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The Symbol Associated with the Solution of a Stochastic
Differential Equation∗

René L. Schilling† and Alexander Schnurr††

Abstract

Let (Zt)t¾0 be an Rn-valued Lévy process. We consider stochastic differential equations of the
form

dX x
t = Φ(X

x
t−) dZt

X x
0 = x , x ∈Rd ,

where Φ : Rd → Rd×n is Lipschitz continuous. We show that the infinitesimal generator of the
solution process (X x

t )t¾0 is a pseudo-differential operator whose symbol p : Rd ×Rd → C can
be calculated by

p(x ,ξ) :=− lim
t↓0
Ex

 

ei(Xσt −x)>ξ − 1

t

!

.

For a large class of Feller processes many properties of the sample paths can be derived by
analysing the symbol. It turns out that the process (X x

t )t¾0 is a Feller process if Φ is bounded
and that the symbol is of the form p(x ,ξ) =ψ(Φ>(x)ξ), where ψ is the characteristic exponent
of the driving Lévy process.
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1 Introduction

Within the last ten years a rich theory concerning the relationship between Feller processes and their
so called symbols which appear in the Fourier representation of their generator has been developed,
see for example the monographs [15; 16; 17] by Jacob or the fundamental contributions by Hoh
[9; 10; 11] and Kaßmann [20]; see also [5] and [14] for a survey. In this paper we establish a
stochastic formula to calculate the symbol of a class of Markov processes which we then apply to the
solutions of certain stochastic differential equations (SDEs). If the coefficient of the SDE is bounded,
the solution turns out to be a Feller process. As there are different conventions in defining this class
of processes in the literature, let us first fix some terminology: consider a time homogeneous Markov
process (Ω,F, (Ft)t¾0, (X t)t¾0,Px)x∈Rd with state spaceRd ; we will always assume that the process
is normal, i.e. Px(X0 = x) = 1. As usual, we can associate with a Markov process a semigroup
(Tt)t¾0 of operators on Bb(Rd) by setting

Ttu(x) := Exu(X t), t ¾ 0, x ∈Rd .

Denote by C∞ = C∞(Rd ,R) the space of all functions u :Rd →R which are continuous and vanish
at infinity, lim|x |→∞ u(x) = 0; then (C∞,‖·‖∞) is a Banach space and Tt is for every t a contractive,
positivity preserving and sub-Markovian operator on Bb(Rd). We call (Tt)t¾0 a Feller semigroup
and (X t)t¾0 a Feller process if the following conditions are satisfied:

(F1) Tt : C∞→ C∞ for every t ¾ 0,

(F2) limt↓0


Ttu− u




∞ = 0 for every u ∈ C∞.

The generator (A, D(A)) is the closed operator given by

Au := lim
t↓0

Ttu− u

t
for u ∈ D(A) (1)

where the domain D(A) consists of all u ∈ C∞ for which the limit (1) exists uniformly. Often we
have to assume that D(A) contains sufficiently many functions. This is, for example the case, if

C∞c ⊂ D(A). (R)

A classical result due to Ph. Courrège [7] shows that, if (R) is fulfilled, A|C∞c is a pseudo differential
operator with symbol −p(x ,ξ), i.e. A can be written as

Au(x) =−
∫

Rd

ei x>ξp(x ,ξ)bu(ξ) dξ, u ∈ C∞c (2)

where bu(ξ) = (2π)−d
∫

e−i y>ξu(y)d y denotes the Fourier transform and p :Rd ×Rd → C is locally
bounded and, for fixed x , a continuous negative definite function in the sense of Schoenberg in the
co-variable ξ. This means it admits a Lévy-Khintchine representation

p(x ,ξ) =−i`>(x)ξ+
1

2
ξ>Q(x)ξ−

∫

y 6=0

�

eiξ> y − 1− iξ> y ·1{|y|<1}(y)
�

N(x , d y) (3)
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where for each x ∈ Rd (`(x),Q(x), N(x , d y)) is a Lévy triplet, i.e. `(x) = (`( j)(x))1¶ j¶d ∈ Rd ,
Q(x) = (q jk(x))1¶ j,k¶d is a symmetric positive semidefinite matrix and N(x , d y) is a measure on
Rd \ {0} such that

∫

y 6=0
(1 ∧ |y|2)N(x , d y) < ∞. The function p(x ,ξ) is called the symbol of the

operator. For details we refer to the treatise by Jacob [15; 16; 17].

Combining (2) and (3) the generator A of a Feller process satisfying condition (R) can be written in
the following way

Au(x) = `(x)>∇u(x) +
1

2

d
∑

j,k=1

q jk(x)∂ j∂ku(x)

+

∫

y 6=0

�

u(x + y)− u(x)− y>∇u(x) ·1B1(0)(y)
�

N(x , d y)

for u ∈ C∞c (R
d). This is called the integro-differential form of the operator.

An important subclass of Feller processes are Lévy processes. These are processes which have sta-
tionary and independent increments and which are stochastically continuous. For Lévy processes
(Zt)t¾0 it is well known that the characteristic function can be written in the following way

Ez
�

ei(Zt−z)>ξ
�

= E0
�

eiZ>t ξ
�

= e−tψ(ξ)

where ψ :Rd → C is a continuous negative definite function, i.e. it has a Lévy-Khintchine represen-
tation where the Lévy triplet (`,Q, N) does not depend on x .

This is closely connected to the following result. Every Lévy process (Zt)t¾0 with Lévy triplet
(`,Q, N) has the following Lévy-Itô decomposition

Zt = `t +ΣWt +

∫

[0,t]×{|y|<1}
y
�

µZ(ds, d y)− ds N(d y)
�

+
∑

0<s¶t

∆Zs1{|∆Zs|¾1} (4)

where ` ∈ Rd , Σ is the unique positive semidefinite square root of Q ∈ Rd×d , (Wt)t¾0 is a standard
Brownian motion, and µZ is the Poisson point measure given by the jumps of Z whose intensity
measure is the Lévy measure N . The second and third terms appearing in (4) are martingales,
while the other two terms are of finite variation on compacts. Therefore every Lévy process is a
semimartingale. Note that all four terms are independent.

The generator of a Lévy process is given by

Au(x) =−
∫

Rd

ei x>ξψ(ξ)bu(ξ) dξ, u ∈ C∞c , (5)

i.e. Lévy processes are exactly those Feller processes whose generator has ‘constant coefficients’.

Every Lévy process has a symbol (that is: a characteristic exponent) ψ; on the other hand, every ψ
and every Lévy triplet (`,Q, N) defines a Lévy process. For Feller processes the situation is different:
every Feller process satisfying (R) admits a symbol, but it is not known if every symbol of the form
(3) yields a process. See [14; 17] for a survey. On the other hand it is known that the symbol p(x ,ξ)
can be used to derive many properties of the associated process X .
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In this paper we prove a probabilistic formula for the symbol. We use this formula to calculate the
symbol of the solution of a Lévy driven SDE. Let us give a brief outline how the paper is organized:
in Section 2 we introduce the symbol of a Markov process. It turns out that the symbol which
is defined in a probabilistic way coincides with the analytic (in the sense of pseudo-differential
operators) symbol for the class of Feller processes which satisfy (R). The main result of the paper
can be found in Section 3, where we calculate the symbol of a Feller process, which is given as the
strong solution of a stochastic differential equation. In Section 4 we consider some extensions; these
comprise, in particular, the case

dX x = Φ(X x) dZt +Ψ(X
x) d t, X x

0 = x ,

which is often used in applications. We close by using the symbol of the process X x to investigate
some of its path properties.

