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Abstract

We consider random walks in Dirichlet random environment. Since the Dirichlet distribution is

not uniformly elliptic, the annealed integrability of the exit time out of a given finite subset is

a non-trivial question. In this paper we provide a simple and explicit equivalent condition for

the integrability of Green functions and exit times on any finite directed graph. The proof relies

on a quotienting procedure allowing for an induction argument on the cardinality of the graph.

This integrability problem arises in the definition of Kalikow auxiliary random walk. Using a

particular case of our condition, we prove a refined version of the ballisticity criterion given by

Enriquez and Sabot in [EnSa06].
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1 Introduction

Since their introduction in the 70’s, models of random walks in random environment have mostly

been studied in the one dimensional case. Using specific features of this setting, like the reversibil-

ity of the Markov chain, Solomon [So75] set a first milestone by proving simple explicit necessary

and sufficient conditions for transience, and a law of large numbers. In contrast, the multidimen-

sional situation is still poorly understood. A first general transience criterion was provided by Ka-

likow [Ka81], which Sznitman and Zerner [SzZe99] later proved to imply ballisticity as well. Under

an additional uniform ellipticity hypothesis, Sznitman ([Sz01], [Sz04]) could weaken this ballistic-

ity criterion, but not much progress was made since then about the delicate question of sharpening

transience or ballisticity criterions.

Another approach consists in deriving explicit conditions in more specific random environments.

Among them, Dirichlet environments, first studied by Enriquez and Sabot in [EnSa06], appear as

a natural choice because of their connection with oriented edge linearly reinforced random walks

(cf. [EnSa02], and [Pe07] for a review on reinforced processes). Another interest in this case

comes from the existence of algebraic relations involving Green functions. These relations allowed

Enriquez and Sabot to show that Kalikow’s criterion is satisfied under some simple condition, thus

proving ballistic behaviour, and to give estimates of the limiting velocity.

Defining Kalikow’s criterion raises the problem of integrability of Green functions on finite subsets.

While this property is very easily verified for a uniformly elliptic environment, it is no longer the

case in the Dirichlet situation. In [EnSa06], the condition on the environment allowed for a quick

proof, and the general case remained unanswered.

The main aim of this article is to state and prove a simple necessary and sufficient condition of inte-

grability of these Green functions in Dirichlet environment on general directed graphs. Integrability

conditions for exit times are then easily deduced. The “sufficiency” part of the proof is the more del-

icate. It procedes by induction on the size of the graph by going through an interesting quotienting

procedure.

This sharpening of the integrability criterion, along with an additional trick, allows us to prove a

refined version of Enriquez and Sabot’s ballisticity criterion. The condition of non integrability may

also prove useful in further analysis of random walks in Dirichlet environment. Indeed, finite subsets

with non integrable exit times play the role of “strong traps” for the walk. As a simple example, one

can prove that the existence of such a subset implies a null limiting velocity.

Next section introduces the notations, states the results and various corollaries. Section 3 contains

the proofs of the main result and corollary. Finally, Section 4 proves the generalization of Enriquez

and Sabot’s criterion.

2 Definitions and statement of the results

2.1 Dirichlet distribution

Let us first recall the definition of the usual Dirichlet distribution. Let I be a finite set. The set of

probability distributions on I is denoted by Prob(I):

Prob(I) =
¦
(pi)i∈I ∈ R

I
+

¯̄ ∑
i∈I pi = 1

©
.
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Given a family (αi)i∈I of positive real numbers, the Dirichlet distribution of parameter (αi)i∈I is

the probability distribution D((αi)i∈I) on Prob(I) of density:

(x i)i∈I 7→
Γ(
∑

i∈I αi)∏
i∈I Γ(αi)

∏

i∈I

x
αi−1

i

with respect to the Lebesgue measure
∏

i 6=i0
d x i (where i0 is any element of I) on the simplex

Prob(I). We will recall a few properties of this distribution on page 437.

2.2 Definition of the model

In order to later deal with multiple edges, we define a directed graph as a quadruplet G = (V, E,

head, tail)where V and E are two sets whose elements are respectively called the vertices and edges

of G, endowed with two maps head : e 7→ e and tail : e 7→ e from E to V . An edge e ∈ E is thought

of as an oriented link from e (tail) to e (head), and the usual definitions apply. Thus, a vertex x is

connected to a vertex y in G if there is an oriented path from x to y , i.e. a sequence e1, . . . , en of

edges with e1 = x , ek = ek+1 for k = 1, . . . , n− 1, and en = y . For brevity, we usually only write

G = (V, E), the tail and head of an edge e being always denoted by e and e.

Unless explicitely stated otherwise (i.e. before the quotienting procedure page 441), graphs are

however supposed not to have multiple edges, so that the notation (x , y) for the edge from x to y

makes sense.

In the following, we consider finite directed graphs G = (V ∪ {∂ }, E) (without multiple edges)

possessing a cemetery vertex ∂ . In this setting, we always assume that the set of edges is such that:

(i) ∂ is a dead end: no edge in E exits this vertex;

(ii) every vertex is connected to ∂ through a path in E.

Let G = (V ∪ {∂ }, E) be such a graph. For all x ∈ V , let Px designate the set of probability distribu-

tions on the set of edges originating at x:

Px =

§
(pe)e∈E, e=x ∈ R

{e∈E | e=x}
+

¯̄
¯̄ ∑

e∈E, e=x pe = 1

«
.

Then the set of environments is

Ω =
∏

x∈V

Px ⊂ R
E .

We will denote by ω = (ωe)e∈E the canonical random variable on Ω, and we usually write ω(x , y)

instead of ω(x ,y).

Given a family ~α = (αe)e∈E of positive weights indexed by the set of edges of G, the Dirichlet

distribution on environments of parameter ~α is the product measure on Ω =
∏

x∈V Px of Dirichlet

distributions on each of the Px , x ∈ V :

P= P(~α) =
⊗

x∈V

D((αe)e∈E, e=x).
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Note that this distribution does not satisfy the usual uniform ellipticity condition: there is no positive

constant bounding P-almost surely the transition probabilities ωe from below.

In the case of Zd , we always consider translation invariant distributions of environments, hence the

parameters are identical at each vertex and we only need to be given a 2d-uplet (αe)e∈V where

V =
¦

e ∈ Zd
¯̄
|e|= 1

©
. This is the usual case of i.i.d. Dirichlet environment.

