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Abstract

We study the last-passage growth model on the planar integer lattice with exponential
weights. With boundary conditions that represent the equilibrium exclusion process as seen
from a particle right after its jump we prove that the variance of the last-passage time in a
characteristic direction is of order t2/3. With more general boundary conditions that include
the rarefaction fan case we show that the last-passage time fluctuations are still of order t1/3,
and also that the transversal fluctuations of the maximal path have order t2/3. We adapt
and then build on a recent study of Hammersley’s process by Cator and Groeneboom, and
also utilize the competition interface introduced by Ferrari, Martin and Pimentel. The argu-
ments are entirely probabilistic, and no use is made of the combinatorics of Young tableaux
or methods of asymptotic analysis
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1 Introduction

We construct a version of the corner growth model that corresponds to an equilibrium exclusion
process as seen by a typical particle right after its jump, and show that along a characteristic
direction the variance of the last-passage time is of order t2/3. This last-passage time is the
maximal sum of exponential weights along up-right paths in the first quadrant of the integer
plane. The interior weights have rate 1, while the boundary weights on the axes have rates
1 − ̺ and ̺ where 0 < ̺ < 1 is the particle density of the exclusion process. By comparison to
this equilibrium setting, we also show fluctuation results with similar scaling in the case of the
rarefaction fan.

The proof is based on a recent work of Cator and Groeneboom (3) where corresponding results
are proved for the planar-increasing-path version of Hammersley’s process. A key part of that
proof is an identity that relates the variance of the last-passage time to the point where the
maximal path exits the axes. This exit point itself is related to a second-class particle via a
time reversal. The idea that the current and the second-class particle should be connected goes
back to a paper of Ferrari and Fontes (4) on the diffusive fluctuations of the current away from
the characteristic. However, despite this surprising congruence of ideas, article (3) and our work
have no technical relation to the Ferrari-Fontes work.

The first task of the present paper is to find the connection between the variance of the last-
passage time and the exit point, in the equilibrium corner growth model. The relation turns out
not as straightforward as for Hammersley’s process, for we also need to include the amount of
weight collected on the axes. However, once this difference is understood, the arguments proceed
quite similarly to those in (3).

The notion of competition interface recently introduced by Ferrari, Martin and Pimentel (6; 7)
now appears as the representative of a second-class particle, and as the time reversal of the
maximal path. As a by-product of the proof we establish that the transversal fluctuations of
the competition interface are of the order t2/3 in the equilibrium setting.

In the last section we take full advantage of our probabilistic approach, and show that for initial
conditions obtained by decreasing the equilibrium weights on the axes in an arbitrary way, the
fluctuations of the last-passage time are still of order t1/3. This includes the situation known as
the rarefaction fan. We are also able to show that in this case the transversal fluctuations of the
longest path are of order t2/3. In this more general setting there is no direct connection between
a maximal path and a competition interface (or trajectory of a second class particle).

Our results for the competition interface, and our fluctuation results under the more general
boundary conditions are new. The variance bound for the equilibrium last-passage time is also
strictly speaking new. However, the corresponding distributional limit has been obtained by
Ferrari and Spohn (8) with a proof based on the RSK machinery. But they lack a suitable
tightness property that would give them also control of the variance. [Note that Ferrari and
Spohn start by describing a different set of equilibrium boundary conditions than the ones we
consider, but later in their paper they cover also the kind we define in (2.5) below.] The methods
of our paper can also be applied to geometrically distributed weights, with the same outcomes.

In addition to the results themselves, our main motivation is to investigate new methods to
attack the last-passage model, methods that do not rely on the RSK correspondence of Young
tableaux. The reason for such a pursuit is that the precise counting techniques of Young tableaux
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appear to work only for geometrically distributed weights, from which one can then take a limit
to obtain the case of exponential weights. New techniques are needed to go beyond the geometric
and exponential cases, although we are not yet in a position to undertake such an advance.

For the class of totally asymmetric stochastic interacting systems for which the last-passage
approach works, this point of view has been extremely valuable. In addition to the papers
already mentioned above, we list Seppäläinen (14; 15), Johansson (9), and Prähofer and Spohn
(13).

Organization of the paper. The main results are discussed in Section 2. Section 3 describes
the relationship of the last-passage model to particle and deposition models, and can be skipped
without loss of continuity. The remainder of the paper is for the proofs. Section 4 covers some
preliminary matters. This includes a strong form of Burke’s theorem for the last-passage times
(Lemma 4.2). Upper and lower bounds for the equilibrium results are covered in Sections 5 and
6. Lastly, fluctuations under more general boundary conditions are studied in Section 7.

Notation. Z+ = {0, 1, 2, . . . } denotes the set of nonnegative integers. The integer part of a real
number is ⌊x⌋ = max{n ∈ Z : n ≤ x}. C denotes constants whose precise value is immaterial
and that do not depend on the parameter (typically t) that grows. X ∼ Exp(̺) means that X
has the exponential distribution with rate ̺, in other words has density f(x) = ̺e−̺x on R+. For
clarity, subscripts can be replaced by arguments in parentheses, as for example in Gij = G(i, j).

2 Results

We start by describing the corner growth model with boundaries that correspond to a special
view of the equilibrium. Section 3 and Lemma 4.2 justify the term equilibrium in this context.
Our results for more general boundary conditions are in Section 2.2.

2.1 Equilibrium results

We are given an array {ωij}i,j∈Z+ of nonnegative real numbers. We will always have ω00 = 0.
The values ωij with either i = 0 or j = 0 are the boundary values, while {ωij}i,j≥1 are the
interior values.

Figure 1 depicts this initial set-up on the first quadrant Z
2
+ of the integer plane. A ⋆ marks

(0, 0), ▽’s mark positions (i, 0), i ≥ 1, △’s positions (0, j), j ≥ 1, and interior points (i, j),
i, j ≥ 1 are marked with ◦’s. The coordinates of a few points around (5, 2) have been labeled.

For a point (i, j) ∈ Z
2
+, let Πij be the set of directed paths

π = {(0, 0) = (p0, q0) → (p1, q1) → · · · → (pi+j , qi+j) = (i, j)} (2.1)

with up-right steps
(pl+1, ql+1) − (pl, ql) = (1, 0) or (0, 1) (2.2)

along the coordinate directions. Define the last passage time of the point (i, j) as

Gij = max
π∈Πij

∑

(p,q)∈π

ωpq.
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G satisfies the recurrence

Gij = (G{i−1}j ∨ Gi{j−1}) + ωij (i, j ≥ 0) (2.3)

(with formally assuming G{−1}j = Gi{−1} = 0). A common interpretation is that this models
a growing cluster on the first quadrant that starts from a seed at the origin (bounded by the
thickset line in Figure 1). The value ωij is the time it takes to occupy point (i, j) after its
neighbors to the left and below have become occupied, with the interpretation that a boundary
point needs only one occupied neighbor. Then Gij is the time when (i, j) becomes occupied, or
joins the growing cluster. The occupied region at time t ≥ 0 is the set

A(t) = {(i, j) ∈ Z
2
+ : Gij ≤ t}. (2.4)

Figure 2 shows a possible later situation. Occupied points are denoted by solidly colored symbols,
the occupied cluster is bounded by the thickset line, and the arrows mark an admissible path π
from (0, 0) to (5, 2). If G5,2 is the smallest among G0,5, G1,4, G5,2 and G6,0, then (5, 2) is the
next point added to the cluster, as suggested by the dashed lines around the (5, 2) square.

To create a model of random evolution, we pick a real number 0 < ̺ < 1 and take the variables
{ωij} mutually independent with the following marginal distributions:

ω00 = 0, where the ⋆ is,

ωi0 ∼ Exp(1 − ̺), i ≥ 1, where the ▽’s are,

ω0j ∼ Exp(̺), j ≥ 1, where the △ ’s are,

ωij ∼ Exp(1), i, j ≥ 1, where the ◦ ’s are.

(2.5)
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Figure 1: The initial situation

Ferrari, Prähofer and Spohn (8), (13) consider the Bernoulli-equilibrium of simple exclusion,
which corresponds to a slightly more complicated boundary distribution than the one described
above. However, Ferrari and Spohn (8) early on turn to the distribution described by (2.5), as
it is more natural for last-passage. We will greatly exploit the simplicity of (2.5) in Section 4.
In fact, (2.5) is also connected with the stationary exclusion process of particle density ̺. To see
this point, we need to look at a particle of simple exclusion in a specific manner that we explain
below in Section 3.1.
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Figure 2: A possible later situation

Once the parameter ̺ has been picked we denote the last-passage time of point (m,n) by G̺
mn.

In order to see interesting behavior we follow the last-passage time along the ray defined by

(m(t), n(t)) = (⌊(1 − ̺)2t⌋, ⌊̺2t⌋) (2.6)

as t → ∞. In Section 3.4 we give a heuristic justification for this choice. It represents the
characteristic speed of the macroscopic equation of the system. Let us abbreviate

G̺(t) = G̺
(
⌊(1 − ̺)2t⌋, ⌊̺2t⌋

)
.

Once we have proved that all horizontal and vertical increments of G-values are distributed
exponentially like the boundary increments, we see that

E(G̺(t)) =
⌊(1 − ̺)2t⌋

1 − ̺
+

⌊̺2t⌋
̺

.

The first result is the order of the variance.

Theorem 2.1. With 0 < ̺ < 1 and independent {ωij} distributed as in (2.5),

0 < lim inf
t→∞

Var(G̺(t))

t2/3
≤ lim sup

t→∞

Var(G̺(t))

t2/3
< ∞.

We emphasize here that our results do not imply a similar statement for the particle flux variance,
nor for the position of the second class particle.

For given (m,n) there is almost surely a unique path π̂ that maximizes the passage time to (m,n),
due to the continuity of the distribution of {ωij}. The exit point of π̂ is the last boundary point
on the path. If (pl, ql) is the exit point for the path in (2.1), then either p0 = p1 = · · · = pl = 0
or q0 = q1 = · · · = ql = 0, and pk, qk ≥ 1 for all k > l. To distinguish between exits via the i- and
j-axis, we introduce a non-zero integer-valued random variable Z such that if Z > 0 then the
exit point is (p|Z|, q|Z|) = (Z, 0), while if Z < 0 then the exit point is (p|Z|, q|Z|) = (0,−Z). For
the sake of convenience we abuse language and call the variable Z also the “exit point.” Z̺(t)
denotes the exit point of the maximal path to the point (m(t), n(t)) in (2.6) with boundary
condition parameter ̺. Transposition ωij 7→ ωji of the array shows that Z̺(t) and −Z1−̺(t) are
equal in distribution. Along the way to Theorem 2.1 we establish that Z̺(t) fluctuates on the
scale t2/3.
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Theorem 2.2. Given 0 < ̺ < 1 and independent {ωij} distributed as in (2.5).

(a) For t0 > 0 there exists a finite constant C = C(t0, ̺) such that, for all a > 0 and t ≥ t0,

P{Z̺(t) ≥ at2/3} ≤ Ca−3.

(b) Given ε > 0, we can choose a δ > 0 small enough so that for all large enough t

P{1 ≤ Z̺(t) ≤ δt2/3} ≤ ε.

Competition interface. In (6; 7) Ferrari, Martin and Pimentel introduced the competition

interface in the last-passage picture. This is a path k 7→ ϕk ∈ Z
2
+ (k ∈ Z+), defined as a function

of {Gij}: first ϕ0 = (0, 0), and then for k ≥ 0

ϕk+1 =

{
ϕk + (1, 0) if G(ϕk + (1, 0)) < G(ϕk + (0, 1)),

ϕk + (0, 1) if G(ϕk + (1, 0)) > G(ϕk + (0, 1)).
(2.7)

In other words, ϕ takes up-right steps, always choosing the smaller of the two possible G-values.

The term “competition interface” is justified by the following picture. Instead of having the unit
squares centered at the integer points as in Figure 1, draw the squares so that their corners
coincide with integer points. Label the squares by their northeast corners, so that the square
(i − 1, i] × (j − 1, j] is labeled the (i, j)-square. Regard the last-passage time Gij as the time
when the (i, j)-square becomes occupied. Color the square (0, 0) white. Every other square gets
either a red or a blue color: squares to the left and above the path ϕ are colored red, and squares
to the right and below ϕ blue. Then the red squares are those whose maximal path π̂ passes
through (0, 1), while the blue squares are those whose maximal path π̂ passes through (1, 0).
These can be regarded as two competing “infections” on the (i, j)-plane, and ϕ is the interface
between them.

