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Abstract
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1 Introduction

We consider nearest-neighbor random walks on the one-dimensional integer lattice in an i.i.d. cookie
environment with a uniformly bounded number of cookies per site. The uniform bound on the
number of cookies per site will be denoted by M ≥ 1, M ∈ N. Informally speaking, a cookie
environment is constructed by placing a pile of cookies at each site of the lattice (see Figure 1). The
piles of cookies represent the transition probabilities of the random walker: upon each visit to a site
the walker consumes the topmost cookie from the pile at that site and makes a unit step to the right
or to the left with probabilities prescribed by that cookie. If the cookie pile at the current site is
empty the walker makes a unit step to the right or to the left with equal probabilities.

−2 −1 0 2 431

−2 −1 0 2 431

Figure 1: The top picture is an example of an i.i.d. cookie environment with M = 5, which consists of two types of
cookie piles. An independent toss of a fair coin determines which type of cookie pile is placed at each site of the lattice.
Various shades of gray allude to different transition probabilities associated to different cookies. The bottom picture shows
the first few possible steps of a random walker in this cookie environment starting at 0.

A cookie will be called positive (resp. negative) if its consumption makes the walker to go to the
right with probability larger (resp. smaller) than 1/2. A cookie which is neither positive nor negative
will be called a placebo. Placebo cookies allow us to assume without loss of generality that each pile
originally consists of exactly M cookies. Unless stated otherwise, the random walker always starts
at the origin.

The term “excited random walk" was introduced by Benjamini and Wilson in [BW03], where they
considered random walks on Zd , d ≥ 1, in an environment of identical cookies, one per each site.
Allowing more (or fewer) than one cookie per site and randomizing the environment naturally gave
rise to the multi-excited random walk model in random cookie environments. We refer to [Zer05]
and [Zer06] for the precise description and first results. It was clear then that this new model
exhibits a very interesting behavior for d = 1. We shall mention some of the results for d ≥ 2 in
Section 9 and now concentrate on the one-dimensional case.

The studies of excited random walks on integers were continued in [MPV06], [BS08a], and
[BS08b]. [AR05] deals with numerical simulations of this model. In all papers mentioned above a
(possible) bias introduced by the consumption of a cookie was assumed to be only in one direction,
say, positive. The recurrence and transience, strong law of large numbers [Zer05], conditions for
positive linear speed [MPV06], [BS08a], and the rates of escape to infinity for transient walks with
zero speed [BS08b] are now well understood. Yet some of the methods and facts used in the proofs
(for example, comparison with simple symmetric random walks, submartingale property) depend
significantly on this “positive bias” assumption.

The main novelty of the current paper is in considering cookie environments, which may induce pos-
itive or negative drifts at different sites or even at the same site on successive visits. Our main results
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are the recurrence/transience criterion (Theorem 1), the criterion for positive linear speed (Theo-
rem 2) and an annealed central limit theorem (Theorem 3). The first two theorems are extensions
of those for non-negative cookie environments but we believe that this is a purely one-dimensional
phenomenon. Moreover, in Section 9 we give an example, which shows that, at least for d ≥ 4, the
criteria for recurrence or transience and for positive linear speed can not depend just on a single
parameter, the average total drift per site (see (3)). The order of the cookies in the pile should
matter as well.

The proofs are based on the connections to branching processes with migration. Branching pro-
cesses allowing both immigration and emigration were studied by several authors in the late 70-ties
through about the middle of the 90-ties, and we use some of the results from the literature (Sec-
tion 2). See the review paper [VZ93] for more results and an extensive list of references up to
about 1990. The connection between one-dimensional random walks and branching processes was
observed long time ago. In particular, it was used for the study of random walks in random environ-
ments, see e.g. [KKS75]. In the context of excited random walks, this idea was employed recently
in [BS08a], [BS08b] (still under the “positive bias” assumption). In the present paper we are us-
ing results from the literature about branching processes with migration in a more essential way
than [BS08a] and [BS08b]. One of our tasks is to show how to translate statements about excited
random walks into statements for a class of branching processes with migration which have been
studied in the past.

Let us now describe our model, which we shall abbreviate by ERW, more precisely. A cookie envi-
ronment ω with M cookies per site z ∈ Z is an element of

ΩM :=
�
((ω(z, i))i∈N)z∈Z | ω(z, i) ∈ [0,1],∀i ∈ {1,2, . . . , M}

and ω(z, i) = 1/2,∀i > M , ∀z ∈ Z
	
.

The purpose of ω(z, i) is to serve as the transition probability from z to z + 1 of a nearest-neighbor
ERW upon the i-th visit to a site z. More precisely, for fixedω ∈ ΩM and x ∈ Z an ERW (Xn)n≥0 start-
ing from x in the cookie environment ω is a process on a suitable probability space with probability
measure Px ,ω which satisfies:

Px ,ω[X0 = x] = 1,

Px ,ω[Xn+1 = Xn+ 1 |(X i)0≤i≤n] =ω(Xn,#{i ≤ n |X i = Xn}),
Px ,ω[Xn+1 = Xn− 1 |(X i)0≤i≤n] = 1−ω(Xn,#{i ≤ n |X i = Xn}).

The cookie environment ω may be chosen at random itself according to a probability measure on
ΩM , which we shall denote by P, with the corresponding expectation operator E. Unless stated
otherwise, we shall make the following assumption on P:

The sequence (ω(z, ·))z∈Z is i.i.d. under P. (1)

Note that assumption (1) does not imply independence between different cookies at the same site
but only between cookies at different sites, see also Figure 1. To avoid degenerate cases we shall
also make the following mild ellipticity assumption on P:

E




M∏

i=1

ω(0, i)


> 0 and E




M∏

i=1

(1−ω(0, i))


> 0. (2)
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After consumption of a cookie ω(z, i) the random walk is displaced on Px ,ω-average by 2ω(z, i)−1.
This average displacement, or drift, is positive for positive cookies and negative for negative ones.
The consumption of a placebo cookie results in a symmetric random walk step. Averaging the drift
over the environment and summing up over all cookies at one site defines the parameter

δ := E



∑

i≥1

(2ω(0, i)− 1)


 = E




M∑

i=1

(2ω(0, i)− 1)


 , (3)

which we shall call the average total drift per site. It plays a key role in the classification of the
asymptotic behavior of the walk as shown by the three main theorems of this paper.

Our first result extends [Zer05, Theorem 12] about recurrence and transience for non-negative
cookies to i.i.d. environments with a bounded number of positive and negative cookies per site.

Theorem 1 (Recurrence and transience). If δ ∈ [−1,1] then the walk is recurrent, i.e. for P-a.a.

environments ω it returns P0,ω-a.s. infinitely many times to its starting point. If δ > 1 then the walk is

transient to the right, i.e. for P-a.a. environments ω, Xn→∞ as n→∞ P0,ω-a.s.. Similarly, if δ <−1
then the walk is transient to the left, i.e. Xn→−∞ as n→∞.

Trivial examples with M = 1 and ω(0,1) = 0 or ω(0,1) = 1 show that assumption (2) is essential
for Theorem 1 to hold.

Our next result extends [MPV06, Theorem 1.1, Theorem 1.3] and [BS08b, Theorem 1.1] about
the positivity of speed from spatially uniform deterministic environments of non-negative cookies to
i.i.d. environments with positive and negative cookies.

Theorem 2 (Law of large numbers and ballisticity). There is a deterministic v ∈ [−1,1] such that

the excited random walk satisfies for P-a.a. environments ω,

lim
n→∞

Xn

n
= v P0,ω-a.s..

Moreover, v < 0 for δ < −2, v = 0 for δ ∈ [−2,2] and v > 0 for δ > 2.

While Theorems 1 and 2 give necessary and sufficient conditions for recurrence, transience, and the
positivity of the speed, the following central limit theorem gives only a sufficient condition. To state
it we need to introduce the annealed, or averaged, measure Px[ · ] := E

�
Px ,ω[ · ]

�
.

Theorem 3 (Annealed central limit theorem). Assume that |δ| > 4. Let v be the velocity given by

Theorem 2 and define

Bn
t :=

1
p

n
(X⌊tn⌋ − ⌊tn⌋v) for t ≥ 0.

Then (Bn
t )t≥0 converges in law under P0 to a non-degenerate Brownian motion with respect to the

Skorohod topology on the space of cadlag functions.

The variance of the Brownian motion in Theorem 3 will be further characterized in Section 6, see
(28).

Let us describe how the present article is organized. Section 2 introduces the main tool for the
proofs, branching processes with migration, and quotes the relevant results from the literature. In
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Sections 3 and 4 we describe the relationship between ERW and branching processes with migration
and introduce the necessary notation. In Section 5 we use this relationship to translate results from
Section 2 about branching processes into results for ERW concerning recurrence and transience,
thus proving Theorem 1. In Section 6 we introduce a renewal structure for ERW, similar to the
one which appears in the study of random walks in random environments (RWRE), and relate it to
branching processes with migration. In Sections 7 and 8 we use this renewal structure to deduce
Theorems 2 and 3, respectively, from results stated in Section 2. The final section contains some
concluding remarks and open questions.

Throughout the paper we shall denote various constants by ci ∈ (0,∞), i ≥ 1.

2 Branching processes with migration – results from the literature

In this section we define a class of branching processes with migration and quote several results
from the literature. We chose to give the precise statements of the results that we need since some
of the relevant papers are not readily available in English.