The canonical process on V will be denoted by (Xn)n≥0, and the canonical shift on VN by Θ: for

p ∈ N, Θp((Xn)n∈N) = (Xp+n)n∈N.

For any environmentω ∈ Ω, and any vertex x ∈ V , the quenched law in the environmentω starting

at x ∈ V is the distribution Px ,ω of the Markov chain starting at x with transition probabilities given

by ω and stopped when it hits ∂ . Thus, for every o ∈ V , (x , y) ∈ E, ω ∈ Ω, n ∈ N :

Po,ω(Xn+1 = y |Xn = x) =ω(x , y)

and

Po,ω(Xn+1 = ∂ |Xn = ∂ ) = 1.

The annealed law starting at x ∈ V is then the following averaged distribution on random walks

on G:

Px(·) =

∫
Px ,ω(·)P(dω) = E[Px ,ω(·)].

We will need the following stopping times: for A ⊂ E, TA = inf {n≥ 1 | (Xn−1, Xn) /∈ A
	
, for

U ⊂ V , TU = inf {n≥ 0 | Xn /∈ U
	

and, for any vertex x , Hx = inf {n≥ 0 | Xn = x
	

and ÝHx =

inf {n≥ 1 | Xn = x
	
.

If the random variable Ny denotes the number of visits of (Xn)n≥0 at site y (before it hits ∂ ), then

the Green function Gω of the random walk in the environment ω is given by:

for all x , y ∈ V , Gω(x , y) = Ex ,ω[Ny] =
∑

n≥0

Px ,ω(Xn = y).

Due to the assumption (ii), Gω(x , y) is P-almost surely finite for all x , y ∈ V . The question we are

concerned with is the integrability of these functions under P, depending on the value of ~α.

2.3 Integrability conditions

The main quantity involved in our conditions is the sum of the coefficients αe over the edges e

exiting some set. For every subset A of E, define:

A =
¦

e
¯̄

e ∈ A
©
⊂ V,

A = {e | e ∈ A} ⊂ V ∪ {∂ },

A =
¦

e
¯̄

e ∈ A
©
∪ {e | e ∈ A} ⊂ V ∪ {∂ },

∂EA = {e ∈ E \ A | e ∈ A
©
⊂ E,

and the sum of the coefficients of the edges “exiting A”:

βA =
∑

e∈∂EA

αe.
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A is said to be strongly connected if, for all x , y ∈ A, x is connected to y in A, i.e. there is an

(oriented) path from x to y through edges in A. If A is strongly connected, then A= A.

THEOREM 1. – Let G = (V ∪{∂ }, E) be a finite directed graph and ~α= (αe)e∈E be a family of positive
real numbers. We denote by P the corresponding Dirichlet distribution. Let o ∈ V . For every
s > 0, the following statements are equivalent:

(i) E[Gω(o, o)s]<∞;

(ii) for every strongly connected subset A of E such that o ∈ A, βA > s.

Undirected graphs are directed graphs where edges come in pair: if (x , y) ∈ E, then (y, x) ∈ E as

well. In this case, the previous result translates into a statement on subsets of V . For any S ⊂ V , we

denote by βS the sum of the coefficients of the edges “exiting S”:

βS =
∑

e∈S, e/∈S

αe.

Suppose there is no loop in G (i.e. no edge both exiting from and heading to the same vertex). For

any strongly connected subset A of E, if we let S = A, then S is connected, |S| ≥ 2 and βS ≤ βA.

Conversely, provided the graph is undirected, a connected subset S of V of cardinality at least 2

satisfies βS = βA where A= {e ∈ E|e ∈ S, e ∈ S}, which is strongly connected. This remark yields:

THEOREM 2. – Let G = (V ∪{∂ }, E) be a finite undirected graph without loop and (αe)e∈E be a family
of positive real numbers. We denote by P the corresponding Dirichlet distribution. Let o ∈ V .
For every s > 0, the following statements are equivalent:

(i) E[Gω(o, o)s]<∞;

(ii) every connected subset S of V such that {o}( S, βS > s.

In particular, we get the case of i.i.d. environments in Zd . Given a subset U of Zd , let us introduce the

Green function GωU of the random walk on Zd , in environment ω, killed when exiting U . Identifying

the complement of U with a cemetery point ∂ allows to apply the previous theorem to GωU . Among

the connected subsets S of vertices of Zd such that {o} ( S, the ones minimizing the “exit sum” βS

are made of the two endpoints of an edge. The result may therefore be stated as:

THEOREM 3. – Let ~α= (αe)e∈V be a family of positive real numbers. We denote by P the translation
invariant Dirichlet distribution on environments on Zd associated with ~α. Let U be a finite
subset of Zd containing o. Let Σ =

∑
e∈V αe. Then for every s > 0, the following assertions are

equivalent:

(i) E[GωU (o, o)s]<∞;

(ii) for every edge e = (o, x) with x ∈ U , 2Σ−αe −α−e > s.

Assuming the hypothesis of Theorem 1 to be satisfied relatively to all vertices instead of only one

provides information about exit times:

COROLLARY 4. – Let G = (V ∪ {∂ }, E) be a finite strongly connected directed graph and (αe)e∈E be
a family of positive real numbers. We denote by P the corresponding Dirichlet distribution. For
every s > 0, the following properties are equivalent:
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(i) for every vertex x , E[Ex ,ω[TV ]
s]<∞;

(ii) for every vertex x , E[Gω(x , x)s]<∞;

(iii) every non-empty strongly connected subset A of E satisfies βA > s;

(iv) there is a vertex x such that E[Ex ,ω[TV ]
s]<∞.

And in the undirected case:

COROLLARY 5. – Let G = (V∪{∂ }, E) be a finite connected undirected graph without loop, and (αe)e∈E

be a family of positive real numbers. We denote by P the corresponding Dirichlet distribution.
For every s > 0, the following properties are equivalent:

(i) for every vertex x , E[Ex ,ω[TV ]
s]<∞;

(ii) for every vertex x , E[Gω(x , x)s]<∞;

(iii) every connected subset S of V of cardinality ≥ 2 satisfies βS > s;

(iv) there is a vertex x such that E[Ex ,ω[TV ]
s]<∞.

2.4 Ballisticity criterion

We now consider the case of random walks in i.i.d. Dirichlet environment on Zd , d ≥ 1.

