note that ∆r ≥ 1 guarantees that M ≥
e∆r − 1 ≥ e∆r/2, so that

∥∥‖X − π(n)(X)‖[0,n]

∥∥
∞ ≤ M

M − 1
d ≤ e∆r

e∆r − 2
(1 + ε)D(e)(r|∞).
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We let (X(i)
t )t∈[0,1] = (Xi+t −Xi)t∈[0,1] for i = 1, . . . , n, and (ξi)i=1,...,n−1 be as in Section 2 for

w = X. Observe that, due to the representation (4),

H(π(n)(X)) ≤ H(π(X(0)), . . . , π(X(n−1)), ξ1, . . . , ξn−1)

≤ H(π(X(0))) + · · ·+ H(π(X(n−1))) + H(ξ1, . . . , ξn−1)
≤ nr + log | range (ξ1, . . . , ξn−1)| ≤ nr + n logM
≤ n(r + ∆r).

(12)

Now let
αn : D[0, 1] → D[0, n], f 7→ αn(f)(s) = nHf(s/n)

and consider the strategy

π̃ : C[0, 1] → D[0, 1], f 7→ α−1
n ◦ π(n) ◦ αn(f).

Since αn(X) is again a fractional Brownian motion on [0, n], it follows that, a.s.

‖X − π̃(X)‖[0,1] = n−H ‖αn(X)− π(n)(αn(X))‖[0,n] ≤ (1 + ε)n−H e∆r

e∆r − 2
D(e)(r|∞).

Moreover,
H(π̃(X)) = H(α−1

n ◦ π(n)(αn(X))) = H(π(n)(X)) ≤ r.

Since ε > 0 is arbitrary, the proof is complete. �

Proof of Theorem 3.1. For r ≥ 0, ∆r ≥ 1 and n ∈ N, Lemma 3.4 yields

D(e)(n(r + ∆r)|∞) ≤ 1
nH

e∆r

e∆r − 2
D(e)(r|∞).

Now set κ := lim infr→∞ rH D(e)(r|∞) which lies in (0,∞) due to Lemma 3.3. Let ε ∈ (0, 1/2)
be arbitrary, and choose r0,∆r ≥ 1 such that

rH
0 D(e)(r0|∞) ≤ (1 + ε)κ,

∆r ≤ εr0 and
e−∆r ≤ ε.

Then

D(e)((1 + ε)nr0|∞) ≤ 1
nH

1
1− 2ε

D(e)(r0|∞)

≤ 1(
(1 + ε)nr0

)H

1
1− 2ε

(1 + ε)1+H κ

and we obtain that

lim sup
n→∞

(
(1 + ε)nr0

)H
D(e)((1 + ε)nr0|∞) ≤ (1 + ε)1+H

1− 2ε
κ.
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Let now r ≥ (1 + ε)r0 and introduce r̄ = r̄(r) = min{(1 + ε)nr0 : n ∈ N, r ≤ (1 + ε)nr0} as well
as r = r(r) = max{(1 + ε)nr0 : n ∈ N, (1 + ε)nr0 ≤ r}. Using the monotonicity of D(e)(r|∞),
we conclude that

lim sup
r→∞

rH D(e)(r|∞) ≤ lim sup
r→∞

r̄H D(e)(r|∞)

≤ lim sup
r→∞

(r + (1 + ε)r0)H D(e)(r|∞)

≤ (1 + ε)1+H

1− 2ε
κ.

Noticing that ε > 0 is arbitrary finishes the proof. �

4 The quantization problem

Theorem 4.1. One has for any s ∈ (0,∞),

D(q)(r|s) ∼ κ
1
rH

, r →∞.

Recall that a strategy π and probability weights (pw) on the image of π intuitively correspond to
a coding scheme which maps an original symbol x onto a prefix-free representation for π(x) with
codelength of about − log2 pπ(x). The proof of Theorem 4.1 relies on Proposition 4.4. There we
show that for good coding schemes − log2 pπ(X) is strongly concentrated around some typical
value when r is large. In order to prove the proposition we combine Lemma 3.3 with the following
lemma.