Definition 1. Let µ and ν be probability measures on N0 := N∪{0} and Z, respectively, and let ξ( j)
i

and ηk (i, j ≥ 1, k ≥ 0) be independent random variables such that each ξ( j)
i

has distribution µ and
each ηk has distribution ν . Then the process (Zk)k≥0, recursively defined by

Z0 := 0, Zk+1 := ξ(k+1)
1 + . . .+ ξ(k+1)

Zk+ηk
, k ≥ 0, (4)

is said to be a (µ,ν)-branching process with offspring distribution µ and migration distribution ν .
(Here we make an agreement that ξ(k+1)

1 + . . .+ ξ(k+1)
i

= 0 if i ≤ 0.) An offspring distribution µ
which we shall use frequently is the geometric distribution with parameter 1/2 and support N0. It
is denoted by Geom(1/2) .

Note that any (µ,ν)-branching process is a time homogeneous Markov chain, whose distribution
is determined by µ and ν . More precisely, if at time k the size of the population is Zk then (1) ηk

individuals immigrate or min{Zk, |ηk|} individuals emigrate depending on whether ηk ≥ 0 or ηk < 0
respectively, and (2) the resultant (Zk +ηk)+ individuals reproduce independently according to the
distribution µ. This determines the size Zk+1 of the population at time k+ 1.

In the current paper we are interested in the case when both the immigration and the emigration
components are non-trivial and the number of emigrants is bounded from above. This bound will
be the same as the bound M on the number of cookies per site. We shall assume that

ν(N)> 0 and ν({k ∈ Z | k ≥−M}) = 1. (5)

Denote the average migration by
λ :=

∑

k≥−M

k ν({k}) (6)

and the moment generating function of the offspring distribution by

f (s) :=
∑

k≥0

µ({k}) sk, s ∈ [0,1].

In addition to (5), we shall make the following assumptions on the measures µ and ν:
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(A) f (0)> 0, f ′(1) = 1, b := f ′′(1)/2<∞, λ <∞;

(B)
∑

k≥1

µ({k}) k2 ln k <∞.

Note that µ = Geom(1/2) satisfies condition (A) on the moment generating function f with b = 1.
It also satisfies (B).

Next we state a result from the literature, which relates the limiting behavior of the process (Zk)k≥0

to the value of the parameter

θ :=
λ

b
. (7)

At first, introduce the stopped process (eZk)k≥0. Let

N (Z) := inf{k ≥ 1 | Zk = 0} and eZk := Zk1{k<N (Z)}. (8)

Note that the process (eZk)k≥0 follows (Zk)k≥0 until the first time (Zk)k≥0 returns to 0. Then (eZk)k≥0

stays at 0 whereas (Zk)k≥0 eventually regenerates due to the presence of immigration (see the first
inequality in (5)).

Theorem A ([FY89], [FYK90]). Let (Zk)k≥0 be a (µ,ν)-branching process satisfying (5), (A) and (B).
We let

un := P[N (Z) > n] = P[eZn > 0], n ∈ N,

describe the tail of the distribution of N (Z) and denote by

vn := E

� n∑

m=0

eZm

�

the expectation of the total progeny of (eZk)k≥0 up to time n ∈ N0 ∪{∞}. Then the following statements

hold.

(i) If θ > 1 then lim
n→∞

un = c1 ∈ (0,1), in particular, the process (eZk)k≥0 has a strictly positive chance

c1 never to die out.

(ii) If θ = 1 then lim
n→∞

un ln n = c2 ∈ (0,∞), in particular, the process (eZk)k≥0 will eventually die out

a.s..

(iii) If θ = −1 then lim
n→∞

vn(ln n)−1 = c3 ∈ (0,∞), in particular, v∞ = ∞, i.e. the expected total

progeny of (eZk)k≥0, v∞, is infinite.

(iv) If θ < −1 and ∑

k≥1

k1+|θ |µ({k})<∞

then lim
n→∞

unn1+|θ | = c4 ∈ (0,∞). Moreover, in this case lim
n→∞

vn = c5 ∈ (0,∞), i.e. the expected

total progeny of (eZk)k≥0 is finite.
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The above results about the limiting behavior of un are contained in Theorems 1 and 4 of [FY89],
[FYK90]. The proofs are given only in [FYK90]. The behavior of vn is the content of formula (33)
in [FYK90]. The statements (i) and (ii) of Theorem A also follow from [YY95, Theorem 2.2] (see
also [YMY03, Theorem 2.1]).

Remark 1. We have to point out that we use a slightly different (and more convenient for our
purposes) definition of the lifetime, N (Z), of the stopped process. More precisely, our quantity un

can be obtained from the one in [FYK90] by the shift of the index from n to n−1 and multiplication
by

P[eZ1 > 0] =
∑

k≥1

ν({k})
�

1−µ({0})k
�

,

which is positive due to the first inequality in (5) and the fact that µ({0}) < 1 (by the condition
f ′(1) = 1 of assumption (A)). A similar change is needed for the expected total progeny of the
stopped process. Clearly, these modifications affect only the values of constants in Theorem A and
not their positivity or finiteness.

The papers mentioned above contain other results but we chose to state only those that we need.
In fact, we only use the first part of (iv) and the following characterization, which we obtain from
Theorem A by a coupling argument.

Corollary 4. Let the assumptions of Theorem A hold. Then (eZk)k≥0 dies out a.s. iff θ ≤ 1. Moreover,

the expected total progeny of (eZk)k≥0, v∞, is finite iff θ <−1.

Proof. Theorem A (i) gives the ‘only if’-part of the first statement. To show the ’if’ direction we
assume that θ ≤ 1, i.e. ν has mean λ ≤ b (see (7)). Then there is another ν ′ with mean b which
stochastically dominates ν . Indeed, if X has distribution ν and Y has expectation b−λ and takes val-
ues in N0 then ν ′ can be chosen as the distribution of X + Y . By coupling, the (µ,ν ′)-branching pro-
cess stochastically dominates the (µ,ν)-branching process. However, the (µ,ν ′)-branching process
dies out a.s. due to Theorem A (ii) since for this process θ = 1. Consequently, the (µ,ν)-branching
process must die out, too.

Similarly, Theorem A (iv) gives the ‘if’-part of the second statement. The converse direction follows
from monotonicity as above and Theorem A (iii).

3 From ERWs to branching processes with migration

The goal of this mainly expository section is to show how our ERW model can be naturally recast
as a branching process with migration. This connection was already observed and used in [BS08a]
and [BS08b].

Consider a nearest neighbor random walk path (Xn)n≥0, which starts at 0 and define

Tk := inf{n≥ 1 | Xn = k} ∈ N∪ {∞}, k ∈ Z.

Assume for the moment that X1 = 1 and consider the right excursion, i.e. (Xn)0≤n<T0
. The left

excursion can be treated by symmetry.

On the set {T0 <∞} we can define a bijective path-wise mapping of this right excursion to a finite
rooted tree, which corresponds to a realization of a branching process with the extinction time
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Figure 2: (I) Right excursion of the random walk. Upcrossings are marked by “tree leaves”. (II) The number of
upcrossings of the edge (k, k+ 1) becomes the number of particles in generation k for the branching process. Shrinking
the horizontal lines in (II) into single points gives the tree (III). Traversing the tree (III) in preorder rebuilds the excursion
(I).

max{Xn, 0 ≤ n < T0} as illustrated in Figure 2. Moreover, given a tree for a branching process
that becomes extinct in finite time, we can reconstruct the right excursion of the random walk. This
can be done by making a time diagram of up and down movements of an ant traversing the tree in
preorder: the ant starts at the root, always chooses to go up and to the left whenever possible, never
returns to an edge that was already crossed in both directions, and finishes the journey at the root
(Figure 2, (III)).

The above path-wise correspondence on {T0 < ∞} does not depend on the measure associated to
the random walk paths. To consider the set {T0 = ∞} we shall need some of the properties of
this measure. The following simple statement leaves only three major possibilities for a long term
behavior of an ERW path.

Lemma 5. Let ω ∈ ΩM . Then P0,ω-a.s.

lim inf
n→∞

Xn, lim sup
n→∞

Xn ∈ {−∞,+∞}.

Proof. Let z ∈ Z. If the ERW visits z infinitely many times then it also visits z + 1 infinitely many
times due to the second Borel Cantelli lemma, the strong Markov property, and the assumption
ω(z, i) = 1/2 for i > M . This implies P0,ω-a.s. lim supn Xn /∈ Z. Similarly, P0,ω-a.s. lim infn Xn /∈
Z.

Let us now put a measure on the paths and see what kind of measure will be induced on trees. Con-
sider the right excursion of the simple symmetric random walk. Assume without loss of generality
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that the walk starts at 1. Then the probability that T0 < ∞ is equal to one and the corresponding
measure on trees will be the one for a standard Galton-Watson process with the Geom(1/2) offspring
distribution starting from a single particle. More precisely, set U0 := 1 and let

Uk := #{n≥ 0 | n< T0, Xn = k, Xn+1 = k+ 1}, k ≥ 1, (9)

be the number of upcrossings of the edge (k, k+1) by the walk before it hits 0. Then (Uk)k≥0 has the
same distribution as the Galton-Watson process with Geom(1/2) offspring distribution. Therefore,
(Uk)k≥0 can also be generated as follows: start with one particle: U0 = 1. To generate the (k+ 1)-
st generation from the k-th generation (assuming that the process has not yet died out), the first
particle of generation k tosses a fair coin repeatedly and produces one offspring if the coin comes
up "heads". It stops the reproduction once the coin comes up "tails". Then the second particle in
generation k follows the same procedure independently, then the third one, and so on. Consequently,

Uk+1 = ξ
(k+1)
1 + . . .+ ξ(k+1)

Uk
,

where ξ( j)
i

, i, j ≥ 1 are independent with distribution Geom(1/2) .