Let (e1, . . . , ed) denote the canonical basis of Zd , and V =
¦

e ∈ Zd
¯̄
|e|= 1

©
. Let (αe)e∈V be positive

numbers. We will write either αi or αei
, and α−i or α−ei

, i = 1, . . . , d.

Enriquez and Sabot proved that the random walk in Dirichlet environment has a ballistic behaviour

as soon as max1≤i≤d |αi −α−i |> 1. Our improvement replaces ℓ∞-norm by ℓ1-norm:

THEOREM 6. – If
d∑

i=1

|αi − α−i | > 1, then there exists v 6= 0 such that, P0-a.s.,
Xn

n
→n v, and the

following bound holds: ¯̄
¯̄v − Σ

Σ− 1
dm

¯̄
¯̄
1

≤
1

Σ− 1
,

where Σ =
∑

e∈V αe, dm =
∑d

i=1

αi−α−i

Σ
ei is the drift in the averaged environment, and |X |1 =∑d

i=1 |X · ei | for any X ∈ Rd .

3 Proof of the main result

Let us first give a few comments about the proof of Theorem 1. Proving this integrability condition

amounts to bounding the tail probability P(Gω(o, o)> t) from below and above.

In order to get the lower bound, we consider an event consisting of environments with small tran-

sition probabilities out of a given subset containing o. This forces the mean exit time out of this

subset to be large. However, getting a large number of returns to the starting vertex o requires an

additional trick: one needs to control from below the probability of some paths leading back to o.

436



The important yet basic remark here is that, at each vertex, there is at least one exiting edge with

transition probability greater than the inverse number of neighbours at that vertex. By restricting

the probability space to an event where, at each vertex, this (random) edge is fixed, we are able to

compensate for the non uniform ellipticity of P.

The upper bound is more elaborate. Since Gω(o, o) = 1/Po,ω(H∂ < eHo), we need lower bounds on

the probability to reach ∂ without coming back to o. If P were uniformly elliptic, it would suffice

to consider a single path from o to ∂ . In the present case, we construct a random subset C(ω) of

E containing o where a weaker ellipticity property holds anyway: vertices in C(ω) can be easily

connected to each other through paths inside C(ω) (cf. Proposition 8). The probability, from o,

to reach ∂ without coming back to o is greater than the probability, from o, to exit C(ω) without

coming back to o and then to reach ∂ without coming back to C(ω). The uniformity property

of C(ω) allows to bound Po,ω(TC(ω) < eHo) by a simpler quantity, and to relate the probability of

reaching ∂ without coming back to C(ω) to the probability, in a quotient graph eG, of reaching ∂

from a vertex eo (corresponding to C(ω)) without coming back to eo. We thus get a lower bound on

Po,ω(H∂ < eHo) involving the same probability relative to a quotient graph. This allows us to perform

an induction on the size of the graph. Actually, the environment we get on the quotient graph is not

exactly Dirichlet, and we first need to show (cf. Lemma 9) that its density can be compared to that

of a Dirichlet environment.

3.1 Properties of Dirichlet distributions

Notice that if (p1, p2) is a random variable with distribution D(α,β) under P, then p1 is a Beta

variable of parameter (α,β), and has the following tail probability:

P(p1 ≤ ǫ) ∼
ǫ→0

Cǫα, (∗)

where C =
Γ(α+β)

Γ(α+1)Γ(β)
.

Let us now recall two useful properties that are simple consequences of the representation of a

Dirichlet random variable as a normalized vector of independent gamma random variables (cf. for

instance [Wi63]). Let (pi)i∈I be a random variable distributed according to D((αi)i∈I). Then:

(Associativity) Let I1, . . . , In be a partition of I . The random variable
�∑

i∈Ik
pi

�
k∈{1,...,n}

on

Prob({1, . . . , n}) follows the Dirichlet distribution D((
∑

i∈Ik
αi)1≤k≤n).

(Restriction) Let J be a nonempty subset of I . The random variable

�
pi∑

j∈J p j

�

i∈J
on Prob(J) follows

the Dirichlet distribution D((αi)i∈J ) and is independent of
∑

j∈J p j (which follows a Beta

distribution B(
∑

j∈J α j ,
∑

j /∈J α j) due to the associativity property).

Thanks to the associativity property, the asymptotic estimate (∗) holds as well (with a different C)

for the marginal p1 of a Dirichlet random variable (p1, . . . , pn) with parameters (α,α2, . . . ,αn).
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3.2 First implication (lower bound)

Let s > 0. Suppose there exists a strongly connected subset A of E such that o ∈ A and βA ≤ s. We

shall prove the stronger statement that E[GωA (o, o)s] = ∞ where GωA is the Green function of the

random walk in the environment ω killed when exiting A.

Let ǫ > 0. Define the event Eǫ = {∀x ∈ A,
∑

e∈∂EA, e=x ωe ≤ ǫ}. On Eǫ, one has:

Eo,ω[TA]≥
1

ǫ
. (1)

Indeed, by the Markov property, for all n ∈ N∗,

Po,ω(TA > n) = Eo,ω[1{TA>n−1}PXn−1,ω(TA > 1)]≥ Po,ω(TA > n− 1)min
x∈A

Px ,ω(TA > 1)

and if ω ∈ Eǫ then, for all x ∈ A= A, Px ,ω(TA > 1)≥ 1− ǫ, hence, by recurrence:

Po,ω(TA > n)≥ Po,ω(TA > 0)(1− ǫ)n = (1− ǫ)n,

from which inequality (1) results after summation over n ∈ N.

As a consequence,

E[Eo,ω[TA]
s] =

∫ ∞

0

P
�

Eo,ω[TA]
s ≥ t

�
d t ≥

∫ ∞

0

P

�
E 1

t1/s

�
d t.

Notice now that, due to the associativity property of section 3.1, for every x ∈ A, the random variable∑
e∈∂EA, e=x ωe follows a Beta distribution with parameters (

∑
e∈E\A, e=x αe,

∑
e∈A, e=x αe), so that the

tail probability (∗) together with the spatial independence gives:

P(Eǫ) ∼
ǫ→0

CǫβA,

where C is a positive constant. Hence P

�
E 1

t1/s

�
∼

t→∞
C t−

βA
s , and the assumption βA ≤ s leads to

E[Eo,ω[TA]
s] =∞.

