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1 Introduction and statement of results

Let Ω1 denote the space of (ordered) partitions of 1, that is

Ω1 := {p = (pi)i≥1 : p1 ≥ p2 ≥ ... ≥ 0, p1 + p2 + . . . = 1} .

By size-biased sampling according to a point p ∈ Ω1 we mean picking the j-th part pj with
probability pj. The starting point for our study is the following Markov chain on Ω1, which we
call a coagulation-fragmentation process: size-bias sample (with replacement) two parts from p.
If the same part was picked twice, split it (uniformly), and reorder the partition. If different
parts were picked, merge them, and reorder the partition.

We call this Markov chain the basic chain. We first bumped into it in the context of triangulation
of random Riemann surfaces [5]. It turns out that it was already considered in [15], in connection
with “virtual permutations” and the Poisson-Dirichlet process. Recall that the Poisson-Dirichlet
measure (with parameter 1) can be described as the probability distribution of (Yn)n≥1 on Ω1

obtained by setting Y1 = U1, Yn+1 = Un+1(1 −∑n
j=1 Yj), and reordering the sequence (Yn)n,

where (Un)n is a sequence of i.i.d. Uniform[0,1] random variables. Tsilevich showed in [15]
that the Poisson-Dirichlet distribution is an invariant probability measure for the Markov chain
described above, and raised the question whether such an invariant probability measure is unique.
While we do not completely resolve this question, a corollary of our results (c.f. Theorem 3) is
that the Poisson-Dirichlet law is the unique invariant measure for the basic chain which satisfies
certain regularity conditions.

Of course, the question of invariant probability measure is only one among many concerning the
large time behavior of the basic chain. Also, it turns out that one may extend the definition
of the basic chain to obtain a Poisson-Dirichlet measure with any parameter as an invariant
probability measure, generalizing the result of [15]. We thus consider a slightly more general
model, as follows.

For any nonnegative sequence x = (xi)i, let |x| =
∑

i xi, the `1 norm of x, and |x|22 =
∑

i x2
i . Set

Ω = {p = (pi)i≥1 : p1 ≥ p2 ≥ ... ≥ 0, 0 < |p| < ∞}
and Ω≤ = {p ∈ Ω : |p| ≤ 1}. Let 0 = (0, 0, . . .) and define Ω̄ = Ω ∪ {0} and Ω̄≤ = Ω≤ ∪ {0}.
Unless otherwise stated, we equip all these spaces with the topology induced from the product
topology on R

N . In particular, Ω̄≤ is then a compact space.

For a topological space X with Borel σ-field F we denote by M1(X) the set of all probability
measures on (X,F) and equip it with the topology of weak convergence. M+(X) denotes the
space of all (nonnegative) measures on (X,F).

Define the following two operators, called the merge and split operators, on Ω̄, as follows:

Mij : Ω̄ → Ω̄, Mijp = the nonincreasing sequence obtained by merging
pi and pj into pi + pj , i 6= j

Su
i : Ω̄ → Ω̄, Su

i p = the nonincreasing sequence obtained by splitting pi

into u pi and (1 − u)pi , 0 < u < 1

Note that the operators Mij and Su
i preserve the `1 norm. Let σ ∈ M1((0, 1/2]) be a probability

measure on (0, 1/2] (the splitting measure). For p ∈ Ω̄≤ and βm, βs ∈ (0, 1], we then consider
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Figure 1: On the left side a part of size pi has been chosen twice and is split with probability βs. On
the right side two different parts of sizes pi and pj have been chosen and are merged with probability βm.

the Markov process generated in Ω̄≤ by the kernel

Kσ,βm,βs(p, ·) := 2βm

∑
i<j

pipjδMijp(·) + βs

∑
i

p2
i

∫
δSu

i p(·) dσ(u)

+
(
1 − βm|p|2 + (βm − βs)|p|22

)
δp(·).

It is straightforward to check (see Lemma 4 below) that Kσ,βm,βs is Feller continuous. The basic
chain corresponds to σ = U(0, 1/2], with βs = βm = 1.

It is also not hard to check (see Theorem 6 below) that there always exists a Kσ,βm,βs-invariant
probability measure µ ∈ M1(Ω1). Basic properties of any such invariant probability measure
are collected in Lemma 5 and Proposition 7. Our first result is the following characterization of
those kernels that yield invariant probability measures which are supported on finite (respectively
infinite) partitions. To this end, let S := {p ∈ Ω1 | ∃i ≥ 2 : pi = 0} be the set of finite partitions.

Theorem 1 (Support properties) For any Kσ,βm,βs-invariant µ ∈ M1(Ω1),

µ[S] = 1 if
∫

1
x

dσ(x) < ∞ and

µ[S] = 0 if
∫

1
x

dσ(x) = ∞.

Transience and recurrence criteria (which, unfortunately, do not settle the case σ = U(0, 1/2]!)
are provided in the:
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Theorem 2 (Recurrence and transience) The state p̄ = (1, 0, 0, . . .) is positive recurrent
for Kσ,βm,βs if and only if

∫
1/x dσ(x) < ∞. If however∫ 1/2

0

1
σ[(0, x]]

dx < ∞ (1)

then p̄ is a transient state for Kσ,βm,βs.

We now turn to the case σ = U(0, 1/2]. In order to define invariant probability measures in
this case, set π : Ω → Ω1, p̂ := π(p) = (pi/|p|)i≥1 . For each θ > 0 consider the Poisson process
on R+ with intensity measure νθ(dx) = θx−1e−x dx which can be seen either as a Poisson
random measure N(A;ω) on the positive real line or as a random variable X = (Xi)∞i=1 taking
values in Ω whose distribution shall be denoted by µθ, with expectation operator Eθ. (Indeed,
Eθ|X| = Eθ

∫∞
0 xN(dx) =

∫∞
0 x νθ(dx) < ∞ while Pθ(|X| = 0) = exp(−νθ[(0,∞)]) = 0, and

thus X ∈ Ω a.s.). A useful feature of such a Poisson process is that for any Borel subset A of R+

with 0 < νθ(A) < ∞, and conditioned on {N(A) = n}, the n points in A are distributed as n
independent variables chosen each according to the law νθ( · |A). The Poisson-Dirichlet measure
µ̂θ on Ω1 is defined to be the distribution of (X̂i)i≥1. In other words, µ̂θ = µθ ◦ π−1. In the case
θ = 1 it coincides with the previously described Poisson-Dirichlet measure. See [9], [10] and [3]
for more details and additional properties of Poisson-Dirichlet processes.

We show in Theorem 3 below that, when σ = U(0, 1/2], for each choice of βm, βs there is a
Poisson–Dirichlet measure which is invariant for Kσ,βm,βs. We also show that it is, in this case,
the unique invariant probability measure in a class A, which we proceed to define. Set

Ω̄k
< := {(xi)1≤i≤k : xi ≥ 0, x1 + x2 + . . . + xk < 1}

and denote by Ak the set of real valued functions on Ω̄k
< that coincide (lebk-a.e.) with a function

which has a real analytic extension to some open neighborhood of Ω̄k
<. (Here and throughout,

lebk denotes the k-dimensional Lebesgue measure; all we shall use is that real analytic functions
in a connected domain can be recovered from their derivatives at an internal point.) For any
µ ∈ M1(Ω1) and each integer k, define the measure µk ∈ M+

(
Ω̄k

<

)
by

µk(B) = Eµ

∑
j∈Nk

6=

(
k∏

i=1

pji

)
1

B
(pj1 , . . . , pjk

)

 , B ∈ BΩ̄k
<

(here Nk
6= =

{
j ∈ N

k | ji 6= ji′ if i 6= i′
}
). An alternative description of µk is the following one:

pick a random partition p according to µ and then sample size-biased independently (with
replacement) k parts pi1, . . . , pik from p. Then,

µk(B) = P (the ij-s are pairwise distinct, and (pi1 , . . . , pik) ∈ B) .

Part of the proof of part (b) of Theorem 3 below will consist in verifying that these measures
(µk)k≥1 characterize µ (see [12, Th. 4] for a similar argument in a closely related context).