To construct a branching process corresponding to an ERW with M cookies per site one can use
exactly the same procedure except that for the first M coin tosses in the k-th generation the particles
should use coins with biases "prescribed" by the cookies located at site k. Since every particle tosses
a coin at least once, at most the first M particles in each generation will have a chance to use
biased coins. All the remaining particles will toss fair coins only. This can be viewed as a branching
process with migration in the following natural way. Before the reproduction starts, the first Uk ∧M

particles emigrate, taking with them all M biased coins and an infinite supply of fair coins. In exile
they reproduce according to the procedure described above. Denote the total number of offspring
produced by these particles by η(k+1)

Uk∧M . Meanwhile, the remaining particles (if any) reproduce using
only fair coins. Finally, the offspring of the emigrants re-immigrate. Therefore, the number of
particles in the generation k+ 1 can be written as

Uk+1 := ξ(k+1)
1 + . . .+ ξ(k+1)

Uk−M +η
(k+1)
Uk∧M , (10)

where ξ( j)
i

and η(k)
ℓ
(i, j, k ≥ 1, 0 ≤ ℓ ≤ M) are independent random variables, each one of the se-

quences (η(k)0 )k≥1, . . . , (η(k)M )k≥1 is identically distributed, and each ξ( j)
i

has distribution Geom(1/2)
.

Branching processes of type (10) were considered in [BS08a] (p. 630) and [BS08b] (p. 815), except
that they were generated not by the forward but by the backward excursion (see (29) in Section 6).
Careful analysis of such processes carried out in these two papers yielded results concerning positive
speed and rates of growth at infinity for ERWs with non-negative cookies. However, from a practical
point of view, (µ,ν)-branching processes, introduced in Definition 1, seem to be well-known and
studied more extensively in the past. In particular, we could find the results we need (see Theorem
A) in the literature only for (µ,ν)-branching processes, but not for processes of the form (10). For
this reason one of our main tasks will be to relate these two classes of processes in order to translate
the results from the literature into results about processes of the form (10).
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4 Coin-toss construction of the ERW and the related (µ,ν)-branching

process

In this section we formalize a coin-toss construction of the ERW and introduce auxiliary processes
used in the rest of the paper.

Let (Ω,F ) be some measurable space equipped with a family of probability measures Px ,ω, x ∈
Z, ω ∈ ΩM , such that for each choice of x ∈ Z and ω ∈ ΩM we have ±1-valued random variables
Y
(k)

i
, k ∈ Z, i ≥ 1, which are independent under Px ,ω with distribution given by

Px ,ω[Y
(k)

i
= 1] =ω(k, i) and Px ,ω[Y

(k)

i
=−1] = 1−ω(k, i).

Moreover, we require that there is a random variable X0 on (Ω,F , Px ,ω) such that Px ,ω[X0 = x] = 1.
Then an ERW (Xn)n≥0, starting at x ∈ Z, in the environment ω can be realized on the probability
space (Ω,F , Px ,ω) recursively by:

Xn+1 := Xn+ Y
(Xn)

#{i≤n|X i=Xn}
, n≥ 0. (11)

We shall refer to {Y (k)
i
= 1} as a “success” and to {Y (k)

i
= −1} as a “failure”. Due to (11) every step

to the right or to the left of the random walk corresponds to a success or a failure, respectively.

We now describe various branching processes that appear in the proofs. Namely, we introduce
processes (Vk)k≥0, (Wk)k≥0, and (Zk)k≥0. Modifications of the first two processes suitable for left
excursions will be defined later when they are needed (we shall keep the same notation though,
hoping that this will not lead to confusion). The last process, (Zk)k≥0, will belong to the class of
processes from Section 2.

For m ∈ N and k ∈ Z let

S
(k)

0 := 0, S(k)m := # of successes in
�
Y
(k)

i

�
i≥1 prior to the m-th failure. (12)

Recall from the introduction that Px[ · ] denotes the averaged measure E[Px ,ω[ · ]]. By assumption
(2) the walk reaches 1 in one step with positive P0-probability.

We shall be interested in the behavior of the process (Uk)k≥0 defined in (9). At first, we shall relate
(Uk)k≥0 to (Vk)k≥0 which is recursively defined by

V0 := 1, Vk+1 := S
(k+1)
Vk

, k ≥ 0. (13)

Observe that (Vk)k≥0 is a time homogeneous Markov chain, as the sequence of sequences (S(k)m )m≥0,
k ≥ 0, is i.i.d.. Moreover, 0 is an absorbing state for (Vk)k≥0. We claim that under P1,

Uk = Vk for all k ≥ 0 on the event {T0 <∞}; (14)

Uk ≤ Vk for all k ≥ 0 on the event {T0 =∞}. (15)

The relation (14) is obvious from the discussion in Section 3 and Figure 2. To show (15) we shall
use induction. Recall that U0 = V0 = 1 and assume Ui ≤ Vi for all i ≤ k. From Lemma 5 we know
that Xn→∞ as n→∞ on {T0 =∞} a.s. with respect to P1. Therefore, the last, Uk-th, upcrossing of
the edge (k, k+ 1) by the walk is not matched by a downcrossing. This implies that Uk+1 should be
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less than or equal to the number of successes in the sequence
�
Y
(k+1)
i

�
i≥1 prior to the Uk-th failure.

On the other hand, to get the value of Vk+1 one needs to count all successes in this sequence until
the Vk-th failure. Since Uk ≤ Vk, we conclude that Uk+1 ≤ Vk+1.

Next we introduce the process (Wk)k≥0 by setting

W0 := 0, Wk+1 := S
(k)
Wk∨M , k ≥ 0. (16)

Just as (Vk)k≥0, the process (Wk)k≥0 is a time homogeneous Markov chain on non-negative inte-
gers. Moreover, the transition probabilities from i to j of these two processes coincide except for
i ∈ {0,1, . . . , M − 1} and both processes can reach any positive number with positive probability.
Therefore, if one of these two processes goes to infinity with positive probability, so does the other:

P1[Vk→∞]> 0 ⇐⇒ P1[Wk→∞]> 0. (17)

Finally, we decompose the process (Wk)k≥0 into two components as follows.

Lemma 6. For k ≥ 0 let Zk := Wk+1 − S
(k)
M . Then (Zk)k≥0 is a (Geom(1/2),ν)-branching process,

where ν is the common distribution of ηk := S
(k)
M −M under P1.

Proof. By definition, Z0 = 0 and

Zk+1 =Wk+2− S
(k+1)
M

(16)
= S

(k+1)
Wk+1∨M − S

(k+1)
M = ξ

(k+1)
1 + · · ·+ ξ(k+1)

Wk+1−M ,

where ξ(k+1)
i

is defined as the number of successes in
�
Y
(k+1)
j

�
j≥1 between the (M + i − 1)-th and

the (M + i)-th failure, i ≥ 1. Therefore, by definition of Zk and ηk,

Zk+1 = ξ
(k+1)
1 + · · ·+ ξ(k+1)

Zk+S
(k)
M −M

= ξ
(k+1)
1 + · · ·+ ξ(k+1)

Zk+ηk
.

Since ω(k, m) = 1/2 for m > M , the random variables Y (k)m , m > M , k ≥ 0, are independent and

uniformly distributed on {−1,1} under P1. From this we conclude that the ξ(k)
i

, k, i ≥ 1, have

distribution Geom(1/2) . To show the independence of ξ( j)
i

and ηk (i, j ≥ 1, k ≥ 0), as required

by Definition 1, notice that ηk = S
(k)
M − M depends only on Y (k)m , where m changes from 1 to the

number of the trial resulting in the M -th failure inclusively, while each ξ(k)
i

, i ≥ 1, counts the number
of successes in

�
Y (k)m

�
m≥1 between the (M+ i−1)-th and the (M+ i)-th failure. Recalling again that

Y (k)m , m≥ 1, k ≥ 0, are independent under P1, we get the desired independence.

Having introduced all necessary processes we can now turn to the proofs of our results.

5 Recurrence and transience

Definition 2. The ERW is called recurrent from the right if the first excursion to the right of 0, if
there is any, is P0-a.s. finite. Recurrence from the left is defined analogously.
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In the next lemma we shall characterize ERW which are recurrent from the right in terms of branch-
ing processes with migration. At first, we shall introduce a relaxation of condition (1), which is
needed for the proof of Theorem 1:

The sequence (ω(k, ·))k≥K is i.i.d. under P for some K ∈ N. (18)

Under this assumption the sequence indexed by k ≥ K of sequences (Y (k)
i
)i≥1 is i.i.d. with respect to

P0. In particular, the sequence (S(k)M )k≥K is i.i.d. under P0.