Lemma 4.2. There exist strategies (π(r))r≥0 and probability weights (p(r)
w ) such that∥∥‖X − π(r)(X)‖

∥∥
∞ ≤ κ

1
rH

and − log p(r)

π(r)(X)
. r, in probability.

Proof. Let ε > 0 and choose r0 ≥ 2 such that(r0 + 1
r0 − 1

)1/H
≤ 1 +

ε

2

By Theorem 3.1,

D(e)((1 + ε/2)r|∞) . κ
r0 − 1
r0 + 1

1
rH

In particular, there exists r1 ≥ r0 ∨ 2
ε log(r0 + 1) and a map π : C[0, 1] → D[0, 1] such that∥∥‖X − π(X)‖[0,1]

∥∥
∞ ≤ κ

r0 − 1
r0

1
rH
1

=: d and H(π(X)) ≤ (1 + ε/2)r1.

For n ∈ N, let π(n) and ϕn be as in Section 2 for M = dr0e, d and π. Then by (5)∥∥‖X − π(n)(X)‖[0,n]

∥∥
∞ ≤ κ

(r0 − 1)M
r0(M − 1)

1
rH
1

≤ κ
1
rH
1

. (13)
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For ŵ(0), . . . , ŵ(n−1) ∈ im(π) and k1, . . . , kn−1 ∈ {−d+ 2kd
M−1 : k = 0, . . . ,M − 1}, let

p
(n)

ϕn(ŵ(0),...,ŵ(n−1),k1,...,kn−1)
=

1
Mn−1

n−1∏
i=0

P(π(X) = ŵ(i)).

The (p(n)
w ) define probability weights on the image of ϕn. Moreover,

− log p(n)

(X̂t)t∈[0,n]
= (n− 1) logM −

n−1∑
i=0

log pπ(X(i))

and the ergodic theorem implies

lim
n→∞

− 1
n

log p(n)

(X̂t)t∈[0,n]
= logM + H(π(X)), a.s.

Note that logM + H(π(X)) ≤ (1 + ε)r1.

Just as in the proof of Lemma 3.4, we use the self similarity of X to translate the strategy π(n)

into a strategy for encoding (Xt)t∈[0,1]. For n ∈ N, let

αn : D[0, 1] → D[0, n], f 7→ (αnf)(t) = nH f(t/n)

and consider p̃(n)
w := p

(n)
αn(w) and π̃(n)(w) := α−1

n ◦ π(n) ◦ αn(w). Then

− log p̃(n)

π̃(n)(X)
= − log p(n)

π(n)(αn(X))
. (1 + ε)nr1, in probability

and by (13) ∥∥‖X − π̃(n)(X)‖[0,1]

∥∥
∞ =

∥∥‖α−1
n (αn(X)− π(n)(αn(X)))‖[0,1]

∥∥
∞

=
1
nH

∥∥‖αn(X)− π(n)(αn(X))‖[0,n]

∥∥
∞

=
1
nH

∥∥‖X − π(n)(X)‖[0,n]

∥∥
∞ ≤ κ

1
(nr1)H

.

By choosing π̄(r) = π̃(n) and (p̄(r)) = (p̃(n)) for r ∈ ((n− 1)r1, nr1], one obtains a coding scheme
satisfying ∥∥‖X − π̄(r)(X)‖

∥∥
∞ ≤ κ

1
rH

and
− log p̄(r)

π̄(r)(X)
. (1 + ε)r, in probability,

so that the assertion follows by a diagonalization argument. �

Remark 4.3. In the above proof, we have constructed a high resolution coding scheme based
on a strategy π : C[0, 1] → D[0, 1], using the identity π̃(n) = α−1

n ◦ π(n) ◦αn. This coding scheme
leads to a coding error which is at most

M

M − 1

∥∥‖X − π(X)‖[0,1]

∥∥
∞ n−H . (14)
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Moreover, the ergodic theorem implies that, for large n, π̃(n)(X) lies with probability almost one
in the typical set {w ∈ D[0, 1] : − log p̃(n)

w ≤ n(H(π(X)) + logM + ε)}, where ε > 0 is arbitrarily
small. This set is of size exp{n(H(π(X))+ logM + ε)}, and will serve as a close to optimal high
resolution codebook. It remains to control the case where π̃(n)(X) is not in the typical set. We
will do this in the proof of Theorem 4.1 at the end of this section (see (19)).