2 The Symbol of a Markov Process

Definition 2.1. Let X be an Rd -valued Markov process, which is conservative and normal. Fix a
starting point x and define σ = σx

R to be the first exit time from the ball of radius R> 0:

σ := σx
R := inf

�

t ¾ 0 :


X x
t − x



> R
	

.

The function p :Rd ×Rd → C given by

p(x ,ξ) :=− lim
t↓0
Ex

 

ei(Xσt −x)>ξ− 1

t

!

(6)

is called the symbol of the process, if the limit exists for every x ,ξ ∈ Rd independently of the choice
of R> 0.

Remark 2.2. (a) In [30] the following is shown even for the larger class of Itô processes in the
sense of [6]: fix x ∈ Rd ; if the limit (6) exists for one R, then it exists for every R and the limit is
independent of R.

(b) For fixed x the function p(x ,ξ) is negative definite as a function of ξ. This can be shown as
follows: for every t > 0 the function ξ 7→ Ex ei(Xσt −x)>ξ is the characteristic function of the random
variable Xσt − x . Therefore it is a continuous positive definite function. By Corollary 3.6.10 of

[15] we conclude that ξ 7→ −(Ex ei(X>t −x)>ξ − 1) is a continuous negative definite function. Since
the negative definite functions are a cone which is closed under pointwise limits, (6) shows that
ξ 7→ p(x ,ξ) is negative definite. Note, however, that ξ 7→ p(x ,ξ) is not necessarily continuous.

If X is a Feller process satisfying (R) the symbol p(x ,ξ) is exactly the negative definite symbol which
appears in the pseudo differential representation of its generator (2). A posteriori this justifies the
name.

We need three technical lemmas. The first one is known as Dynkin’s formula. It follows from the
well known fact that

M [u]t := u(X t)− u(x)−
∫ t

0

Au(Xs) ds

is a martingale for every u ∈ D(A)with respect to everyPx , x ∈Rd , see e.g. [25] Proposition VII.1.6.
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Lemma 2.3. Let X be a Feller process and σ a stopping time. Then we have

Ex

∫ σ∧t

0

Au(Xs) ds = Exu(Xσ∧t)− u(x) (7)

for all t > 0 and u ∈ D(A).

Lemma 2.4. Let Y y be an R-valued process, starting a.s. in y, which is right continuous at zero and
bounded. Then we have

1

t
E

∫ t

0

Y y
s ds

t↓0
−→ y.

Proof. It is easy to see that
�

�

�

�

�

E

�

1

t

∫ t

0

(Y y
s − Y y

0 ) ds

�

�

�

�

�

�

¶ E
�

sup
0¶s¶t

�

�Y y
s − Y y

0

�

�

�

.

The result follows from the bounded convergence theorem.

Lemma 2.5. Let K ⊂ Rd be a compact set. Let χ : Rd → R be a smooth cut-off function, i.e.
χ ∈ C∞c (R

d) with
1B1(0)(y)¶ χ(y)¶ 1B2(0)(y)

for y ∈ Rd . Furthermore we define χ x
n (y) := χ((y − x)/n) and ux

n(y) := χ x
n (y)e

i y>ξ. Then we have
for all z ∈ K

�

�ux
n(z+ y)− ux

n(z)− y>∇ux
n(z)1B1(0)(y)

�

�¶ C ·
�

�

�y
�

�

2 ∧ 1
�

.

Proof. Fix a compact set K ⊂ Rd . An application of Taylor’s formula shows that there exists a
constant CK > 0 such that

�

�ux
n(z+ y)− ux

n(z)− y>∇un(z)1B1(0)(y)
�

�¶ CK

�

�

�y
�

�

2 ∧ 1
�
∑

|α|¶2



∂ αux
n





∞

uniformly for all z ∈ K . By the particular choice of the sequence (χ x
n )n∈N and Leibniz’ rule we obtain

that
∑

|α|¶2



∂ αux
n





∞ ¶
∑

|α|¶2



∂ αχ




∞ (1+ |ξ|
2), i.e. it is uniformly bounded for all n ∈N.

Theorem 2.6. Let X = (X t)t¾0 be a conservative Feller process satisfying condition (R). Then the
generator A|C∞c is a pseudo-differential operator with symbol −p(x ,ξ), cf. (2). Let

σ := σx
R := inf{s ¾ 0 :



Xs − x


> R}. (8)

If x 7→ p(x ,ξ) is continuous, then we have

lim
t↓0
Ex

 

ei(Xσt −x)>ξ− 1

t

!

=−p(x ,ξ),

i.e. the symbol of the process exists and coincides with the symbol of the generator.

1374



The assumption that x 7→ p(x ,ξ) is continuous is not a severe restriction. All non-pathological
known examples of Feller processes satisfy this condition. It is always fulfilled, if X has only bounded
jumps, cf. the discussion in [5].

Proof of Theorem 2.6. Let (χ x
n )n∈N be the sequence of cut-off functions of Lemma 2.5 and we write

eξ(x) := ei x>ξ for x ,ξ ∈ Rd . By the bounded convergence theorem and Dynkin’s formula (7) we
see

Ex
�

ei(Xσt −x)>ξ− 1
�

= lim
n→∞

�

Exχ x
n (X

σ
t )eξ(X

σ
t )e−ξ(x)− 1

�

= e−ξ(x) lim
n→∞

Ex�χ x
n (X

σ
t )eξ(X

σ
t )−χ

x
n (x)eξ(x)

�

= e−ξ(x) lim
n→∞

Ex

∫ σ∧t

0

A(χ x
n eξ)(Xs) ds

= e−ξ(x) lim
n→∞

Ex

∫ σ∧t

0

A(χ x
n eξ)(Xs−) ds.

The last equality follows since we are integrating with respect to Lebesgue measure and since a
càdlàg process has a.s. a countable number of jumps. Using Lemma 2.5 and the integro-differential
representation of the generator A it is not hard to see that for all z ∈ K := BR(x)

A(χneξ)(z)¶ cχ






|`(z)|+

1

2

d
∑

j,k=1

|q jk(z)|+
∫

y 6=0

(1∧ |y|2)N(z, d y)






(1+ |ξ|2)

¶ c′χ sup
z∈K

sup
|η|¶1
|p(z,η)|(1+ |ξ|2);

the last estimate follows with (some modifications of) techniques from [28] which we will, for the
readers’ convenience, work out in the Appendix. Being the symbol of a Feller process, p(x ,ξ) is
locally bounded (cf. [7] Théorème 3.4). By definition of the stopping time σ we know that for
all s ¶ σ ∧ t we have z = Xs− ∈ BR(x) = K . Therefore, the integrand A(χ x

n eξ)(Xs−), s ¶ σ ∧ t
appearing in the above integral is bounded and we may use the dominated convergence theorem to
interchange limit and integration. This yields

Ex
�

ei(Xσt −x)>ξ− 1
�

= e−ξ(x)E
x

∫ σ∧t

0

lim
n→∞

A(χ x
n eξ)(z)|z=Xs−

ds

=−e−ξ(x)E
x

∫ σ∧t

0

eξ(z)p(z,ξ)|z=Xs−
ds.