Lemma 7. Replace assumption (1) by (18) and assumption (2) by

E




M∏

i=1

(1−ω(K , i))


> 0. (19)

Denote the common distribution of ηk := S
(k)
M −M, k ≥ K, under P0 by ν . Then the ERW is recurrent

from the right if and only if the (Geom(1/2),ν)-branching process dies out a.s., i.e. reaches state 0 at

some time k ≥ 1.

Proof. Since we are interested in the first excursion to the right we may assume without loss of

generality that the random walk starts at 1. Then, recalling definition (9), we have {T0 = ∞}
P1
=

{∀k ≥ 1 Uk > 0}, where A
P1
= B means that the two events A and B may differ by a P1-null-set only.

Indeed, since Uk counts only upcrossings of the edge (k, k+1) prior to T0, the inclusion ⊇ is trivial.
The reverse relation follows from Lemma 5. This together with (14) and (15) implies that

{T0 =∞}
P1
= {∀k ≥ 0 Vk > 0}. (20)

As above (Vk)k≥K is a time homogeneous Markov chain since the sequence of sequences (S(k)m )m≥0,
k ≥ K , is i.i.d.. For any m the transition probability of this Markov chain from m ∈ N to 0 is equal to

P1[S
(K)
m = 0] = E




m∏

i=1

(1−ω(K , i))


 ,

which is strictly positive by (19). Since 0 is absorbing for (Vk)k≥0 we get that {∀k ≥ 0 Vk > 0} P1
=

{Vk→∞}. Consequently, by (20), {T0 =∞}
P1
=
�

Vk→∞
	
. Next we turn to the process (Wk)k≥0 and

recall relation (17). Thus,

P1[T0 =∞] = 0 ⇐⇒ P1[Wk→∞] = 0. (21)

Finally, we decompose the process (Wk)k≥0 as in Lemma 6 by writing Wk+1 = Zk + S
(k)
M for k ≥ 0,

where (Zk)k≥K is a Markov chain with the transition kernel of a (Geom(1/2),ν)-branching process.

Since the sequence (S(k)M )k≥K is i.i.d., this implies that {Wk → ∞}
P1
= {Zk → ∞}. Together with

(21) this shows that the ERW is recurrent from the right iff P0[Zk → ∞] = 0. Since (Zk)k≥K is
an irreducible Markov chain this is equivalent to (Zk)k≥K being recurrent, which is equivalent to
recurrence of the state 0 for (Geom(1/2),ν)-branching processes.
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Lemma 8. Assume again (1) and (2). If the ERW is recurrent from the right then all excursions to the

right of 0 are P0-a.s. finite. If the ERW is not recurrent from the right then it will make P0-a.s. only a

finite number of excursions to the right. The corresponding statements hold for recurrence from the left.

Proof. Let the ERW be recurrent from the right. By Definition 2 the first excursion to the right is
a.s. finite. By Lemma 7 the corresponding (Geom(1/2),ν)-branching process dies out a.s.. Let i ≥ 1
and assume that all excursions to the right up to the i-th one have been proven to be P0-a.s. finite.
If the ERW starts the (i + 1)-st excursion to the right of 0 then it finds itself in an environment
which has been modified by the previous i excursions up to a random level R≥ 1, beyond which the
environment has not been touched yet. Therefore, conditioning on the event {R= K}, K ≥ 1, puts us
within the assumptions of Lemma 7: the random walk starts the right excursion from 0 in a random
cookie environment which satisfies (18). But the corresponding (Geom(1/2),ν)-branching process
is still the same and, thus, dies out a.s.. Therefore, this excursion, which is the (i + 1)-st excursion
of the walk, is a.s. finite on {R = K}. Since by our induction assumption the events {R = K}, K ≥ 1,
form a partition of a set of full measure, we obtain the first statement of the lemma.

For the second statement let
D := inf{n≥ 1 | Xn < X0}

be the first time that the walk backtracks below its starting point. Due to (2), P0[X1 = 1] > 0.
Therefore, since the walk is assumed to be not recurrent from the right,

P0[D =∞]> 0. (22)

Denote by Ki the right-most visited site before the end of the i-th excursion and define Ki = ∞
if there is no i-th right excursion or if the i-th excursion to the right covers N. Then the number
of i ≥ 1 such that Ki < Ki+1, is stochastically bounded from above by a geometric distribution
with parameter P0[D = ∞]. Indeed, each time the walk reaches a level Ki + 1 < ∞, which it has
never visited before, it has probability P0[D =∞] never to backtrack again below the level Ki + 1,
independently of its past. Therefore, (Ki)i increases only a finite number of times. Hence P0-a.s.
R := sup{Ki | i ≥ 1, Ki <∞}<∞. Now, if the walk did an infinite number of excursions to the right,
then, P0-a.s. supn Xn = R<∞ and lim supn Xn ≥ 0, which is impossible due to Lemma 5.

Proposition 9. The ERW is recurrent from the right if and only if δ ≤ 1. Similarly, it is recurrent from

the left if and only if δ ≥−1.

For the proof we need the next lemma, which relates the parameter δ of the ERW and the parameter
θ of the branching process with migration.

Lemma 10. Let ν be the distribution of S
(0)
M − M under P0. Then θ defined in (7) for the

(Geom(1/2),ν)-branching process is equal to δ defined in (3).

Proof of Lemma 10. For µ = Geom(1/2) the parameter b defined in (A) equals 1. Hence, by (6),
θ = λ= E0[S

(0)
M −M]. Thus it suffices to show that

E0[S
(0)
M ]−M = δ. (23)

This has already been observed in [BS08b, Lemma 3.3]. For completeness, we include a proof. Let
F := #{1≤ i ≤ M | Y (0)

i
=−1} be the number of failures among the first M trials. Then M−F is the
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number of successes among the first M trials. Therefore, since S
(0)
M is the total number of successes

prior to the M -th failure, S
(0)
M − (M − F) is the number of successes after the M -th trial and before

the M -th failure. Given F , its distribution is negative binomial with parameters M − F and p = 1/2,
i.e. the (M − F)-fold convolution of Geom(1/2) , and therefore has mean M − F . Thus,

E0[S
(0)
M − (M − F)] = E0[E0[S

(0)
M − (M − F) | F]] = E0[M − F].

Subtracting E0[F] from both sides we obtain

E0[S
(0)
M ]−M = M − 2

M∑

i=1

E[1−ω(0, i)] =

M∑

i=1

(2E[ω(0, i)]− 1) = δ.

Proof of Proposition 9. Due to Lemma 7 the walk is recurrent from the right iff the (Geom(1/2),ν)-
branching process dies out a.s., where ν is the distribution of S

(0)
M − M . By the first statement of

Corollary 4 this is the case iff θ ≤ 1. The first claim of the proposition follows now from Lemma 10.
The second one follows by symmetry.

Proof of Theorem 1. If δ > 1 then by Proposition 9 the walk is not recurrent from the right but
recurrent from the left. If the walk returned infinitely often to 0 then it would also make an infinite
number of excursions to the right which is impossible due to Lemma 8. Hence the ERW visits 0 only
finitely often. Since any left excursion is finite due to Lemma 8 the last excursion is to the right and
is infinite. Consequently, P0-a.s. lim infn Xn ≥ 0, and therefore, due to Lemma 5, Xn→∞. Similarly,
δ <−1 implies P0-a.s. Xn→∞.

In the remaining case δ ∈ [−1,1] all excursions from 0 are finite due to Proposition 9. Hence, 0 is
visited infinitely many times.

Remark 2. The equivalence (20) also holds correspondingly for one-dimensional random walks
(Xn)n≥0 in i.i.d. random environments (RWRE) and branching processes (Vk)k≥0 in random envi-
ronments, i.e. whose offspring distribution is geometric with a random parameter. This way the
recurrence theorem due to Solomon [So75, Th. (1.7)] for RWRE can be deduced from results by
Athreya and Karlin, see [AN72, Chapter VI.5, Corollary 1 and Theorem 3].

6 A renewal structure for transient ERW

A powerful tool for the study of random walks in random environments (RWRE) is the so-called
renewal or regeneration structure. It is already present in [KKS75], [Ke77] and was first used for
multi-dimensional RWRE in [SZ99]. It has been mentioned in [Zer05, p. 114, Remark 3] that this
renewal structure can be straightforwardly adapted to the setting of directionally transient ERW in
i.i.d. environments in order to give a law of large numbers. The proofs of positivity of speed and
of a central limit theorem for once-excited random walks in dimension d ≥ 2 in [BR07] were also
phrased in terms of this renewal structure. We shall do the same for the present model.