Proposition 4.4. For s ≥ 1 there exist strategies (π(r))r≥0 and probability weights (p(r)
w ) such

that

∥∥‖X − π(r)(X))‖
∥∥
∞ ≤ κ

1
rH

and lim
r→∞

E[(− log p(r)

π(r)(X)
)s]1/s

r
= 1. (15)

In addition, for any ε > 0 one has

lim
r→∞

sup
π,(pw)

P
(
− log pπ(X) ≤ (1− ε)r, ‖X − π(X)‖ ≤ κ

1
rH

)
= 0, (16)

where the supremum is taken over all strategies π : C[0, 1] → D[0, 1] and over all sequences of
probability weights (pw).

Proof. Fix s > 1 and let for each R ≥ 0, π(r)
1 be a strategy and (p(r,1)

w ) be a sequence of
probability weights as in Lemma 4.2. Moreover, let π(r)

2 and (p(r,2)
w ) be as in Lemma 3.3 for the

moment 2s. We consider the maps κ(r)
1 (w) := − log p(r,1)

π
(r)
1 (w)

and κ
(r)
2 (w) := − log p(r,2)

π
(r)
2 (w)

, and

set

π(r)(w) :=

{
π

(r)
1 (w) if κ(r)

1 (w) ≤ (1 + δ)r,
π

(r)
2 (w) otherwise,

for some fixed δ > 0. Then one obtains, for p(r)
w = 1

2(p(r,1)
w + p

(r,2)
w ) and Tr := {w ∈ C[0, 1] :

κ
(r)
1 (w) ≤ (1 + δ)r},

E[(− log 2p(r)

π(r)(X)
)s]1/s ≤ E[1Tr(X)κ(r)

1 (X)s]1/s + E[1T c
r
(X)κ(r)

2 (X)s]1/s

≤ (1 + δ)r + P(X ∈ T c
r )1/2s E[κ(r)

2 (X)2s]1/2s.

The definitions of π(r)
1 and π

(r)
2 imply that limr→∞ P(X ∈ T c

r ) = 0 and E[κ(r)
2 (X)2s]1/2s ≈ r.

Consequently,
E[(− log p(r)

π(r)(X)
)s]1/s . (1 + δ)r.

Since δ > 0 can be chosen arbitrarily small, a diagonalization procedure leads to strategies π̃(r)

and probability weights (p̃(r)
w ) with∥∥‖X − π̃(r)(X)‖[0,1]

∥∥
∞ ≤ κ

1
rH

and E[(− log p̃π̃(r)(X))
s]1/s . r.

Now the first assertion follows from (16).

It remains to show that for arbitrary strategies π̄(r), r ≥ 0, and probability weights (p̄(r)
w ):

lim
r→∞

P
(
− log p̄(r)

π̄(r)(X)
≤ (1− ε)r, ‖X − π̄(r)(X)‖ ≤ κ

1
rH

)
= 0. (17)
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Without loss of generality, we can assume that∥∥‖X − π̄(r)(X)‖[0,1]

∥∥
∞ ≤ κ

1
rH

. (18)

Otherwise we modify the map π̄(r) for all w ∈ C[0, 1] with ‖w− π̄(r)(w)‖ > κr−H in such a way
that (18) be valid. Hereby the probability in (17) increases and it suffices to prove the statement
for the modified strategy. Let us consider

π(r)(w) =

{
π̄(r)(w) if p̄(r)

π̄(r)(w)
≥ p̃

(r)

π̃(r)(w)

π̃(r)(w) else.

Then the probability weights p(r) := 1
2(p̄(r) + p̃(r)) satisfy

E[(− log 2p(r)
π(X))

s]1/s ≤ E[(− log p̃(r)
π̃(X))

s]1/s . r.