The second equality follows from [7] Sections 3.3 and 3.4. Therefore,

lim
t↓0

Ex
�

ei(Xσt −x)>ξ− 1
�

t
=−e−ξ(x) lim

t↓0
Ex

�

1

t

∫ t

0

eξ(X
σ
s−)p(X

σ
s−,ξ)1J0,σJ(s) ds

�

=−e−ξ(x) lim
t↓0
Ex

�

1

t

∫ t

0

eξ(X
σ
s )p(X

σ
s ,ξ)1J0,σJ(s) ds

�
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since we are integrating with respect to Lebesgue measure. The process Xσ is bounded on the
stochastic interval J0,σJ and x 7→ p(x ,ξ) is continuous for every ξ ∈ Rd . Thus, Lemma 2.4 is
applicable and gives

lim
t↓0

Ex
�

ei(Xσt −x)>ξ− 1
�

t
=−e−ξ(x)eξ(x)p(x ,ξ) =−p(x ,ξ).

Theorem 2.6 extends an earlier result from [27] where additional assumptions are needed for
p(x ,ξ). An extension to Itô processes is contained in [30].

3 Calculating the Symbol

Let Z = (Zt)t¾0 be an n-dimensional Lévy process starting at zero with symbol ψ and consider the
following SDE

dX x
t = Φ(X

x
t−) dZt (9)

X x
0 = x

where Φ : Rd → Rd×n is locally Lipschitz continuous and satisfies the following linear growth
condition: there exists a K > 0 such that for every x ∈Rd

|Φ(x)|2 ¶ K(1+ |x |2). (10)

Since Z takes values in Rn and the solution X x is Rd -valued, (9) is a shorthand for the system of
stochastic integral equations

X x ,( j) = x ( j)+
n
∑

k=1

∫

Φ(X−)
jk dZ (k), j = 1, . . . , d.

A minor technical difficulty arises if one takes the starting point into account and if all processes X x

should be defined on the same probability space. The original space (Ω,F, (Ft)t¾0,P) where the
driving Lévy process is defined is, in general, too small as a source of randomness for the solution
processes. We overcome this problem by enlarging the underlying stochastic basis as in [24], Section
5.6:

Ω :=Rd ×Ω, Px := εx ×P, x ∈Rd ,

F0
t :=Bd ⊗Ft Ft :=

⋂

u>t

F0
u

where εx denotes the Dirac measure in x . A random variable Z defined on Ω is considered to be
extended automatically to Ω by Z(ω) = Z(ω), for ω= (x ,ω).

It is well known that under the local Lipschitz and linear growth conditions imposed above, there
exists a unique conservative solution of the SDE (9), see e.g. [22] Theorem 34.7 and Corollary 35.3.

Theorem 3.1. The unique strong solution of the SDE (9) X x
t (ω) has the symbol p : Rd ×Rd → C

given by
p(x ,ξ) =ψ(Φ>(x)ξ)

where Φ is the coefficient of the SDE and ψ the symbol of the driving Lévy process.
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Proof. To keep notation simple, we give only the proof for d = n= 1. The multi-dimensional version
is proved along the same lines, the only complication being notational; a detailed account is given
in [30]. Let σ be the stopping time given by (8). Fix x ,ξ ∈ R. We apply Itô’s formula for jump
processes to the function eξ(· − x) = exp(i(· − x)ξ):

1

t
Ex�ei(Xσt −x)ξ− 1

�

=
1

t
Ex
�
∫ t

0+
iξ ei(Xσs−−x)ξ dXσs −

1

2

∫ t

0+
ξ2 ei(Xσs−−x)ξ d[Xσ, Xσ]cs

+ e−i xξ
∑

0<s¶t

�

eiXσs ξ− eiXσs−ξ− iξeiXσs−ξ∆Xσs
�

�

.

(11)

For the first term we get

1

t
Ex

∫ t

0+

�

iξ ei(Xσs−−x)ξ
�

dXσs

=
1

t
Ex

∫ t

0+

�

iξ ei(Xσs−−x)ξ
�

d

�
∫ s

0

Φ(X r−)1J0,σK(·, r) dZr

�

=
1

t
Ex

∫ t

0+

�

iξ ei(Xσs−−x)ξΦ(Xs−)1J0,σK(·, s)
�

dZs

=
1

t
Ex

∫ t

0+

�

iξ ei(Xσs−−x)ξΦ(Xs−)1J0,σK(·, s)
�

d(`s) (12)

+
1

t
Ex

∫ t

0+

�

iξ ei(Xσs−−x)ξΦ(Xs−)1J0,σK(·, s)
�

d

 

∑

0<r¶s

∆Zr1{|∆Zr |¾1}

!

(13)

where we have used the Lévy-Itô decomposition (4). Since the integrand is bounded, the martingale
terms of (4) yield martingales whose expected value is zero.

First we deal with (13) containing the big jumps. Adding this integral to the third expression on the
right-hand side of (11) we obtain

1

t
Ex

∑

0<s¶t

�

ei(Xσs−−x)ξ
�

eiΦ(Xs−)∆Zsξ− 1− iξΦ(Xs−)∆Zs1{|∆Xs|<1}

�

1J0,σK(·, s)
�

=
1

t
Ex

∫

]0,t]×R\{0}
Hx ,ξ(· ; s−, y)µX (· ; ds, d y)

=
1

t
Ex

∫

]0,t]×R\{0}
Hx ,ξ(· ; s−, y)ν(· ; ds, d y)

t↓0
−→

∫

R\{0}

�

eiΦ(x)yξ− 1− iξΦ(x)y1{|y|<1}

�

N(d y)

where we have used Lemma 2.4 and the shorthand

Hx ,ξ(ω; s, y) := ei(Xσs (ω)−x)ξ
�

eiΦ(Xs(ω))yξ− 1− iξΦ(Xs(ω))y1{|y|<1}

�

1J0,σK(ω, s).
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The calculation above uses some well known results about integration with respect to integer valued
random measures, see [12] Section II.3, which allow us to integrate ‘under the expectation’ with
respect to the compensating measure ν(· ; ds, d y) instead of the random measure itself. In the case
of a Lévy process the compensator is of the form ν(· ; ds, d y) = N(d y) ds, see [12] Example II.4.2.

For the drift part (12) we obtain

1

t
Ex

∫ t

0+

�

iξ · ei(Xσs−−x)ξΦ(Xs−)1J0,σK(·, s)`
�

ds

= iξ` ·Ex 1

t

∫ t

0

�

ei(Xσs −x)ξΦ(Xs)1J0,σJ(·, s)
�

ds
t↓0
−→ iξ`Φ(x)

where we have used Lemma 2.4 in a similar way as in the proof of Theorem 2.6.

We can deal with the second expression on the right-hand side of (11) in a similar way, once we
have worked out the square bracket of the process.