We continue to assume (1) and (2). Let δ > 1, where δ is the average drift defined in (3). This
means, due to Theorem 1, that P0-a.s. Xn→∞. Moreover, by Proposition 9, the walk is not recurrent

1965



Xτ1

Xτ2

τ1 τ2 n

Figure 3: A random walk path with two renewals.

from the right, which implies, as we already mentioned, see (22), that P0[D =∞] > 0. Hence there
are P0-a.s. infinitely many random times n, so-called renewal or regeneration times, with the defining
property that Xm < Xn for all 0≤ m< n and Xm ≥ Xn for all m> n. Call the increasing enumeration
of these times (τk)k≥1, see also Figure 3. Then the sequence (Xτ1

,τ1), (Xτk+1
−Xτk

,τk+1−τk) (k ≥ 1)
of random vectors is independent under P0. Furthermore, the random vectors (Xτk+1

− Xτk
,τk+1 −

τk), k ≥ 1, have the same distribution under P0. For multidimensional RWRE and once-excited
random walk the corresponding statement is [SZ99, Corollary 1.5] and [BR07, Proposition 3],
respectively. It follows from the renewal theorem, see e.g. [Zei04, Lemma 3.2.5], that

E0[Xτ2
− Xτ1

] = P0[D =∞]−1 <∞. (24)

Moreover, the ordinary strong law of large numbers implies that

lim
n→∞

Xn

n
=

E0[Xτ2
− Xτ1

]

E0[τ2−τ1]
=: v P0-a.s., (25)

see [SZ99, Proposition 2.1] and [Zei04, Theorem 3.2.2] for RWRE and also [BR07, Theorem 2] for
once-ERW. Therefore,

v > 0 if and only if E0[τ2−τ1]<∞. (26)

If, moreover,
E0[(τ2−τ1)

2]<∞ (27)

then the result claimed in Theorem 3 holds with

σ2 :=
E0

h�
Xτ2
− Xτ1

− v(τ2−τ1)
�2
i

E0[τ2−τ1]
> 0 (28)

see [Sz00, Theorem 4.1] for RWRE and [BR07, Theorem 3 and Remark 1] for once-ERW.

Thus, in order to prove Theorems 2 and 3 we need to control the first and the second moment,
respectively, of τ2−τ1. We start by introducing for k ≥ 0 the number

Dk := #
¦

n | τ1 < n< τ2, Xn = Xτ2
− k, Xn+1 = Xτ2

− k− 1
©

(29)

of downcrossings of the edge (Xτ2
− k, Xτ2

− k− 1) between the times τ1 and τ2.

Lemma 11. Assume that the ERW is transient to the right and let p ≥ 1. Then the p-th moment of

τ2−τ1 under P0 is finite if and only if the p-th moment of
∑

k≥1 Dk is finite.
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Xτ1

Xτ2

D0 = 0

D1 = 1

D2 = 2

D3 = 4

D4 = 4

Figure 4: For the path in Figure 3 the process (Dk)k≥0 is realized as (0,1,2,4,4,0,0,. . . ). The solid lines represent
downcrossings. The thick dots on the dashed line correspond to the single immigrant in definition (32).

Proof. The number of upcrossings between τ1 and τ2 is Xτ2
− Xτ1

+
∑

k≥1 Dk, since Xτ1
< Xτ2

and
since each downcrossing needs to be balanced by an upcrossing. Each step is either an upcrossing
or a downcrossing, therefore,

τ2−τ1 = Xτ2
− Xτ1

+ 2
∑

k≥1

Dk. (30)

For every k ∈ {Xτ1
+1, . . . , Xτ2

−1} there is a downcrossing of the edge (k, k−1), otherwise k would
be another point of renewal. Hence, Xτ2

− Xτ1
≤ 1+

∑
k≥1 Dk and, by (30),

2
∑

k≥1

Dk ≤ τ2−τ1 ≤ 1+ 3
∑

k≥1

Dk.

This implies the claim.

To interpret (Dk)k≥0 as a branching process (see Figure 4) we define for m ∈ N and k ∈ Z

F
(k)

0 := 0, F (k)m := # of failures in
�
Y
(k)

i

�
i≥1 prior to the m-th success. (31)

(Compare this to the definition of S(k)m in (12).) Let

V0 := 0, Vk+1 := F
(k)

Vk+1, k ≥ 0; (32)

eVk := Vk1{k<N (V )}, where N (V ) := inf{k ≥ 1 | Vk = 0}. (33)

Lemma 12. Assume that the ERW is transient to the right. Then (Dk)k≥0 and (eVk)k≥0 have the same

distribution under P0.

Proof. Fix an integer K ≥ 1. For brevity, we set ~D := (D1, . . . , DK) and ~V := (eV1, . . . , eVK). It suffices
to show that

P0

�
~D =~i

�
= P0

�
~V =~i

�
(34)

for all ~i ∈ NK
0 . Since both processes start from 0 and also stay at 0 once they have returned to

0 for the first time, it is enough to consider vectors ~i whose entries are strictly positive except for
maybe the last one. And, since the process (Dk)k≥0 eventually does reach 0 P0-a.s., namely at
k = Xτ2

− Xτ1
<∞, it suffices to consider only ~i whose last entry is 0. Thus, let ~i = (i1, . . . , iK) ∈ NK

0
with i1, . . . , iK−1 ≥ 1 and iK = 0. At first, we shall show that

P0

�
~D =~i

�
= P0

�
~D(K) =~i

�
, (35)
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where, for m, k ≥ 0,

D
(m)

k
:= #{n< Tm | Xn = m− k, Xn+1 = m− k− 1} and (36)

~D(m) := (D
(m)

1 , . . . , D
(m)
K ).

We start from the partition equation

P0

�
~D =~i

�
=
∑

m≥0

P0

�
~D =~i, τ2 = Tm

�
. (37)

However, on the event {~D =~i, τ2 = Tm}, we have Xτ1
= m−K by our choice of ~i. Since Xτ1

≥ 0, we
may start the summation in (37) from m = K . Moreover, comparing the definitions (29) and (36),
we see that {~D = ~i, τ2 = Tm} = {~D(m) = ~i, τ2 = Tm}, using that not only on the left but also on the
right event we have Xτ1

= m− K . Hence, the right hand side of (37) is equal to
∑

m≥K

P0

�
~D(m) =~i, τ2 = Tm

�
. (38)

Notice that the event {τ2 = Tm} occurs if and only if the ERW does not fall below level m after time
Tm and if exactly one of the numbers D

(m)

1 , . . . , D(m)m is equal to 0. Then, by our choice of ~i, (38) is
equal to ∑

m≥K

P0

h
~D(m) =~i, ∀k = K + 1, . . . , m : D

(m)

k
≥ 1, ∀n≥ Tm : Xn ≥ m

i
.

By the strong Markov property applied to the stopping time Tm and by independence in the envi-
ronment this equals

∑

m≥K

P0

h
~D(m) =~i, ∀k = K + 1, . . . , m : D

(m)

k
≥ 1
i

Pm[D =∞].

Since iK = 0, this is the same as
∑

m≥K

P0

h
~D(m) =~i, ∀k = 1, . . . , m− K : D

(m−K)

k
≥ 1
i

Pm[D =∞].

Applying the strong Markov property once more, this time to Tm−K , and using the i.i.d. structure of
the environment, we get that the above is equal to

∑

m≥K

Pm−K

�
~D(m) =~i

�
P0

h
∀k = 1, . . . , m− K : D

(m−K)

k
≥ 1
i

Pm[D =∞]

= P0

�
~D(K) =~i

� ∑

m≥K

P0

h
∀k = 1, . . . , m− K : D

(m−K)

k
≥ 1
i

Pm−K[D =∞]

= P0

�
~D(K) =~i

� ∑

m≥K

P0[τ1 = Tm−K] = P0

�
~D(K) =~i

�
.

This proves (35). Now we need to show that

P0

�
~D(K) =~i

�
= P0

�
~V =~i

�
. (39)

The proof is essentially the same as that of Proposition 2.2 of [BS08a]. At first, notice that, given�
D
(K)

1 , . . . , D
(K)

k

�
, the distribution of D

(K)

k+1 depends only on D
(K)

k
. Therefore, the process (D(K)

k
)0≤k≤K
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is Markov, just as the process (eVk)0≤k≤K . Both processes get absorbed after the first return to 0.

Then (39) will follow if we show that they have the same transition probabilities and that D
(K)

1 has
the same distribution as eV1. Let m ≥ 1 and 1 ≤ k ≤ K − 1 or m = k = 0. Notice that if the number
D
(K)

k
of downcrossings of the edge (K−k, K−k−1) prior to TK is m then the number of upcrossings

of the same edge prior to TK equals m+ 1. Therefore, the number D
(K)

k+1 of downcrossings of the

edge (K − k − 1, K − k − 2) prior to TK is equal to the number of failures in
�
Y
(K−k−1)
i

�
i≥1 before

the (m+ 1)-st success, which is F
(K−k−1)
m+1 . On the other hand, if eVk = m then, by (32) and (33),

eVk+1 = F
(k)

m+1. But for all i, j ≥ 0 random variables F
(i)

m+1 and F
( j)

m+1 have the same distribution.

7 Law of large numbers and ballisticity

While (25) gives the law of large numbers in the transient case the renewal structure does not say
anything about the recurrent case. The following general result covers both the transient and the
recurrent case.

Proposition 13. There is a deterministic v ∈ [−1,1] such that P0-a.s. Xn/n→ v for n→∞.

Proof. It can be shown exactly like in the proof of [Zer05, Theorem 13] that if supn≥0 Xn =∞ a.s.
then

lim sup
n→∞

Xn

n
≤

1

u+
a.s., where (40)

u+ :=
∑

j≥1

P0[T j+1− T j ≥ j] ∈ [1,∞], and

lim inf
n→∞

Xn

n
≥

1

u+
a.s. if u+ <∞ (41)

see the last line on p. 113 and the first line on p. 114 of [Zer05]. Similarly, by symmetry, if
infn≥0 Xn = −∞ a.s. then

lim inf
n→∞

Xn

n
≥
−1

u−
a.s., where (42)

u− :=
∑

j≥1

P0[T− j−1 − T− j ≥ j] ∈ [1,∞], and

lim sup
n→∞

Xn

n
≤
−1

u−
a.s. if u− <∞. (43)

Now due to Theorem 1 there are only three cases: Either the walk is transient to the right or it is
transient to the left or it is recurrent. Consider the case of transience to the right. If u+ <∞ then
limn Xn/n = 1/u+ follows directly from (40) and (41). If u+ =∞ then limn Xn/n = 0 follows from
(40) and infn Xn > −∞. Transience to the left is treated analogously. In the case of recurrence we
have a.s. both supn Xn =∞ and infn Xn = −∞. Hence both u+ and u− are infinite due to (41) and
(43), respectively. Therefore, by (40) and (42), limn Xn/n= 0.