Recall that ∥∥‖X − π(r)(X)‖[0,1]

∥∥
∞ ≤ κ

1
rH

,

hence by Theorem 3.1, one has E[− log p(r)

π(r)(X)
] ≥ H(π(r)(X)) & r. Now the equivalence of

moments (see Lemma A.1) implies that

− log p(r)

π(r)(X)
∼ r, in probability,

and
− log p̄(r)

π̄(r)(X)
≥ − log 2p(r)

π(r)(X)
& r, in probability,

which gives (17). �

Proof of Theorem 4.1. We start by proving the lower bound. Fix s > 0, let Cr, r ≥ 0,
denote arbitrary codebooks of size er, and let π(r) : C[0, 1] → Cr denote arbitrary strategies.
Moreover, let (p(r)

w ) be the sequence of probability weights defined as p(r)
w = 1/|Cr|, w ∈ Cr. Then

− log p(r)

π(r)(X)
≤ r a.s., and the above lemma implies that for any ε ∈ (0, 1),

lim
r→∞

P
(
‖X − π(r)(X)‖ ≤ κ

(1− ε)H

rH

)
= 0.

Therefore,

E[‖X − π(r)(X)‖s]1/s ≥ κ
(1− ε)H

rH
P
(
‖X − π(r)(X)‖ ≥ κ

(1− ε)H

rH

)1/s
∼ κ

(1− ε)H

rH
,

which proves the lower bound.

It remains to show that D(q)(r|s) . κ/rH . By Lemma 4.2, there exist strategies π(r) and
probability weights (p(r)

w ) such that∥∥‖X − π(r)(X)‖
∥∥
∞ ≤ κ

1
rH

and − log pπ(r)(X) . r, in probability.
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Furthermore, due to Theorem 4.1 in (8), there exist codebooks C̄r of size er with

E[min
ŵ∈C̄r

‖X − ŵ‖2s]1/2s ≈ 1
rH

.

We consider the codebook Cr := C̄r ∪ {ŵ : − log p(r)
ŵ ≤ (1 + ε/2)r}. Clearly, Cr contains at most

er + e(1+ε/2)r elements. Moreover,

E[min
ŵ∈Cr

‖X − ŵ‖s]1/s ≤ E[1Cr(π
(r)(X)) (κ

1
rH

)s]1/s

+ E[1Cc
r
(π(r)(X)) min

ŵ∈C̄r

‖X − ŵ‖s]1/s

≤ κ
1
rH

+ P(π(r)(X) 6∈ Cr)1/2s E[min
ŵ∈C̄r

‖X − ŵ‖2s]1/2s.

(19)

Since limr→∞ P(π(r)(X) 6∈ Cr) = 0 and the succeeding expectation is of order O(1/rH), the
second summand is of order o(1/rH). Therefore, for r ≥ 2/ε

D(q)((1 + ε)r|s) ≤ E[min
ŵ∈Cr

‖X − ŵ‖s]1/s . κ
1
rH

.

By switching from r to r̃ = (1 + ε)r, we obtain

D(q)(r̃|s) . κ (1 + ε)H 1
r̃H

.

Since ε > 0 was arbitrary, the proof is complete. �

5 Implications of the equivalence of moments

In this section we complement Theorem 4.1 by

Theorem 5.1. For arbitrary s ∈ (0,∞], one has

D(e)(r|s) ∼ κ
1
rH

.

The proof of this theorem is based on the following general principle: if the asymptotic quanti-
zation error coincides for two different moments s1 < s2, then all moments s ≤ s2 lead to the
same asymptotic quantization error and the entropy coding problem coincides with the quantiza-
tion problem for all moments s ≤ s2.

Let us prove this relationship in a general setting. E and Ê denoting arbitrary measurable spaces
and d : E × Ê → [0,∞) a measurable function, the quantization error for a general E-valued
r.v. X under the distortion d is defined as

D(q)(r|s) = inf
C⊂E

E[min
x̂∈C

d(X, x̂)s]1/s,

where the infimum is taken over all codebooks C ⊂ Ê with |C| ≤ er. In order to simplify
notations, we abridge

d(x,A) = inf
y∈A

d(x, y), x ∈ E, A ⊂ Ê.
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Analogously, we denote the entropy coding error by

D(e)(r|s) = inf
X̂

E[d(X, X̂)s]1/s,

where the infimum is taken over all discrete Ê-valued r.v. X̂ with H(X̂) ≤ r.