The competition interface represents the evolution of a second-class particle, and macroscopically
it follows the characteristics. This was one of the main points for (7). In the present setting the
competition interface is the time reversal of the maximal path π̂, as we explain more precisely in
Section 4 below. This connection allows us to establish the order of the transversal fluctuations
of the competition interface in the equilibrium setting. To put this in precise notation, we
introduce

v(n) = inf{i : (i, n) = ϕk for some k ≥ 0} (2.8)

and
w(m) = inf{j : (m, j) = ϕk for some k ≥ 0}

with the usual convention inf ∅ = ∞. In other words, (v(n), n) is the leftmost point of the
competition interface on the horizontal line j = n, while (m,w(m)) is the lowest such point on
the vertical line i = m. They are connected by the implication

v(n) ≥ m =⇒ w(m) < n (2.9)

as can be seen from a picture. Transposition ωij 7→ ωji of the ω-array interchanges v and w.
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Given m and n, let
Z∗̺ = [m − v(n)]+ − [n − w(m)]+ (2.10)

denote the signed distance from the point (m, n) to the point where ϕk first hits either of the
lines j = n (Z∗̺ > 0) or i = m (Z∗̺ < 0). Precisely one of the two terms contributes to the
difference. When we let m = m(t) and n = n(t) according to (2.6), we have the t-dependent
version Z∗̺(t). Time reversal will show that in distribution Z∗̺(t) is equal to Z̺(t). (The
notation Z∗ is used in anticipation of this time reversal connection.) Consequently

Corollary 2.3. Theorem 2.2 is true word for word when Z̺(t) is replaced by Z∗̺(t).

2.2 Results for the rarefaction fan

We now partially generalize the previous results to arbitrary boundary conditions that are
bounded by the equilibrium boundary conditions of (2.5). Let {ωij} be distributed as in (2.5).
Let {ω̂ij} be another array defined on the same probability space such that ω̂00 = 0, ω̂ij = ωij

for i, j ≥ 1, and
ω̂i0 ≤ ωi0 and ω̂0j ≤ ω0j ∀ i, j ≥ 1. (2.11)

In particular, ω̂i0 = ω̂0j = 0 is admissible here. Sections 3.2 and 3.4 below explain how these
boundary conditions can represent the so-called rarefaction fan situation of simple exclusion and
cover all the characteristic directions contained within the fan.

Let Ĝ(t) denote the weight of the maximal path to (m,n) of (2.6), using the {ω̂ij} array.

Theorem 2.4. Fix 0 < α < 1. There exists a constant C = C(α, ̺) such that for all t ≥ 1 and
a > 0,

P{|Ĝ(t) − t| > at1/3} ≤ Ca−3α/2.

As a last result we show that even with these general boundary conditions, a maximizing path
does not fluctuate more than t2/3 around the diagonal of the rectangle. Define Ẑl(t) as the
i-coordinate of the right-most point on the horizontal line j = l of the right-most maximal path
to (m,n), and Ŷl(t) as the i-coordinate of the left-most point on the horizontal line j = l of the
left-most maximal path to (m,n). (In this general setting we no longer necessarily have a unique
maximizing path because we have not ruled out a dependence of {ω̂i0, ω̂0j} on {ω̂ij}i,j≥1.)

Theorem 2.5. For all 0 < α < 1 there exists C = C(α, ̺), such that for all a > 0, s ≤ t with
t ≥ 1 and (k, l) = (

⌊
(1 − ̺)2s

⌋
,
⌊
̺2s
⌋
),

P{Ẑl(t) ≥ k + at2/3} ≤ Ca−3α and P{Ŷl(t) ≤ k − at2/3} ≤ Ca−3α.

3 Particle systems and queues

The proofs in our paper will only use the last-passage description of the model. However,
we would like to point out several other pictures one can attach to the last-passage model.
An immediate one is the totally asymmetric simple exclusion process (TASEP). The boundary
conditions (2.5) of the last-passage model correspond to TASEP in equilibrium, as seen by a
“typical” particle right after its jump. We also briefly discuss queues, and an augmentation of
the last-passage picture that describes a deposition model with column growth, as in (1).
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3.1 The totally asymmetric simple exclusion process

This process describes particles that jump unit steps to the right on the integer lattice Z, subject
to the exclusion rule that permits at most one particle per site. The state of the process is a
{0, 1}-valued sequence η̃ = {η̃x}x∈Z, with the interpretation that η̃x = 1 means that site x is
occupied by a particle, and η̃x = 0 that x is vacant. The dynamics of the process are such that
each (1, 0) pair in the state becomes a (0, 1) pair at rate 1, independently of the rest of the
state. In other words, each particle jumps to a vacant site on its right at rate 1, independently
of other particles. The extreme points of the set of spatially translation-invariant equilibrium
distributions of this process are the Bernoulli(̺) distributions ν̺ indexed by particle density
0 ≤ ̺ ≤ 1. Under ν̺ the occupation variables {η̃x} are i.i.d. with mean E̺(η̃x) = ̺.

The Palm distribution of a particle system describes the equilibrium distribution as seen from
a “typical” particle. For a function f of η̃, the Palm-expectation is

Ê̺(f(η̃)) =
E̺(f(η̃) · η̃0)

E̺(η̃0)

in terms of the equilibrium expectation, see e.g. Port and Stone (12). Due to η̃x ∈ {0, 1}, for
TASEP the Palm distribution is the original Bernoulli(̺)-equilibrium conditioned on η̃0 = 1.

Theorem 3.1 (Burke). Let η̃ be a totally asymmetric simple exclusion process started from the
Palm distribution (i.e. a particle at the origin, Bernoulli measure elsewhere). Then the position
of the particle started at the origin is marginally a Poisson process with jump rate 1 − ̺.

The theorem follows from considering the inter-particle distances as M/M/1 queues. Each of
these distances is geometrically distributed, which is the stationary distribution for the corre-
sponding queue. Departure processes from these queues, which correspond to TASEP particle
jumps, are marginally Poisson due to Burke’s Theorem for queues, see e.g. Brémaud (2) for
details. The Palm distribution is important in this argument, as selecting a “typical” TASEP-
particle assures that the inter-particle distances (or the lengths of the queues) are geometrically
distributed. For instance, the first particle to the left of the origin in an ordinary Bernoulli
equilibrium will not see a geometric distance to the next particle on its right.

Shortly we will explain how the boundary conditions (2.5) correspond to
TASEP started from Bernoulli(̺) measure, conditioned on η̃0(0) = 0 and
η̃1(0) = 1, i.e. a hole at the origin and a particle at site one initially. It will be conve-
nient to give all particles and holes labels that they retain as they jump (particles to the right,
holes to the left). The particle initially at site one is labeled P0, and the hole initially at the
origin is labeled H0. After this, all particles are labeled with integers from right to left, and all
holes from left to right. The position of particle Pj at time t is Pj(t), and the position of hole
Hi at time t is Hi(t). Thus initially

· · · < P3(0) < P2(0) < P1(0) < H0(0) = 0

< 1 = P0(0) < H1(0) < H2(0) < H3(0) < · · ·
Since particles never jump over each other, Pj+1(t) < Pj(t) holds at all times t ≥ 0, and by the
same token also Hi(t) < Hi+1(t).

It turns out that this perturbation of the Palm distribution does not entirely spoil Burke’s
Theorem.
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Corollary 3.2. Marginally, P0(t) − 1 and −H0(t) are two independent Poisson processes with
respective jump rates 1 − ̺ and ̺.

Proof. The evolution of P0(t) depends only on the initial configuration
{η̃x(0)}x>1 and the Poisson clocks governing the jumps over the edges {x → x + 1}x≥1.
The evolution of H0(t) depends only on the initial configuration {η̃x(0)}x<0 and the Poisson
clocks governing the jumps over the edges {x → x + 1}x<0. Hence P0(t) and H0(t) are
independent. Moreover, {η̃x(0)}x>1, x<0 is Bernoulli(̺) distributed, just like in the Palm
distribution. Hence Burke’s Theorem applies to P0(t). As for H0(t), notice that 1 − η̃(t), with
1x ≡ 1, is a TASEP with holes and particles interchanged and particles jumping to the left.
Hence Burke’s Theorem applies to −H0(t).

Now we can state the precise connection with the last-passage model. For i, j ≥ 0 let Tij denote
the time when particle Pj and hole Hi exchange places, with T00 = 0. Then

the processes {Gij}i,j≥0 and {Tij}i,j≥0 are equal in distribution.

For the marginal distributions on the i- and j-axes we see the truth of the statement from
Corollary 3.2. More generally, we can compare the growing cluster

C(t) = {(i, j) ∈ Z
2
+ : Tij ≤ t}

with A(t) defined by (2.4), and observe that they are countable state Markov chains with the
same initial state and identical bounded jump rates.

Since each particle jump corresponds to exchanging places with a particular hole, one can deduce
that at time Tij,

Pj(Tij) = i − j + 1 and Hi(Tij) = i − j. (3.1)

By the queuing interpretation of the TASEP, we represent particles as servers, and the holes
between Pj and Pj−1 as customers in the queue of server j. Then the occupation of the last-
passage point (i, j) is the same event as the completion of the service of customer i by server
j. This infinite system of queues is equivalent to a constant rate totally asymmetric zero range
process.

3.2 The rarefaction fan

The classical rarefaction fan initial condition for TASEP is constructed with two densities λℓ >
λr. Initially particles to the left of the origin obey Bernoulli λℓ distributions, and particles to the
right of the origin follow Bernoulli λr distributions. Of interest here is the behavior of a second-
class particle or the competition interface, and we refer the reader to articles (5; 7; 6; 11; 16)

Following the development of the previous section, condition this initial measure on having a
hole H0 at 0, and a particle P0 at 1. Then as observed earlier, H0 jumps to the left according
to a Poisson(λℓ) process, while P0 jumps to the right according to a Poisson(1−λr) process. To
represent this situation in the last-passage picture, choose boundary weights {ω̂i0} i.i.d. Exp(1−
λr), and {ω̂0j} i.i.d. Exp(λℓ), corresponding to the waiting times of H0 and P0. Suppose λℓ > ̺ >
λr and ω is the ̺-equilibrium boundary condition defined by (2.5). Then we have the stochastic
domination ωi0 ≥ ω̂i0 and ω0j ≥ ω̂0j, and we can realize these inequalities by coupling the
boundary weights. The proofs of Section 7 show that in fact one need not insist on exponential
boundary weights {ω̂i0, ω̂0j}, but instead only inequality (2.11) is required for the fluctuations.
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3.3 A deposition model

In this section we describe a deposition model that gives a direct graphical connection between
the TASEP and the last-passage percolation. This point of view is not needed for the later
proofs, hence we only give a brief explanation.
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Figure 3: The initial configuration

We start by tilting the j-axis and all the vertical columns of Figure 1 by 45 degrees, resulting
in Figure 3. This picture represents the same initial situation as Figure 1, but note that now
the j-coordinates must be read in the direction տ. (As before, some squares are labeled with
their (i, j)-coordinates.) The i− j tilted coordinate system is embedded in an x− h orthogonal
system.
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Figure 4: A possible move at a later time

Figure 4 shows the later situation that corresponds to Figure 2. As before, the thickset line is
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the boundary of the squares belonging to A(t) of (2.4). Whenever it makes sense, the height
hx of a column x is defined as the h-coordinate (i.e. the vertical height) of the thickset line
above the edge [x, x + 1] on the x-axis. Define the increments ηx = hx−1 − hx and notice that,
whenever defined, ηx ∈ {0, 1} due to the tilting we made. The last passage rules, converted for
this picture, tell us that occupation of a new square happens at rate one unless it would violate
ηx ∈ {0, 1} for some x. Moreover, one can read that the occupation of a square (i, j) is the same
event as the pair (ηi−j , ηi−j+1) changing from (1, 0) to (0, 1). Comparing this to (3.1) leads us
to the conclusion that ηx, whenever defined, is the occupation variable of the simple exclusion
process that corresponds to the last passage model. This way one can also conveniently include
the particles (ηx = 1) and holes (ηx = 0) on the x-axis, as seen on the figures. Notice also that
the time-increment hx(t) − hx(0) is the cumulative particle current across the bond [x, x + 1].