Dividing TA into the time spent at each point of A, one has:

Eo,ω[TA]
s =



∑

x∈A

GωA (o, x)




s

≤

�
|A|max

x∈A
GωA (o, x)

�s

= |A|s max
x∈A

GωA (o, x)s ≤ |A|s
∑

x∈A

GωA (o, x)s, (2)

so that there is a vertex x ∈ A such that E[GωA (o, x)s] =∞.

Getting the result on GωA (o, o) requires to refine this proof. To that aim, we shall introduce an event

F of positive probability on which, from every vertex of A, there exists a path toward o whose

transition probability is bounded from below uniformly on F .

Let ω ∈ Ω. Denote by ~G(ω) the set of the edges e∗ ∈ E such that ωe∗ = max{ωe|e ∈ E, e = e∗}. If

e∗ ∈ ~G(ω), then (by a simple pigenhole argument):

ωe∗ ≥
1

ne∗
≥

1

|E|
,

438



where nx is the number of neighbours of a vertex x . In particular, there is a positive constant κ

depending only on G such that, if x is connected to y through a (simple) path π in ~G(ω) then

Px ,ω(π) ≥ κ. Note that for P-almost every ω in Ω, there is exactly one maximizing edge e∗ exiting

each vertex.

Since A is a strongly connected subset of E, it possesses at least one spanning tree T oriented toward

o. Let us denote by F the event {~G(ω) = T}: if ω ∈ F , then every vertex of A is connected to o in
~G(ω). One still has:

P(Eǫ ∩F )≥ P(Eǫ ∩ {∀e ∈ T,ωe > 1/2}) ∼
ǫ→0

C ′ǫβA,

where C ′ is a positive constant (depending on the choice of T). Indeed, using the associativity

property and the spatial independence, this asymptotic equivalence reduces to the fact that if (p1, p2)

has distribution D(α,β) or if (p1, p2, p3) has distribution D(α,β ,γ), then there is c > 0 such that

P(p1 ≤ ǫ, p2 > 1/2) ∼
ǫ→0

cǫα. In the first case, this is exactly (∗), and in the case of 3 variables,

P(p1 ≤ ǫ, p2 > 1/2) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

∫ ǫ

0

∫ 1

1/2

xα−1
1 x

β−1

2 (1− x1− x2)
γ−1d x2d x1

∼
ǫ→0

Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)

∫ ǫ

0

xα−1
1 d x1

∫ 1

1/2

x
β−1

2 (1− x2)
γ−1d x2 = cǫα.

Then, as previously:

E[Eo,ω[TA]
s,F ] =

∫ ∞

0

P(Eo,ω[TA]
s ≥ t,F )d t ≥

∫ ∞

0

P

�
E 1

t1/s
∩F

�
d t = +∞,

and subsequently there exists x ∈ A such that E[GωA (o, x)s,F ] =∞. Now, there is an integer l and

a real number κ > 0 such that, for every ω ∈ F , Px ,ω(X l = o) ≥ κ. Thus, thanks to the Markov

property:

GωA (o, x) =
∑

k≥0

Po,ω(Xk = x , TA > k)

≤
∑

k≥0

1

κ
Po,ω(Xk+l = o, TA > k+ l)

≤
1

κ
GωA (o, o).

Therefore we get:

E[GωA (o, x)s,F ] ≤
1

κs
E[GωA (o, o)s,F ],

and finally E[GωA (o, o)s] =∞.

3.3 Converse implication (upper bound)

Scheme of the proof The proof of the upper bound procedes by induction on the number of edges

of the graph. More precisely, we prove the following property by induction on n≥ 1 :
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PROPOSITION 7. – INDUCTION HYPOTHESIS

Let n ∈ N∗. Let G = (V ∪ {∂ }, E) be a directed graph possessing at most n edges and such
that every vertex is connected to ∂ , and (αe)e∈E be positive real numbers. We denote by P
the corresponding Dirichlet distribution. Then, for every vertex o ∈ V , there exist real numbers
C , r > 0 such that, for small ǫ > 0,

P(Po,ω(H∂ < eHo)≤ ǫ)≤ Cǫβ (− lnǫ)r ,

where β =min
�
βA

¯̄
A is a strongly connected subset of E and o ∈ A

©
.

The implication (ii)⇒(i) in Theorem 1 results from this proposition using the integrability of t 7→
(ln t)r

tβ
in the neighbourhood of +∞ as soon as β > 1, and from the following Markov chain identity:

Gω(o, o) =
1

Po,ω(H∂ < eHo)
.

Let us initialize the induction. If a graph G = (V ∪ {∂ }, E) with a vertex o is such that |E| = 1 and o

is connected to ∂ , the only edge links o to ∂ , so that Po,ω(H∂ < eHo) = 1, and the property is true (β

is infinite here).

Let n ∈ N∗. We suppose the induction hypothesis to be true at rank n. Let G = (V ∪ {∂ }, E) be a

directed graph with n+1 edges, o be a vertex and (αe)e∈E be positive parameters. As usual, P is the

corresponding Dirichlet distribution. In the next paragraph, we introduce the random subset C(ω)

of E we will then be interested to quotient G by.

Construction of C(ω) Let ω ∈ Ω. We define inductively a finite sequence e1 = (x1, y1), . . . , em =

(xm, ym) of edges in the following way: letting y0 = o, if e1, . . . , ek−1 have been defined, then ek is

the edge in E which maximizes the exit distribution out of Ck = {e1, . . . , ek−1} starting at yk−1, that

is:

e 7→ Pyk−1,ω((XTCk
−1, XTCk

) = e).

The integer m is the least index ≥ 1 such that ym ∈ {o,∂ }. In words, the edge ek is, among the edges

exiting the set Ck(ω) of already visited edges, the one maximizing the probability for a random walk

starting at yk−1 to exit Ck(ω) through it; and the construction ends as soon as an edge ek heads at

o or ∂ . The assumption that each vertex is connected to ∂ guarantees the existence of an exit edge

out of Ck(ω) for k ≤ m, and the finiteness of G ensures that m exists: the procedure ends. We set:

C(ω) = Cm+1 = {e1, . . . , em}.

Note that the maximizing edges, and thus C(ω), are in fact well defined only forω out of a Lebesgue

negligible subset of Ω.