Set for k ∈ N,

Ak =
{

µ ∈ M1(Ω1)
∣∣∣∣µk � lebk,mk :=

dµk

d lebk
∈ Ak

}
.

Our main result is part (b) of the following:
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Theorem 3 (Poisson-Dirichlet law) Assume σ = U(0, 1/2] and fix θ = βs/βm.
(a) The Poisson-Dirichlet law of parameter θ belongs to A :=

⋂∞
k=1 Ak, and is invariant (in

fact: reversing) for the kernel Kσ,βm,βs.
(b) Assume a probability measure µ ∈ A is Kσ,βm,βs-invariant. Then µ is the Poisson-Dirichlet
law of parameter θ.

The structure of the paper is as follows: In Section 2, we prove the Feller property of Kσ,βm,βs,
the existence of invariant probability measures for it, and some of their basic properties. Section
3 and 4 are devoted to the proofs of Theorems 1 and 2 respectively, Section 5 studies the Poisson-
Dirichlet measures and provides the proof of Theorem 3. We conclude in Section 6 with a list
of comments and open problems.

2 Preliminaries

For fixed σ ∈ M1((0, 1/2]), βm, βs ∈ (0, 1] and p ∈ Ω̄≤ we denote by Pp ∈ M1(Ω̄
N∪{0}
≤ ) the law

of the Markov process on Ω̄≤ with kernel Kσ,βm,βs and starting point p, i.e. Pp[p(0) = p] = 1.
Whenever µ ∈ M1(Ω̄≤), the law of the corresponding Markov process with initial distribution
µ is denoted by Pµ. In both cases, we use (p(n))n≥0 to denote the resulting process.

Lemma 4 The kernel Kσ,βm,βs is Feller, i.e. for any continuous function f : Ω̄≤ → R, the map
Ω̄≤ → R, p 7→ ∫

f dKσ,βm,βs(p, ·) is continuous.

Proof We have∫
fdKσ,βm,βs(p, ·) = 2βm

∞∑
i=1

pi

∞∑
j=i+1

pj (f(Mijp) − f(p))

+βs

∞∑
i=1

p2
i

∫
(f(Su

i p) − f(p)) dσ(u) + f(p)

=: 2βm

∞∑
i=1

pigi(p) + βs

∞∑
i=1

p2
i hi(p) + f(p). (2)

One may assume that f(p) is of the form F (p1, . . . , pk) with k ∈ N and F ∈ C(Ω̄k
≤), since any

f ∈ C(Ω̄≤) can be uniformly approximated by such functions, and denote accordingly ‖p‖k the
R

k norm of p’s first k components. We shall prove the lemma in this case by showing that both
sums in (2) contain finitely many nonzero terms, this number being uniformly bounded on some
open neighborhood of a given q, and that gi and hi are continuous for every i.

For the second sum these two facts are trivial: Su
i p and p coincide in their first k components

∀u ∈ (0, 1/2], ∀i > k, since splitting a component doesn’t affect the ordering of the larger ones,
and thus hi ≡ 0 for i > k. Moreover, hi’s continuity follows from equicontinuity of (Su

i )u∈(0,1).

As for the first sum, given q ∈ Ω̄≤ with positive components (the necessary modification when q
has zero components is straightforward), let n = n(q) > k be such that qn < 1

4 qk and consider q’s
open neighborhood U = U(q) =

{
p ∈ Ω̄≤ : pk > 2

3qk, pn < 4
3qn

}
. In particular, for all p ∈ U ,
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pn < 1
2pk and thus, when j > i > n , pi + pj ≤ 2pn < pk, which means that Mijp and p coincide

in their first k components, or that gi(p) = 0 for every i > n(q) and p ∈ U(q).

Finally, each gi is continuous because the series defining it converges uniformly. Indeed, for
j > i and uniformly in p, ‖Mijp − p‖k ≤ pj ≤ 1

j . For a given ε > 0, choose j0 ∈ N such that
|F (y) − F (x)| < ε whenever ‖y − x‖k < 1

j0
. Then∣∣∣∣∣∣

∞∑
j=j0

pj (f(Mijp) − f(p))

∣∣∣∣∣∣ < ε

∞∑
j=j0

pj ≤ ε

which proves the uniform convergence. �

Lemma 5 Let µ ∈ M1(Ω̄≤) be Kσ,βm,βs-invariant. Then∫
|p|22 dµ =

βm

βm + βs

∫
|p|2 dµ. (3)

Furthermore, if we set for n ≥ 1,

ν0 = δ(1,0,0,...), νn = νn−1Kσ,βm,βs and ν̄n =
1
n

n−1∑
k=0

νk , (4)

then for all n ≥ 1, ∫
|p|22 dν̄n ≥ βm

βm + βs
(5)

Proof Let ε ∈ [0, 1], and consider the random variable

Xε :=
∑

i

1ε<pi

on Ω̄≤ which counts the intervals longer than ε. We first prove (3). (The value ε = 0 is used
in the subsequent proof of (5).) Assume that Xε is finite which is always the case for ε > 0
since on Ω̄≤, Xε ≤ 1/ε and is also true for ε = 0 if only finitely many pi are non zero. Then
the expected (conditioned on p) increment ∆ε of Xε after one step of the underlying Markov
process is well-defined. It equals

∆ε = βm

∑
i6=j

pipj(1pi,pj≤ε<pi+pj − 1ε<pi,pj)

+ βs

∑
i

p2
i 1ε<pi

(∫
1ε<xpi dσ(x) −

∫
1ε≥(1−x)pi

dσ(x)
)

= βm

∑
i,j

pipj(1pi,pj≤ε<pi+pj − 1ε<pi,pj) (6)

+βs

∑
i

p2
i 1ε<pi (σ[(ε/pi, 1/2]] − σ[[1 − ε/pi, 1/2]])

−βm

∑
i

p2
i (1pi≤ε<2pi − 1ε<pi) .
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The right hand side of (6) converges as ε tends to 0 to

lim
ε↘0

∆ε = −βm|p|2 + (βm + βs)|p|22. (7)

Since µ is Kσ,βm,βs-invariant we have
∫

∆ε dµ = 0 for all ε. Now (3) follows from (7) by
dominated convergence since |∆ε| ≤ 2.

For the proof of (5) note that for all n ≥ 0, νn has full measure on sequences p ∈ Ω1 for which
the number X0 of nonvanishing components is finite because we start with X0 = 1 ν0-a.s. and
X0 can increase at most by one in each step. Given such a p ∈ Ω1, the expected increment ∆0

of X0 equals (see (6), (7)) ∆0 = −βm + (βm + βs)|p|22. Therefore for k ≥ 0,∫
X0 dνk+1 −

∫
X0 dνk = −βm + (βm + βs)

∫
|p|22 dνk.

Summing over k = 0, . . . , n − 1 yields∫
X0 dνn −

∫
X0 dν0 = −nβm + (βm + βs)

n−1∑
k=0

∫
|p|22 dνk. (8)

The left hand side of (8) is nonnegative due to
∫

X0 dν0 = 1 and
∫

X0 dνn ≥ 1. This proves
(5). �

Theorem 6 There exists a Kσ,βm,βs-invariant probability measure µ ∈ M1(Ω1).

Proof Define νn and ν̄n as in (4). Since Ω̄≤ is compact, M1(Ω̄≤) is compact. Consequently,
there are µ ∈ M1(Ω̄≤) and a strictly increasing sequence (mn)n of positive integers such that
ν̄mn converges weakly towards µ as n → ∞. This limiting measure µ is invariant under Kσ,βm,βs

by the following standard argument. For any continuous function f : Ω̄≤ → R,∫
f d(µKσ,βm,βs) =

∫ ∫
f dKσ,βm,βs(p, ·) dµ(p)

= lim
n→∞

∫ ∫
f dKσ,βm,βs(p, ·) dν̄mn(p) [Lemma 4]

= lim
n→∞

1
mn

mn−1∑
k=0

∫ ∫
f dKσ,βm,βs(p, ·) dνk(p)

= lim
n→∞

1
mn

mn−1∑
k=0

∫
f(p) dνk+1(p) = lim

n→∞

∫
fdν̄mn =

∫
fdµ .