3.4 The characteristics

One-dimensional conservative particle systems have the conservation law

∂t̺(t, x) + ∂xf(̺(t, x)) = 0 (3.2)

under the Eulerian hydrodynamic scaling, where ̺(t, x) is the expected particle number per site
and f(̺(t, x)) is the macroscopic particle flux around the rescaled position x at the rescaled
time t, see e.g. (10) for details. Disturbances of the solution propagate with the characteristic
speed f ′(̺). The macroscopic particle flux for TASEP is f(̺) = ̺(1 − ̺), and consequently
the characteristic speed is f ′(̺) = 1 − 2̺. Thus the characteristic curve started at the origin is
t 7→ (1 − 2̺)t. To identify the point (m,n) in the last-passage picture that corresponds to this
curve, we reason approximately. Namely, we look for m and n such that hole Hm and particle
Pn interchange positions at around time t and the characteristic position (1 − 2̺)t. By time t,
that particle Pn has jumped over approximately (1−̺)t sites due to Burke’s Theorem. Hence at
time zero, Pn is approximately at position (1− 2̺)t− (1− ̺)t = −̺t. Since the particle density
is ̺, the particle labels around this position are n ≈ ̺2t at time zero. Similarly, holes travel at a
speed −̺, so hole Hm starts from approximately (1− 2̺)t + ̺t. They have density 1− ̺, which
indicates m ≈ (1 − ̺)2t. Thus we are led to consider the point (m,n) = (⌊(1 − ̺)2t⌋, ⌊̺2t⌋) as
done in (2.6).

In the rarefaction fan situation with initial density

̺(0, x) =

{
λℓ, x < 0

λr, x > 0
with λℓ > λr

all curves t 7→ (1 − 2̺)t for ̺ ∈ [λr, λℓ] are characteristics emanating from the origin. With this
initial density the entropy solution of the conservation law (3.2) is

̺(t, x) =





λℓ, x < (1 − 2λℓ)t
1
2 − x

2t , (1 − 2λℓ)t < x < (1 − 2λr)t

λr, x > (1 − 2λr)t.

For given densities λℓ > λr and Bernoulli initial occupations, we can take any ̺ ∈ [λr, λℓ]
and construct the coupled boundary values (2.11) with the correct exponential distributions.
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A macroscopic calculation utilizing ̺(t, x) and the flux f(̺(t, x)) concludes that again, roughly
speaking, particle ̺2t meets hole (1−̺)2t at point (1−2̺)t at time t, for each ̺ ∈ [λr, λℓ]. Thus
the endpoints (m,n) = (⌊(1 − ̺)2t⌋, ⌊̺2t⌋) that are possible in Theorem 2.4 cover the entire
range of characteristic directions for given λℓ > λr.

4 Preliminaries

We turn to establish some basic facts and tools. First an extension of Corollary 3.2 to show that
Burke’s Theorem holds for every hole and particle in the last-passage picture. Define

Iij : = Gij − G{i−1}j for i ≥ 1, j ≥ 0, and

Jij : = Gij − Gi{j−1} for i ≥ 0, j ≥ 1.
(4.1)

Iij is the time it takes for particle Pj to jump again after its jump to site i− j. Jij is the time it
takes for hole Hi to jump again after its jump to site i − j + 1. Applying the last passage rules
(2.3) shows

Iij = Gij − G{i−1}j

= (G{i−1}j ∨ Gi{j−1}) + ωij − G{i−1}{j−1}

− (G{i−1}j − G{i−1}{j−1})

= (J{i−1}j ∨ Ii{j−1}) + ωij − J{i−1}j

= (Ii{j−1} − J{i−1}j)
+ + ωij.

(4.2)

Similarly,
Jij = (J{i−1}j − Ii{j−1})

+ + ωij. (4.3)

For later use, we define
X{i−1}{j−1} = Ii{j−1} ∧ J{i−1}j . (4.4)

Lemma 4.1. Fix i, j ≥ 1. If Ii{j−1} and J{i−1}j are independent exponentials with respective
parameters 1− ̺ and ̺, then Iij , Jij , and X{i−1}{j−1} are jointly independent exponentials with
respective parameters 1 − ̺, ̺, and 1.

Proof. As the variables Ii{j−1}, J{i−1}j and ωij are independent, we use (4.2), (4.3) and (4.4) to
write the joint moment generating function as

MIij , Jij , X{i−1}{j−1}
(s, t, u) := EesIij+tJij+uX{i−1}{j−1}

= Ees(Ii{j−1}−J{i−1}j)
++t(J{i−1}j−Ii{j−1})++u(Ii{j−1}∧J{i−1}j) ·Ee(s+t)ωij

where it is defined. Then, with the assumption of the lemma and the definition of ωij, elementary
calculations show

MIij , Jij , X{i−1}{j−1}
(s, t, u) =

̺ · (1 − ̺)

(1 − ̺ − s) · (̺ − t) · (1 − u)
.
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Let Σ be the set of doubly-infinite down-right paths in the first quadrant of the (i, j)-coordinate
system. In terms of the sequence of points visited a path σ ∈ Σ is given by

σ = {· · · → (p−1, q−1) → (p0, q0) → (p1, q1) → · · · → (pl, ql) → . . . }

with all pl, ql ≥ 0 and steps

(pl+1, ql+1) − (pl, ql) =

{
(1, 0) (direction → in Figure 1), or

(0,−1) (direction ↓ in Figure 1).

The interior of the set enclosed by σ is defined by

B(σ) = {(i, j) : 0 ≤ i < pl, 0 ≤ j < ql for some (pl, ql) ∈ σ}.

The last-passage time increments along σ are the variables

Zl(σ) = Gpl+1ql+1
− Gplql

=

{
Ipl+1ql+1

, if (pl+1, ql+1) − (pl, ql) = (1, 0),

Jplql
, if (pl+1, ql+1) − (pl, ql) = (0,−1),

for l ∈ Z. We admit the possibility that σ is the union of the i- and j-coordinate axes, in which
case B(σ) is empty.

Lemma 4.2. For any σ ∈ Σ, the random variables

{
{Xij : (i, j) ∈ B(σ)}, {Zl(σ) : l ∈ Z}

}
(4.5)

are mutually independent, I’s with Exp(1−̺), J ’s with Exp(̺), and X’s with Exp(1) distribution.

Proof. We first consider the countable set of paths that join the j-axis to the i-axis, in other
words those for which there exist finite n0 < n1 such that pn = 0 for n ≤ n0 and qn = 0 for
n ≥ n1. For these paths we argue by induction on B(σ). When B(σ) is the empty set, the
statement reduces to the independence of ω-values on the i- and j-axes which is part of the
set-up.

Now given an arbitrary σ ∈ Σ that connects the j- and the i-axes, consider a growth corner

(i, j) for B(σ), by which we mean that for some index l ∈ Z,

(pl−1, ql−1), (pl, ql), (pl+1, ql+1) = (i, j + 1), (i, j), (i + 1, j).

A new valid σ̃ ∈ Σ can be produced by replacing the above points with

(p̃l−1, q̃l−1), (p̃l, q̃l), (p̃l+1, q̃l+1) = (i, j + 1), (i + 1, j + 1), (i + 1, j)

and now B(σ̃) = B(σ) ∪ {(i, j)}.
The change inflicted on the set of random variables (4.5) is that

{I{i+1}j , Ji{j+1}} (4.6)

has been replaced by
{I{i+1}{j+1}, J{i+1}{j+1}, Xij}. (4.7)
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By (4.2)–(4.3) variables (4.7) are determined by (4.6) and ω{i+1}{j+1}. If we assume inductively
that σ satisfies the conclusion we seek, then so does σ̃ by Lemma 4.1 and because in the situation
under consideration ω{i+1}{j+1} is independent of the variables in (4.5).

For an arbitrary σ the statement follows because the independence of the random variables in
(4.5) follows from independence of finite subcollections. Consider any square R = {0 ≤ i, j ≤ M}
large enough so that the corner (M,M) lies outside σ ∪ B(σ). Then the X- and Z(σ)-variables
associated to σ that lie in R are a subset of the variables of a certain path σ̃ that goes through
the points (0,M) and (M, 0). Thus the variables in (4.5) that lie inside an arbitrarily large
square are independent.

By applying Lemma 4.2 to a path that contains the horizontal line ql ≡ j we get a version
of Burke’s theorem: particle Pj obeys a Poisson process after time G0j when it “enters the
last-passage picture.” The vertical line pl ≡ i gives the corresponding statement for hole Hi.

Example 2.10.2 of Walrand (17) gives an intuitive understanding of this result. Our initial state
corresponds to the situation when particle P0 and hole H0 have just exchanged places in an
equilibrium system of queues. H0 is therefore a customer who has just moved from queue 0 to
queue 1. By that Example, this customer sees an equilibrium system of queues every time he
jumps. Similarly, any new customer arriving to the queue of particle P1 sees an equilibrium
queue system in front, so Burke’s theorem extends to the region between P0 and H0.

Up-right turns do not have independence: variables Iij and Ji{j+1}, or Jij and I{i+1}j are not
independent.

The same inductive argument with a growing cluster B(σ) proves a result that corresponds to
a coupling of two exclusion systems η and η̃ where the latter has a higher density of particles.
However, the lemma is a purely deterministic statement.

Lemma 4.3. Consider two assignments of values {ωij} and {ω̃ij} that satisfy ω00 = ω̃00 = 0,

ω0j ≥ ω̃0j, ωi0 ≤ ω̃i0, and ωij = ω̃ij for all i, j ≥ 1. Then all increments satisfy Iij ≤ Ĩij and

Jij ≥ J̃ij .

Proof. One proves by induction that the statement holds for all increments between points in
σ ∪ B(σ) for those paths σ ∈ Σ for which B(σ) is finite. If B(σ) is empty the statement is the
assumption made on the ω- and ω̃-values on the i- and j-axes. The induction step that adds a
growth corner to B(σ) follows from equations (4.2) and (4.3).

4.1 The reversed process.

Fix m > 0 and n > 0, and define
Hij = Gmn − Gij

for 0 ≤ i ≤ m, 0 ≤ j ≤ n. This is the time needed to “free” the point (i, j) in the reversed
process, started from the moment when (m, n) becomes occupied. For 0 ≤ i < m and 0 ≤ j < n,

Hij = −((G{i+1}j − Gmn) ∧ (Gi{j+1} − Gmn))

+ ((G{i+1}j − Gij) ∧ (Gi{j+1} − Gij))

= H{i+1}j ∨ Hi{j+1} + Xij

1107



with definition (4.4) of the X-variables. Taking this and Lemma 4.2 into account, we see that
the H-process is a copy of the original G-process, but with reversed coordinate directions.
Precisely speaking, define ω∗

00 = 0, and then for 0 < i ≤ m, 0 < j ≤ n: ω∗
i0 = I{m−i+1}n,

ω∗
0j = Jm{n−j+1}, and ω∗

ij = X{m−i}{n−j}. Then {ω∗
ij : 0 ≤ i ≤ m, 0 ≤ j ≤ n} is distributed like

{ωij : 0 ≤ i ≤ m, 0 ≤ j ≤ n} in (2.5), and the process

G∗
ij = H{m−i}{n−j} (4.8)

for 0 ≤ i ≤ m, 0 ≤ j ≤ n satisfies

G∗
ij = (G∗

{i−1}j ∨ G∗
i{j−1}) + ω∗

ij, 0 ≤ i ≤ m , 0 ≤ j ≤ n

(with the formal assumption G∗
{−1}j = G∗

i{−1} = 0), see (2.3). Thus the pair (G∗, ω∗) has the

same distribution as (G,ω) in a fixed rectangle {0 ≤ i ≤ m} × {0 ≤ j ≤ n}. Throughout the
paper quantities defined in the reversed process will be denoted by a superscript ∗, and they will
always be equal in distribution to their original forward versions.

4.2 Exit point and competition interface.

For integers x define

U̺
x = G{x+}{x−} =

{∑x
i=0 ωi0, x ≥ 0

∑−x
j=0 ω0j , x ≤ 0.

(4.9)

Referring to the two coordinate systems in Figure 3, this is the last-passage time of the point
on the (i, j)-axes above point x on the x-axis. This point is on the i-axis if x ≥ 0 and on the
j-axis if x ≤ 0.