1969



Lemma 14. Let (Zk)k≥0 be a (Geom(1/2),ν)-branching process, where ν is the distribution of ηk :=

F
(k)
M −M + 1, and recall definitions (8), (32) and (33). Then

E0[eV ]<∞⇐⇒ E0[eZ]<∞, where eV :=
∑

k≥0

eVk and eZ :=
∑

k≥0

eZk. (44)

Proof. As an intermediate step we first consider the auxiliary Markov chain (Wk)k≥0 defined by

W0 := 0, Wk+1 := F
(k)

(Wk+1)∨M
. (45)

This is a branching process with migration in the following sense: At each step, it exhibits two types
of behavior: 1) if Wk ≥ M −1 then one particle immigrates and then all Wk+1 particles reproduce;
2) if Wk < M − 1 then M −Wk particles immigrate and then all M particles reproduce.

We shall first establish the equivalence

E0[eV ]<∞⇐⇒ E0[fW]<∞. (46)

where, as usual,

N (W ) := inf{k ≥ 1 |Wk = 0}, fWk :=Wk1{k<N (W )}, and fW :=
∑

k≥0

fWk. (47)

Comparing definitions (32) and (45) we see that eVk ≤ fWk for all k, which yields the implication⇐
in (46). For the reverse implication, assume that E0[eV ] is finite. Since N (V ) ≤ eV + 1 this implies
that (Vk)k≥0 is positive recurrent. The following lemma, whose proof is postponed, will help us to
compare (Vk)k≥0 and (Wk)k≥0.

Lemma 15. Let K be the transition matrix of a positive recurrent Markov chain with state space N0

and invariant distribution π. Assume also that all entries of K are strictly positive. Fix a state j ∈ N0

and a finite set J ⊂ N0 \ { j}. Modify a finite number of rows of K by setting

K(i, ·) :=

(
K(i, ·), if i 6∈ J ;

K( j, ·), if i ∈ J .

Then a Markov chain with the transition matrix K is also positive recurrent and its unique invariant

probability distribution π satisfies π(n)≤ c6π(n) for all n ∈ N0.

If we let K be the transition matrix of the Markov chain (Vk)k≥0 and set j = M − 1 and J =

{0,1, . . . , M − 2} then K defined in Lemma 15 is the transition matrix of (Wk)k≥0. Moreover, all
entries of this K are strictly positive due to (2). Consequently, we may apply Lemma 15 and get
that (Wk)k≥0 is positive recurrent and its invariant probability distribution π is bounded above by a
multiple c6π of the invariant probability distribution π of (Vk)k≥0. By Theorem 5.4.3 of [Du05], π
and π can be represented as π= ρ/E0[N

(V )] and π= ρ/E0[N
(W )], where for s ∈ N0,

ρ(s) := E0

�
N (V )−1∑

k=0

1{Vk=s}

�
and ρ(s) := E0

�
N (W )−1∑

k=0

1{Wk=s}

�
.
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Therefore, also ρ ≤ c7ρ. However,

E0[fW] = E0

�
N (W )−1∑

k=0

∑

s≥0

s1{Wk=s}

�
=
∑

s≥0

sρ(s) (48)

and, similarly, E0[eV ] =
∑

s sρ(s). Consequently, E0[fW] ≤ c7E0[eV ]. This gives the implication⇒ in
(46). Next, we show that

E0[fW]<∞⇐⇒ E0[eZ]<∞. (49)

As in Lemma 6 we decompose the process (Wk)k≥0 into two components.

Lemma 16. For k ≥ 0 let Z ′
k

:= Wk+1 − F
(k)
M . Then (Z ′

k
)k≥0 is a (Geom(1/2),ν)-branching process,

where ν is the common distribution of ηk := F
(k)
M −M + 1 under P1.

The proof of Lemma 16 is almost identical to the one of Lemma 6 and, thus, is omitted.

Since F
(k)
M ≥ 0, we immediately obtain eZ ′

k
≤ fWk+1, where eZ ′

k
is defined by replacing W in (47) by

Z ′. By Lemma 16, (eZk)k and (eZ ′
k
)k have the same distribution. Therefore E0[eZ] = E0[eZ ′]≤ E0[fW],

which yields the implication ⇒ in (49). For the opposite direction assume that E0[eZ] <∞. Then,
as in the proof of (46), (Z ′

k
)k≥0 is positive recurrent and, by the equivalent of (48), its invariant

distribution, say π′, has a finite mean. Since Z ′
k

and F
(k)
M are independent, it follows from Lemma

16 that the convolution of π′ and the distribution of F
(k)
M is invariant for (Wk)k≥0. This convolution

has a finite mean as well, which implies, as in (48), that E0[fW] is finite as well. This concludes the
proof of (49). The statement of the lemma now follows from (46) and (49).

Proof of Lemma 15. It suffices to consider the case in which J has only one element, i.e. J = {i} for
some i 6= j. The full statement then follows by induction, changing one row at a time. Let (ζk)k≥0

and (ζk)k≥0 be Markov chains with transition matrices K and K , respectively. Their initial point will
be denoted by a subscript of P and E. Since all the entries of K are strictly positive, K is irreducible.
It is recurrent, since its state i is recurrent. Indeed, Pi[∃k ≥ 1 : ζk = i] = Pj[∃k ≥ 1 : ζk = i] because

of K(i, ·) = K( j, ·) = K( j, ·). Moreover, since (ζk)k≥0 and (ζk)k≥0 are indistinguishable as long as
they do not touch i, i.e. since K(s, ·) = K(s, ·) for all s 6= i, we can switch from the process (ζk)k≥0

to (ζk)k≥0 and obtain that Pi[∃k ≥ 1 : ζk = i] = Pj[∃k ≥ 1 : ζk = i], which is equal to 1 because
(ζk)k≥0 is recurrent.

Similarly, one can show that (ζk)k≥0 is also positive recurrent. Define the hitting time σ := inf{k ≥
1 | ζk = i} for (ζk)k≥0 and analogously σ for (ζk)k≥0. Then, again by [Du05, Theorem 5.4.3], ρ
and ρ, defined by

ρ(s) := Ei



σ−1∑

k=0

1{ζk=s}


 and ρ(s) := Ei



σ−1∑

k=0

1{ζk=s}


 , s ∈ N0,

are invariant measures for K and K , respectively. Using the relations between K and K as above, we
have for all s ∈ N0,

ρ(s) = E j



σ−1∑

k=0

1{ζk=s}


 = E j



σ−1∑

k=0

1{ζk=s}


 . (50)
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On the other hand, for all s ∈ N0,

ρ(s)≥ Ei



σ−1∑

k=1

1{ζ1= j, ζk=s}


 = K(i, j) E j



σ−1∑

k=0

1{ζk=s}


 (50)
= K(i, j)ρ(s).

Since (ζk)k≥0 is positive recurrent, ρ’s total mass, Ei[σ], is finite. Consequently, by the above and
since K(i, j)> 0, ρ’s total mass, Ei[σ], is finite as well. Therefore, (ζk)k≥0 is positive recurrent and
its invariant measure π satisfies π≤ c6π with c6 := Ei[σ]/(Ei[σ]K(i, j)).

The following lemma is the counterpart of Lemma 10.

Lemma 17. Let ν be the distribution of F
(0)
M − M + 1 under P0. Then θ defined in (7) for the

(Geom(1/2),ν)-branching process is equal to 1−δ.

Proof. As in the proof of Lemma 10, θ = E0[F
(0)
M ] − M + 1 since b = 1. Switching failures and

successes in (23) and replacing ω(x , i) by 1−ω(x , i) yields E0[F
(0)
M ]−M = −δ.

Proof of Theorem 2. The first statement of the theorem, the existence of the velocity v, is just Propo-
sition 13, or (25) in the transient case. If δ ∈ [−1,1] then the walk is recurrent by Theorem 1 and
therefore v = 0.

Now let |δ| > 1. Without loss of generality we may assume δ > 1. Then the walk is transient to the
right by Theorem 1. By (26), v > 0 iff E0[τ2−τ1]<∞. By Lemma 11 with p = 1 this is the case iff
E0
�∑

k≥0 Dk

�
<∞. By Lemma 12 this holds iff E0

�∑
k≥0
eVk

�
<∞. Due to Lemma 14 this is true

iff E0
�∑

k≥0
eZk

�
is finite. By the second statement in Corollary 4 this holds iff θ < −1. Thus, by

Lemma 17, v > 0 iff δ > 2.

8 Central limit theorem

Lemma 18. Let (eVk)k≥0 be defined by (33). Then δ > 4 implies that the random variable eV :=
∑

k≥0
eVk

has a finite second moment.