Notice that C1 = ∅, hence TC1
= 1 and e1 is the edge maximizing e 7→ωe among the edges starting

at o. Hence e1 is the edge of ~G(ω) starting at o (cf. the proof of the first implication). More generally,

for 1≤ k ≤ m, if yk−1 /∈ {x1, . . . , xk−1}, then ek is the edge of ~G(ω) starting at yk−1.

The main property of C(ω) is the following:

PROPOSITION 8. – There exists a constant c > 0 such that, for every ω ∈ Ω such that C(ω) is well
defined, for all x ∈ C(ω) \ {o},

Po,ω(Hx < eHo ∧ TC(ω))≥ c. (3)
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PROOF. Let ω be such that C(ω) is well defined. For k = 1, . . . , m, due to the choice of ek as a

maximizer over E (or ∂ECk), we have:

Pyk−1,ω((XTCk
−1, XTCk

) = ek)≥
1

|E|
= κ.

For every k such that yk 6= o (that is for k = 1, . . . , m− 1 and possibly k = m), we deduce that:

Pyk−1,ω(H yk
< eHo ∧ TC(ω))≥ Pyk−1,ω(XTCk

= yk)≥ κ.

Then, by the Markov property, for any x ∈ C(ω) = {y1, . . . , ym}, if x 6= o,

Po,ω(Hx < eHo ∧ TC(ω))≥ κ
m ≥ κ|E| = c,

as expected. �

The support of the distribution of ω 7→ C(ω) writes as a disjoint union C = Co ∪C∂ depending on

whether o or ∂ belongs to C(ω). For any C ∈ C , we define the event

EC = {C(ω) = C}.

On such an event, the previous proposition gives uniform lower bounds inside C , “as if” a uniform

ellipticity property held. Because C is finite, it will be sufficient to prove the upper bound separately

on the events EC for C ∈ C .

If C ∈ C∂ , then ∂ ∈ C and the proposition above provides c > 0 such that, on EC , Po,ω(H∂ < eHo)≥ c

hence, for small ǫ > 0,

P(Po,ω(H∂ < eHo)≤ ǫ, EC) = 0.

In the following we will therefore work on EC where C ∈ Co. In this case, C is a strongly connected

subset of E. Indeed, y0 = ym = o and, due to the construction method, yk is connected in C(ω) to

yk+1 for k = 0, . . . , m− 1.

Quotienting procedure We intend to introduce a quotient of G by contracting the edges of C , and

to relate its Green function to that of G. Let us first give a general definition:

DEFINITION. – If A is a strongly connected subset of edges of a graph G = (V, E,head, tail), the
quotient graph of G obtained by contracting A to ea is the graph eG deduced from G by deleting
the edges of A, replacing all the vertices of A by one new vertex ea, and modifying the endpoints
of the edges of E \ A accordingly. Thus the set of edges of eG is naturally in bijection with E \ A

and can be thought of as a subset of E.

In other words, eG = (eV , eE,ßhead,Ýtail) where eV = (V \A)∪{ea} (ea being a new vertex), eE = E \A and,

if π denotes the projection from V to eV (i.e. π|V\A = id and π(x) = ea if x ∈ A), ßhead= π ◦ head and

Ýtail= π ◦ tail.

Notice that this quotient may well introduce multiple edges.

In our case, we consider the quotient graph eG = (eV=(V \ C)∪ {∂ ,eo}, eE=E \ C ,ßhead,Ýtail) obtained

by contracting C to a new vertex eo.
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Starting from ω ∈ Ω, let us define the quotient environment eω ∈ eΩ, where eΩ is the analog of Ω for
eG. For every edge e ∈ eE(⊂ E), if e /∈ ∂EC (i.e. if Ýtail(e) 6= eo), then eωe = ωe, and if e ∈ ∂EC , then

eωe =
ωe

Σ
, where:

Σ =
∑

e∈∂E C

ωe.

This environment allows to bound the Green function of G using that of eG in a convenient way.

Notice that, from o, one way for the walk to reach ∂ without coming back to o consists in exiting

C without coming back to o and then reaching ∂ without coming back to C . Thus we have, for

ω ∈ EC :

Po,ω(H∂ < eHo) ≥
∑

x∈C

Po,ω(Hx < eHo ∧ TC , H∂ < Hx + eHC ◦ΘHx
)

=
∑

x∈C

Po,ω(Hx < eHo ∧ TC)Px ,ω(H∂ < eHC)

(3)
≥ c

∑

x∈C

Px ,ω(H∂ < eHC)

= cΣ · Peo, eω(H∂ < eHeo)

where the first equality is an application of the Markov property at time Hx , and the last equality

comes from the definition of the quotient: both quantities correspond to the same set of paths

viewed in G and in eG, and, for all x ∈ C , Px ,ω-almost every path belonging to the event {H∂ < eHC}

contains exactly one edge exiting from C so that the normalization by Σ appears exactly once by

quotienting.

Finally, for c′ = 1/c > 0, we have:

P(Po,ω(H∂ < eHo)≤ ǫ, EC)≤ P(Σ · Peo, eω(H∂ < eHeo)≤ c′ǫ, EC). (4)

Back to Dirichlet environment It is important to remark that, under P, eω does not follow a

Dirichlet distribution because of the normalization (and neither is it independent of Σ). We can

however reduce to the Dirichlet situation and thus procede to induction. This is the aim of the

following lemma, inspired by the restriction property of Section 3.1. Because its proof, while simple,

is a bit tedious to write, we defer it until the Appendix page 449.

LEMMA 9. – Let (p
(1)

i
)1≤i≤n1

, . . . , (p
(r)

i
)1≤i≤nr

be independent Dirichlet random variables with respec-

tive parameters (α
(1)

i
)1≤i≤n1

, . . . , (α
(r)

i
)1≤i≤nr

. Let m1, . . . , mr be integers such that 1 ≤ m1 <

n1, . . . , 1 ≤ mr < nr , and let Σ =
∑r

j=1

∑m j

i=1
p
( j)

i
and β =

∑r

j=1

∑m j

i=1
α
( j)

i
. There exists positive

constants C , C ′ such that, for any positive measurable function f : R×R
∑

j m j → R,

E


 f

 
Σ,

p
(1)
1

Σ
, . . . ,

p(1)m1

Σ
, . . . ,

p
(r)