Then Theorem 5.1 is a consequence of Theorem 4.1 and the following theorem.

Theorem 5.2. Assume that f : [0,∞) → R+ is a decreasing, convex function satisfying

lim sup
r→∞

−r ∂+

∂r f(r)
f(r)

<∞, (20)

and suppose that, for some 0 < s1 < s2,

D(q)(r + log 2|s1) ∼ D(q)(r|s2) & f(r).

Then for any s > 0,
D(e)(r|s) & f(r).

We need two technical lemmas.

Lemma 5.3. Let 0 < s1 < s2 and f : [0,∞) → R+. If

D(q)(r + log 2|s1) ∼ D(q)(r|s2) ∼ f(r),

then for any ε > 0,
lim

r→∞
sup
C⊂E:
|C|≤er

P(d(X, C) ≤ (1− ε)f(r)) = 0.

Proof. For r ≥ 0, let C∗r denote codebooks of size er with

E[d(X, C∗r )s2 ]1/s2 ∼ f(r). (21)

Now let Cr denote arbitrary codebooks of size er, and consider the codebooks C̄r := C∗r ∪ Cr.
Using (21) and the inequality s1 ≤ s2, it follows that

f(r) & E[d(X, C̄r)s2 ]1/s2 ≥ E[d(X, C̄r)s1 ]1/s1 ≥ D(q)(r + log 2|s1) ∼ f(r).

Thus the s1-th and the s2-th moment coincide asymptotically and it follows by Lemma A.1 that

d(X, C̄r) ∼ f(r), in probability,

so that in particular,
d(X, Cr) & f(r), in probability.

�
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Lemma 5.4. Assume that f : [0,∞) → R+ is a decreasing, convex function satisfying (20) and

lim
r→∞

sup
C⊂Ê:
|C|≤er

P(d(X, C) ≤ f(r)) = 0.

Then for any s > 0,
D(e)(r|s) & f(r).

Proof. The result is a consequence of the technical Lemma A.3. Consider the family F
consisting of all random vectors

(A,B) = (d(X, X̂)s,− log pX̂),

where X̂ is an arbitrary discrete Ê-valued r.v. and (pw) is an arbitrary sequence of probability
weights on the range of X̂. Let f̃(r) = f(r)s, r ≥ 0. Then for any choice of X̂ and (pw) and an
arbitrary r ≥ 0, the set C := {w ∈ Ê : − log pw ≤ r} contains at most er elements. Consequently,

P(d(X, X̂)s ≤ f̃(r),− log pX̂ ≤ r) = P(d(X, X̂) ≤ f(r), X̂ ∈ C) ≤ P(d(X, C) ≤ f(r)).

By assumption the right hand side converges to 0 as r → ∞, independently of the choice of X̂
and (pw). Since f̃ satisfies condition (27), Lemma A.3 implies that

D(e)(r|s) = inf
X̂:H(X̂)≤r

E[d(X, X̂)s]1/s = inf
A∈Fr

E[A]1/s & f̃(r)1/s = f(r),

where Fr = {A : (A,B) ∈ F , EB ≤ r}. �

Theorem 5.2 is now an immediate consequence of Lemma 5.3 and Lemma 5.4.

6 Coding with respect to the Lp[0, 1]-norm distortion

In this section, we consider the coding problem for the fractional Brownian motion X under
Lp[0, 1]-norm distortion for some fixed p ∈ [1,∞). In order to treat this approximation problem,
we need to introduce Shannon’s distortion rate function. It is defined as

D(r|s) = inf
∥∥‖X − X̂‖Lp[0,1]

∥∥
s
,

where the infimum is taken over all D[0, 1]-valued r.v.’s X̂ satisfying the mutual information
constraint I(X; X̂) ≤ r. Here and elsewhere I denotes the Shannon mutual information, defined
as

I(X; X̂) =

{∫
log

dPX,X̂

dPX⊗PX̂
dPX,X̂ if PX,X̂ � PX ⊗ PX̂

∞ else.