Fix integers m ≥ x+∨1, n ≥ x−∨1, and define Πx(m,n) as the set of directed paths π connecting
(x+ ∨ 1, x− ∨ 1) and (m, n) using allowable steps (2.2). Then let

Ax = Ax(m,n) = max
π∈Πx(m,n)

∑

(p,q)∈π

ωpq (4.10)

be the maximal weight collected by a path from (x+, x−) to (m, n) that immediately exits the
axes, and does not count ωx+x− . Notice that A−1 = A0 = A1 and this value is the last-passage
time from (1, 1) to (m,n) that completely ignores the boundaries, or in other words, sets the
boundary values ωi0 and ω0j equal to zero.

By the continuity of the exponential distribution there is an a.s. unique path π̂ from (0, 0) to
(m, n) which collects the maximal weight G̺

mn. Earlier we defined the exit point Z̺ ∈ Z to
represent the last point of this path on either the i-axis or the j-axis. Equivalently we can now
state that Z̺ is the a.s. unique integer for which

G̺
mn = U̺

Z̺ + AZ̺ .

Simply because the maximal path π̂ necessarily goes through either (0, 1) or (1, 0), Z̺ is always
nonzero.

Recall the definition of the competition interface in (2.7). Now we can observe that the compe-
tition interface is the time reversal of the maximal path π̂. Namely, the competition interface
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of the reversed process follows the maximal path π̂ backwards from the corner (m,n), until it
hits either the i- or the j-axis. To make a precise statement, let us represent the a.s. unique
maximal last-passage path, with exit point Z̺ as defined above, as

π̂ = {(0, 0) = π̂0 → π̂1 → · · · → π̂|Z̺| → · · · → π̂m+n = (m,n)},
where {π̂|Z̺|+1 → · · · → π̂m+n} is the portion of the path that resides in the interior {1, . . . ,m}×
{1, . . . , n}.
Lemma 4.4. Let ϕ∗ be the competition interface constructed for the process G∗ defined by (4.8).
Then ϕ∗

k = (m,n) − π̂m+n−k for 0 ≤ k ≤ m + n − |Z̺|.

Proof. Starting from π̂m+n = (m,n), the maximal path π̂ can be constructed backwards step by
step by always moving to the maximizing point of the right-hand side of (2.3). This is the same
as constructing the competition interface for the reversed process G∗ by (2.7). Since G∗ is not
constructed outside the rectangle {0, . . . ,m}×{0, . . . , n}, we cannot assert what the competition
interface does after the point

ϕ∗
m+n−|Z̺| = π̂|Z̺| =

{
(Z̺, 0) if Z̺ > 0

(0,−Z̺) if Z̺ < 0.

Notice that, due to this lemma, Z∗̺ defined in (2.10) is indeed Z̺ defined in the reversed process,
which justifies the argument following (2.10).

The competition interface bounds the regions where the boundary conditions on the axes are
felt. From this we can get useful bounds between last-passage times under different boundary
conditions. This is the last-passage model equivalent of the common use of second-class particles
to control discrepancies between coupled interacting particle systems. In the next lemma, the
superscript W represents the west boundary (j-axis) of the (i, j)-plane. Remember that (v(n), n)
is the left-most point of the competition interface on the horizontal line j = n computed in terms
of the G-process (see (2.8)).

Lemma 4.5. Let GW=0 be the last-passage times of a system where we set ω0j = 0 for all j ≥ 1.
Then for v(n) < m1 < m2,

A0(m2, n) − A0(m1, n) ≤ GW=0(m2, n) − GW=0(m1, n)

= G(m2, n) − G(m1, n).

Proof. The first inequality is a consequence of Lemma 4.3, because computing A0 is the same
as computing G with all boundary values ωi0 = ω0j = 0 (and in fact this inequality is valid for
all m1 < m2.) The equality G(m,n) = GW=0(m,n) for m > v(n) follows because the maximal
path π̂ for G(m,n) goes through (1, 0) and hence does not see the boundary values ω0j. Thus
this same path π̂ is maximal for GW=0(m,n) too.

If we set ωi0 = 0 (the south boundary denoted by S) instead, we get this statement: for
0 ≤ m1 < m2 ≤ v(n),

A0(m2, n) − A0(m1, n) ≥ GS=0(m2, n) − GS=0(m1, n)

= G(m2, n) − G(m1, n).
(4.11)
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4.3 A coupling on the i-axis

Let 1 > λ > ̺ > 0. As a common realization of the exponential weights ωλ
i0 of Exp(1 − λ) and

ω̺
i0 of Exp(1 − ̺) distribution, we write

ωλ
i0 =

1 − ̺

1 − λ
· ω̺

i0. (4.12)

We will use this coupling later for different purposes. We will also need

Var(ωλ
i0 − ω̺

i0) =

(
1 − ̺

1 − λ
− 1

)2

· 1

(1 − ̺)2
=

(
1

1 − λ
− 1

1 − ̺

)2

.

4.4 Exit point and the variance of the last-passage time

With these preliminaries we can prove the key lemma that links the variance of the last-passage
time to the weight collected along the axes.

Lemma 4.6. Fix m, n positive integers. Then

Var(G̺
mn) =

n

̺2
− m

(1 − ̺)2
+

2

1 − ̺
·E(U̺

Z̺+)

=
m

(1 − ̺)2
− n

̺2
+

2

̺
· E(U̺

−Z̺−),

(4.13)

where Z̺ is the a.s. unique exit point of the maximal path from (0, 0) to (m, n).

Proof. We label the total increments along the sides of the rectangle by compass directions:

W = G̺
0n − G̺

00, N = G̺
mn − G̺

0n, E = G̺
mn − G̺

m0, S = G̺
m0 − G̺

00.

As N and E are independent by Lemma 4.2, we have

Var(G̺
mn) = Var(W + N )

= Var(W) + Var(N ) + 2Cov(S + E − N , N )

= Var(W) − Var(N ) + 2Cov(S, N ).

(4.14)

We now modify the ω-values in S. Let λ = ̺ + ε and apply (4.12), without changing the other
values {ωij : i ≥ 0, j ≥ 1}. Quantities of the altered last-passage model will be marked with a
superscript ε. In this new process, Sε has a Gamma(m, 1 − ̺ − ε) distribution with density

fε(s) =
(1 − ̺ − ε)m · e−(1−̺−ε)s · sm−1

(m − 1)!

for s > 0, whose ε-derivative is

∂εfε(s) = sfε(s) −
m

1 − ̺ − ε
· fε(s). (4.15)
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Given the sum Sε, the joint distribution of {ωi0}1≤i≤m is independent of the parameter ε, hence
the quantity E(N ε | Sε = s) = E(N |S = s) does not depend on ε. Therefore, using (4.15) we
have

∂εE(N ε)
∣∣∣
ε=0

= ∂ε

∫ ∞

0
E(N |S = s)fε(s) ds

∣∣∣
ε=0

=

∫ ∞

0
E(N |S = s) · s · f0(s) ds − m

1 − ̺

∫ ∞

0
E(N |S = s)f0(s) ds

= E(NS) − m

1 − ̺
·E(N ) = Cov(N , S).

(4.16)

Next we compute the same quantity by a different approach. Let Z and Zε be the exit points of
the maximal paths to (m, n) in the original and the modified processes, respectively. Similarly,
Ux and U ε

x are the weights as defined by (4.9) for the two processes. Hence UZ is the weight
collected on the i or j axis by the maximal path of the original process. Then

N ε −N = (N ε −N ) · 1{Zε = Z} + (N ε −N ) · 1{Zε 6= Z}
= (U ε

Z − UZ) · 1{Zε = Z} + (N ε −N ) · 1{Zε 6= Z}
= (U ε

Z − UZ) + (N ε −N − U ε
Z + UZ) · 1{Zε 6= Z}.

As ω values are only changed on the i-axis, the first term is rewritten as

U ε
Z − UZ = U ε

Z+ − UZ+ =

(
1 − ̺

1 − ̺ − ε
− 1

)
UZ+ =

ε

1 − ̺ − ε
· UZ+

by (4.12). We show that the expectation of the second term is o(ε). Note that the increase
N ε −N is bounded by Sε − S. Hence

E[(N ε −N − U ε
Z + UZ) · 1{Zε 6= Z}]

≤ E[(N ε −N ) · 1{Zε 6= Z}] ≤ E[(Sε − S) · 1{Zε 6= Z}]

≤
(
E[(Sε − S)2]

) 1
2 ·
(
P{Zε 6= Z}

) 1
2 .

(4.17)

To show that the probability is of the order of ε, notice that the exit point of the maximal
path can only differ in the modified process from the one of the original process, if for some
Z < k ≤ m, U ε

k + Ak > U ε
Z + AZ with Z of the original process (see (4.10) for the definition of

Ai). Therefore,

P{Zε 6= Z} = P{U ε
k + Ak > U ε

Z + AZ for some Z < k ≤ m}
= P{U ε

k − U ε
Z > AZ − Ak for some Z < k ≤ m}

= P{U ε
k − U ε

Z > AZ − Ak ≥ Uk − UZ for some Z < k ≤ m}
≤ P{U ε

k − U ε
i > Ai − Ak ≥ Uk − Ui for some 0 ≤ i < k ≤ m}

≤
∑

0≤i<k≤m

P{U ε
k − U ε

i > Ai − Ak ≥ Uk − Ui}.

We also used the definition of Z in the third equality, via AZ + UZ ≥ Ak + Uk. Notice that A’s
and U ’s are independent for fixed indices. Hence with µ denoting the distribution of Ai − Ak,
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we write

P{U ε
k − U ε

i > Ai − Ak ≥ Uk − Ui}

=

∫
P{U ε

k − U ε
i > x ≥ Uk − Ui}dµ(x)

≤ sup
x

P{U ε
k − U ε

i > x ≥ Uk − Ui}

= sup
x

P
{ 1 − ̺

1 − ̺ − ε
· (Uk − Ui) > x ≥ Uk − Ui

}

= sup
x

P
{

x ≥ Uk − Ui > x
(
1 − ε

1 − ̺

)}
.

Since Uk −Ui has a Gamma distribution, the supremum above is O(ε), which shows the bound
on P{Zε 6= Z}. The first factor on the right-hand side of (4.17),

(
E[(Sε − S)2]

)1/2
=

ε

1 − ̺ − ε
·
(
E[S2]

)1/2
,

is of order ε. Hence the error term (4.17) is o(ε), and we conclude

∂εE(N ε)
∣∣∣
ε=0

=
1

1 − ̺
·E(UZ+).

The proof of the first statement is then completed by this display, (4.14) and (4.16), as W and
N are Gamma-distributed by Lemma 4.2. The second statement follows in a similar way, using
Cov(W, E).

Lemma 4.7. Let 0 < ̺ ≤ λ < 1. Then

Var(Gλ
mn) ≤ ̺2

λ2
· Var(G̺

mn) + m ·
(

1

(1 − λ)2
− ̺2

λ2(1 − ̺)2

)
.

Proof. The proof is based on the coupling described by (4.12), and a similar one ωλ
0j = ̺

λ ·ω
̺
0j on

the j axis. Note that in this coupling, when changing from ̺ to λ, we are increasing the weights
on the i-axis and decreasing the weights on the j-axis, which clearly implies Z̺ ≤ Zλ. Also, we
remain in the stationary situation, so (4.13) remains valid for λ. As U̺

−x− is non-increasing in
x, this implies

Uλ
−Zλ− =

̺

λ
· U̺

−Zλ− ≤ ̺

λ
· U̺

−Z̺−.