Hence it remains to show that Ω1 has full µ-measure, i.e. µ[|p| = 1] = 1. To prove this observe
that |p|22 (unlike |p|) is a continuous function on Ω̄≤. Therefore by (3), weak convergence and
(5),

1 ≥
∫

|p|2 dµ =
βm + βs

βm

∫
|p|22 dµ =

βm + βs

βm
lim

n→∞

∫
|p|22 dν̄mn ≥ 1

by which the first inequality is an equality, and thus |p| = 1 µ − a.s. �
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Proposition 7 If µ ∈ M1(Ω1) is Kσi,βm,i,βs,i
-invariant for i = 1, 2, then σ1 = σ2 and θ1 :=

βs,1/βm,1 = βs,2/βm,2 =: θ2.

Proof Let k ≥ 1 be an integer and α ∈ {1, 2}. Given p, consider the expected increment ∆α,k

of
∑

i p
k
i after one step of the process driven by Kσα,βm,αβs,α :

∆α,k = βm,α

∑
i6=j

pipj

(
−pk

i − pk
j + (pi + pj)k

)
+βs,α

∑
i

p2
i

(
−pk

i +
∫

(tpi)k + ((1 − t)pi)k dσα(t)
)

.

Note that
∫ ∑

i p
k
i dµ is finite because of k ≥ 1. Therefore, by invariance,

∫
∆α,k dµ = 0, which

implies

βs,α

[∫
(tk + (1 − t)k) dσα(t) − 1

]
=

βm,α

∫ ∑
i6=j pipj

(
pk

i + pk
j − (pi + pj)k

)
dµ∫ ∑

i p
2+k
i dµ

.

Hence, for any k, ∫
(tk + (1 − t)k) dσ1(t) − 1∫
(tk + (1 − t)k) dσ2(t) − 1

=
βm,1βs,2

βm,2βs,1
=: γ .

Taking k → ∞ we conclude that γ = 1. This proves the second claim. In addition, we have∫
(tk + (1 − t)k) dσ1(t) =

∫
(tk + (1 − t)k) dσ2(t) (9)

for all k ≥ 1. Obviously, (9) also holds true for k = 0. Extend σα to probability measures on
[0, 1] which are supported on [0, 1/2]. It is enough for the proof of σ1 = σ2 to show that for all
continuous real valued functions f on [0, 1] which vanish on [1/2, 1] the integrals

∫
f(t) dσα(t)

coincide for α = 1, 2. Fix such an f and choose a sequence of polynomials

πn(t) =
n∑

k=0

ck,ntk (ck,n ∈ R)

which converges uniformly on [0, 1] to f as n → ∞. Then πn(t) + πn(1− t) converges uniformly
on [0, 1] to f(t)+f(1−t). Since f(1−t) vanishes on the support of σ1 and σ2 we get for α = 1, 2,∫

f(t) dσα(t) =
∫

f(t) dσα(t) +
∫

f(1 − t) dσα(t)

= lim
n→∞

n∑
k=0

ck,n

∫
(tk + (1 − t)k) dσα(t)

which is the same for α = 1 and α = 2 due to (9). �
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3 Support properties

Theorem 1 is a consequence of the following result.

Theorem 8 Let µ ∈ M1(Ω1) be Kσ,βm,βs-invariant and denote p̄ := (1, 0, 0, . . .) and (p(n))’s
stopping time H := min{n ≥ 1 : p(n) = p(0)}. Then∫

1
x

dσ(x) < ∞ ⇐⇒ µ[S] = 1 ⇐⇒ µ[S] > 0 ⇐⇒ µ[{p̄}] > 0 ⇐⇒ Ep̄[H] < ∞.

Proof We start by proving that
∫

1/x dσ(x) < ∞ implies µ[S] = 1. Fix an arbitrary
0 < ϑ ≤ 1/2 and consider the random variables

Wn :=
∑
i≥1

pi1ϑn<pi
(n ≥ 1).

After one step of the process Wn may increase, decrease or stay unchanged. If we merge two
intervals then Wn cannot decrease, but may increase by the mass of one or two intervals which
are smaller than ϑn but become part of an interval which is bigger than ϑn. If we split an
interval then Wn cannot increase, but it decreases if the original interval was larger than ϑn and
at least one of its parts is smaller than ϑn. Thus given p, the expected increment ∆ of Wn after
one step of the process is

∆ := ∆+ − ∆−, where

∆+ := βm

∑
i6=j

pipj

(
pi1pi≤ϑn<pj

+ pj1pj≤ϑn<pi
+ (pi + pj)1pi,pj≤ϑn<pi+pj

)
and

∆− := βs

∑
i

p2
i

∫ (
pi1(1−x)pi≤ϑn<pi

+ xpi1xpi≤ϑn<(1−x)pi

)
dσ(x).

We bound ∆+ from below by

∆+ ≥ 2βm

∑
i,j

p2
i pj1pi≤ϑn · 1ϑn<pj

≥ 2βm

(∑
i

p2
i 1ϑn+1<pi≤ϑn

)∑
j

pj1ϑn<pj


≥ 2βmϑ2n+2Wn]In+1

where
In :=

{
i ≥ 1 : ϑn < pi ≤ ϑn−1

}
(n ≥ 1),

9



and ∆− from above by

∆− ≤ βs

∑
i≥1

∫ (
p3

i 1ϑn<pi≤ϑn/(1−x) + p3
i x1ϑn<pi

· 1pi≤ϑn/x

)
dσ(x)

≤ βs

∑
i≥1

p3
i 1ϑn<pi≤ϑn−1 [since ϑ ≤ 1/2 ≤ 1 − x]

+ βs

∑
i≥1

∫ n−1∑
j=0

p3
i x1ϑn−j<pi≤ϑn−j−11pi≤ϑn/x dσ(x)

≤ βs

∑
i≥1

ϑ3(n−1)1ϑn<pi≤ϑn−1

+βs

∑
i≥1

∫ n−1∑
j=0

ϑ3(n−j−1)x1ϑn−j<pi≤ϑn−j−11x≤ϑj dσ(x)

≤ βsϑ
3(n−1)]In + βs

n−1∑
j=0

∑
i≥1

ϑ3(n−j−1)ϑj1ϑn−j<pi≤ϑn−j−1σ[(0, ϑj ]]

≤ βsϑ
3(n−1)]In + βsϑ

3(n−1)
n−1∑
j=0

ϑ−2jσ[(0, ϑj ]]]In−j

≤ 2βsϑ
3(n−1)

n−1∑
j=0

ϑ−2jσ[(0, ϑj ]]]In−j .

Since µ is invariant by assumption, 0 =
∫

∆ dµ =
∫

∆+ dµ − ∫ ∆− dµ and therefore

2βm

∫
Wn]In+1 dµ ≤ 2βsϑ

3n−3−2n−2
n−1∑
j=0

ϑ−2jσ[(0, ϑj ]]
∫

]In−j dµ

= 2βsϑ
−5

n−1∑
j=0

ϑ−jσ[(0, ϑj ]]
∫

ϑn−j]In−j dµ.

10



Consequently ,∑
n≥1

∫
Wn]In+1 dµ

≤ ϑ−5βs

βm

∑
n≥1

n−1∑
j=0

ϑ−jσ[(0, ϑj ]]
∫

ϑn−j]In−j dµ

=
ϑ−5βs

βm

 ∞∑
j=0

ϑ−jσ[(0, ϑj ]]

∑
n≥1

∫
ϑn]In dµ

≤ ϑ−5βs

(1 − ϑ)βm

 ∞∑
j=0

(ϑ−j − ϑ−j+1)σ[(0, ϑj ]]

∑
n≥1

∫ ∑
i∈In

pi dµ

=
ϑ−5βs

(1 − ϑ)βm

∫ ∞∑
j=0

1ϑ−j≤1/x(ϑ−j − ϑ−j+1) dσ(x)

∫ |p| dµ

≤ ϑ−5βs

(1 − ϑ)βm

∫
1
x

dσ(x)

which is finite by assumption. Therefore, Wn]In+1 is summable and hence tends µ-a.s. to 0.
However, Wn converges µ-a.s. to 1 as n tends to ∞. Thus even ]In+1 tends µ-a.s. to zero, which
means that In+1 is µ-a.s. eventually empty, that is µ[S] = 1.