[Xσ, Xσ]ct = ([X , X ]ct)
σ =

�
h

∫ ·
0
Φ(X r−)dZr ,

∫ ·
0
Φ(X r−)dZr

ic

t

�σ

=

∫ t

0

Φ(Xs−)
21J0,σK(·, s) d[Z , Z]cs

=

∫ t

0

Φ(Xs−)
21J0,σK(·, s) d(Qs)

Now we can calculate the limit for the second term

1

2t
Ex

∫ t

0+

�

−ξ2 ei(Xσs−−x)ξ
�

d[Xσ, Xσ]cs

=
1

2t
Ex

∫ t

0+

�

−ξ2 ei(Xσs−−x)ξ
�

d

�
∫ s

0

(Φ(X r−))
21J0,σK(·, r)Q dr

�

=−
1

2
ξ2QEx

�

1

t

∫ t

0

�

ei(Xσs −x)ξΦ(Xs)
21J0,σJ(·, s)

�

ds

�

t↓0
−→−

1

2
ξ2QΦ(x)2.

In the end we obtain

p(x ,ξ) =−i`(Φ(x)ξ) +
1

2
(Φ(x)ξ)Q(Φ(x)ξ)

−
∫

y 6=0

�

ei(Φ(x)ξ)y − 1− i(Φ(x)ξ)y ·1{|y|<1}(y)
�

N(d y)

=ψ(Φ(x)ξ).

Note that in the multi-dimensional case the matrix Φ(x) has to be transposed, i.e. the symbol of the
solution is ψ(Φ>(x)ξ).
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Theorem 3.1 shows that it is possible to calculate the symbol, even if we do not know whether
the solution process is a Feller process. However, most of the interesting results concerning the
symbol of a process are restricted to Feller processes. Therefore it is interesting to have conditions
guaranteeing that the solution of (9) is a Feller process.

Theorem 3.2. Let Z be a d-dimensional Lévy processes such that Z0 = 0. Then the solution of (9) is a
strong Markov process under each Px . Furthermore the solution process is time homogeneous and the
transition semigroups coincide for every Px , x ∈Rd .

Proof. See Protter [24] Theorem V.32 and [23] Theorem (5.3). Note that Protter states the theo-
rem only for the special case where the components of the process are independent. However the
independence is not used in the proof.

Some lengthy calculations lead from Theorem 3.2 directly to the following result which can be found
in [1] Theorem 6.7.2 and, with an alternative proof, in [30] Theorem 2.49.

Corollary 3.3. If the coefficient Φ is bounded, the solution process X x
t of the SDE given by (9) is a Feller

process.

Remark 3.4. In [30] it is shown that if Φ is not bounded the solution of (9) may fail to be a Feller
process. Consider the stochastic integral equation

X t = x −
∫ t

0

Xs− dNs

where N = (Nt)t¾0 is a standard Poisson process. The solution process starts in x , stays there for an
exponentially distributed waiting time (which is independent of x) and then jumps to zero, where
it remains forever. There exists a time t0 > 0 for which Px(X t0

= x) = Px(X t0
= 0) = 1/2. For a

function u ∈ Cc(R) with the property u(0) = 1 we obtain

Ex(u(X t0
)) =

1

2
for every x /∈ suppu.

Therefore Tt0
u does not vanish at infinity.

Next we show that the solution of the SDE satisfies condition (R) if Φ is bounded.

Theorem 3.5. Let Φ be bounded and locally Lipschitz continuous. In this case the solution X x
t of the

SDE

X t = x +

∫ t

0

Φ(Xs−) dZs, x ∈Rd ,

fulfills condition (R), i.e. the test functions are contained in the domain D(A) of the generator A.

Proof. Again we only give the proof in dimension one. The multi-dimensional version is similar. Let
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u ∈ C∞c (R). By Itô’s formula we get

Dt :=
Exu(X t)− u(x)

t

=
1

t
Ex(u(X t)− u(x))

=
1

t
Ex
�
∫ t

0+
u′(Xs−) dXs +

1

2

∫ t

0+
u′′(Xs−) d[X , X ]cs

+
∑

0<s¶t

�

u(Xs)− u(Xs−)− u′(Xs−)∆Xs
�

�

.

Since X t = x +
∫ t

0
Φ(Xs−) dZs we obtain

Dt =
1

t
Ex
�
∫ t

0+
u′(Xs−)Φ(Xs−) dZs +

1

2

∫ t

0+
u′′(Xs−)Φ(Xs−)

2 d[Z , Z]cs

+

∫

y 6=0

∫ t

0

�

u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y
�

µZ(· ; ds, d y)
�

where µZ is the random measure given by the jumps of the Lévy process Z . Next we use the Lévy-Itô
decomposition Z in the first term. The expected value of the integral with respect to the martingale
part of Z is zero, since the integral

∫ t

0

u′(Xs−)Φ(Xs−) d

 

ΣWt +

∫

[0,t]×{|y|<1}
y
�

µZ(ds, d y)− ds N(d y)
�

!

is an L2-martingale. Therefore we obtain

Dt =
1

t
Ex

∫ t

0+
u′(Xs−)Φ(Xs−) d

 

`t +
∑

0<r¶s

∆Zr1{|∆Zr |¾1}

!

+
1

2

1

t
Ex

∫ t

0+
u′′(Xs−)Φ(Xs−) d(Σ

2s)

+
1

t
Ex

∫

y 6=0

∫ t

0

�

u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y
�

µZ(· ; ds, d y).

We write the jump part of the first term as an integral with respect to µZ and add it to the third
term. The integrand

H(· ; s, y) := u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y 1{|y|<1}

is in the class F1
p of Ikeda and Watanabe, [12] Section II.3, i.e. it is predictable and

E

 

∫ t

0

∫

y 6=0

�

�H(· ; s, y)
�

� ν(·, ds, d y)

!

<∞
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where ν denotes the compensator of µX . Indeed, the measurability criterion is fulfilled because of
the left-continuity of H(· ; s, ·), the integrability follows from

�

�u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y 1{|y|<1}

�

�

¶
�

�

�

�

u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y
	

1{|y|<1}

�

�

�+ 2‖u‖∞1{|y|¾1}

¶
1

2
y2Φ(Xs−)

2


u′′




∞1{|y|<1}+ 2‖u‖∞1{|y|¾1}

¶
�

2∨ ‖Φ‖2∞
��

y2 ∧ 1
��

‖u‖∞+


u′′




∞

�

where we used a Taylor expansion for the first term. Therefore H ∈ F1
p and we can, ‘under the ex-

pectation’, integrate with respect to the compensator of the random measure instead of the measure
itself, see [12] Section II.3. Thus,

Dt =
1

t
Ex

∫ t

0+
u′(Xs−)Φ(Xs−)` ds+

1

2t
Ex

∫ t

0+
u′′(Xs−)Φ(Xs−)Σ

2 ds

+
1

t
Ex

∫

y 6=0

∫ t

0

�

u(Xs−+Φ(Xs−)y)− u(Xs−)− u′(Xs−)Φ(Xs−)y1{|y|<1}

�

ds N(d y).

Since we are integrating with respect to Lebesgue measure and since the paths of a càdlàg process
have only countably many jumps we get

Dt =
1

t
Ex

∫ t

0

u′(Xs)Φ(Xs)` ds+
1

2t
Ex

∫ t

0

u′′(Xs)Φ(Xs)Σ
2 ds

+
1

t
Ex

∫ t

0

∫

y 6=0

�

u(Xs +Φ(Xs)y)− u(Xs)− u′(Xs)Φ(Xs)y1{|y|<1}

�

N(d y) ds.