We substitute this into the second line of (4.13) to get

Var(Gλ
mn) =

m

(1 − λ)2
− n

λ2
+

2

λ
·E(Uλ

−Zλ−)

≤ m

(1 − λ)2
− n

λ2
+

2̺

λ2
· E(U̺

−Z̺−)

=
̺2

λ2
·
(

m

(1 − ̺)2
− n

̺2
+

2

̺
·E(U̺

−Z̺−)

)

+ m ·
(

1

(1 − λ)2
− ̺2

λ2(1 − ̺)2

)

=
̺2

λ2
·Var(G̺

mn) + m ·
(

1

(1 − λ)2
− ̺2

λ2(1 − ̺)2

)
.
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5 Upper bound

We turn to proving the upper bounds in Theorems 2.1 and 2.2. We have a fixed density ̺ ∈ (0, 1),
and to study the last-passage times G̺ along the characteristic, we define the dimensions of the
last-passage rectangle as

m(t) =
⌊
(1 − ̺)2t

⌋
and n(t) =

⌊
̺2t
⌋

(5.1)

with a parameter t → ∞. The quantities Ax, Z and Gmn connected to these indices are denoted
by Ax(t), Z(t), G(t). In the proofs we need to consider different boundary conditions (2.5) with
̺ replaced by λ. This will be indicated by a superscript. However, the superscript λ only changes
the boundary conditions and not the dimensions m(t) and n(t), always defined by (5.1) with a
fixed ̺. Moreover, we apply the coupling (4.12) on the i-axis and ωλ

0j = ̺
λ · ω̺

0j on the j-axis.
The weights {ωij}i, j≥1 in the interior will not be affected by changes in boundary conditions, so
in particular Ax(t) will not either. Since Gλ(t) chooses the maximal path,

Uλ
z + Az(t) ≤ Gλ(t)

for all 1 ≤ z ≤ m(t) and all densities 0 < λ < 1. Consequently, for integers u ≥ 0 and densities
λ ≥ ̺,

P{Z̺(t) > u} = P{∃z > u : U̺
z + Az(t) = G̺(t)}

≤ P{∃z > u : U̺
z − Uλ

z + Gλ(t) ≥ G̺(t)}
= P{∃z > u : Uλ

z − U̺
z ≤ Gλ(t) − G̺(t)}

≤ P{Uλ
u − U̺

u ≤ Gλ(t) − G̺(t)}.

(5.2)

The last step is justified by λ ≥ ̺ and the coupling (4.12).

To put the subsequent technicalities into context, we give a rough summary of the argument
that follows. To get an upper bound for Var(G̺(t)), by Lemma 4.6 it suffices to find an upper
bound for the mean of U̺

Z̺(t)+
. The goal will be to obtain an inequality of the type

P{U̺
Z̺(t)+

> y} ≤ C
t2

y4
· E(U̺

Z̺(t)+
) + (error terms). (5.3)

This is sufficient to guarantee that E(U̺
Z̺(t)+

) does not grow faster than t2/3, provided the error

terms can be handled. Informally speaking, here is the logic that produces inequality (5.3). If
U̺

Z̺(t)+
is too large, then except for a large deviation, it must be that Z̺(t) is too large. When

G̺(t) collects too much weight on the i-axis, we compare it to a λ-system with λ > ̺, as was
done in (5.2) above. By choosing λ appropriately we can make E(Uλ

u − U̺
u − Gλ(t) + G̺(t))

strictly positive for a range of u (Lemma 5.2), and thereby the last probability in (5.2) is already
a deviation. In Lemma 5.5 we control this deviation simply with the variances of the terms.
In preparation for that Lemmas 5.3 and 5.4 give bounds for the variances. In particular, by
another application of Lemma 4.6, bounds on the variances of the last-passage times bring back
the mean E(U̺

Z̺(t)+
) on the right-hand side of (5.3), and thereby close the loop.
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We turn to the details of the derivation of the upper bound, beginning with the optimal choice
of λ. Set

λu =
̺√

(1 − ̺)2 − u/t + ̺
. (5.4)

This density maximizes

E(Uλ
u ) − E(Gλ(t)) =

u

1 − λ
−
⌊
(1 − ̺)2t

⌋

1 − λ
−
⌊
̺2t
⌋

λ

if the integer parts are dropped. The expectation E(Gλ
mn) is computed as E(Gλ

0n)+E(Gλ
mn−Gλ

0n)
with the help of Lemma 4.2. Some useful identities for future computations:

λu ≥ ̺,
1

λu
= 1 +

√
(1 − ̺)2 − u/t

̺
,

1

1 − λu
= 1 +

̺√
(1 − ̺)2 − u/t

. (5.5)

Lemma 5.1. With 0 ≤ u ≤ (1 − ̺)2t and λu of (5.4),

E(Uλu
u − U̺

u − Gλu(t) + G̺(t))

≥ t̺

1 − ̺

(
(1 − ̺) −

√
(1 − ̺)2 − u/t

)2
− u/t

̺(1 − ̺)
.

Proof. By Lemma 4.2 and (5.1)

E(Uλu
u − U̺

u − Gλu(t) + G̺(t))

=
u

1 − λu
− u

1 − ̺
−
⌊
(1 − ̺)2t

⌋

1 − λu
+

⌊
(1 − ̺)2t

⌋

1 − ̺
−
⌊
̺2t
⌋

λu
+

⌊
̺2t
⌋

̺
.

First we remove the integer parts. Since λu ≥ ̺,

−
⌊
(1 − ̺)2t

⌋

1 − λu
+

⌊
(1 − ̺)2t

⌋

1 − ̺
≥ −(1 − ̺)2t

1 − λu
+

(1 − ̺)2t

1 − ̺
.

For the other integer parts

−
⌊
̺2t
⌋

λu
+

⌊
̺2t
⌋

̺
≥ −̺2t

λu
+

̺2t

̺
− 1

̺
+

1

λu

= −̺2t

λu
+

̺2t

̺
− 1 − ̺ −

√
(1 − ̺)2 − u/t

̺

≥ −̺2t

λu
+

̺2t

̺
− u/t

̺(1 − ̺)

The last term above is the last term of the bound in the statement of the lemma. It remains
to check that after the integer parts have been removed from the mean, the remaining quantity
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equals the main term of the bound.

u

1 − λu
− u

1 − ̺
− (1 − ̺)2t

1 − λu
+

(1 − ̺)2t

1 − ̺
− ̺2t

λu
+

̺2t

̺

= [u − (1 − ̺)2t] ·
[
1 +

̺√
(1 − ̺)2 − u/t

− 1

1 − ̺

]

− ̺2t ·
[
1 +

√
(1 − ̺)2 − u/t

̺
− 1

̺

]

= t · ̺

1 − ̺

(
(1 − ̺) −

√
(1 − ̺)2 − u/t

)2
.

Lemma 5.2. For any 8̺−2(1 − ̺)2 ≤ u ≤ (1 − ̺)2t,

E(Uλu
u − U̺

u − Gλu(t) + G̺(t)) ≥ ̺

8(1 − ̺)3
· u2

t
.

Proof. Assumption u ≥ 8̺−2(1 − ̺)2 implies that the last term of the bound from the previous
lemma satisfies

− u/t

̺(1 − ̺)
≥ − ̺

8(1 − ̺)3
· u2

t
.

Thus it remains to prove

(
(1 − ̺) −

√
(1 − ̺)2 − u/t

)2
≥ 1

4(1 − ̺)2
· u2

t2
.

This is easy to check in the form

(
C −

√
C2 − x

)2
≥ 1

4C2
· x2,

where x = u/t, C = 1 − ̺ and then x ≤ C2.

Lemma 5.3. For any 0 ≤ u ≤ 3
4(1 − ̺)2t,

Var(Gλu(t) − G̺(t)) ≤ 8

1 − ̺
· E(U̺

Z̺(t)+
) +

8(u + 1)

(1 − ̺)2

Proof. We start with substituting (5.1) into Lemma 4.7 (integer parts can be dropped without
violating the inequality):

Var(Gλu(t)) ≤ ̺2

λ2
u

· Var(G̺(t)) + t ·
(

(1 − ̺)2

(1 − λu)2
− ̺2

λ2
u

)
.

Utilizing (5.5),

(1 − ̺)2

(1 − λu)2
− ̺2

λ2
u

=
(√

(1 − ̺)2 − u/t + ̺
)2

· u/t

(1 − ̺)2 − u/t
.
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Since the expression in parentheses is not larger than 1, u/t ≤ 3
4(1 − ̺)2, and ̺ ≤ λu, it follows

that

Var(Gλu(t)) ≤ Var(G̺(t)) +
4

(1 − ̺)2
· u.

Then we proceed with Lemma 4.6 and (5.1):

Var(Gλu(t) − G̺(t)) ≤ 2Var(Gλu(t)) + 2Var(G̺(t))

≤ 4Var(G̺(t)) +
8

(1 − ̺)2
· u

=
8

1 − ̺
·E(U̺

Z̺(t)+
) + 4

⌊
̺2t
⌋

̺2
− 4

⌊
(1 − ̺)2t

⌋

(1 − ̺)2
+

8

(1 − ̺)2
· u

≤ 8

1 − ̺
·E(U̺

Z̺(t)+
) +

8(u + 1)

(1 − ̺)2

Lemma 5.4. With the application of the coupling (4.12), for any 0 ≤ u ≤ 3
4(1 − ̺)2t we have

Var(Uλu
u − U̺

u) ≤ u · ̺2

(1 − ̺)2
.

Proof. By that coupling,

Var[Uλu
u − U̺

u ] = Var

[(
1 − ̺

1 − λu
− 1

)
U̺

u

]
= u ·

(
1 − ̺

1 − λu
− 1

)2

· 1

(1 − ̺)2
,

as U̺
u is the sum of u many independent Exp(1 − ̺) weights. Write

(
1 − ̺

1 − λu
− 1

)
· 1

(1 − ̺)
=

√
(1 − ̺)2 − u/t + ̺√

(1 − ̺)2 − u/t
− 1

(1 − ̺)

≤
1
2(1 + ̺)
1
2(1 − ̺)

− 1

(1 − ̺)
=

̺

1 − ̺
.

After these preparations, we continue the main argument from (5.2).

Lemma 5.5. There exists a constant C1 = C1(̺) such that for any u ≥
8̺−2(1 − ̺)2 and t > 0,

P{Z̺(t) > u} ≤ C1

( t2

u4
· E(U̺

Z̺(t)+
) +

t2

u3

)
.

Proof. If 8̺−2(1 − ̺)2 ≤ u ≤ (1 − ̺)2t, then continuing from (5.2) and taking Lemma 5.2 into
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account, we write

P{Z̺(t) > u} ≤ P

{
Uλu

u − U̺
u ≤ E(Uλu

u − U̺
u) − ̺

16(1 − ̺)3
· u2

t

}

+ P

{
Gλu(t) − G̺(t) ≥ E(Gλu(t) − G̺(t)) +

̺

16(1 − ̺)3
· u2

t

}

≤ Var(Uλu
u − U̺

u) · 162(1 − ̺)6

̺2
· t2

u4

+ Var(Gλu(t) − G̺(t)) · 162(1 − ̺)6

̺2
· t2

u4

by Chebyshev’s inequality. If 8̺−2(1−̺)2 ≤ u ≤ 3
4(1−̺)2t, use Lemmas 5.4 and 5.3 to conclude

P{Z̺(t) > u} ≤ 162(1 − ̺)4 · t2

u3
+ 8 · 162 · (1 − ̺)5

̺2
· t2

u4
· E(U̺

Z̺(t)+
)

+ 8 · 162 · (1 − ̺)4

̺2
· t2(u + 1)

u4
.

When 3
4(1 − ̺)2t < u ≤ (1 − ̺)2t, the previous display works for 3

4u. Hence by

P{Z̺(t) > u} ≤ P{Z̺(t) > 3u/4},

the statement still holds, modified by a factor of a power of 4/3.

Finally, the probability is trivially zero if u > (1 − ̺)2t.

Fix a number 0 < α < 1, and define

y =
u

α(1 − ̺)
. (5.6)

Lemma 5.6. We have the following large deviations estimate:

P{U̺
u > y} ≤ e−(1−̺)(1−√

α)2y.

Proof. We use the fact that U̺
u =

u∑
i=1

ωi0, where the ω’s are iid. Exp(1− ̺) variables. Fix s with

1 − ̺ > s > 0. By the Markov inequality, we write

P{U̺
u > y} = P{esU̺

u > esy} ≤ e−syE(esU̺
u) = e−sy ·

( 1 − ̺

1 − ̺ − s

)u

≤ exp
(
−sy + u · s

1 − ̺ − s

)
.

Substituting u = α(1 − ̺)y, the choice s = (1 − ̺)(1 −√
α) minimizes the exponent, and yields

the result.
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Lemma 5.7. There exist finite positive constants C2 = C2(α, ̺) and C3 = C3(α, ̺) such that,
for all

r ≥ 8(1 − ̺)

α̺2E(U̺
Z̺(t)+

)
,

we have the bound

P{U̺
Z̺(t)+

> rE(U̺
Z̺(t)+

)}

≤ C2t
2

[E(U̺
Z̺(t)+

)]3
·
(

1

r3
+

1

r4

)
+ exp{−C3rE(U̺

Z̺(t)+
)}.