Now we assume µ[S] > 0 in which case there exist some i ≥ 1 and ε > 0 such that δ := µ[pi >
ε, pi+1 = 0] > 0. By i successive merges of the positive parts and µ’s invariance we obtain

µ[{p̄}] = µ[p1 = 1] ≥ (2βmε2)i−1δ > 0. (10)

Next, we assume µ[{p̄}] > 0 and note that Kσ,βm,βs1S = 1S and thus, defining µ̄ := µ/µ[S],
one obtains an invariant measure supported on S. The chain determined by Kσ,βm,βs on S is
δp̄-irreducible, and has µ̄ as invariant measure, with µ̄[{p̄}] > 0. Therefore, Kac’s recurrence
theorem [11, Theorem 10.2.2] yields Ep̄[H] < ∞.

Finally, we assume Ep̄[H] < ∞ and show
∫

1/x dσ(x) < ∞. If A := {p̄ = p(0) 6= p(1)}, then
Pp̄[A] = βs > 0, and when p ∈ A we write p(1) = pξ := (1− ξ, ξ, 0, . . .), where ξ has distribution
σ. Furthermore, restricted to A and conditioned on ξ, H ≥ τ Ppξ–a.s., where in terms of the
chain’s sampling and merge/split interpretation, τ is the first time a marked part of size ξ is
sampled, i.e. a geometric random variable with parameter 1 − (1 − ξ)2 ≤ 2ξ. Thus

∞ > Ep[H] ≥ Pp[A]Ep[H|A] ≥ βs

(
1 +

∫
Epξ [τ ]dσ(ξ)

)
≥ βs

(
1 +

∫
1
2ξ

dσ(ξ)
)

.

�

Corollary 9 If
∫

1/x dσ(x) < ∞ then there exists a unique Kσ,βm,βs-invariant probability mea-
sure µ ∈ M1(Ω1).

11



Proof In view of Theorem 1, for the study of invariant measures it is enough to restrict
attention to the state space S, where the Markov chain (p(n))n is δp̄-irreducible, implying, see
[11, Chapter 10], the uniqueness of the invariant measure. �

4 Transience and recurrence

Proof of Theorem 2 The statement about positive recurrence is included in Theorem 8.

The idea for the proof of the transience statement is to show that under (1) the event that the
size of the smallest positive part of the partition never increases has positive probability. By

n0 := 0 and nj+1 := inf{n > nj : p(n) 6= p(n − 1)} (j ≥ 0)

we enumerate the times nj at which the value of the Markov chain changes. Denote by sn the
(random) number of instants among the first n steps of the Markov chain in which some interval
is split. Since j − snj is the number of steps among the first nj steps in which two parts are
merged and since this number can never exceed snj if p(0) = p̄, we have that Pp̄-a.s.,

snj ≥
⌈

j

2

⌉
for all j ≥ 0. (11)

Let (τl)l≥1 denote the times at which some part is split. This part is split into two parts
of sizes `(l) and L(l) with 0 < `(l) ≤ L(l). According to the model the random variables
ξl := `(l)/(`(l) + L(l)), l ≥ 1, are independent with common distribution σ. Further, for any
deterministic sequence ξ = (ξn)n, let Pξ,p̄[ · ] denote the law of the process which evolves using
the kernel Kσ,βm,βs except that at the times τl it uses the values ξl as the splitting variables.
Note that

Pp̄[ · ] =
∫

Pξ,p̄[ · ] dσN(ξ) .

Now denote by q(n) := min{pi(n) : i ≥ 1, pi(n) > 0} (n ≥ 0) the size of the smallest positive
part at time n. We prove that for N ≥ 0,

q(0) ≥ . . . ≥ q(N) implies q(N) ≤ ξ1 ∧ ξ2 ∧ . . . ∧ ξsN
. (12)

(Here and in the sequel, we take ξ1∧ . . .∧ξsN
= ∞ if sN = 0). Indeed, we need only consider the

case sN > 0, in which case there exists a 1 ≤ t ≤ sN such that ξt = ξ1 ∧ . . . ∧ ξsN
, and τt ≤ N .

But clearly q(τt) ≤ ξt, and then the condition q(1) ≥ · · · ≥ q(N) and the fact that τt ≤ N imply
q(N) ≤ q(τt) ≤ ξt = ξ1 ∧ . . . ∧ ξsN

, as claimed.

Next, fix some ε ∈ (0, β0/2] where β0 := min{βm, βs}/2. We will prove by induction over j ≥ 1
that

Pξ,p̄[ε > q(1), q(0) ≥ . . . ≥ q(nj)] ≥ βs1ξ1<ε

j−1∏
k=1

(
1 − ξ1 ∧ . . . ∧ ξdk/2e

β0

)
. (13)

For j = 1 the left hand side of (13) equals the probability that the unit interval is split in the
first step with the smaller part being smaller than ε which equals βs1ξ1<ε. Assume that (13)

12



has been proved up to j. Then, with Fnj = σ(p(n), n ≤ nj),

Pξ,p̄[ε > q(1), q(0) ≥ . . . ≥ q(nj+1)]
= Eξ,p̄

[
Pξ,p̄[q(nj) ≥ q(nj+1) | Fnj ], ε > q(1), q(0) ≥ . . . ≥ q(nj)

]
. (14)

Now choose k minimal such that pk(nj) = q(nj). One possibility to achieve q(nj) ≥ q(nj+1) is
not to merge the part pk(nj) in the next step in which the Markov chain moves. The probability
to do this is

1 − 2βm
∑

a:a6=k pa(nj)pk(nj)
βm
∑

a6=b pa(nj)pb(nj) + βs
∑

a p2
a(nj)

≥ 1 − βmq(nj)
∑

a pa(nj)
β0
∑

a,b pa(nj)pb(nj)

≥ 1 − q(nj)
β0

.

Therefore (14) is greater than or equal to

Eξ,p̄ [(1 − q(nj)/β0), ε > q(1), q(0) ≥ . . . ≥ q(nj)] .

By (12) this can be estimated from below by

Eξ,p̄

[
(1 − (ξ1 ∧ . . . ∧ ξsnj

)/β0), ε > q(1), q(0) ≥ . . . ≥ q(nj)
]
.

This is due to (11) greater than or equal to

(1 − (ξ1 ∧ . . . ∧ ξdj/2e)/β0) Pξ,p̄ [ε > q(1), q(0) ≥ . . . ≥ q(nj)] .

Along with the induction hypothesis this implies (13) for j + 1.

Taking expectations with respect to ξ in (13) yields

Pp̄[q(n) ≤ ε for all n ≥ 1] ≥ Ep̄

βs1ξ1<ε

∏
k≥1

(
1 − ε ∧ ξ2 ∧ . . . ∧ ξdk/2e

β0

) . (15)

By independence of ξ1 from ξi, i ≥ 2, the right hand side of (15) equals

βs

(
1 − ε

β0

)2

P [ξ1 < ε]Ep̄

∏
k≥2

(
1 − ε ∧ ξ2 ∧ . . . ∧ ξk

β0

)2
 . (16)

Observe that (1) implies P [ξ1 < ε] = σ[(0, ε)] > 0. By Jensen’s inequality and monotone
convergence, (16) can be estimated from below by

c1 exp

∑
k≥2

2Ep̄

[
ln
(

1 − ε ∧ ξ2 ∧ . . . ∧ ξk

β0

)]
with some positive constant c1 = c1(ε). Since ln(1 − x) ≥ −2x for x ∈ [0, 1/2] this is greater
than

c1 exp

− 4
β0

∑
k≥2

Ep̄[ξ2 ∧ . . . ∧ ξk]

 = c1 exp

(
− 4

β0

∫ 1/2

0

Pp̄[ξ1 > t]
Pp̄[ξ1 ≤ t]

dt

)
(17)
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where we used that due to independence

Ep̄[ξ2 ∧ . . . ∧ ξk] =
∫ 1/2

0
Pp̄[ξ1 > t]k−1 dt.

Due to assumption (1), (17) and therefore also the left hand side of (15) are positive. This
implies transience of p̄. �

Remark: It follows from Theorem 2 that c :=
∫

x−1 dσ(x) < ∞ implies
∫

σ((0, x])−1 dx = ∞.
This can be seen also directly from c ≥ ∫ x

0 t−1 dσ(t) ≥ ∫ x
0 x−1 dσ(t) = σ((0, x])/x for all

0 < x ≤ 1/2, which shows
∫

σ((0, x])−1 dx ≥ ∫ (cx)−1 dx.