1

Σ
, . . . ,

p(r)mr

Σ

!
 ≤ C · eE

h
f
�
eΣ,ep(1)1 , . . . ,ep(1)m1

, . . . ,ep(r)1 , . . . ,ep(r)mr

�i
,

where, under the probability eP, (ep(1)1 , . . . ,ep(1)m1
, . . . ,ep(r)1 , . . . ,ep(r)mr

) is sampled from a Dirichlet distri-

bution of parameter (α
(1)
1 , . . . ,α(1)m1

, . . . ,α
(r)

1 , . . . ,α(r)mr
), eΣ is bounded and satisfies eP(eΣ< ǫ)≤ C ′ǫβ

for every ǫ > 0, and these two random variables are independent.
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We apply this lemma to ω by normalizing the transition probabilities of the edges exiting C . Us-

ing (4) and Lemma 9, we thus get:

P(Po,ω(H∂ < eHo)≤ ǫ, EC) ≤ P(Σ · Peo, eω(H∂ < eHeo)≤ c′ǫ, EC)

≤ P(Σ · Peo, eω(H∂ < eHeo)≤ c′ǫ)

≤ C · eP(eΣ · Peo,ω(H∂ < eHeo)≤ c′ǫ), (5)

where eP is the Dirichlet distribution of parameter (αe)e∈eE on eΩ, ω is the canonical random variable

on eΩ (which can be seen as a restriction of the canonical r.v. on Ω) and, under eP, eΣ is a positive

bounded random variable independent of ω and such that, for all ǫ > 0, eP(eΣ≤ ǫ)≤ C ′ǫβC .

Induction Equation (5) relates the same quantities in G and eG, allowing to finally complete the

induction argument.

Because the induction hypothesis deals with graphs with simple edges, it may be necessary to reduce

the graph eG to this case. Another possibility would have been to define the random walk as a

sequence of edges, thus allowing to define TC (where C ⊂ E) for graphs with multiple edges. In the

Dirichlet case, the reduction is however painless since it leads to another closely related Dirichlet

distribution.

Note indeed first that, for any eω ∈ eΩ, the quenched laws Px , eω (where x ∈ eV ) are not altered if we

replace multiple (oriented) edges by simple ones with transition probabilities equal to the sum of

those of the deleted edges. Due to the associativity property of section 3.1, the distribution under eP
of this new environment is the Dirichlet distribution with weights equal to the sum of the weights

of the deleted edges. Hence the annealed laws on eG and on the new simplified graph eG′ with these

weights are the same and, for the problems we are concerned with, we may use eG′ instead of eG.

The edges in C do not appear in eG anymore. In particular, eG (and a fortiori eG′) has strictly less than

n edges. In order to apply the induction hypothesis, we need to check that each vertex is connected

to ∂ . This results directly from the same property for G. We apply the induction hypothesis to the

graph eG′ and to eo. It states that, for small ǫ > 0:

eP(Peo,ω(H∂ < eHeo)≤ ǫ)≤ C ′′ǫ
eβ(− lnǫ)r , (6)

where C ′′ > 0, r > 0 and eβ is the exponent “β” from the statement of the induction hypothesis

corresponding to the graph eG′ (it is in fact equal to the “β” for eG). As for the left-hand side of (6),

it may equivalently refer to the graph eG or to eG′, as explained above.

Considering (5) and (6), it appears that the following lemma allows to carry out the induction.

LEMMA 10. – If X and Y are independent positive bounded random variables such that, for some real
numbers αX ,αY , r > 0:

• there exists C > 0 such that P(X < ǫ)≤ CǫαX for all ǫ > 0 (or equivalently for small ǫ);

• there exists C ′ > 0 such that P(Y < ǫ)≤ C ′ǫαY (− lnǫ)r for small ǫ > 0,

then there exists a constant C ′′ > 0 such that, for small ǫ > 0:

P(X Y ≤ ǫ)≤ C ′′ǫαX∧αY (− lnǫ)r+1
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(and r + 1 can be replaced by r if αX 6= αY ).

PROOF. We denote by MX and MY (deterministic) upper bounds of X and Y . We have, for ǫ > 0:

P(X Y ≤ ǫ) = P

�
Y ≤

ǫ

MX

�
+ P

�
X Y ≤ ǫ, Y >

ǫ

MX

�
.

Let ǫ0 > 0 be such that the upper bound in the statement for Y is true as soon as ǫ < ǫ0. Then, for

0< ǫ < ǫ0, we compute:

P(X Y ≤ ǫ, Y >
ǫ

MX

) =

∫ MY

ǫ
MX

P

�
X ≤

ǫ

y

�
P(Y ∈ d y)

≤ C

∫ MY

ǫ
MX

�
ǫ

y

�αX

P(Y ∈ d y)

= CǫαX E

�
1(Y≥ ǫ

MX
)

1

Y αX

�

= CǫαX



∫ MY

ǫ
MX

P(
ǫ

MX

≤ Y ≤ x)
αX d x

xαX+1
+

P
�

Y ≥ ǫ
MX

�

MY
αX




≤ CǫαX


αX C ′

∫ ǫ0
ǫ

MX

xαY (− ln x)r
d x

xαX+1
+

1

MY
αX




≤ CǫαX


αX C ′

∫ ǫ0
ǫ

MX

xαY−αX−1d x(− ln
ǫ

MX

)r +
1

MY
αX




≤ C ′′ǫαX∧αY (− lnǫ)r+1.

Indeed, if αY > αX , the integral converges as ǫ→ 0; if αY = αX , it is equivalent to − lnǫ; if αY < αX ,

the equivalent becomes 1

ǫαX−αY
. And the formula is checked in every case (note that − lnǫ > 1 for

small ǫ). �

Using (6), Lemma 10 and (5), we get constants c, r > 0 such that, for small ǫ > 0:

P(Po,ω(H∂ < eHo)≤ ǫ,EC)≤ cǫβC∧
eβ(− lnǫ)r+1. (7)

Let us prove that eβ ≥ β , where β is the exponent defined in the induction hypothesis relative to

G and o (remember that eβ is the same exponent, relative to eG′ (or eG) and eo). Let eA be a strongly

connected subset of eE such that eo ∈ eA. Set A = eA∪ C ⊂ E. In view of the definition of eE, every

edge exiting eA corresponds to an edge exiting A and vice-versa (the only edges to be deleted by the

quotienting procedure are those of C). Thus, recalling that the weights of the edges are preserved

in the quotient (cf. Lemma 9), βeA = βA. Moreover, o ∈ A, and A is strongly connected (so are eA and

C , and eo ∈ eA, o ∈ C), so that βA ≥ β . As a consequence, eβ ≥ β , as announced.