The objective of this section is to prove

Theorem 6.1. The following limit exists

κp = κp(H) = lim
r→∞

rH D(r|p) ∈ (0,∞), (22)

and for any s > 0, one has

D(q)(r|s) ∼ D(e)(r|s) ∼ κp
1
rH

. (23)
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We will first prove that statement (23) is valid for

κp := lim inf
r→∞

rH D(r|p).

Since D(r|p) is dominated by D(q)(r|p), the existence of the limit in (22) then follows imme-
diately. Due to Theorem 1.2 in (5), the distortion rate function D(·|p) has the same weak
asymptotics as D(q)(·|p). In particular, D(r|p) ≈ r−H and κp lies in (0,∞).

We proceed as follows: decomposing X into the two processes

X(1) = (Xt −Xbtc)t≥0 and X(2) = (Xbtc)t≥0,

we consider the coding problem for X(1) and X(2) in Lp[0, n] (n ∈ N being large). We control
the coding complexity of the first term via Shannon’s source coding theorem (SCT) and use a
limit argument in order to show that the coding complexity of X(2) is asymptotically negligible.
We recall the SCT in a form which is appropriate for our discussion; for n ∈ N, let

dp(f, g) =
(∫ 1

0
|f(t)− g(t)|p dt

)1/p

and
dn,p(f, g) =

(∫ n

0
|f(t)− g(t)|p dt

n

)1/p
.

Then dn,p(f, g)p, n ∈ N, is a single letter distortion measure, when interpreting the function
f |[0,n) as the concatenation of the “letters” f (0), . . . , f (n−1), where f (i) = (f(i+ t))t∈[0,1). Anal-
ogously, the process X(1) corresponds to the letters X(1,i) := (Xi+t)t∈[0,1), i ∈ N0. Since
(X(1,i))i∈N0 is an ergodic stationary C[0, 1)-valued process, the SCT implies that for fixed r ≥ 0
and ε > 0 there exist codebooks Cn ⊂ D[0, n], n ∈ N, with at most exp{(1+ ε)nr} elements such
that

lim
n→∞

P(dn,p(X(1), Cn)p ≤ (1 + ε)D(r|p)p) = 1. (24)

The statement is an immediate consequence of the asymptotic equipartition property as stated
in (3) (Theorem 1) (see also (1) and (3)).

First we prove a lemma which will later be used to control the coding complexity of X(2).

Lemma 6.2. Let (Zi)i∈N be an ergodic stationary sequence of real-valued r.v.’s and let Sn =∑n
i=1 Zi, n ∈ N0. For ε > 0 there exist codebooks Cn ⊂ 2εZn of size exp{2nE[log(|Z1|/2ε+2)] +

2nc} satisfying
lim

n→∞
P
(
min
ŝ∈Cn

‖Sn
1 − ŝ‖ln∞) ≤ ε

)
= 1,

where Sn
1 denotes (Si)i=1,...,n, c is a universal constant and ‖ · ‖ln∞ denotes the maximum norm

on Rn.

Proof. Let c > 0 be such that (pn)n∈Z defined through

pn = e−c 1
(|n|+ 1)2
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is a sequence of probability weights, and let

Cn =
{
ŝn
1 ∈ 2εZn : − 1

n
log p(n)

ŝn
1
≤ 2E[log(|Z1|/2ε+ 2)] + 2c

}
,

where

p
(n)
ŝn
1

= pŝ1

n∏
i=2

p(ŝi−ŝi−1)/2ε, ŝn
1 ∈ 2εZn.

Since (p(n)
ŝn
1

) defines a sequence of probability weights on 2εZn the set Cn satisfies the required

size constraint. Let Ŝn
1 denote a best approximation for Sn

1 in the set 2εZ. Then always
‖Sn

1 − Ŝn
1 ‖ln∞ ≤ ε. Note that

− log p(n)

Ŝn
1

≤ 2
n∑

i=1

log(|Zi|/2ε+ 2) + nc

so that the ergodic theorem implies that limn→∞ P(Ŝn
1 ∈ Cn) = 1 which implies the assertion. �

We now use the SCT combined with the previous lemma to construct codebooks that guarantee
almost optimal reconstructions with a high probability.