5 Poisson-Dirichlet invariant probability measures

Throughout this section, the splitting measure is the uniform measure on (0, 1/2]. To emphasize
this, we use Kβm,βs instead of Kσ,βm,βs throughout. Recall that θ = βs/βm.
It will be convenient to equip Ω (but not Ω̄≤) with the `1 topology (noting that the Borel
σ-algebra is not affected by this change of topology), and to replace the kernel Kβm,βs by

KH
βm,βs

(p, ·) = βm

∑
i6=j

p̂ip̂jδMijp(·) + βs

∑
i

p̂ 2
i

∫ 1

0
δSu

i p(·) du

+
(
1 − βm + (βm − βs) |p̂| 22

)
δp(·). (18)

Both kernels coincide on Ω1 (not on Ω≤). However, KH
βm,βs

has the advantage that it is well
defined on all of Ω and is homogeneous (hence the superscript H) in the sense of the first of the
following two lemmas, whose proof is straightforward and in which by a slight abuse of notation
KH

βm,βs
will denote both the kernel in Ω1 and in Ω and also the operators induced by these

kernels, the distinction being clear from the context.

Lemma 10 For all p ∈ Ω, KH
βm,βs

(πp, ·) = KH
βm,βs

(p, ·) ◦ π−1.
More generally, denoting (Πf)(p) = f(π(p)), we have KH

βm,βs
Π = ΠKH

βm,βs
.

In particular, if µ ∈ M1(Ω) is invariant (resp. reversing) for KH
βm,βs

then
µ ◦ π−1 ∈ M1(Ω1) is invariant (resp. reversing) for Kβm,βs.

Lemma 11 The kernel KH
βm,βs

maps continuous bounded functions to continuous bounded func-
tions.

Proof [Proof of Lemma 11] Note that we work with the `1 topology, and hence have to modify
the proof in Lemma 4. The `1 topology makes the mapping p 7→ p̂ continuous (when Ω1 is
equipped with the induced `1 topology). Fix F ∈ Cb(Ω). By (18) we have

KH
βm,βs

F (p) = βm

∑
i6=j

p̂ip̂jF (Mijp) + βs

∑
i

(p̂i)
2
∫ 1

0
F (Su

i p) du

+
(
1 − βm + (βm − βs)|p̂| 22

)
F (p)

= βmK1(p) + βsK2(p) + K3(p). (19)
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Note that for l = 1, 2 , Kl(p) is of the form 〈Tl(p)p̂, p̂ 〉, with Tl(·) ∈ C (Ω;L(`1, `∞)), and 〈·, ·〉
denoting the standard duality pairing. In stating this we have used the facts that F is continuous
and bounded, and that all the mappings Mij and Su

i are contractive.

The continuity of Kl, l = 1, 2 , then follows from

〈Tl(q)q̂, q̂ 〉 − 〈Tl(p)p̂, p̂ 〉 = 〈Tl(q)q̂, q̂ − p̂ 〉 + 〈(Tl(q) − Tl(p)) q̂, p̂ 〉 + 〈Tl(p)(q̂ − p̂), p̂ 〉
after observing that |q̂| and ‖Tl(q)‖ remain bounded in any `1 neighborhoods of p.

The continuity of K3 is obvious being the product of two continuous functions of p. It has thus
been shown that KH

βm,βs
F ∈ C(Ω). �

Theorem 12 The Poisson-Dirichlet measure µ̂θ ∈ M1(Ω1) is reversing for Kσ,βm,βs with σ =
U(0, 1/2].

Proof By Lemma 10 it suffices to verify that µθ ∈ M1(Ω) is reversing for the kernel KH
βm,βs

,
which for simplicity will be denoted by K for the rest of this proof.

We thus need to show that

Eθ(GKF ) = Eθ(F KG) for all F,G ∈ B(Ω). (20)

Because µθ ◦M−1
ij and µθ ◦ (Su

i )−1 are absolutely continuous with respect to µθ, it follows from
(19) that if F, {Fn}n are uniformly bounded functions such that

∫ |Fn−F |µθ(dp) →n→∞ 0, then∫ |KFn −KF |µθ(dp) →n→∞ 0. Thus, by standard density arguments we may and shall assume
F and G to be continuous.

Define for each ε > 0 the truncated intensity measure νε
θ ≡ 1(ε,∞)νθ, and the corresponding

Poisson measure µε
θ, with expectation operator Eε

θ . Alternatively, if X is distributed in Ω
according the µθ, then µε

θ is the distribution of T εX := (Xi1Xi>ε)i, that is, µε
θ = µθ ◦ (T ε)−1.

Observe that ∀δ > 0,

µθ(|T εX − X| > δ) ≤ δ−1 Eθ|T εX − X| = δ−1 Eθ

∑
pi<ε

pi = δ−1

∫ ε

0
x νθ(dx) ε→0−→ 0 ,

implying that the measures µε
θ converge weakly to µθ as ε → 0.

To prove (20) we first write

|Eθ(GKF ) − Eθ(F KG)| ≤ |Eε
θ(GKF ) − Eθ(GKF )| + |Eε

θ(GKF ) − Eε
θ(F KG)|

+ |Eε
θ(F KG) − Eθ(F KG)| (21)

and conclude that the first and third terms in (21) converge to 0 as ε → 0 by virtue of the weak
convergence of µε

θ to µθ and K’s Feller property, established in Lemma 11. It thus remains to
be shown that, for all F,G ∈ B(Ω) and ε > 0,

lim
ε→0

|Eε
θ(GKF ) − Eε

θ(F KG)| = 0. (22)

The truncated intensity νε
θ has finite mass V ε

θ = θ
∫∞
ε x−1e−x dx, and thus N(R+) < ∞,

µε
θ–a.s. In particular each F ∈ B(Ω) can be naturally represented as a sequence (Fn)∞n=0 of
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symmetric Fn’s ∈ B
(
Rn

+

)
, with ‖Fn‖∞ ≤ ‖F‖∞ for each n. As a result, and in terms of the

expectation operators Eε
θ,n of µε

θ conditioned on {N(R+) = n}, we may write

Eε
θ(GKF ) − Eε

θ(F KG) = e−V ε
θ

∞∑
n=1

(V ε
θ )n

n!

[
Eε

θ,n(GKF ) − Eε
θ,n(F KG)

]
, (23)

while by the definition (18) of KH
βm,βs

and the properties stated above of the Poisson random
measure conditioned on {N(R+) = n},

(V ε
θ )n

n!
Eε

θ,n(GKF ) =

βmθn

n!

n∑
i,j=1

i6=j

∫ ∞

ε
· · ·
∫ ∞

ε
x̂i x̂jFn−1(Mijx)Gn(x)e−|x| dx1

x1
. . .

dxn

xn

+
βsθ

n

n!

n∑
i=1

∫ ∞

ε
· · ·
∫ ∞

ε
x̂2

i

(∫ 1

0
Fn+1(Su

i x)Gn(x) du

)
e−|x| dx1

x1
. . .

dxn

xn

+
θn

n!

∫ ∞

ε
· · ·
∫ ∞

ε

(
1 − βm + (βm − βs)

n∑
i=1

x̂ 2
i

)
Fn(x)Gn(x) e−|x| dx1

x1
. . .

dxn

xn

=: I(1)
n (F,G) + I(2)

n (F,G) + I(3)
n (F,G) , (24)

where x = (x1, . . . , xn). Our goal is to prove that this expression, after summing in n, is roughly
symmetric in F and G (as stated precisely in (22)). Obviously I

(3)
n (F,G) = I

(3)
n (G,F ), and in

addition we aim at showing that I
(2)
n−1(G,F ) ≈ I

(1)
n (F,G) (with an error appropriately small as

ε → 0). This will be achieved by a simple change of variables, including the splitting coordinate
u in I(2).