Proof. By (5.6) and Lemmas 5.5 and 5.6, for any y ≥ 8α−1̺−2(1−̺), and with an appropriately
defined new constant,

P{U̺
Z̺(t)+

> y} ≤ P{Z̺(t)+ > u} + P{U̺
u > y}

≤ C2

( t2

y4
· E(U̺

Z̺(t)+
) +

t2

y3

)
+ e−(1−̺)(1−√

α)2y.

Choose y = rE(U̺
Z̺(t)+

).

Theorem 5.8.

lim sup
t→∞

E(U̺
Z̺(t)+

)

t2/3
< ∞, and lim sup

t→∞

Var(G̺(t))

t2/3
< ∞.

Proof. The first inequality implies the second one by Lemma 4.6 and (5.1). To prove the first
one, suppose that there exists a sequence tk ր ∞ such that

lim
k→∞

E(U̺
Z̺(tk)+

)

t
2/3
k

= ∞.

Then E(U̺
Z̺(tk)+

) > t
2/3
k for all large k’s, and consequently by the above lemma

P{U̺
Z̺(tk)+

> rE(U̺
Z̺(tk)+

)} ≤ C2

(
1

r3
+

1

r4

)
t2k

[E(U̺
Z̺(tk)+

)]3
+ exp(−C3rt

2/3
k )

for all r ≥ C4t
−2/3
k . This shows by dominated convergence that

∫ ∞

0
P{U̺

Z̺(tk)+
> rE(U̺

Z̺(tk)+
)}dr −→

k→∞
0,

which leads to the contradiction

1 = E

(
U̺

Z̺(tk)+

E(U̺
Z̺(tk)+

)

)
−→
k→∞

0.
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Combining Lemma 5.5 and Theorem 5.8 gives a tail bound on Z:

Corollary 5.9. Given any t0 > 0 there exists a finite constant C4 = C4(t0, ̺) such that, for all
a > 0 and t ≥ t0,

P{Z̺(t) ≥ at2/3} ≤ C4a
−3.

6 Lower bound

The lower bound is a little more subtle than the upper bound for in a sense there is “less room
in the estimates.” The objective is to show that U̺

Z̺(t)+
genuinely fluctuates on the scale t2/3,

and then again Lemma 4.6 translates this into a lower bound on Var(G̺(t)). So the main point
is to prove this lemma:

Lemma 6.1. We have the asymptotics

lim
εց0

lim sup
t→∞

P{0 < U̺
Z̺(t)+

≤ εt2/3} = 0.

Note that part of the event is the requirement Z̺(t) > 0. Since U̺ is a sum of i.i.d. exponentials,
the work lies really in controlling the point Z̺(t). To make this explicit write

P{0 < U̺
Z̺(t)+

≤ εt2/3} ≤ P{0 < Z̺(t) ≤ δt2/3} + P{U̺

⌊δt2/3⌋ ≤ εt2/3}.

Given δ > 0, the last probability vanishes as t → ∞ for any ε < δ(1 − ̺)−1. Thus it remains to
show that the first probability on the right can be made arbitrarily small for large t, by choosing
a small enough δ.

Let 0 < δ, b < 1. Utilizing the fact that Z̺(t) marks the exit point of the maximal path, we
split this probability into two parts.

P{0 < Z̺(t) ≤ δt2/3}
≤ P

{
sup

x>δt2/3

(
U̺

x + Ax(t)
)

< sup
1≤x≤δt2/3

(
U̺

x + Ax(t)
)}

≤ P
{

sup
x>δt2/3

(
U̺

x + Ax(t) − A1(t)
)

< bt1/3
}

(6.1)

+ P
{

sup
1≤x≤δt2/3

(
U̺

x + Ax(t) − A1(t)
)

> bt1/3
}
. (6.2)

Next we bound the probabilities (6.1) and (6.2) separately. We abbreviate (m,n) =(⌊
(1 − ̺)2t

⌋
,
⌊
̺2t
⌋)

throughout this section.

We do not have direct control over the quantity Ax(t)−A1(t) that appears in both probabilities
(6.1) and (6.2). As defined in (4.10), these are last passage times that use only the internal
weights {ωij : i, j ≥ 1} and thereby are not constrained by the boundary conditions. But we can
relate Ax(t) − A1(t) to equilibrium G-values by using the competition interface to restrict the
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influence of the boundary conditions, as shown in Lemma 4.5 and equation (4.11). The location
of the competition interface is controlled by Corollary 5.9 which applies to Z∗̺ of (2.10) by time
reversal (recall discussion before and after Lemma 4.4).

The only impediment appears to be that Lemma 4.5 and equation (4.11) concern a difference
A0(m2, n) − A0(m1, n) of two last-passage times emanating from the common point (1, 1) but
ending up at different points on the same horizontal line at level n, while we need to treat
Ax(t) − A1(t) where the last-passage times emanate from different points (x, 1) and (1, 1) but
end up at (m,n). However, these situations can be turned into each other by reversing the
coordinate directions of the internal weights. The maximal path between two points on the
lattice does not depend on which point we declare the starting point and which the ending
point.

This argument is made precise in the next lemma which develops a bound for probability (6.2).
After that we handle (6.1) with similar reasoning.

Lemma 6.2. Let a, b > 0 be arbitrary positive numbers. There exist finite constants t0 =
t0(a, b, ̺) and C = C(̺) such that, for all t ≥ t0,

P
{

sup
1≤z≤at2/3

(
U̺

z + Az(t) − A1(t)
)
≥ bt1/3

}
≤ Ca3(b−3 + b−6).

Proof. The process {U̺
z } depends on the boundary {ωi0}. Pick a version

{ωij}1≤i≤m,1≤j≤n of the interior variables independent of {ωi0}. If we use the reversed
system

{ω̃ij = ωm−i+1,n−j+1}1≤i≤m,1≤j≤n (6.3)

to compute Az(m,n), then this coincides with A1(m−z+1, n) computed with {ωij}. Thus with
this coupling (and some abuse of notation) we can replace Az(m,n) − A1(m,n) with A1(m −
z + 1, n) − A1(m,n). [Note that A1(m,n) is the same for ω and ω̃.] Next pick a further
independent version of boundary conditions (2.5) with density λ. Use these and {ωij}i,j≥1 to
compute the last-passage times Gλ, together with a competition interface ϕλ defined by (2.7)
and the projections vλ defined by (2.8). Then by (4.11), on the event vλ(n) ≥ m,

A1(m,n) − A1(m − z + 1, n) ≥ Gλ(m,n) − Gλ(m − z + 1, n).

Set
V λ

z = Gλ(m,n) − Gλ(m − z, n),

a sum of z i.i.d. Exp(1 − λ) variables. V λ is independent of U̺. Combining these steps we get
the bound

P
{

sup
1≤z≤at2/3

(
U̺

z + Az(t) − A1(t)
)
≥ bt1/3

}

≤ P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}
+ P

{
sup

1≤z≤at2/3

(U̺
z − V λ

z−1) ≥ bt1/3
} (6.4)

Introduce a parameter r > 0 whose value will be specified later, and define

λ = ̺ − rt−1/3. (6.5)
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For the second probability on the right-hand side of (6.4), define the martingale Mz = U̺
z −

V λ
z−1 − E(U̺

z − V λ
z−1), and note that for z ≤ at2/3,

E(U̺
z − V λ

z−1) =
z

1 − ̺
− z − 1

1 − λ
=

zrt−1/3

(1 − ̺)(1 − λ)
+

1

1 − λ

≤ rat1/3

(1 − ̺)2
+

1

1 − ̺
.

As long as
b > ra(1 − ̺)−2 + t−1/3(1 − ̺)−1, (6.6)

we get by Doob’s inequality, for any p ≥ 1,

P
{

sup
1≤z≤at2/3

(U̺
z − V λ

z−1) ≥ bt1/3
}

≤ P
{

sup
1≤z≤at2/3

Mz ≥ t1/3
(
b − ra

(1 − ̺)2
− t−1/3

1 − ̺

)}

≤ C(p)t−p/3

(
b − ra(1 − ̺)−2 − t−1/3(1 − ̺)−1

)p E
[
|M⌊at2/3⌋|

p
]

≤ C(p, ̺)ap/2

(
b − ra(1 − ̺)−2 − t−1/3(1 − ̺)−1

)p .

(6.7)

Now choose t0 = 43b−3(1 − ̺)−3. Then for t ≥ t0 the above bound is dominated by

C(p, ̺)ap/2

(
3b
4 − ra

(1−̺)2

)p

which becomes C(p, ̺)a3b−6 once we choose

r =
b(1 − ̺)2

4a
(6.8)

and p = 6, and change the constant C(p, ̺).

For the first probability on the right-hand side of (6.4), introduce the time s = (̺/λ)2t. Then

P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}
= P

{
vλ(
⌊
λ2s
⌋
) <

⌊
λ2(1 − ̺)2̺−2s

⌋}
.

Notice that since λ < ̺ here,
⌊
λ2(1 − ̺)2̺−2s

⌋
≤
⌊
(1 − λ)2s

⌋
and so by redefining (2.6) and

(2.10) with s and λ, we have that the event vλ(
⌊
λ2s
⌋
) <

⌊
λ2(1 − ̺)2̺−2s

⌋
is equivalent to

Z∗λ(s) = [
⌊
(1 − λ)2s

⌋
− vλ(

⌊
λ2s
⌋
)]+ − [

⌊
λ2s
⌋
− wλ(

⌊
(1 − λ)2s

⌋
)]+

=
⌊
(1 − λ)2s

⌋
− vλ(

⌊
λ2s
⌋
)

>
⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋
.

By Z∗λ d
= Zλ, we conclude

P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}

= P
{
Zλ(s) >

⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋}
.

(6.9)
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Utilizing the definitions (6.5) and (6.8) of λ and r, one can check that by increasing t0 = t0(a, b, ̺)
if necessary, one can guarantee that for t ≥ t0 there exists a constant C = C(̺) such that

⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋
≥ Crs2/3.

Combining this with Corollary 5.9 and definition (6.8) of r we get the bound

P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}
≤ P

{
Zλ(s) > Crs2/3

}

≤ Cr−3 ≤ C(a/b)3.

Returning to (6.4) to combine all the bounds, we have

P
{

sup
1≤z≤at2/3

(
U̺

z + Az(t) − A1(t)
)
≥ bt1/3

}
≤ C

( a3

b3
+

a3

b6

)
.

Completion of the proof of Lemma 6.1. By Lemma 6.2 the probability (6.2) is bounded by
Cδ3(b−3 + b−6). Bound the probability (6.1) by

P
{

sup
δt2/3<x≤t2/3

(
U̺

x + Ax(t) − A1(t)
)

< bt1/3
}

≤ P
{
vλ(
⌊
̺2t
⌋
) >

⌊
(1 − ̺)2t

⌋
− t2/3

}
(6.10)

+ P
{

sup
δt2/3<x≤t2/3

(U̺
x − V λ

x ) < bt1/3
}

(6.11)

where, following the example of the previous proof, we have introduced a new density, this time

λ = ̺ + rt−1/3,

and then used the reversal trick of equation (6.3) and Lemma 4.5 to deduce

Ax(m,n) − A1(m,n) ≥ Gλ(m − x + 1, n) − Gλ(m,n) ≡ −V λ
x−1 ≥ −V λ

x ,

whenever vλ(
⌊
̺2t
⌋
) ≤

⌊
(1 − ̺)2t

⌋
− t2/3. We claim that, given η > 0 and parameter r from

above, we can fix δ, b > 0 small enough so that, for some t0 < ∞, the probability in (6.11)
satisfies

P
{

sup
δt2/3<x≤t2/3

(U̺
x − V λ

x ) < bt1/3
}
≤ η for all t ≥ t0. (6.12)

As t → ∞,

t−1/3E(U̺

⌊yt2/3⌋ − V λ
⌊yt2/3⌋) −→

−ry

(1 − ̺)2

and t−2/3Var(U̺

⌊yt2/3⌋ − V λ
⌊yt2/3⌋) −→

2y

(1 − ̺)2
≡ σ2(̺)y

uniformly over y ∈ [δ, 1]. Since we have a sum of i.i.d’s, the probability in (6.12) converges, as
t → ∞, to

P
{

sup
δ≤y≤1

(
σ(̺)B(y) − ry

(1 − ̺)2

)
≤ b
}
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where B(·) is standard Brownian motion. The random variable

sup
0≤y≤1

(
σ(̺)B(y) − ry

(1 − ̺)2

)

is positive almost surely, so the above probability is less than η/2 for small δ and b. This implies
(6.12).