The change of the order of integration is again justified by the estimate of |H|. By Lemma 2.4 we
see that

Exu(X t)− u(x)
t

t↓0
−→ `u′(x)Φ(x) +

1

2
Σ2u′′(x)Φ(x)2

+

∫

y 6=0

�

u(x +Φ(x)y)− u(x)− u′(x)Φ(x)y ·1{|y|<1}

�

N(d y).

As a function of x , the limit is continuous and vanishes at infinity. Therefore the test functions are
contained in the domain, cf. Sato [26] Lemma 31.7.

Remark 3.6. In the one-dimensional case the following weaker condition is sufficient to guaran-
tee that the test functions are contained in the domain of the solution. Let Φ be locally Lipschitz
continuous satisfying (10) and assume that

x 7→ sup
λ∈]0,1[

1

x +λΦ(x)
∈ C∞(R). (14)

The products u′Φ and u′′Φ are bounded for every continuous Φ, because u has compact support. The
only other step in the proof of Theorem 3.5 which requires the boundedness of Φ is the estimate of
|H| in order to get H ∈ F1

p .
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However, (14) implies that for every r > 0 there exists some R> 0 such that

|x +λΦ(x)|> r for all |x |> R, λ ∈]0, 1[. (15)

Therefore, see the proof of Theorem 3.5, we can use Taylor’s formula to get

|H(· ; x , y)|1{|y|<1} =
�

�

�

�

u
�

Xs−+Φ(Xs−)y
�

− u(Xs−)− u′(Xs−)Φ(Xs−)y
	

1{|y|<1}

�

�

�

¶
�

�

�

�

1

2
y2Φ

�

Xs−
�2 u′′

�

Xs−+ ϑ yΦ(Xs−)
�

1{|y|<1}

�

�

�

�

for some ϑ ∈]0,1[. Set λ := ϑ · y and pick r such that suppu′′ ⊂ Br(0); then (15) shows that
Φ(Xs−)2 u′′(Xs−+ ϑ yΦ(Xs−)) is bounded.

Combining our results, we obtain the following existence result for Feller processes.

Corollary 3.7. For every negative definite symbol having the following structure

p(x ,ξ) =ψ(Φ>(x)ξ)

where ψ : Rn → C is a continuous negative definite function and Φ : Rd → Rd×n is bounded and
Lipschitz continuous, there exists a unique Feller process X x . The domain D(A) of the infinitesimal
generator A contains the test functions C∞c = C∞c (R

n) and A|C∞c is a pseudo-differential operator with
symbol −p(x ,ξ).

We close this section by mentioning that in a certain sense our investigations of the SDE (9) cannot
be generalized. For this we cite the following theorem by Jacod and Protter [19] which is a converse
to our above considerations.

Theorem 3.8. Let (Ω,F, (Ft)t¾0,P) be a filtered probability space with a semimartingale Z. Let
f ∈ B(R) such that f is never zero and is such that for every x ∈ R the equation (9) has a unique
(strong) solution X x . If each of the processes X x is a time homogeneous Markov process with the same
transition semigroup then Z is a Lévy process.

4 Examples

In the case d = 1 we obtain results for various processes which are used most often in applications:

Corollary 4.1. Let Z1, . . . , Zn be independent Lévy processes with symbols (i.e. characteristic exponents)
ψ1, . . . ,ψn and let Φ1, . . . ,Φn be bounded and Lipschitz continuous functions on R. Then the SDE

dX x
t = Φ

1(X x
t−) dZ1

t + · · ·+Φ
n(X x

t−) dZn
t

X x
0 = x

(16)

has a unique solution X x which is a Feller process and admits the symbol

p(x ,ξ) =
n
∑

j=1

ψ j(Φ
j(x)ξ), x ,ξ ∈R.
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Proof. This follows directly from the multi-dimensional case of Theorem 3.1 if one writes the SDE
(9) in the form

dX t = (Φ
1, . . . ,Φn)(X t−) d









Z1
t
...

Zn
t









X x
0 = x .

Example 4.2 (Lévy plus Lebesgue). Let Φ,Ψ : R → R be bounded and Lipschitz continuous and
(Zt)t¾0 be a one-dimensional Lévy process with symbol ψ. The unique solution process X x of the
SDE

dX x
t = Φ(X

x
t−) dZt +Ψ(X

x
t−) d t

X x
0 = x

(17)

has the symbol p(x ,ξ) = ψ(Φ(x)ξ)− i(Ψ(x)ξ). Note that the driving processes dX x
t and d t are

independent since the latter is deterministic.

Example 4.3 (Wiener plus Lebesgue). Let Φ,Ψ : R→ R be bounded and Lipschitz continuous and
(Wt)t¾0 be a one-dimensional Brownian motion. The unique solution process X x of the SDE

dX x
t = Φ(X

x
t−) dWt +Ψ(X

x
t−) d t

X x
0 = x

(18)

has the symbol p(x ,ξ) = |Φ(x)|2 |ξ|2− iΨ(x)ξ.

Example 4.4 (Symmetric α-stable). Let (Z j
t )t¾0, j = 1, . . . , n, be independent symmetric one-

dimensional α j-stable Lévy processes, i.e. the characteristic exponents are of the form ψ(ξ) = |ξ|α j

with α j ∈ (0, 2], and let Φ j : R → R be bounded and Lipschitz continuous. The unique solution
process X x of the SDE

dX x
t = Φ1(X

x
t−) dZ1

t + · · ·+Φn(X
x
t−) dZn

t

X x
0 = x

(19)

has the symbol p(x ,ξ) =
∑n

j=1

�

�Φ j(x)
�

�

α j · |ξ|α j .

5 Some Applications

Using the symbol of a Feller Process it is possible to introduce so-called indices which are general-
izations of the Blumenthal-Getoor index β for a Lévy process, see e.g. [28; 14]. These indices can
be used to obtain results about the global behaviour and the paths of the process.

Remark 5.1. It is shown in [13] Lemma 5.2, see also Lemma 6.1 in the Appendix, that
�

�y
�

�

2

1+
�

�y
�

�

2 =

∫

Rd\{0}

�

1− cos(y>ρ)
�

gd(ρ) dρ

where

gd(ρ) =
1

2

∫ ∞

0

(2πλ)−d/2e−|ρ|
2
/(2λ)e−λ/2 dλ, ρ ∈Rd \ {0}. (20)

It is straightforward to see that
∫

Rd\{0} |ρ|
j g(ρ) dρ <∞ for all j = 0, 1,2, . . .

1383



Let p(x ,ξ), x ,ξ ∈Rd , be the symbol of a Markov process. Set

H(x , R) := sup
|y−x|¶2R

sup
|e|¶1

�
∫ ∞

−∞
Re p

�

y,
ρe

R

�

g(ρ) dρ+

�

�

�

�

p
�

y,
e

R

�

�

�

�

�

�

(21)

with the function g = g1 from Remark 5.1. If the symbol satisfies the following sector-type condition,
�

�Im p(x ,ξ)
�

�¶ c0 ·Re p(x ,ξ), we set

h(x , R) := inf
|y−x|¶2R

sup
|e|¶1

Re p
�

y,
e

4κR

�

(22)

where κ := (4arctan(1/2c0))−1.