Then βC ∧
eβ ≥ βC ∧β = β because C is strongly connected and o ∈ C . Hence (7) becomes: for small

ǫ > 0,

P(Po,ω(H∂ < eHo)≤ ǫ,EC)≤ cǫβ (− lnǫ)r+1.

Summing on all events EC , C ∈ C , this concludes the induction.
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Remark This proof (with both implications) gives the following more precise result: there exist

c, C , r > 0 such that, for large enough t,

c
1

tminAβA
≤ P(Gω(o, o)> t)≤ C

(ln t)r

tminAβA
,

where the minimum is taken over all strongly connected subsets A of E such that o ∈ A.

3.4 Proof of the corollary

We prove Corollary 4. Let s be a positive real number. The equivalence of (i) and (ii) results from

the inequalities below: for every ω ∈ Ω, x ∈ V ,

Gω(x , x)s = Ex ,ω[Nx]
s ≤ Ex ,ω[TV ]

s =



∑

y∈V

Px ,ω(H y < H∂ )G
ω(y, y)




s

≤ |V |s
∑

y∈V

Gω(y, y)s,

where the second inequality is obtained by bounding the probability by 1 and proceding as in equa-

tion (2). Theorem 1 provides the equivalence of (ii) and (iii). The fact that (i) implies (iv) is trivial.

Let us suppose that (iii) is not satisfied: there is a strongly connected subset A of E such that βA ≤ s.

Let o be a vertex. If o ∈ A, then E[Eo,ω[TV ]
s] ≥ E[Gω(o, o)s] = ∞ thanks to Theorem 1; and if

o /∈ A, there exists (thanks to strong connexity) a path π from o to some vertex x ∈ A which remains

outside A (before x), and we recall that Theorem 1 proves E[GωA (x , x)s] = ∞ hence, thanks to

spatial independence of the environment:

E[Eo,ω[TV ]
s]≥ E[Gω(o, x)s]≥ E[Po,ω(π)

sGωA (x , x)s] = E[Po,ω(π)
s]×E[GωA (x , x)s] =∞,

so that in both cases, E[Eo,ω[TV ]
s] = ∞. Thus, (iv) is not true. So (iv) implies (iii), and we are

done.

Remark Under most general hypotheses, (i) and (ii) are still equivalent (same proof). The equiv-

alence of (i) and (iv) can be shown to hold as well in the following general setting:

PROPOSITION 11. – Let G = (V ∪ {∂ }, E) be a finite strongly connected graph endowed with a
probability measure P on the set of its environments satisfying:

• the transition probabilities ω(x , ·), x ∈ V , are independent under P;

• for all e ∈ E, P(ωe > 0)> 0.

If there exists x ∈ V such that Ex[TV ] = +∞, then for all y ∈ V , Ey[TV ] = +∞.

PROOF. Suppose x ∈ V satisfies Ex[TV ] = +∞. We denote by A a subset of E satisfying Ex[TA] = +∞,

and being minimal (with respect to inclusion) among the subsets of E sharing this property. Since E

is finite, the existence of such an A is straightforward.

Let y ∈ A: there is an e ∈ A such that e = y . Let us prove Ey[TA] = +∞. We have, by minimality of

A, Ex[TA\{e}]<∞. Let He = inf {n≥ 1 | (Xn−1, Xn) = e
	
. Then:

Ex[TA] = Ex[TA, He < TA] + Ex[TA, He > TA]

≤ Ex[TA, He < TA] + Ex[TA\{e}],
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hence Ex[TA, He < TA] = +∞. Thus, using the Markov property:

+∞ = Ex[TA− TA\{e} + 1, He < TA] = Ex[TA− (He − 1), He < TA]

≤ Ex[TA− (He − 1), He − 1< TA] = Ex[TA ◦ΘHe−1, He − 1< TA]

= E[Ex ,ω[EXHe−1,ω[TA], He − 1< TA]] = E[Ee,ω[TA]Px ,ω(He − 1< TA)]

≤ Ee[TA],

which gives Ey[TA] = +∞ as announced.

Let z ∈ V . If z ∈ A, we have of course Ez[TV ] ≥ Ez[TA] = +∞. Suppose z ∈ V \ A. By strong

connexity of G, one can find a simple path e1, · · · , en from z to a point y = en ∈ A such that

e1, . . . , en /∈ A (by taking any simple path from z to any point in A and stopping it just before it enters

A for the first time). Then, by the Markov property and using independence between the vertices in

the environment:

Ez[TV ] ≥ Ez[TV , X i = ei for i = 1, . . . , n]

= E[ωe1
· · ·ωen

Ey,ω[TV + n]]

≥ E[ωe1
· · ·ωen

Ey,ω[TA+ n]

= E[ωe1
] · · ·E[ωen

](Ey[TA] + n)

hence Ez[TV ] = +∞ because the first factors are positive and the last one is infinite via the first part

of the proof. This concludes the proof of Proposition 11. �

4 Proof of the ballisticity criterion

We now consider random walks in i.i.d. Dirichlet environment on Zd , d ≥ 1. Let (e1, . . . , ed) denote

the canonical basis of Zd , and V =
¦

e ∈ Zd
¯̄
|e|= 1

©
. Let (αe)e∈V be positive numbers. We will

write either αi or αei
, and α−i or α−ei

, i = 1, . . . , d. Let us recall the statement of Theorem 6:

THEOREM – If
d∑

i=1

|αi−α−i |> 1, then there exists v 6= 0 such that, P0-a.s.,
Xn

n
→n v, and the following

bound holds: ¯̄
¯̄v − Σ

Σ− 1
dm

¯̄
¯̄
1

≤
1

Σ− 1
,

where Σ =
∑

e∈V αe and dm =
∑d

i=1

αi−α−i

Σ
ei is the drift under the averaged environment.

PROOF. This proof relies on properties and techniques of [EnSa06]. Our improvement is twofold:

first, thanks to the previous sections, we are able to define the Kalikow random walk under weaker

conditions, namely those of the statement; second, we get a finer bound on the drift of this random

walk.