Lemma 6.3. For any ε > 0 there exist codebooks Cr, r ≥ 0, of size er such that

lim
r→∞

P(dp(X, Cr) ≤ (1 + ε)κpr
−H) = 1.

Proof. Let ε > 0 be arbitrary and c be as in Lemma 6.2. We fix r0 ≥
( 4εκp

E|X1|
)1/H such that

εκpr
−H ≥ e−εr+c+log E|X1| and D(r0|p) ≤ (1 + ε)κpr

−H
0 . (25)

We decompose X into the two processes

X
(1)
t = Xt −Xbtc and X

(2)
t = Xbtc.

Due to the SCT (24), there exist codebooks C(1)
n ⊂ D[0, n] of size exp{(1 + ε)nr0} satisfying

lim
n→∞

P(dn,p(X(1), C(1)
n )p ≤ (1 + 2ε)pκp

pr
−pH
0 ) = 1.

We apply Lemma 6.2 for ε′ := εκpr
−H
0 . Note that

E log
( |X1|

2ε′
+ 2

)
+ c ≤ log

(E|X1|
2ε′

+ 2
)

+ c

Since rH
0 ≥ 4εκp

E|X1| , it follows that E|X1|
2ε′ = rH

0 E|X1|
2εκp

≥ 2, so that

E log
( |X1|

2ε′
+ 2

)
+ c ≤ log

(E|X1|
ε′

)
+ c

= − log(εκpr
−H
0 ) + c+ log E|X1| ≤ εr,
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due to (25). Hence, there exist codebooks C(2)
n ⊂ D[0, n] of size exp{εnr0} with

lim
n→∞

P
(
dn,p(X(2), C(2)

n ) ≤ εκp
1
rH
0

)
= 1.

Let now C̃n := C(1)
n + C(2)

n denote the Minkowski sum of the sets C(1)
n and C(2)

n . Then |C̃n| ≤
exp{(1 + 2ε)nr0}, and one has

P(dn,p(X, C̃n) ≤ (1 + 3ε)κpr
−H
0 ) ≥ P(dn,p(X(1), C(1)

n ) ≤ (1 + 2ε)κpr
−H
0 and

dn,p(X(2), C(2)
n ) ≤ εκpr

−H
0 ) → 1.

Consider the isometric isomorphism

βn : Lp[0, 1] → (Lp[0, n], dn,p), f 7→ f(nt),

and the codebooks Cn ⊂ D[0, 1] given by

Cn = {n−Hβ−1
n (ŵ) : ŵ ∈ C̃n}

Then X̃(n) = n−Hβ−1
n (X) is a fractional Brownian motion and one has

dp(X̃(n), Cn) = dn,p(βn(X̃(n)), βn(Cn)) = n−Hdn,p(X, C̃n).

Hence, the codebooks Cn are of size exp{(1 + 2ε)nr0} and satisfy

P(dp(X, Cn) ≤ (1 + 3ε)κp(nr0)−H)) = P(dn,p(X, C̃n) ≤ (1 + 3ε)κpr
−H
0 ) → 0

as n→∞. Now the general statement follows by an interpolation argument similar to that used
at the end of the proof of Theorem 3.1. �

Proof of Theorem 6.1. Let s ≥ 1 be arbitrary, let C(1)
r be as in the above lemma for some

fixed ε > 0. Moreover, we let C(2)
r denote codebooks of size er with

E[dp(X, C(2)
r )2s]1/(2s) ≈ 1

rH
.

Then the codebooks Cr := C(1)
r ∪C(2)

r contain at most 2er elements and satisfy, in analogy to the
proof of Theorem 4.1 (see (19)),

E[dp(X, Cr)s]1/s . (1 + ε)κp
1
rH

, r →∞.

Since ε > 0 is arbitrary, it follows that

D(q)(r|s) . κp
1
rH

.

For s ≥ p the quantization error is greater than the distortion rate function D(r|p), so that the
former inequality extends to

lim
r→∞

rH D(q)(r|s) = κp.