Proof. Let (Wk)k≥0 and fW be defined by (45) and (47), respectively, using the same sequences

(F
(k)

i
)i≥0, k ∈ N0, as for the process (Vk)k≥0. Since Vk ≤ Wk, we have N (V ) ≤ N (W ) and E0[eV 2] ≤

E0[fW 2]. We shall prove that the latter is finite. By Minkowski’s inequality we have

�
E0[fW 2]

�1/2
=

�
E0

��∑

k≥0

Wk1{N (W )>k}

�2��1/2

≤
∑

k≥0

�
E0

�
W 2

k 1{N (W )>k}
��1/2

.

From Lemma 16 we see that Zk :=Wk+1 − F
(k)
M defines a (Geom(1/2),ν)-branching process, where

ν is the distribution of F
(0)
M −M + 1. Therefore, W 2

k
≤ 2(Z2

k−1+ (F
(k−1)
M )2). Combining this with the

fact that (a+ b)1/2 ≤ a1/2+ b1/2 for all a, b ≥ 0, we get

�
E0[fW 2]

�1/2 ≤
p

2
∞∑

k=1

�
E0

�
Z2

k−11{N (W )>k}
�
+ E0

��
F
(k−1)
M

�2
1{N (W )>k}

��1/2

≤
p

2
∞∑

k=1

��
E0

�
Z2

k−11{N (W )>k}
��1/2

+
�

E0
��

F
(k−1)
M

�2
1{N (W )>k}

��1/2
�

.
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Applying Hölder’s inequality with 1/α+ 1/α′ = 1, α > 1, we obtain

�
E0[fW 2]

�1/2 ≤
p

2
∞∑

k=1

�
E0

�
Z2α

k−1

��1/(2α) �
P0[N

(W ) > k]
�1/(2α′)

+
p

2E0
��

F
(0)
M

�2α�1/(2α)
∞∑

k=1

�
P0[N

(W ) > k]
�1/(2α′). (51)

We are going to show that

(i) for every ǫ ∈ (0,δ− 4) there is a constant c8(ǫ,δ) such that

P0[N
(W ) > k]≤ c8k−δ+ǫ for all k ∈ N;

(ii) for each ℓ ∈ N there is a constant c9(ℓ) such that E0

�
Zℓ

k

�
≤ c9(ℓ)k

ℓ for all k ∈ N0.

Let us assume (i) and (ii) for the moment and see that both series in the right hand side of (51) are
finite. Choose α′ ∈ (1,δ/4) so that α = α′/(α′ − 1) is an integer and let ǫ = (δ− 4α′)/2. Then by
(i) and (ii) for all k ≥ 1,

�
E0

�
Z2α

k−1

��1/(2α) �
P0[N

(W ) > k]
�1/(2α′) ≤ c10(α

′,δ)k1−(δ−ǫ)/(2α′) = c10k−δ/(4α
′).

Since δ/(4α′) > 1, the first series in the right hand side of (51) converges. It is obvious now that
for the same choice of α′ and ǫ the second series in the right hand side of (51) also converges.
Therefore we only need to prove (i) and (ii).

Proof of (i). Observe that Wk is zero if and only if both Zk−1 and F
(k−1)
M are equal to zero. Set N0 := 0

and consider the times Ni := inf{k > Ni−1 | Zk = 0}, i ∈ N, when the process (Zk)k≥1 dies out. Due
to Lemma 17 and δ > 4 the parameter θ for the process (Zk)k≥0 satisfies

θ = 1−δ <−3. (52)

In particular, Corollary 4 implies that the process (Zk)k≥0 is positive recurrent. Therefore, all Ni , i ∈
N, are a.s. finite and (Ni−Ni−1)i∈N is i.i.d.. We are interested in the sequence (F (Ni)

M )i∈N. Observe that�
F
(n)
M

�
n≥0 is i.i.d. and, by construction, F

(n)
M is independent from Fn = σ({Zk, k ≤ n}, {F ( j)M , j < n}).

It is then straightforward to check that each F
(Ni)

M is independent from FNi
, i ∈ N, and

�
F
(Ni)

M

�
i≥1 is

i.i.d.. Let c := inf
�

i ≥ 1 | F (Ni)

M = 0
	
. Then c has the geometric distribution on N with parameter

p := P[F
(0)
M = 0] ∈ (0,1). Therefore, N (W ) = Nc =

∑
c

i=1(Ni − Ni−1) and

P0[N
(W ) > k] = P0

�
Nδ−ǫ
c
> kδ−ǫ

�
≤

1

kδ−ǫ

∑

m≥1

E0

�
Nδ−ǫm 1{c=m}

�

≤
1

kδ−ǫ

∑

m≥1

�
E0

�
N (δ−ǫ)βm

��1/β �
P0[c = m]

�1/β ′ , (53)

where β ∈ (1,δ/(δ− ǫ)), β ′ = β/(β − 1). Denote (δ− ǫ)β by γ. Writing Nm as
∑m

i=1(Ni − Ni−1)

and using Minkowski’s inequality we get (E0[N
γ
m])

1/γ ≤ m(E0[N
γ
1 ])

1/γ. Substituting this into (53)
we obtain

P0[N
(W ) > k]≤

�
E0

�
N
γ
1

��1/β

kδ−ǫ

∞∑

m=1

mδ−ǫ
�
(1− p)m−1p

�1/β ′ ≤
�

E0

�
N
γ
1

��1/β

kδ−ǫ
c11(ǫ,δ).
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From part (iv) of Theorem A and (52) we know that P0[N1 > k] ∼ c4k−δ. Therefore, and since
γ < δ by assumption, P0[N

γ
1 > k] is summable in k. Consequently, E0

�
N
γ
1

�
= c12(ǫ,δ) <∞. This

implies (i).

Proof of (ii). The proof can be easily done by induction in ℓ. The statement is trivial for ℓ= 0. (Here
00 = 1.) Assume now ℓ ≥ 1 and that for each j ∈ {0,1,2, . . . ,ℓ− 1} there is a constant c9( j) such

that E0

h
Z

j

k

i
≤ c9( j)k

j for all k ∈ N0. Using that (Zk)k is a (Geom(1/2),ν)-branching process we

have for all k ∈ N0 and n ∈ N,

E0

�
Zℓk+1

�
= E0

��
ξ
(k+1)
1 + ξ

(k+1)
2 + · · ·+ ξ(k+1)

Zk+ηk

�ℓ�

= E0

��
ξ
(k+1)
1 + · · ·+ ξ(k+1)

Zk+ηk

�ℓ
1{Zk+ηk≤ℓ}

�

+
∑

n>ℓ

E0

��
ξ
(k+1)
1 + · · ·+ ξ(k+1)

Zk+ηk

�ℓ
1{Zk+ηk=n}

�

≤ E0

��
ξ
(0)
1 + · · ·+ ξ

(0)
ℓ

�ℓ�
(54)

+
∑

n>ℓ

E0

��
ξ
(0)
1 + · · ·+ ξ

(0)
n

�ℓ�
P0
�

Zk +ηk = n
�

. (55)

Observe that the expectation in (54) is bounded by a constant c13(ℓ). To control the series in (55)
we use the following lemma, whose proof is postponed until after the end of the present proof.

Lemma 19. Let (ξi)i∈N be non-negative i.i.d. random variables such that E[ξ1] = 1 and E
�
ξℓ1

�
<∞

for some positive integer ℓ. Then there is a constant c14 such that for all n> ℓ,

E
�
(ξ1+ ξ2+ · · ·+ ξn)

ℓ
�
≤ nℓ + c14

ℓ−1∑

m=1

nm.

Applying this lemma to the series in (55) we obtain

E0

�
Zℓk+1

�
≤ c13+

∑

n>ℓ

 
nℓ + c14

ℓ−1∑

m=1

nm

!
P0
�

Zk +ηk = n
�

≤ c13+ E0

�
(Zk +ηk)

ℓ
�
+ c14

ℓ−1∑

m=1

E0
�
(Zk +ηk)

m
�

≤ E0

�
Zℓk

�
+

ℓ−1∑

m=0

c15(m,ℓ)E0[Z
m
k ].

By the induction hypothesis we conclude that E0

�
Zℓ

k+1− Zℓ
k

�
≤ c16kℓ−1. Summation over k implies

(ii) and finishes the proof of Lemma 18.

Proof of Lemma 19. By expanding and using independence,

E
�
(ξ1+ ξ2+ · · ·+ ξn)

ℓ
�
=

ℓ∑

m=1

�
n

m

� ∑

ℓ1+...+ℓm=ℓ
1≤ℓ1,...,ℓm

�
ℓ

ℓ1, . . . ,ℓm

� m∏

j=1

E
h
ξ
ℓ j

1

i
.
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Since E[ξ1] = 1 the summand for m= ℓ is equal to n!/(n−ℓ)!≤ nℓ. For the other terms we estimate
the factor

�n

m

�
from above by nm and define the constant

c14 := max
1≤m<ℓ

∑

ℓ1+···+ℓm=ℓ
1≤ℓ1,...,ℓm

�
ℓ

ℓ1, . . . ,ℓm

� m∏

j=1

E
h
ξ
ℓ j

1

i
.

Proof of Theorem 3. Let |δ|> 4. By symmetry we may assume without loss of generality that δ > 4.
Then, by Lemma 18, E0[(

∑
k≥1
eVk)

2] <∞. By Lemma 12 this implies E0[(
∑

k Dk)
2] <∞. Lemma

11 for p = 2 gives E0[(τ2−τ1)
2]<∞. This implies the claim, as indicated in (27) and (28).