The probability in (6.10) is bounded by

P
{
vλ(⌊̺2t⌋) > ⌊(1 − ̺)2t − t2/3 − 1⌋

}

≤ P
{
v1−λ(⌊(1 − ̺)2t − t2/3 − 1⌋) < ⌊̺2t⌋

}

≤ P
{
v1−λ(⌊(1 − λ)2s⌋) < ⌊λ2s⌋ − qs2/3

}

= P
{
Z∗1−λ(s) > qs2/3

}

= P
{
Z1−λ(s) > qs2/3

}

≤ Cq−3.

Above we first used (2.9) and transposition of the array {ωij}. Because this exchanges the axes,
density λ becomes 1 − λ. Then we defined s by

(1 − λ)2s = (1 − ̺)2t − t2/3 − 1

and observed that for large enough t, the second inequality holds for some q = C(̺)((1−̺)r−̺).
We used (2.10) and the distributional identity of Z and Z∗ thereafter. The last inequality is
from Corollary 5.9.

Now given η > 0, choose r large enough so that Cq−3 < η. Given this r, choose δ, b small enough
so that (6.12) holds. Finally, shrink δ further so that Cδ3(b−3 + b−6) < η (shrinking δ does not
violate (6.12)). To summarize, we have shown that, given η > 0, if δ is small enough, then for
all large t

P{1 ≤ Z̺(t) ≤ δt2/3} ≤ 3η. (6.13)

This concludes the proof of the lemma.

Via transpositions we get Lemma 6.1 also for the j-axis:

Corollary 6.3. We have the asymptotics

lim
εց0

lim sup
t→∞

P{0 < U̺
−Z̺(t)− ≤ εt2/3} = 0.

Proof. Let {ωij} be an initial assignment with density ̺. Let ω̃ij = ωji be the transposed array,
which is an initial assignment with density 1 − ̺. Under transposition the

⌊
(1 − ̺)2t

⌋
×
⌊
̺2t
⌋

rectangle has become
⌊
̺2t
⌋
×
⌊
(1 − ̺)2t

⌋
, the correct characteristic dimensions for density 1 −

̺. Since transposition exchanges the coordinate axes, after transposition U̺
Z̺(t)+

has become

U1−̺
−Z1−̺(t)−

, and so these two random variables have the same distribution. The corollary is now

a consequence of Lemma 6.1 because this lemma is valid for each density 0 < ̺ < 1.
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(6.13) proves part (b) of Theorem 2.2. The theorem below gives the lower bound for Theorem
2.1 and thereby completes its proof.

Theorem 6.4.

lim inf
t→∞

E(U̺
Z̺(t)+

)

t2/3
> 0, and lim inf

t→∞
Var(G̺(t))

t2/3
> 0.

Proof. Suppose there exists a density ̺ and a sequence tk → ∞ such that t
−2/3
k Var(G̺(tk)) → 0.

Then by Lemma 4.6
E(U̺

Z̺(tk)+
)

t
2/3
k

→ 0 and
E(U̺

−Z̺(tk)−
)

t
2/3
k

→ 0.

From this and Markov’s inequality

P{U̺
Z̺(tk)+

> εt
2/3
k } → 0 and P{U̺

−Z̺(tk)−
> εt

2/3
k } → 0

for every ε > 0. This together with Lemma 6.1 and Corollary 6.3 implies

P{U̺
Z̺(tk)+

> 0} → 0 and P{U̺
−Z̺(tk)−

> 0} → 0.

But these statements imply that

P{Z̺(tk) > 0} → 0 and P{Z̺(tk) < 0} → 0,

which is a contradiction since these two probabilities add up to 1 for each fixed tk. This proves
the second claim of the theorem.

The first claim follows because it is equivalent to the second.

7 Rarefaction boundary conditions

In this section we prove results on the longitudinal and transversal fluctuations of a maximal
path under more general boundary conditions. Abbreviate as before

(m,n) =
(⌊

(1 − ̺)2t
⌋
,
⌊
̺2t
⌋)

.

We start by studying A0(t) = A0(m,n), the length of the maximal path to (m,n) when there are
no weights on the axes, and we will show that it has fluctuations of the order t1/3. We still use
the boundary conditions (2.5), so that we have coupled A0(t) and G̺(t). We first need another
version of Lemma 6.2 to make it applicable for all t ≥ 1.

Lemma 7.1. Fix 0 < α < 1. There exists a constant C = C(α, ̺) such that, for each t ≥ 1 and
b ≥ C,

P{G̺(t) − A0(t) ≥ bt1/3} ≤ Cb−3α/2.

Proof. Note that

P{G̺(t) − A0(t) ≥ bt1/3}
≤ P{ sup

|z|≤at2/3

(
U̺

z (t) + Az(t) − A0(t)
)
≥ bt1/3}

+ P{ sup
|z|≤at2/3

(
U̺

z (t) + Az(t)
)
6= G̺(t)}.

(7.1)
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The last term of (7.1) can easily be dealt with using Corollary 5.9: there exists a C = C(̺) such
that

P
{

sup
|z|≤at2/3

(
U̺

z (t) + Az(t)
)
6= G̺(t)

}
≤ P{Z̺(t) ≥ at2/3}

+ P{Z̺(t) ≤ −at2/3} ≤ Ca−3.

(7.2)

For the first term of (7.1) we will use the results from the proof of Lemma 6.2. We split the
range of z into [1, at2/3] and [−1,−at2/3] and consider for now only the first part. Define

λ = ̺ − rt−1/3.

We can use (6.4) and (6.7), where we choose a = bα/2, p = 2, and r = bα/2. Choose C =
C(α, ̺) > 0 large enough so that for b ≥ C (6.6) is satisfied and the denominator of the last
bound in (6.7) is at least b/2. Then we can claim that, for all b ≥ C and t ≥ 1,

P
{

sup
1≤z≤at2/3

(
U̺

z (t) + Az(t) − A0(t)
)
≥ bt1/3

}

≤ P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}
+ Cbα/2−2.

(7.3)

From (6.9) we get with s = (̺/λ)2t

P
{
vλ(
⌊
̺2t
⌋
) <

⌊
(1 − ̺)2t

⌋}
= P

{
Zλ(s) >

⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋}
.

Now we continue differently than in Lemma 6.2 so that t is not forced to be large. An elementary
calculation yields

⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋
≥ 2

1 − ̺

̺
rs2/3 +

2̺ − 1

̺2
r2s1/3 − 1.

We want to write down conditions under which the right-hand side above is at least δrs2/3

for some constant δ and all s ≥ 1. First increase the above constant C = C(α, ̺) so that if
b = r2/α ≥ C, then

1 − ̺

̺
rs2/3 − 1 ≥ 1 − ̺

2̺
rs2/3 for all s ≥ 1.

Then choose η = η(α, ̺) > 0 small enough such that whenever b ∈ [C, ηt2/(3α)] (in this case r
is small enough compared to t1/3, but notice that the interval might as well be empty when t is
small),

1 − ̺

̺
rs2/3 ≥ − 2̺ − 1

̺2
r2s1/3.

This last condition is vacuously true if ̺ ≥ 1/2.

Now we have for C ≤ b ≤ ηt2/(3α) and with δ = (1 − ̺)/(2̺),

⌊
(1 − λ)2s

⌋
−
⌊
λ2(1 − ̺)2̺−2s

⌋
≥ δrs2/3 for all s ≥ 1.

If we combine this with (7.3) and Corollary 5.9, we can state that for all C ≤ b ≤ ηt2/(3α) and
t ≥ 1,

P{ sup
1≤z≤at2/3

U̺
z (t) + Az(t) − A0(t) ≥ bt1/3} ≤ Cb−3α/2 + Cbα/2−2.

1125



The same argument works (or just apply transposition) for the values −at2/3 ≤ z ≤ 1, so this
same upper bound is valid for the first probability on the right-hand side of (7.1).

Taking (7.2) also into consideration, at this point we have shown that whenever C ≤ b ≤ ηt2/(3α)

and t ≥ 1,

P{G̺(t) − A0(t) ≥ bt1/3} ≤ 1

2
C(bα/2−2 + b−3α/2) ≤ Cb−3α/2.

What if b ≥ ηt2/(3α)? Note that

P{G̺(t) − A0(t) ≥ bt1/3} ≤ P{G̺(t) ≥ bt1/3}.

Since G̺(t) is the sum of two (dependent) random variables, each of which in turn is the sum
of i.i.d. exponentials, and since

E(G̺(t)b−1t−1/3) ≤ C(̺, η)bα−1

(E(G̺(t)) is basically linear in t by (2.6) and Lemma 4.2), we conclude that P{G̺(t)−A0(t) ≥
bt1/3} goes to zero faster than any polynomial in b, if b ≥ ηt2/(3α). This proves the lemma for
all b ≥ C.

Now we can establish that the fluctuations of A0(t) are of order t1/3.

Corollary 7.2. Fix 0 < α < 1. There exists a constant C = C(α, ̺) such that for all a > 0 and
t ≥ 1,

P{|A0(t) − t| > at1/3} ≤ Ca−3α/2.

In particular this means that

E(|A0(t) − t|) = O(t1/3) and E(A0(t)) = t − O(t1/3).

Proof. Lemma 7.1 together with Theorem 5.8 implies for a ≥ C(α, ̺)

P{|A0(t) − t| > at1/3} ≤ P{G̺(t) − A0(t) > at1/3/2}
+ P{|G̺(t) − t| > at1/3/2}

≤ C1a
−3α/2 + C2a

−2

≤ Ca−3α/2.

Finally, we can always increase C in order to take all 0 < a ≤ C(α, ̺) values into account.

We can also consider the fluctuations of the position of a maximal path. To this end we extend
the definition of Z(t), the exit point from the axes. We define Zl(t) as the i-coordinate of the
right-most point on the horizontal line j = l of the right-most maximal path to (m,n) (we say
right-most path, because later in this section we will consider boundary conditions that no longer
necessarily have a unique longest path). We will use the notation Z̺

l to denote the stationary
situation and Z0

l to denote the situation where all the weights on the axes are zero. Note that
in all cases

Z(t)+ = Z0(t).
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Lemma 7.3. Define (k, l) = (
⌊
(1 − ̺)2s

⌋
,
⌊
̺2s
⌋
) for s ≤ t. There exists a constant C = C(ρ)

such that for all 0 ≤ s ≤ t − 1 and all a > 0

P{Z̺
l (t) ≥ k + a(t − s)2/3} ≤ Ca−3.

Proof. There are several ways to see this, for example by time-reversal. One can also pick a new
origin at (k, l), and define a last-passage model in the rectangle [k,m] × [l, n] with boundary
conditions given by the I- and J-increments (4.1) of the original G-process. The maximizing
path in this new model connects up with the original maximizing path. Hence in this new model
it looks as though the maximal path to (m−k, n− l) exits the i-axis beyond the point a(t−s)2/3,
and so

P{Z̺
l (t) ≥ k + a(t − s)2/3} = P{Z̺(t − s) ≥ a(t − s)2/3}.

We have ignored the integer parts here, but this can be dealt with uniformly in a > 0. Now we
can use Corollary 5.9 to conclude that

P{Z̺
l (t) ≥ k + a(t − s)2/3} ≤ Ca−3.

To get a similar result for Z0
l (t) we need a more convoluted argument and the conclusion is a

little weaker.

Lemma 7.4. Define (k, l) = (
⌊
(1 − ̺)2s

⌋
,
⌊
̺2s
⌋
) for s ≤ t. There exists a constant C = C(α, ̺)

such that for all a > 0 and t ≥ 1

P{Z0
l (t) > k + a t2/3} ≤ Ca−3α.

Proof. The event {Z0
l (t) > k + u} is equivalent to the event

E =

{
A0(t) = sup

z≥u
{A0(k + z + 1, l) + Ã0(z − u, 0)}

}
.