Definition 5.2. Let p(x ,ξ), x ,ξ ∈Rd be the symbol of a Markov process. Then

β x
∞ := inf

�

λ > 0 : limsup
R→0

RλH(x , R) = 0
�

is the generalized upper index at infinity. If | Im p(x ,ξ)|¶ c0 ·Re p(x ,ξ), then

β0 := sup

¨

λ¾ 0 : limsup
R→∞

Rλ sup
x∈Rd

H(x , R) = 0

«

is the generalized upper index at zero.

In a similar fashion one can define lower versions of these indices using the function h(x , R) and
lim inf which are useful for fine properties of the sample paths, cf. [28] for details. Here we restrict
our attention to β x

∞ and β0. The next lemma helps to simplify the Definition 5.2.

Lemma 5.3. H(x , R)� sup
|y−x |¶2R

sup
|e|¶1

�

�

�

�

p
�

y,
e

R

�

�

�

�

�

for all R> 0 and x ∈Rd .

Proof. The estimate H(x , R) ¾ sup|y−x |¶2R sup|e|¶1

�

�

�p
�

y, e
R

�

�

�

� follows immediately from (21). Since

ξ 7→ p(x ,ξ) is negative definite, the square root is subadditive, cf. [3],
p

|p(x ,ξ+η)|¶
p

|p(x ,ξ)|+
p

|p(x ,η)|

and we conclude that for all R,ρ > 0 and y ∈Rd

sup
|e|¶1

È

�

�

�

�

p
�

y,ρ
e

R

�

�

�

�

�

¶ sup
|e|¶1

�
Ç

�

�

�p
�

y,
e

R

�
�

�

� bρc+
Ç

�

�

�p
�

y, (ρ− bρc)
e

R

�
�

�

�

�

¶ 2 sup
|e|¶1

È

�

�

�

�

p
�

y,
e

R

�

�

�

�

�

�

1+ρ
�

.

Since
∫∞
−∞(1+ρ)

2 g(ρ) dρ <∞, the lemma follows.
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Example 5.4. (a) For a d-dimensional symmetric α-stable Lévy process the symbol is given by
p(x ,ξ) =ψ(ξ) = |ξ|α, x ,ξ ∈Rd . In this case β x

∞ = α and β0 = α.

(b) The symbol p(x ,ξ) = |ξ|α(x), x ,ξ ∈R, where α :R→ [0, 2] is Lipschitz continuous and satisfies
0 < α = infα(x) ¶ supα(x) ¶ α < 2, corresponds to the so-called stable-like Feller process, cf. [2].
In this case β x

∞ = α(x) and β0 = α.

Lemma 5.5. The only continuous negative definite function vanishing at infinity is constantly zero.

Proof. Let ψ be a continuous negative definite function which vanishes at infinity. For every ε > 0
there exists some R > 0 such that |ψ(ξ)| ¶ ε2/4 if |ξ| > R. For every γ ∈ BR(0) there exist two

vectors ξ,η ∈ BR(0)c such that γ= ξ+η. By the sub-additivity of
Æ

�

�ψ
�

� we obtain

Æ

�

�ψ(γ)
�

�=
Æ

�

�ψ(ξ+η)
�

�¶
Æ

�

�ψ(ξ)
�

�+
Æ

�

�ψ(η)
�

�¶ ε

which completes the proof.

We can now simplify the calculation of the upper index. The assumptions of the following proposi-
tion are trivially satisfied by any Feller process satisfying condition (R), cf. [7].

Proposition 5.6. Let p(x ,ξ) be a non-trivial (i.e. non-constant) symbol of a Markov process which is
locally bounded. The generalized upper index β x

∞ can be calculated in the following way

β x
∞ = β(x) := limsup

|η|→∞
sup

|y−x|¶2/|η|

log
�

�p(y,η)
�

�

log
�

�η
�

�

.

Proof. First we show that β(x) ∈ [0, 2]. Fix x ∈ Rd . For
�

�η
�

� > 1 we have only to consider points y
such that

�

�y − x
�

�¶ 2. The argument used in the proof of Lemma 5.3 can be modified to prove that

|p(y,η)|¶ h(y) · (1+ |η|2), h(y) = 4 sup
|ξ|¶1
|p(y,ξ)|.

Since p(y,η) is locally bounded, we see there exists a constant C > 0 such that

log
�

�p(y,η)
�

�

log
�

�η
�

�

¶
log(2C) + log

�

�η
�

�

2

log
�

�η
�

�

¶
log(2C)

log
�

�η
�

�

+ 2.

The right-hand side tends to 2 as
�

�η
�

�→∞. This shows that β(x)¶ 2. In order to see that β(x)¾ 0,
we note that

sup
|y−x|¶2/|η|

log
�

�p(y,η)
�

�

log
�

�η
�

�

¾
log
�

�p(x ,η)
�

�

log
�

�η
�

�

.

Because of Lemma 5.5 there exists a δ > 0 such that for every R > 0 there is some ξ with |ξ| ¾ R
and

�

�p(x ,ξ)
�

�> δ. Therefore,

limsup
|η|→∞

log
�

�p(x ,η)
�

�

log
�

�η
�

�

¾ lim sup
|η|→∞

logδ

log
�

�η
�

�

= 0,
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and we conclude that β(x)¾ 0.

In view of Lemma 5.3, β x
∞ = β(x) follows, if we can show that

limsup
|ξ|→∞

sup|x−y|¶2/|ξ|

�

�p(y,ξ)
�

�

|ξ|λ
= 0 or ∞

according to λ > β(x) or λ < β(x). Let h ∈R. Then

sup|x−y|¶2/|ξ|

�

�p(y,ξ)
�

�

|ξ|β(x)+h
= exp



log



 sup
|x−y|¶2/|ξ|

�

�p(y,ξ)
�

�



−
�

β(x) + h
�

log |ξ|





= exp









sup|y−x|¶2/|ξ| log
�

�p(y,ξ)
�

�

log |ξ|
− β(x)



 · log |ξ| − h · log |ξ|



 .

Taking the limsup for |ξ| → ∞ of this expression, the inner bracket converges to zero since β(x) ∈
[0,2] as we have seen above. This means there exists some r = rh > 0 such that for every R¾ r



 sup
|ξ|¾R

sup|y−x|¶2/|ξ| log
�

�p(y,ξ)
�

�

log |ξ|
− β(x)



<
h

2
.

Thus, if h> 0,

limsup
|ξ|→∞

sup|x−y|¶2/|ξ|

�

�p(y,ξ)
�

�

|ξ|β(x)+h
¶ limsup
|ξ|→∞

exp(log(|ξ|−h/2)) = 0;

if h< 0,

limsup
|ξ|→∞

sup|x−y|¶2/|ξ|

�

�p(y,ξ)
�

�

|ξ|β(x)+h
¾ limsup
|ξ|→∞

exp(log(|ξ|−h/2)) =∞,

which completes the proof.

Theorem 5.7. Let X be a solution process of the SDE (9) with d = n and where the linear mapping
ξ 7→ Φ>(y)ξ is bijective for every y ∈ Rd . If the driving Lévy process has the non-constant symbol ψ
and index βψ∞, then the solution X of the SDE has, for every x ∈Rd , the upper index β x

∞ ≡ β
ψ
∞.

Proof. Fix x ∈Rd . We use the characterization of the index from Proposition 5.6

β x
∞ = lim sup

|η|→∞
sup

|y−x|¶2/|η|

log
�

�p(y,η)
�

�

log
�

�η
�

�

.