In particular, we obtain the asymptotic equivalence of all moments s1, s2 greater or equal to p.
Next, an application of Theorem 5.2 with d(f, g) = dp(f, g)s implies that for any s > 0,

D(e)(r|s) & κp
1
rH

,

which establishes the assertion. �
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Appendix

Lemma A.1. For r ≥ 0, let Ar denote [0,∞)-valued r.v.’s. If one has, for 0 < s1 < s2 and
some function f : [0,∞) → R+,

E[As1
r ]1/s1 ∼ E[As2

r ]1/s2 ∼ f(r), (26)

then
Ar ∼ f(r), in probability.

Proof. Consider
Ãr := As1

r /E[As1
r ],

and s̃2 = s2/s1. Then (26) implies that

E[Ãs̃2
r ]1/s̃2 ∼ E[Ãr] = 1

so that by a classical result limr→∞ Ãr = 1 in Ls̃2(P) or, equivalently, limr→∞Ar/f(r) = 1 in
Ls2(P). This immediately implies the result. �

Lemma A.2. Let s ≥ 1. There exists a constant c = c(s) < ∞ such that for all [1,∞)-valued
r.v.’s Z one has

E[(logZ)s]1/s ≤ c [1 + log E[Z]].

Proof. Using elementary analysis, there exists a positive constant c1 = c1(s) < ∞ such that
ψ(x) := (log x)s + c1 log x, x ∈ [1,∞), is concave. For any [1,∞)-valued r.v. Z, Jensen’s
inequality then yields

E[(logZ)s]1/s ≤ E[ψ(Z)]1/s ≤ ψ(E[Z])1/s

≤ log E[Z] + c
1/s
1 (log E[Z])1/s ≤ c [1 + log E[Z]],

where c = c(s) <∞ is an appropriate universal constant. �

Lemma A.3. Let f : [0,∞) → R+ be a decreasing, convex function satisfying limr→∞ f(r) = 0
and

lim sup
r→∞

−r ∂+

∂r f(r)
f(r)

<∞, (27)

and F be a family of [0,∞]2-valued random variables for which

lim
r→∞

sup
(A,B)∈F

P(A ≤ f(r), B ≤ r) = 0. (28)

Then the sets of random variables Fr defined for r ≥ 0 through

Fr := {A : (A,B) ∈ F , EB ≤ r}

satisfy
inf

A∈Fr

EA & f(r)

as r →∞.
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Proof. Fix R > 0, positive integers I and N , and define λ := −∂+

∂r f(R),

ri :=
i+N

N
R, i = −N,−N + 1, . . . .

For (A,B) ∈ F with EB ≤ r, we define

TA,B := {@i ∈ {−N + 1, . . . , I} such that A ≤ f(ri) and B ≤ ri}.

Then we have

E
[
A+ λB

]
≥

I−1∑
i=−N

E
[
1TA,B

1[ri,ri+1)(B)(A+ λri)
]

≥
I−1∑

i=−N

E
[
1TA,B

1[ri,ri+1)(B)(f(ri+1) + λri)
]

=
I−1∑

i=−N

E
[
1TA,B

1[ri,ri+1)(B)(f(ri+1) + λri+1 − λ
R

N
)
]

≥
I−1∑

i=−N

E
[
1TA,B

1[ri,ri+1)(B)(f(R) + λR− λ
R

N
)
]
,

where the last inequality follows from the fact that

f(R) + λR = inf
r≥0

[f(r) + λr]

by the definition of λ and the convexity of f . Now, fix ε > 0 and pick N ≥ 1/ε, I ≥ 2N/ε and
R0 so large that

P(TA,B) ≥ 1− ε

2
for all R ≥ R0 and all (A,B) ∈ FR.

Using Chebychev’s inequality, we then obtain for R ≥ R0,

E[A+ λB] ≥ (1− ε)(f(R) + λR)
(

1− P (T c)− P
(
B ≥ R

I

N

))
≥ (1− ε)(f(R) + λR)

(
1− ε

2
− ε

2

)
.

Hence,
λR+ EA ≥ (1− ε)2 (f(R) + λR)

and therefore
EA ≥ (1− ε)2f(R) + λR

(
(1− ε)2 − 1

)
.

Using the definition of λ and (27), as well as the fact that ε > 0 is arbitrary, the conclusion
follows. �
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