9 Further remarks, a multi-dimensional example, and open questions

Remark 3 (Permuting cookies). Note that permuting cookies within the cookie piles, i.e. replacing
(ω(·, i))i≥1 by ω(·,π(i))i≥1, where π : N → N is a permutation, does not change δ, defined in
(3). Therefore, permuting cookies does not change the classification of the walk as described in
Theorems 1 and 2. This fact can also be seen as follows without using the results in Theorem A from
the literature.

At first, observe that we may assume without loss of generality that π is a finite permutation, since all
cookies in a cookie pile except for a finite number are placebo cookies. We may even assume that all
i > M are fixed points for π. Indeed, otherwise just replace the original M with max{π(i) | i ≤ M}.
To argue, for example, that permuting cookies does not turn a walk which is recurrent from the right
into one which is not recurrent from the right or vice versa, recall the definition of S

(k)
M in (12) and

of ηk in Lemma 7 and denote by σ(k)M ≥ M the index of the M -th failure in the sequence (Y (k)
i
)i≥1.

Then ηk can be written as

ηk =

σ
(k)
M∑

i=1

Y
(k)

i
=

M∑

i=1

Y
(k)

i
+

σ
(k)
M∑

i=M+1

Y
(k)

i
=

M∑

i=1

Y
(k)

π(i)
+

σ
(k)
M∑

i=M+1

Y
(k)

π(i)
, (56)

where we used in the last step for the first sum that πmaps {1, . . . , M} onto itself and for the second
sum that all i > M are fixed points for π. For the same reason, σ(k)M ≥ M is also the index of

the M -th failure in the permuted sequence Y
(k)

π(i)
. This shows that applying π does not change the

distribution ν of ηk. Therefore, recurrence to the right, as characterized in Lemma 7, is invariant
under permutations. Since the proof of Lemma 7 did not use any results from Section 2, this proof
is self-contained.

Similarly, one can show that the positivity of speed is invariant under permutations. Indeed, in the
proof of Theorem 2 we have shown that v > 0 iff E0[

∑
k≥0
eZk] < ∞. By the above argument, the

distribution of (eZk)k≥0 remains unchanged under permutations.

Remark 4 (Higher dimensions). Multi-dimensional ERW with cookies that induce a bias with a non-
negative projection in some fixed direction were considered in [BW03], [Ko03], [Ko05], [Zer06],
[HH06] and [BR07]. A special non-stationary cookie environment with two types of cookies point-
ing into opposite directions was studied in [ABK08]. However, to the best of our knowledge so far
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there are no criteria for recurrence, transience or ballistic behavior of ERWs in i.i.d. environments of
“positive” and “negative” cookies in higher dimensions. To us, it is not even clear how such criteria
could look like. In the following example we shall indicate that the situation cannot be as simple as
in one dimension. We shall show that, unlike for d = 1 (see Remark 3), permuting cookies in higher
dimensions may change the sign of the velocity.

Example. Let d ≥ 4. Denote by ω(x , e, i) the probability for the ERW to jump from x ∈ Zd to the
nearest neighbor x+e upon the i-th visit of x . Fix 0< ǫ < 1/(2d) and consider the two deterministic
cookie environments ωk, k = 1,2, defined by

ωk(x ,±e j , i) :=
1

2d
± ǫ(−1)i+k1{ j=1; i∈{1,2}}, x ∈ Zd , 1≤ j ≤ d, i ≥ 1,

where {e1, . . . , ed} is the canonical basis of Zd . In both environments, ω1 and ω2, there are M = 2
cookies per site. In the environment ω1 the walk experiences a drift into direction e1 upon the first
visit to a site and an equal drift into the opposite direction −e1 upon the second visit. Otherwise, it
behaves just like a simple symmetric random walk. We shall show:

There is some v > 0 such that lim
n→∞

Xn

n
= ve1 P0,ω1

-a.s.. (57)

The environment ω2 is obtained from ω1 by permuting the two cookies at each site. By symmetry,
we obtain from (57) that for the same v > 0, we have P0,ω2

-a.s. limn Xn/n = −ve1. Thus, in this
example, permuting two cookies reverses the direction of the speed.

For the proof of (57) denote by Rn,1 := {Xm | m< n} the range of the walk before time n ∈ N and by
Rn,2 := {x ∈ Zd | ∃k < m< n Xk = x = Xm} the set of vertices which have been visited at least twice
before time n. It is easy to see that both #Rn,1 and #Rn,2 tend to ∞ as n→∞. Coupling (Xn)n≥0

in the natural way to a simple symmetric random walk (Sn)n≥0 on Zd yields that (Xn)n≥0 can be
represented as

Xn = Sn+ 2e1an− 2e1 bn, where an =

#Rn,1∑

i=1

Yi,1 and bn =

#Rn,2∑

i=1

Yi,2

and Yi, j (i ≥ 1, j = 1,2) are independent and Bernoulli distributed with parameter ǫ. Consequently,

Xn · e1

n
=

Sn · e1

n
+

2an

#Rn,1

#Rn,1

n
−

2bn

#Rn,2

#Rn,2

n

=
Sn · e1

n
+

2an

#Rn,1

#Rn,1−#Rn,2

n
+

�
2an

#Rn,1
−

2bn

#Rn,2

�
#Rn,2

n
. (58)

The first term on the right hand side of (58) tends to zero P0,ω1
-a.s.. The same holds for the last

term in (58) since by the strong law of large numbers both an/#Rn,1 and bn/#Rn,2 tend to ǫ as
n→∞ and #Rn,2/n is bounded. Therefore,

lim inf
n→∞

Xn · e1

n
≥ 2ǫ lim inf

n→∞

#Rn,1−#Rn,2

n
(59)

To bound the right hand side of (59) from below we introduce the projection π : Zd → Zd−1

defined by π(x1, x2, . . . , xd) := (x2, . . . , xd) onto the subspace spanned by e2, . . . , ed and consider
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the process (X ′n)n≥0 defined by X ′n := π(Xn). Under P0,ω1
, (X ′n)n≥0 is a simple symmetric random

walk on Zd−1 with holding times which are i.i.d. and geometrically distributed with parameter
1− 1/d. As above, denote by R′n,1 := {X ′m | m < n} the range of this walk before time n ∈ N and by

R′n,2 := {x ∈ Zd−1 | ∃k < m < n X ′
k
= x = X ′m} the set of vertices which have been visited at least

twice before time n by (X ′n)n.

Returning to the right hand side of (59) we first note that

#Rn,1−#Rn,2 = #(Rn,1\Rn,2)

is the number of vertices which have been visited exactly once by (Xn)n before time n. This number
is greater than or equal to the number #(R′n,1\R′n,2) of vertices which have been visited exactly once
by the projected walk (X ′n)n before time n. According to [Pi74] this last number satisfies a strong
law of large numbers and grows like p2n, where p is the probability that (X ′n)n never returns to
its starting point. Since d ≥ 4 and simple symmetric random walk in three or more dimensions is
transient, we have p > 0. Therefore, by (59),

lim inf
n→∞

Xn · e1

n
≥ 2ǫp2 > 0. (60)

In particular, (Xn · e1)n is transient to the right. Using a renewal structure like in [SZ99] for RWRE
and in [BR07] for once-ERW and as outlined in Section 6 this implies that (Xn ·e1)n satisfies a strong
law of large numbers under P0,ω1

, i.e. P0,ω1
-a.s., (Xn · e1)/n → v for some v ≥ 0. Due to (60) we

even have v > 0. Since obviously P0,ω1
-a.s. X ′n/n→ 0, this yields the statement (57).

Open questions. We have already mentioned that not much is known about positively and nega-
tively ERW in d ≥ 2. Below we shall discuss d = 1. It might be also interesting to consider ERW on
strips Z× {0,1, . . . , L}, L ≥ 1.

(a) Recurrent regime. For the case of non-negative cookies and δ < 1, D. Dolgopyat has shown,

[Do08], (the case of strips was also considered) that, under some assumptions,
X[nt]p

n
converges in

law to the unique pathwise solution W (t) (see [CD99]) of the equation

W (t) = B(t) +δ

�
max
[0,t]

W (t)−min
[0,t]

W (t)

�
,

where B(t) is the standard Brownian motion. Can this result be extended to positively and nega-
tively excited random walks? What happens in the case |δ|= 1?

(b) Transient regime with zero linear speed. A.-L. Basdevant and A. Singh obtained in [BS08b] for
non-negative (deterministic) cookie environments and 1< δ ≤ 2 the following results.

1. If δ ∈ (1,2) then Xn

nδ/2
converges in law to a random variable S−δ/2, where S is a positive

strictly stable random variable with index δ/2, i.e. with Laplace transform E[e−λS] = e−cλδ/2

for some c > 0.

2. If δ = 2 then Xn

n/ log n
converges in probability to a positive constant.

Their proof is based on the study of branching processes with migration but uses the assumption
that all cookies are non-negative. The same result with essentially the same proof might hold in

1977



the more general setting studied in the current paper. Is there a result for δ = 2 similar to (ii) of
[KKS75]?

(c) Transient regime with positive linear speed. We do not know whether our condition δ > 4 for the
validity of the central limit theorem is optimal. How does the process scale for δ ∈ (2,4]? Is the
behavior similar to (iii) and (iv) of [KKS75]?
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