In the integral of the i–th term in I
(2)
n−1(G,F ) perform the change of variables

(u, x1, . . . , xn−1) → (y1, . . . , yn) given by y = Su
i x (or (u,x) = ( yi

y0+yi
,Mi ny)).

More precisely,


yi = uxi

yj = xj, j 6= i
yn = (1 − u)xi

for which |y| = |x| and dy1 . . . dyn = xi du dx1 . . . dxn−1, so that

I
(2)
n−1(G,F ) =

=
βsθ

n−1

(n − 1)!

n−1∑
i=1

∫ ∞

ε
· · ·
∫ ∞

ε
Gn(y)Fn−1(Mi ny)

e−|y|dy1 . . . dyn

|y|2 y1 . . . y̆i . . . yn−1
+ Cε

n

(Cε
n is as the term preceding it but with the dyi and dyn integrals taken in [0, ε], and the notation

y̆i means that the variable yi has been eliminated from the denominator)

=
βsθ

n−1

(n − 2)!

∫ ∞

ε
· · ·
∫ ∞

ε
Gn(y)Fn−1(M1 ny)

e−|y|dy1 . . . dyn

|y|2 y2 . . . yn−1
+ Cε

n (25)
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(by Fn−1’s symmetry, the sum’s (n − 1) terms are equal, hence the last equality).

On the other hand, and for the same reason of symmetry, the n(n − 1) terms in I
(1)
n (F,G) are

all equal so that

I(1)
n (F,G) =

βmθn

(n − 2)!

∫ ∞

ε
. . .

∫ ∞

ε
Fn−1(M1 2x)Gn(x)

e−|x| dx1 . . . dxn

|x|2 x3 . . . xn
. (26)

Comparing (25) with (26), and observing that by definition βmθ = βs, we conclude that there
exists a C > 0 such that, for n ≥ 2,

|Cε
n| :=

∣∣∣I(2)
n−1(G,F ) − I(1)

n (F,G)
∣∣∣

≤ ‖F‖∞‖G‖∞βsθ

(n − 2)!

∫ ε

0

∫ ε

0
dy1 dyn

1
((n − 2)ε)2

(
θ

∫ ∞

ε

e−y

y
dy

)n−2

≤ C
(V ε

θ )n−2

(n − 1)!
(27)

Applying (27) via (24) in (23) twice, once as written and once reversing the roles of F and G,
and noting that I

(1)
1 (F,G) = I

(1)
1 (G,F ) = 0, we have

|Eε
θ(GKF ) − Eε

θ(F KG)|

≤ e−V ε
θ

( ∞∑
n=2

∣∣∣I(2)
n−1(G,F ) − I(1)

n (F,G)
∣∣∣ + ∞∑

n=2

∣∣∣I(2)
n−1(F,G) − I(1)

n (G,F )
∣∣∣)

≤ 2Ce−V ε
θ

∞∑
n=2

(V ε
θ )n−2

(n − 1)!
≤ 2C

V ε
θ

from which (22) follows immediately since V ε
θ →ε→0 ∞. �

Proof of Theorem 3 (a) The Poisson-Dirichlet law µ = µ̂θ is reversing by Theorem 12, and
hence invariant. We now show that it belongs to A. Note first that µk is absolutely continuous
with respect to lebk: for any D ⊂ Ωk

< with lebk(D) = 0, it holds that

µk(D) ≤
∫
R+

νθ

[
∃ j ∈ N

k
6= : (Xj1 , . . . ,Xjk

) ∈ xD
]
dγθ(x) = 0 ,

where we used the fact that under µθ, π(X) = X/|X| and |X| are independent, with |X| being
distributed according to the Gamma law γθ(dx) of density 1x≥0x

θ−1e−x/Γ(θ) (see [9]). It thus
suffices to compute the limit

pk(x1, . . . , xk) := lim
δ→0

Eµ̂θ

[
#
{
j ∈ N

k
6= : pji ∈ (xi, xi + δ) , i = 1, . . . , k

}]
δk

,
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where all xi are pairwise distinct and nonzero, to have

mk(x1, . . . , xk) = pk(x1, . . . , xk)
k∏

i=1

xi .

For such x1, . . . , xk, set Iδ
i = (xi, xi + δ) and Iδ = ∪k

i=1I
δ
i . Define

Lδ
X :=

∑
i

Xi1{Xi 6∈Iδ} , N δ
xi

= #{j : Xj ∈ Iδ
i } .

By the memoryless property of the Poisson process, for any Borel subset A ⊂ R,

lim
δ→0

P (Lδ
X ∈ A |N δ

xi
, i = 1, . . . , k) = P (|X| ∈ A) = γθ(A) , (28)

where (28), as above, is due to [9]. Further, recall that N and (X̂i)i are independent. Recall that
the density of the Poisson process at (y1, . . . , yk) is θke−|y|/

∏k
i=1 yi, where |y| = y1 + . . . + yk.

Performing the change of variables yi/(z + |y|) = xi, one finds that the Jacobian of this change
of coordinate is (z + |y|)k/(1 − |x|) (in computing this Jacobian, it is useful to first make the
change of coordinates (y1, . . . , yk−1, |y|) 7→ (x̄1, . . . , x̄k−1, |x̄|) where |y|, |x̄| are considered as
independent coordinates, and note the block-diagonal structure of the Jacobian). It follows that

mk(x1, . . . , xk) =
θk

(1 − |x|)
∫ ∞

0
exp (−z|x|/(1 − |x|)) γθ(dz) = θk(1 − |x|)θ−1,

which is real analytic on {x ∈ R
k : |x| < 1}. Thus, µ̂θ ∈ A. In passing, we note that mk(·) = 1

on Ω̄k
< when θ = 1.

(b) 1) First we show that the family of functions (mk)k≥1 associated with µ, determines µ. To
this end, define for j ∈ N

k (k ∈ N) functions gj, ĝj : Ω1 → [0, 1] by

gj(p) :=
∑
i∈Nk

6=

k∏
`=1

pj`
i`

and ĝj(p) :=
k∏

`=1

Zj`
(p) where Zj(p) :=

∑
i

pj
i .

Note that any function ĝj with j ∈ N
k can be written after expansion of the product as a (finite)

linear combination of functions gh with h ∈ N
n , n ≥ 1. Since we have by the definition of µk

that ∫
gj dµ =

∫
Ω̄k

<

k∏
`=1

xj`−1
` dµk(x) =

∫
Ω̄k

<

mk(x)
k∏

`=1

xj`−1
` dx , (29)

the family (mk)k≥1 therefore determines the expectations
∫

ĝj dµ (j ∈ N
k , k ≥ 1). Consequently,

(mk)k≥1 determines also the joint laws of the random variables (Z1, . . . , Zk), k ≥ 1, under
µ. We claim that these laws characterize µ. Indeed, let µ̄ be the distribution of the random
variable π := (Zn)n≥0 : Ω1 → [0, 1]N under µ. Since π is injective it suffices to show that
the distributions of (Z1, . . . , Zk), k ≥ 1, under µ determine µ̄. But, since any continuous test
function F on the compact space [0, 1]N can be uniformly approximated by the local function
Fk((xn)n≥1) := F (x1, . . . , xk, 0, . . .), this is true due to∫

F dµ̄ = lim
k→∞

∫
Fk dµ̄ = lim

k→∞

∫
Fk(Z1, . . . , Zk, 0, . . .) dµ.
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2) For µ ∈ A, the set of numbers

m
(n)
k := m

(n)
k (x1, . . . , xk)

∣∣∣
0,0,...,0

:=
∂nmk

∂xn1
1 · · · ∂xnk

k

∣∣∣
0,0,...,0

(30)

with k ≥ 1 and n1 ≥ n2 ≥ . . . ≥ nk ≥ 0 are enough to characterize (mk)k, and hence by the
first part of the proof of b), to characterize µ. It is thus enough to prove that Kβm,βs uniquely
determines these numbers. Toward this end, first note that∫ 1

0
m1(x) dx = µ1[[0, 1)] = 1. (31)

To simplify notations, we define m0 ≡ 1 and extend mk to a function on [0, 1]k by setting it 0
on the complement of Ω̄k