From Theorem 3.1 we know that p(x ,ξ) =ψ(Φ>(x)ξ). Therefore,

log
�

�ψ(Φ>(y)η)
�

�

log
�

�η
�

�

=
log
�

�ψ(Φ>(y)η)
�

�

log
�

�Φ>(x)η
�

�

·
log
�

�Φ>(x)η
�

�

log
�

�η
�

�
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where the second factor is bounded from above and below, since the function η 7→ φ>(x)η is
bijective. Consequently,

β x
∞ = limsup

|η|→∞
sup

|y−x|¶2/|η|

log
�

�ψ(Φ>(y)η)
�

�

log
�

�Φ>(x)η
�

�

.

By Lemma 5.5 ψ does not vanish at infinity. In particular there exists an ε > 0 and a sequence
(ξn)n∈N such that

�

�ξn

�

� → ∞ and
�

�ψ(ξn)
�

� > ε for every n ∈ N. Since η 7→ Φ>(x)η is linear and
bijective there exists a sequence (ηn)n∈N such that

�

�ψ(Φ>(x)ηn)
�

�> ε for every n ∈N and
�

�ηn

�

�→∞.
In order to calculate the upper limit it is, therefore, enough to consider the set

�

η ∈Rd :
�

�ψ(Φ>(x)η)
�

�¾ ε
	

. (23)

We write

sup
|y−x|¶2/|η|

log
�

�ψ(Φ>(y)η)
�

�

log
�

�Φ>(x)η
�

�

=
sup|y−x|¶2/|η| log

�

�ψ(Φ>(y)η)
�

�− log
�

�ψ(Φ>(x)η)
�

�

log
�

�Φ>(x)η
�

�

+
log
�

�ψ(Φ>(x)η)
�

�

log
�

�Φ>(x)η
�

�

.

(24)

Denoting the local Lipschitz constant of y 7→ Φ(y) in a neighbourhood of x by Lx ¾ 0, we obtain for
�

�y − x
�

�¶ 2/
�

�η
�

�

�

�Φ>(y)η−Φ>(x)η
�

�¶
�

�η
�

� ·
�

�Φ(y)−Φ(x)
�

�¶
�

�η
�

� · Lx

�

�y − x
�

�¶ 2 Lx .

It follows that the numerator of the first term on the right-hand side of (24) is bounded on the set
(23) because the function y 7→ log

�

�y
�

� is uniformly continuous on [ε,∞[; for the second term we
obtain

lim sup
|η|→∞

log
�

�ψ(Φ>(x)η)
�

�

log
�

�Φ>(x)η
�

�

= limsup
|ξ|→∞

log
�

�ψ(ξ)
�

�

log |ξ|
= βψ∞

since the function η 7→ φ>(x)η is bijective and linear.

Remark 5.8. In order to obtain β x
∞ ¶ β

ψ
∞ in the case d ¶ n it is sufficient to demand that Φ(y) never

vanishes.

We will first use this theorem to derive a result on the (strong) γ-variation of the process X .

Definition 5.9. If γ ∈]0,∞[ and g is an Rd -valued function on the interval [a, b] then

V γ(g; [a, b]) := sup
πn

n
∑

j=1

�

�g(t j)− g(t j−1)
�

�

γ

where the supremum is taken over all partitions πn = (a = t0 < t1 < . . .< tn = b) of [a, b] is called
the (strong) γ-variation of g on [a, b].
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Corollary 5.10. Let X x = (X x
t )t¾0 be the solution of the SDE (9) where Z is a Lévy process with

characteristic exponent ψ. Denote by β x
∞ the generalized upper index of X . Then

V γ(X x ; [0, T])<∞ Px -a.s. for every T > 0

if γ > supx β
x
∞.

In the situation of Theorem 5.7 the index supx β
x
∞ = β

ψ
∞ where βψ∞ is the upper index of the driving

Lévy process.

Proof of Corollary 5.10. Since X is a strong Markov process we can use a criterion for the finiteness
of γ-variations due to Manstavičius [21]. Consider for h ∈ [0, T] and r > 0

α(h, r) = sup
�

Px(
�

�X t − x
�

�¾ r) : x ∈Rd , 0¶ t ¶ (h∧ T )
	

¶ sup
t¶h

sup
x∈Rd

Px

�

sup
0¶s¶t

�

�Xs − x
�

�¾ r

�

.

Using Lemma 4.1 and Lemma 5.1 in [28] we obtain

Px

�

sup
0¶s¶t

�

�Xs − x
�

�¾ r

�

¶ C · t sup
|y−x|¶2r

sup
|e|¶1

�

�

�

�

p
�

y,
e

r

�

�

�

�

�

where C ¾ 0 is independent of x and t. Hence,

α(h, r)¶ sup
t¶h

sup
x∈Rd

C · t sup
|y−x|¶2r

sup
|e|¶1

�

�

�

�

p
�

y,
e

r

�

�

�

�

�

¶ C · h sup
x∈Rd



 sup
|y−x|¶2r

sup
|e|¶1

�

�

�

�

p
�

y,
e

r

�

�

�

�

�





¶ C · h sup
x∈Rd



 sup
|η|¶(1/r)

sup
|y−x|¶(2/|η|)

�

�p
�

y,η
�

�

�



 .

From Lemma 5.3 we know that for every λ > supx β
x
∞

lim
|η|→∞

sup|y−x|¶(2/|η|)
�

�p
�

y,η
�

�

�

�

�η
�

�

λ
= 0.

Therefore we find for every x a compact set K such that

sup
|y−x|¶2/|η|

�

�p
�

y,η
�

�

�¶ C̃ ·
�

�η
�

�

λ ¶ C̃ · r−λ

on the complement of K . Since the right-hand side is independent of x , there exists an r0 > 0 such
that for all r ∈]0, r0] we have

α(h, r)¶ C · C̃ ·
h1

rλ

which means that Xσ (σ = σ0
R) is in the class M(1, supx β

x
∞) of Manstavičius. The result follows

from [21] Theorem 1.3, as R ↑ ∞.
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We can use the indices to obtain information on the Hölder and growth behaviour of the solution of
the SDE (9). As usual, we write (X ·− x)∗t := sup0¶s¶t

�

�Xs − x
�

�.

Corollary 5.11. Let X x = (X x
t )t¾0 be the solution of the SDE (9) where Z is a Lévy process with

characteristic exponent ψ satisfying the sector condition | Imψ(ξ)| ¶ c0 Reψ(ξ) for some constant
c0 > 0. Denote by β x

∞ and β0 the generalized upper indices of X . Then

lim
t→0

t−1/λ(X ·− x)∗t = 0 if λ > sup
x
β x
∞ and lim

t→∞
t−1/λ(X ·− x)∗t = 0 if 0< λ < β0.

Under the assumptions of Theorem 5.7, supx β
x
∞ is the upper index of the driving Lévy process: βψ∞.

Proof. This is a combination of Proposition 5.6 and Theorem 5.7 with the abstract result from [28],
Theorems 4.3 and 4.6. For the growth result as t →∞ we need the sector condition for the symbol
p(x ,ξ) which is directly inherited from the sector condition of ψ. Note that one can identify values
for λ by using, in general different, indices such that the above limits become +∞.