Here, A0(i, j) is the weight of the maximal path (not using the axes) from (0, 0) to (i, j), including
the endpoint, whereas Ã0(i, j) is the weight of the maximal path from (k +u+ i, l+ j) to (m,n),
including the endpoint but excluding the starting point and excluding all the weights directly to
the right or directly above (k + u + i, l + j). This corresponds to choosing (k + u + i, l + j) as a
new origin, and making sure that the axes through this origin have no weights. Note that the
processes A0(·, l) and Ã0(·, 0) are independent. The idea is to bound A0 and Ã0 by appropriate

stationary processes Gλ and Gλ̃ to show that, with high probability, this supremum will be too
small if u is too large. We can couple the processes Gλ and Gλ̃, where λ̃ > λ, in the following
way: Gλ induces weights on the horizontal line j = l through the increments of Gλ, see Lemma
4.2. The process Gλ̃ takes the point (k + u, l) as origin and uses as boundary weights on the
horizontal line j = l, with a slight abuse of notation, for i ≥ 1

ω̃i0 =
1 − λ

1 − λ̃
Ik+u+i+1,l =

1 − λ

1 − λ̃
(Gλ(k + u + i + 1, l) − Gλ(k + u + i, l)).
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These weights are independent Exp(1− λ̃) random variables. The weights ω̃0j ∼ Exp(λ̃) on the
line i = k + u can be chosen independently of everything else, whereas for i, j ≥ 1

ω̃ij = ωu+k+i,l+j.

So Gλ̃(i, j) equals the weight of the maximal path from (k + u, l) to (k + u + i, l + j), using as
weights on the points (k + u + i, l) the ω̃i0 (for i ≥ 1), on the points (k + u, l + j) the ω̃0j (for
j ≥ 1) and on the points (k +u+ i, l + j) the original ωk+u+i,l+j (for i, j ≥ 1). This construction
leads to

A0(i, j) ≤ Gλ(i, j) and Ã0(i, j) ≤ Gλ̃(m − k − u, n − l) − Gλ̃(i, j).

Also, for all 0 ≤ i ≤ m − k − u − 1,

Gλ(k + u + i + 1, l) − Gλ(k + u + 1, l) ≤ Gλ̃(i, 0).

Therefore, for all 0 ≤ i ≤ m − k − u − 1,

A0(k + u + i + 1, l) + Ã0(i, 0) ≤ Gλ(k + u + i + 1, l) − Gλ̃(i, 0)+

Gλ̃(m − k − u, n − l)

≤ Gλ(k + u + 1, l) + Gλ̃(m − k − u, n − l).

So we get

P(E) ≤ P{A0(t) − Gλ(k + u + 1, l) − Gλ̃(m − k − u, n − l) ≤ 0}. (7.4)

Here, we can still choose λ and λ̃ as long as 0 < λ < λ̃, but it is not hard to see that for the
optimal choices (in expectation) of λ and λ̃ are determined by

(1 − λ)2

λ2
=

k + u + 1

l
and

(1 − λ̃)2

λ̃2
=

m − k − u

n − l
. (7.5)

With these choices we get

E(Gλ(k + u + 1, l)) = (
√

k + u + 1 +
√

l)2

and
E(Gλ̃(m − k − u, n − l)) = (

√
m − k − u +

√
n − l)2.

This particular choice of (λ, λ̃) is valid (i.e., λ̃ > λ) as soon as u ≥ C(̺). Smaller u can be dealt
with by increasing C in the statement of lemma. We have for u ≥ 2

E(Gλ(k+u + 1, l) + Gλ̃(m − k − u, n − l)) = m + n + 2
√

l(k + u + 1)

+ 2
√

(n − l)(m − k − u) + 1

≤ ((1 − ̺)2 + ̺2)t + 1 + 2
√

̺2s
√

(1 − ̺)2s + u +

√
l

k + u

+ 2
√

̺2(t − s) + 1
√

(1 − ̺)2(t − s) − u + 1

≤ ((1 − ̺)2 + ̺2)t + C(̺) + 2
√

̺2s
√

(1 − ̺)2s + u

+ 2
√

̺2(t − s)
√

(1 − ̺)2(t − s) − (u − 1)

≤ t + C(̺) +
̺

1 − ̺
u − ̺

1 − ̺
(u − 1) − 1

4

̺

(1 − ̺)3
(u − 1)2

t − s

≤ t − C1(̺)
u2

t
+ C2(̺).
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If u =
⌊
at2/3

⌋
, then we can choose constants M = M(̺) and C1 = C(̺) such that for all a > M

and t ≥ 1,

E(Gλ(k + u + 1, l) + Gλ̃(m − k − u, n − l)) ≤ t − C1a
2t1/3. (7.6)

Smaller a can be dealt with by increasing the constant C in the statement of the lemma. Now
note that, using (7.4), we get

P(E) ≤ P{A0(t) − t ≤ Gλ(k + u + 1, l) + Gλ̃(m − k − u, n − l) − t}

≤ P(A0(t) − t ≤ −1

2
C1a

2t1/3)

+ P(Gλ(k + u + 1, l) + Gλ̃(m − k − u, n − l) − t ≥ −1

2
C1a

2t1/3)

≤ P(A0(t) − t ≤ −1

2
C1a

2t1/3) + C2a
−4 ≤ Ca−3α.

For the last line we used (7.6), the fact that

Var(Gλ(k + u + 1, l) + Gλ̃(m − k − u, n − l)) ≤ Ct2/3,

(notice that the choice (7.5) places these coordinates in the G’s on the respective characteristics,
see (2.6)), and Corollary 7.2.

We now prove the last theorems under assumption (2.11).

Proof of Theorem 2.4. The statement follows from the observation that

A0(t) ≤ Ĝ(t) ≤ Gρ(t)

(if there is less weight, the paths get shorter), Corollary 7.2 and Theorem 5.8.

Proof of Theorem 2.5. For the first inequality, we introduce the process GW=0 which uses the
same weights as Gρ, except on the j-axis, where all weights are 0 (so ωW=0

0j = 0). It is not hard
to see that

Ẑl(t) ≤ ZW=0
l (t),

simply because the right-most maximal path for GW=0 stays at least as long on the i-axis as a
maximal path for Ĝ, and it can coalesce with, but never cross a maximal path for Ĝ. So we get

P{Ẑl(t) ≥ k + at2/3} ≤ P{ZW=0
l (t) ≥ k + at2/3}. (7.7)

To find an upper bound for the probability above, we will in fact develop a bound for ZW=0
0 (t).

Then we observe that if ZW=0
l (t) is large but ZW=0

0 (t) is not, then Z0
l (t) is large for an appro-

priate coupled system. But this last quantity we control with Lemma 7.4.

To get started, note that, as in the proof of the previous lemma,

{ZW=0
0 (t) > u} = {GW=0(t) = sup

z>u
(U̺

z + Az(t))}. (7.8)
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Now define a stationary process Gλ, with λ > ̺, whose origin is placed at (u, 0). It uses as
weights on the i-axis

ωλ
i0 =

1 − ̺

1 − λ
ωu+i+1,0.

On the vertical line i = u, Gλ uses independent Exp(λ) weights. This construction guarantees
that for i ≥ 0

U̺
u+i+1 − U̺

u+1 ≤ Gλ(i, 0).

Also, for z > u,
Az(t) ≤ Gλ(m − u, n) − Gλ(z − u − 1, 0).

This implies that
sup
z>u

(U̺
z + Az(t)) ≤ U̺

u+1 + Gλ(m − u, n).

This means that, using (7.8),

{ZW=0
0 (t) > u} ⊂ {GW=0(t) ≤ U̺

u+1 + Gλ(m − u, n)}. (7.9)

Again we have that for the optimal λ,

E(Gλ(m − u, n)) = (
√

m − u +
√

n)2,

which leads to

E(U̺
u+1 + Gλ(m − u, n)) ≤ u + 1

1 − ̺
+ m + n − u + 2

√
n
√

m − u

≤ (1 − ̺)2t + ̺2t +
̺u

1 − ̺
+ C1(̺) + 2

√
̺2t
√

(1 − ̺)2t − (u − 1)

≤ t + C2(̺) − 1

4

̺

(1 − ̺)3
(u − 1)2

t
.

Just as in the proof Lemma 7.4, we see that if u =
⌊
bt2/3

⌋
, we can choose constants M = M(̺)

and C1 = C1(̺) such that for all b > M and t ≥ 1,

E(U̺
u+1 + Gλ(m − u, n)) ≤ t − C1b

2t1/3.

Note that with (7.9)

P(ZW=0
0 (t) > bt2/3) ≤ P(GW=0(t) − t ≤ −1

2
C1b

2t1/3)

+ P(U̺
u+1 + Gλ(m − u, n) − t ≥ −1

2
C1b

2t1/3).

Now we can use the fact that

Var(U̺
u+1 + Gλ(m − u, n)) = O(u + t2/3)

(again, the optimal choice for λ has placed the coordinates in G on the characteristics w.r.t. λ),
and Theorem 2.4 to conclude that for b > M

P{ZW=0
0 (t) > bt2/3} ≤ Cb−3α. (7.10)
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For b ≤ M we can increase C.

Now that we have control over ZW=0
0 (t), we return to bound the right-hand side of (7.7). A

little picture reveals that if ZW=0
l (t) ≥ k+at2/3 and ZW=0

0 (t) ≤ at2/3/2, then the maximal path
from (at2/3/2, 1) to (m,n) [without weights on the axes] must pass to the right of (k + at2/3, l).
Taking (at2/3/2, 0) as the new origin we see that this last event has smaller probability than
the event {Z0

l (t) ≥ k + at2/3/2}. An application of Lemma 7.4 to this probability together with
(7.10) give an upper bound for (7.7). This proves the first inequality of Theorem 2.5.

The second inequality of Theorem 2.5 is a corollary of the first via a transposition. Assume

k − at2/3 ≥ 0, otherwise this statement is trivial. Also take a > 2 (1−̺)2

̺2 for one can always

increase C if this is not the case. Fix s̃ such that k − at2/3 = (1 − ̺)2s̃ and then put

k′ =
⌊
(1 − ̺)2s̃

⌋
and l′ =

⌊
̺2s̃
⌋
.

With these definitions

l ≥ l′ + ̺2s − 1 − ̺2

(1 − ̺)2
· (1 − ̺)2s̃ ≥ l′ +

̺2

(1 − ̺)2
· at2/3 − 1.

Define Ŷ T
k′ to be the highest point of the left-most maximal path on the vertical line i = k′. As

the left-most maximal path is North-East, we have

P{Ŷl(t) ≤ k − at2/3} = P{Ŷ T
k′ ≥ l} ≤ P{Ŷ T

k′ ≥ l′ +
̺2

(1 − ̺)2
· at2/3 − 1}.

If
ã = a̺2/(1 − ̺)2 − 1 > 1,

then the right hand-side is bounded by P{Ŷ T
k′ ≥ l′ + ãt2/3}. The transposed array {ω̃ij} = {ωji}

satisfies assumption (2.11) with respect to the parameter 1 − ̺. Moreover, Ŷ T
k′ becomes the

right-most point of the right-most maximal path on the horizontal line i = k′ in the transposed
picture. The first part of the Theorem with 1− ̺, s̃ ≤ t and ã then completes the proof because
ã−3α < [12 (ã + 1)]−3α = C ′(̺, α) · a−3α.

References

[1] M. Balázs. Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré -
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[16] T. Seppäläinen. Second class particles as microscopic characteristics in totally asymmetric
nearest-neighbor K-exclusion processes. Trans. Amer. Math. Soc., 353:4801–4829, 2001.
MR1852083

[17] J. Walrand. Introduction to Queueing Networks. Prentice Hall, New Jersey, 1989.
MR1100758

1132

http://www.ams.org/mathscinet-getitem?mr=2150188
http://www.ams.org/mathscinet-getitem?mr=2217295
http://www.ams.org/mathscinet-getitem?mr=1737991
http://www.ams.org/mathscinet-getitem?mr=1707314
http://www.ams.org/mathscinet-getitem?mr=2134103
http://www.ams.org/mathscinet-getitem?mr=326868
http://www.ams.org/mathscinet-getitem?mr=1901953
http://www.ams.org/mathscinet-getitem?mr=1625007
http://www.ams.org/mathscinet-getitem?mr=1681094
http://www.ams.org/mathscinet-getitem?mr=1852083
http://www.ams.org/mathscinet-getitem?mr=1100758

	Introduction
	Results
	Equilibrium results
	Results for the rarefaction fan

	Particle systems and queues
	The totally asymmetric simple exclusion process
	The rarefaction fan
	A deposition model
	The characteristics

	Preliminaries
	The reversed process.
	Exit point and competition interface.
	A coupling on the i-axis
	Exit point and the variance of the last-passage time

	Upper bound
	Lower bound
	Rarefaction boundary conditions
	References