<. For k ≥ 1 we have

∫ 1

0
mk(x1, . . . , xk)dx1 =

(
1 −

k∑
i=2

xi

)
mk−1(x2, . . . , xk). (32)

Indeed, for k = 1 this is (31) while for k ≥ 2, and arbitrary B ∈ BΩ̄k−1
<

,

∫
B

∫ 1

0
mk(x1, x2, . . . , xk) dx1 dx2 . . . dxk = µk[[0, 1] × B]

= Eµ

[ ∑
(j2,...,jk)∈Nk−1

6=

(
k∏

i=2

pji

)
1B(pj2 , . . . , pjk

)
∑

j1 /∈{j2,...,jk}
pj11[0,1](pj1)

]

=
∫

1B(p2, . . . , pk)

(
1 −

k∑
i=2

pi

)
dµk−1

=
∫

B

(
1 −

k∑
i=2

xi

)
mk−1(x2, . . . , xk) dx2 . . . dxk,

which implies (32). Now we fix k ≥ 1, apply Kβm,βs to the test function #{j ∈ N
k
6= : pji ∈

(xi, xi + δ) , i = 1, . . . , k}δ−k , with (x1, . . . , xk) ∈ Ωk
< having pairwise distinct coordinates, and

take δ ↘ 0, which yields the basic relation

βm

k∑
i=1

∫ xi

0
z(xi − z)pk+1(x1, . . . , xi−1, z, xi − z, xi+1, . . . , xk)dz

+2βs

k∑
i=1

∫ 1

xi

zpk(x1, . . . , xi−1, z, xi+1, . . . , xk)dz

= 2βm

(
k∑

i=1

xi

)
pk(x1, . . . , xk) + (βs − βm)

(
k∑

i=1

x2
i

)
pk(x1, . . . , xk)

−βm

(
k∑

i=1

xi

)2

pk(x1, . . . , xk) .
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Here the left hand side represents mergings and splittings that produce a new part roughly at
one of the xi-s; the right hand side represents parts near one of the xi-s that merge or split.
After multiplying by x1 · · · xk, rearranging and using (32) to get rid of the integral with upper
limit 1, we obtain the equality

βm

k∑
i=1

xi

∫ xi

0
mk+1(x1, . . . , xi−1, z, xi − z, xi+1, . . . , xk)dz (33)

−2βs

k∑
i=1

xi

∫ xi

0
mk(x1, . . . , xi−1, z, xi+1, . . . , xk)dz (34)

+2βs

k∑
i=1

ximk−1(x1, . . . , xi−1, xi+1, . . . , xk) (35)

−2βs

k∑
i=1

k∑
j=1,j 6=i

xixjmk−1(x1, . . . , xi−1, xi+1, . . . , xk) (36)

= 2βm

(
k∑

i=1

xi

)
mk(x1, . . . , xk) + (βs − 2βm)

(
k∑

i=1

x2
i

)
mk(x1, . . . , xk) (37)

−βm

k∑
i=1

k∑
j=1,j 6=i

xixjmk(x1, . . . , xk) . (38)

We now proceed to show how (33) – (38) yield all the required information. As starting point
for a recursion, we show how to compute mk(0, . . . , 0) for all k ≥ 1. Taking in (33) – (38) all
xi → 0 except for x1 and using the continuity of the functions mk yields

βm

∫ x1

0
mk+1(z, x1 − z, 0, . . . , 0)dz − 2βs

∫ x1

0
mk(z, 0, . . . , 0)dz

+2βsmk−1(0, . . . , 0)
= 2βmmk(x1, 0, . . . , 0) + (βs − 2βm)x1mk(x1, 0, . . . , 0) .

Letting x1 → 0 we get βmmk(0, . . . , 0) = βsmk−1(0, . . . , 0). With m0 = 1 as start of the recursion
this implies

mk(0, . . . , 0) = θk (k ≥ 0). (39)

For the evaluation of the derivatives of mk we proceed inductively. Recall the functions
m

(n)
k (x1, . . . , xk) defined in (30), and write m

(n1,n2,...,nj)
k , j < k, for m

(n1,n2,...,nj ,0...,0)
k . Fix n

such that n1 ≥ n2 ≥ . . . ≥ nk, with n1 ≥ 2. Our analysis rests upon differentiating (33) – (38)
n1 times with respect to x1; to make this differentiation easy, call a term a G term of degree `
if it is a linear combination of terms of the form

x1

∫ x1

0
m

(`+1)
k+1 (z, x1 − z, x2, . . . , xk)dz

and ∫ x1

0
m

(`)
k+1(z, x1 − z, x2, . . . , xk)dz
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and
m

(`−1)
k+1 (x1, 0, x2, . . . , xk)

and
x1m

(`)
k+1(x1, 0, x2, . . . , xk) .

Note that (33) – (38) contains one G term of degree −1 in (33) and that differentiating a G
term of degree ` once yields a G term of degree ` + 1. Thus, differentiating the G term in (33)
n1 ≥ 2 times and substituting x1 = 0, we recover a constant multiple of m

(n1−2)
k+1 (0, x2, . . . , xk, 0).

Similarly, call a term an H term of degree ` if it is a linear combination of terms of the form

m
(`)
k (x1, . . . , xk) and x1m

(`+1)
k (x1, . . . , xk) and x2

1m
(`+2)
k (x1, . . . , xk).

Observe, that differentiating an H term of degree ` produces an H term of degree ` + 1. If
we differentiate twice the term x1

∫ x1

0 mk(z, x2, . . . , xk)dz in (34) we get an H term of degree
0. Therefore differentiating this term n1 ≥ 2 times results in an H term of degree n1 − 2.
Since the term x2

1mk(x1, . . . , xk) in (37) is an H term of degree -2, differentiating this term
n1 times produces also an H term of degree n1 − 2. Thus both terms produce after n1-fold
differentiation and evaluation at x1 = 0 a constant multiple of m

(n1−2)
k (0, x2, . . . , xk). The H

term x1mk(x1, . . . , xk) in (37) is treated more carefully. It is easy to see by induction that its
n1-th derivative equals n1m

(n1−1)
k (x1, . . . , xk) + x1m

(n1)
k (x1, . . . , xk). Evaluating it at x1 = 0

gives n1m
(n1−1)
k (0, x2, . . . , xk).

Moreover, the terms in (35) and (36) for i = 1 vanish when differentiated twice with respect to
x1, while the term in (38), when differentiated with respect to x1 n1 ≥ 2 times, and substituting
x1 = 0, produces terms of the form (

∑k
j=2 xj)m

(n1−1)
k (0, x2, . . . , xk).

Summarizing the above, we conclude by differentiating (33) – (38) n1 ≥ 2 times with respect to
x1 and subsequent evaluation at x1 = 0 that there are some constants Ci(n1), such that
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2βmn1m
(n1−1)
k (0, x2, . . . , xk) [(37a), i = 1]

= C1m
(n1−2)
k+1 (0, x2, . . . , xk, 0) [(33), i = 1]

+C2m
(n1−2)
k (0, x2, . . . , xk) [(37b), i = 1 + (34), i = 1]

+C3

(
k∑

i=2

xi

)
m

(n1−1)
k (0, x2, . . . , xk) [(38)]

−
[
2βm

(
k∑

i=2

xi

)
+ (2βm − βs)

(
k∑

i=2

x2
i

)]
m

(n1)
k (0, x2, . . . , xk) [(37)]

+βm

k∑
i=2

xi

∫ xi

0
m

(n1)
k+1(0, x2, . . . , xi−1, z, xi − z, xi+1, . . . , xk)dz [(33)]

−2βs

k∑
i=2

xi

∫ xi

0
m

(n1)
k (0, x2, . . . , xi−1, z, xi+1, . . . , xk)dz [(34)]

+2βs

k∑
i=2

xim
(n1)
k−1(0, x2, . . . , xi−1, xi+1, . . . , xk) [(35)]

−2βsn1

k∑
i=2

xim
(n1−1)
k−1 (0, x2, . . . , xi−1, xi+1, . . . , xk) [(36), j = 1]

−2βs

k∑
i=2

k∑
j=2,j 6=i

xixjm
(n1)
k−1(x1, . . . , xi−1, xi+1, . . . , xk) [(36)]

+βm

k∑
i=2

k∑
j=2,j 6=i

xixjm
(n1)
k (0, x2, . . . , xk) [(38)]

For x2 = . . . = xk = 0 only the first three lines do not vanish and give a recursion which allows
us to compute starting at (39) all derivatives m

(n)
k (0, . . . , 0) (n ≥ 0).