Let us finally indicate how we can measure the ‘smoothness’ of the sample paths of the solution of
the SDE (9). Since we deal with càdlàg-functions, in general, the right scale of function spaces are
(polynomially weighted) Besov spaces Bs

q(L
p((1+ t2)−µ/2 d t)) with parameters p, q ∈ (0,∞] and

s,µ > 0. We refer to the monographs by Triebel [31] and the survey [8] by DeVore for details. Note
that information on Besov regularity is important if one is interested in the effectiveness of numerical
adaptive algorithms for the solutions of an SDE. In a deterministic context this is discussed in [8].

Corollary 5.12. Let X x = (X x
t )t¾0 be the solution of the SDE (9) where Z is a Lévy process with non-

degenerate (i.e. non-constant) characteristic exponent ψ. Denote by β x
∞ and β0 the generalized upper

indices of X . Then we have almost surely

{t 7→ X x
t } ∈ Bs

q(L
p((1+ t2)−µ/2 d t)) if s · sup

y
{p, q,β y

∞}< 1 and µ >
1

β0
+

1

p
.

In particular we get locally

{t 7→ X x
t } ∈ Bs,loc

q (Lp(d t)) if s · sup
y
{p, q,β y

∞}< 1

and

{t 7→ X x
t } 6∈ Bs,loc

q (Lp(d t)) if sp > 1.

Proof. This is a consequence of Theorems 4.2 and 6.5 in [29]. Note that, although all statements are
in terms of Feller processes, only the existence of a symbol of the underlying process is required. In
[29] we assume that the smoothness index s satisfies the condition s > (p−1 − 1)+. This restriction
can be easily overcome by using the imbedding Bs

q(L
p) ,→ B t

r(L
p) which holds for all s > t, all

p ∈ (0,∞] and all r, q ∈ (0,∞], see [31], vol. III, Theorem 1.97.
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6 Appendix

For the readers’ convenience we collect in this appendix some variations on standard estimates for
symbols of Feller processes. They are based on methods from [28] and can also be found in [30].
For the rest of the paper we use the notation



 f




K := supz∈K | f (z)| where | · | can be a vector or
matrix norm.

Lemma 6.1. We have

|y|2

1+ |y|2
=

∫

�

1− cos(y>ρ)
�

g(ρ) dρ, y ∈Rd ,

where g(ρ) = 1
2

∫∞
0
(2πλ)−d/2 e−|ρ|

2/2λ e−λ/2 dλ is integrable and has absolute moments of arbitrary
order.

Proof. The Tonelli-Fubini Theorem and a change of variables show for k ∈N0

∫

|ρ|k g(ρ) dρ =
1

2

∫ ∞

0

(2πλ)−d/2

∫

|ρ|k e−|ρ|
2/2λ dρ e−λ/2 dλ

=
1

2

∫ ∞

0

(2πλ)−d/2

∫

λk/2|η|k e−|η|
2/2λd/2 dη e−λ/2 dλ

=
1

2
(2π)−d/2

∫

|η|k e−|η|
2/2 dη

∫ ∞

0

λ(k+d)/2 e−λ/2 dλ,

i.e., g has absolute moments of any order. Moreover, the elementary formula

e−λ|y|
2/2 = (2πλ)−d/2

∫

e−|ρ|
2/2λ ei y>ρ dρ

and Fubini’s Theorem yield

|y|2

1+ |y|2
=

1

2

∫ ∞

0

�

1− e−λ|y|
2/2� e−λ/2 dλ

=
1

2

∫ ∞

0

∫

(2πλ)−d/2�1− ei y>ρ�e−|ρ|
2/2λ e−λ/2 dρ dλ

=

∫

�

1− ei y>ρ� g(ρ) dρ.

The assertion follows since the left-hand side is real-valued.

Lemma 6.2. Let p(x ,ξ) be a negative definite symbol of the form (3) with Lévy triplet
(`(x),Q(x), N(x , d y)) and let K ⊂ Rd be a compact set or K = Rd . Then the following assertions
are equivalent.

(a)


p(·,ξ)




K ¶ cp(1+ |ξ|2), ξ ∈Rd ;
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(b) ‖`‖K + ‖Q‖K +











∫

y 6=0

|y|2

1+ |y|2
N(·, d y)











K

<∞;

(c) sup
|ξ|¶1

sup
x∈K
|p(x ,ξ)|<∞.

If one, hence all, of the above conditions hold, there exists a constant c > 0 such that

‖`‖K + ‖Q‖K +











∫

y 6=0

|y|2

1+ |y|2
N(·, d y)











K

¶ c sup
|ξ|¶1

sup
x∈K
|p(x ,ξ)|.

Proof. (a)⇒(b). By Lemma 6.1 we have
∫

y 6=0

|y|2

1+ |y|2
N(x , d y) =

∫

y 6=0

∫

�

1− cos(η> y)
�

g(η) dηN(x , d y)

=

∫

�

Re p(x ,η)−η>Q(x)η
�

g(η) dη

¶
∫

Re p(x ,η) g(η) dη

¶ cp

∫

�

1+ |η|2
�

g(η) dη

uniformly for all x ∈ K . Using Taylor’s formula and Lemma 6.1 we find

|`(x)>ξ|¶
�

� Im p(x ,ξ)
�

�+ Im

∫

y 6=0

�

�

�

�

�

1− eiξ> y +
iξ> y

1+ |y|2

�

�

�

�

�

N(x , d y)

¶

 

cp + c

∫

y 6=0

|y|2

1+ |y|2
N(x , d y)

!

(1+ |ξ|2)

¶ cp

�

1+ c

∫

�

1+ |η|2
�

g(η) dη

�

(1+ |ξ|2)

uniformly in x ∈ K and for all ξ ∈Rd , so ‖`‖K <∞. Finally,

|ξ>Q(x)ξ|¶ Re p(x ,ξ)¶ |p(x ,ξ)|¶ cp(1+ |ξ|2)

which shows that ‖Q‖K <∞.

(b)⇒(c). Using the Lévy-Khinchine representation for p(x ,ξ) and Taylor’s formula we find

|p(x ,ξ)|¶ ‖`‖K |ξ|+ ‖Q‖K |ξ|2+ 2

∫

|y|2

1+ |y|2
N(x , d y) (1+ |ξ|2)

(we use the `2-norm in Rd and Rd×d) and (c) follows.

(c)⇒(a). Set P(ξ) := supx∈K |p(x ,ξ)|. Since both ξ 7→
p

p(x ,ξ) and the supx are subadditive, we
conclude

p

P(ξ+η)¶
p

P(ξ) +
p

P(η), ξ,η ∈Rd ,
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i.e.,
p

P(·) is subadditive. Fix ξ and choose the unique N = Nξ ∈ N such that N − 1 ¶ |ξ| < N .
Applying the subadditivity estimate N times gives

P(ξ)¶ N2P
�

ξ

N

�

¶ N2 sup
|η|¶1

P(η)¶ 2
�

1+ |ξ|2
�

sup
|η|¶1

P(η)

and this is claimed in (a).

An inspection of the proof of (a)⇒(b) shows that each of the terms ‖`‖K , ‖Q‖K and






∫

y 6=0
|y|2(1+ |y|2)−1 N(·, d y)







K
is bounded by constants of the form c ·cp where cp is from (a). The

proof of (c)⇒(a) reveals that cp = 2supx∈K sup|η|¶1 |p(x ,η)| which proves the last statement.
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