Further differentiating with respect to x2, . . . , xk, one concludes that there exist constants Di
n,n′

such that

2βmn1m
(n1−1,n2,...,nk)
k =

∑
n′:|n′|≤|n|−2,n′

i≤ni,n′
1<n1

[D1
n,n′m

(n′)
k + D2

n,n′m
(n′,0)
k+1 + D3

n,n′m
(n′)
k−1]

+
∑

n′:|n′|≤|n|−1,n′
i≤ni,n1=n′

1

[D4
n,n′m

(n′)
k + D5

n,n′m
(n′,0)
k+1 + D6

n,n′m
(n′)
k−1] . (40)

We now compute iteratively any of the m
(n)
k , with n1 ≥ n2 ≥ . . . ≥ nk: first, substitute in

(40) n1 = n + 1, n2 = 1 to compute m
(n,1)
k , for all n, k. Then, substitute n1 = n + 1, n2 = j

(j ≤ n) to compute iteratively m
(n,j)
k from the knowledge of the family (m(`,j′)

k )k,`,j′<j , etc.

More generally, having computed the terms (m(n1,n2,...,nj)
k )j≤j0<k, we compute first m

(n1,...,nj0
,1)

k

by substituting in (40) n = (n1 + 1, n2, . . . , nj0, 1), and then proceed inductively as above. �
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6 Concluding remarks

1) We of course conjecture (as did A. Vershik) the

Conjecture 13 Part b) of Theorem 3 continues to hold true without the assumption µ ∈ A.

We note that recently, [16] provided a further indication that Conjecture 13 may be valid, by
proving that when θ = 1, and one initiates the basic chain with the state (1, 0, 0, . . .), then the
state of the chain sampled at a random, independent Binomial(n, 1/2) time, converges in law to
the Poisson-Dirichlet law of parameter 1.

It is tempting to use the technique leading to (3) in order to prove the conjecture by charac-
terizing the expectations with respect to µ of suitable test functions. One possible way to do
that is to consider a family of polynomials defined as follows. Let n = (n2, n3, . . . , nd) be a
finite sequence of nonnegative integers, with nd ≥ 1. We set |n| =

∑d
j=2 jnj, i.e. we consider n

as representing a partition of |n| having nj parts of size j, and no parts of size 1. Recall next
Zj = Zj(p) =

∑
i p

j
i and the n-polynomial

Pn(p) =
d∏

j=2

Z
nj

j : Ω1 → R .

|n| is the degree of Pn, and, with n and d as above, d is the maximal monomial degree of Pn.
Because we do not allow partitions with parts of size 1, it holds that Pn 6= Pn′ if n 6= n′ (i.e, there
exists a point p ∈ Ω1 such that Pn(p) 6= Pn′(p)). It is easy to check that the family of polynomials
{Pn} is separating for M1(Ω). Letting ∆n denote the expected increment (conditioned on p) of
Pn after one step of the process, we have that ∆n is uniformly bounded. Hence, by invariance
of µ,

∫
∆ndµ = 0. Expanding this equality, we get that

βm

βs
Eµ

∑
α,β

pαpβ

d∑
k=2

k−1∏
j=2

(Zq
j,α,β)nj

(nk−1∑
`=0

(Zk)`
(

nk

`

)
qnk−`
α,β,k

) d∏
j=k+1

Zj

 =

−Eµ

∑
α

p2
α

d∑
k=2

∫k−1∏
j=2

(
Zf

j,α,x

)nj

(nk−1∑
`=0

Z`
k

(
nk

`

)
fnk−`

α,k,x

) d∏
j=k+1

Z
nj

j

dσ(x)


+

βm

βs
Eµ

∑
α

p2
α

d∑
k=2

k−1∏
j=2

(
Zj + (2j − 2)pj

α

)nj


(

nk−1∑
`=0

Z`
k

(
nk

`

)(
(2k − 2)pk

α

)nk−`
) d∏

j=k+1

Z
nj

j

 (41)

where
qα,β,j = (pα + pβ)j − pj

α − pj
β ≥ 0, fα,j,x = [xj + (1 − x)j − 1]pj

α ≤ 0 ,

Zq
j,α,β = Zj + qα,β,j , Zq

j,α,x = Zj + fα,j,x.

Note that all terms in (41) are positive. Note also that the right hand side of (41) is a polynomial
of degree |n|+2, with maximal monomial degree d+2, whereas the left hand side is a polynomial
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of degree at most |n| + 2 and maximal monomial degree at most d. Let π(k) denote the
number of integer partitions of k which do not have parts of size 1. Then, there are π(k)
distinct polynomials of degree k, whereas (41) provides at most π(k − 2) relations between
their expected values (involving possibly the expected value of lower order polynomials). Since
always π(k) > π(k−2), it does not seem possible to characterize an invariant probability measure
µ ∈ M1(Ω1) using only these algebraic relations.

2) With a lesser degree of confidence we conjecture

Conjecture 14 For any σ ∈ M1((0, 1/2]) and any βm, βs ∈ (0, 1] there exists exactly one
Kσ,βm,βs-invariant probability measure µ ∈ M1(Ω1).

3) We have not been able to resolve whether the state p̄ = (1, 0, 0, . . .) is transient or null-
recurrent for Kσ,1,1 with σ = U(0, 1/2].

4) There is much literature concerning coagulation-fragmentation processes. Most of the recent
probabilistic literature deals with processes which exhibit either pure fragmentation or pure
coagulation. For an extensive review, see [1], and a sample of more recent references is [2],
[4] and [6]. Some recent results on coagulation-fragmentation processes are contained in [8].
However, the starting point for this and previous studies are the coagulation-fragmentation
equations, and it is not clear how to relate those to our model. The functions mk introduced in
the context of Theorem 3 are related to these equations.

5) A characterization of the Poisson-Dirichlet process as the unique measure coming from an
i.i.d. residual allocation model which is invariant under a split and merge transformation is
given in [7]. J. Pitman has pointed out to us that a slight modification of this transformation,
preceded by a size biased permutation and followed by ranking, is equivalent to our Markov
transition Kσ,βm,βs. Pitman [13] then used this observation to give an alternative proof of part
(a) of Theorem 3.

6) Yet another proof of part a) of Theorem 3 which avoids the Poisson representation and
Theorem 12 can be obtained by computing the expectation of the polynomials Pn(p), defined in
remark 1) above, under the Poisson-Dirichlet law. We prefer the current proof as it yields more
information and is more transparent.

7) A natural extension of Poisson-Dirichlet measures are the two parameter Poisson-Dirichlet
measures, see e.g. [14]. Pitman raised the question, which we have not addressed, of whether
there are splitting measures σ which would lead to invariant measures from this family.

8) While according to Theorem 3 there is a reversing probability measure for σ = U(0, 1/2] this
does not hold for general σ ∈ M1((0, 1/2]). For instance, let us assume that the support of σ
is finite. Then there exist 0 < a < b ≤ 1/2 such that σ[(a, b)] = 0. To show that any invariant
measure µ is not reversing it suffices to find s, t ∈ Ω1 such that the detailed balance equation

µ[{s}]Kσ,βm,βs(s, {t}) = µ[{t}]Kσ,βm,βs(t, {s}) (42)

fails. Due to Theorem 8, µ[{p̄}] > 0. Now we first refine the partition p̄ by successive splits until
we reach a state p ∈ Ω1 with p1 < ε, where ε > 0 is a small number. Since µ has finite support,
µ[{p}] > 0. Then we create from p by successive mergings some s ∈ Ω1 with a < s2/s1 < b,
which is possible if ε was chosen small enough. Again, µ[{s}] > 0. If we call now t the state
which one gets from s by merging s1 and s2, then the left hand side of (42) is positive. On the
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other hand, the right hand side of (42) is zero because of K(t, {s}) = 0 due to the choice of a
and b.
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