Let us recall a definition. Given a finite subset U of Zd and a point z0 ∈ U such that E[GωU (z0, z0)]<

∞, the Kalikow auxiliary random walk related to U and z0 is the Markov chain on U∪∂V U (where

∂V U is the set of the vertices neighbouring U) given by the following transition probabilities:

for all z ∈ U and e ∈ V , bωU ,z0
(z, z + e) =

E[GωU (z0, z)ω(z, z + e)]

E[GωU (z0, z)]

446



and bωU ,z0
(z, z) = 1 if z ∈ ∂V U . For the sake of making formal computations rigorous, Enriquez

and Sabot first consider the generalized Kalikow random walk. Given an additional parameter

δ ∈ (0,1), the new transition probabilities bωU ,z0,δ(z, z+ e) are defined like the previous ones except

that, in place of GωU (z0, z), we use the Green function of the random walk under the environment ω

killed at rate δ and at the boundary of U:

GωU ,δ(z0, z) = Ez0,ω




TU∑

k=0

δk1(Xk=z)




(and we don’t need any assumption on P anymore).

The following identity (equation (2) of [EnSa06]) was a consequence of an integration by part

formula: for all finite U ⊂ Zd , z ∈ U , e ∈ V , δ ∈ (0,1),

bωU ,z0,δ(z, z + e) =
1

Σ− 1

 
αe −
E[Gω

U ,δ
(z0, z)pω,δ(z, z + e)]

E[Gω
U ,δ
(z0, z)]]

!

where pω,δ(z, z+ e)) =ω(z, z+ e)(Gω
U ,δ
(z, z)−δGω

U ,δ
(z+ e, z)). The Markov property for the killed

random walk shows that, for all z, the components of (pω,δ(z, z+ e))e∈V are positive and sum up to

1: this is a probability measure. Besides, after a short computation, it can be rewritten as:

pω,δ(z, z + e) = Pz,ω(X1 = z + e|H∂ < eHz),

which highlights its probabilistic interpretation. This remark allows us to refine the estimates

of [EnSa06]. The drift of the generalized Kalikow random walk at z is:

bdU ,z0,δ(z) =
1

Σ− 1

 
d∑

i=1

(αi −α−i)ei −
ed
!
=

1

Σ− 1
(Σdm−

ed), (8)

where ed (depending on all parameters) is the expected value of the following probability measure:

E[Gω
U ,δ
(z0, z)pω,δ(z, z + ·)]

E[Gω
U ,δ
(z0, z)]

.

This measure is supported by V , hence ed belongs to the convex hull of V , which is the closed

| · |1-unit ball B|·|1:

|ed|1 ≤ 1.

On the other hand, the assumption gives Σdm /∈ B|·|1 , and the convexity of B|·|1 provides l ∈ Rd \ {0}

and c > 0 (depending only on the parameters (αe)e∈V ) such that, for all X ∈ B|·|1 ,

Σdm · l > c > X · l.

Therefore, noting that our assumption implies Σ> 1, we have, for every finite subset U of Zd , every

z0, z ∈ U and δ ∈ (0,1):

bdU ,z0,δ(z) · l =
1

Σ− 1
(Σdm · l −

ed · l)≥ Σdm · l − c

Σ− 1
> 0.
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It is time to remark that Theorem 3 applies under our condition: the hypothesis implies Σ > 1 so

that, for all i, 2Σ− αi − α−i > 1. This guarantees the integrability of GωU (z0, z) and allows us to

make δ converge to 1 in the last inequality (monotone convergence theorem applies because Gω
U ,δ

increases to GωU as δ increases to 1). We get a uniform lower bound concerning the drift of Kalikow

random walk:

bdU ,z0
(z) · l ≥

Σdm · l − c

Σ− 1
> 0.

In other words, Kalikow’s criterion is satisfied for finite subsets U of Zd . As underlined in [EnSa06],

this is sufficient to apply Sznitman and Zerner’s law of large numbers ([SzZe99]), hence there is a

deterministic v 6= 0 such that, P-almost surely,

Xn

n
−→
n

v.

Finally, identity (8) gives:
¯̄
¯̄bdU ,z0,δ(z)−

Σ

Σ− 1
dm

¯̄
¯̄
1

=
1

Σ− 1
|ed|1 ≤

1

Σ− 1
,

from which the stated bound on v results using Proposition 3.2 of [Sa04]: v is an accumulation

point of the convex hull of
¦bdU ,z0,δ(z)

¯̄
¯ U finite, z0, z ∈ U

ª
when δ tends to 1, and any point of

these convex hulls lies in the desired (closed, convex) ℓ1-ball. �

5 Concluding remarks and computer simulations

In the case of Zd , we have provided a criterion for non-zero limiting velocity. One may prove the

following criterion as well, thanks to Theorem 3 (for a proof, please refer to the Appendix):

PROPOSITION 12. – If there exists i ∈ {1, . . . , d} such that αi +α−i ≥ 2Σ− 1, then:

P0-a.s.,
Xn

n
−→
n

0.

The question remains open whether one of these criterions is sharp. Actually, computer simulations

let us think that neither is. We were especially able to find parameters such that exit times of all

finite subsets are integrable and the random walk has seemingly zero speed (more precisely, Xn

looks to be on the order of nκ for some 0 < κ < 1). Figure 1 shows some results obtained with

(α1,α−1,α2,α−2) = (0.5,0.2,0.1,0.1). We performed 103 numerical simulations of trajectories of

random walks up to time nmax = 106 and compared the averaged values of yn = Xn · e1 with Cαnα,

where Cα is chosen so as to make curves coincide at n= nmax . The first graph shows the average of

yn and the second one the maximum over n ∈ {105 + 1, . . . , 106} of the relative error

¯̄
¯1− yn

Cαnα

¯̄
¯, as

α varies. The minimizing α is 0.9, corresponding to a uniform relative error of .0044. However we

could not yet prove that such an intermediary regime happens.
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Appendix

Proof of Lemma 9

For readibility and tractability reasons, we will prove this lemma in the case of only two Dirichlet

random variables (p1, . . . , pk+1) and (p′1, . . . , p′
l+1
). The proof of the general case would go exactly

along the same lines. The associativity property allows as well to reduce to the case when we

normalize all components but one: m1 = k and m2 = l (by replacing the other marginals by their

sum).

We set γ = αk+1 and γ′ = α′
l+1

. Writing the index (·)i instead of (·)1≤i≤k and the same way with j

and l, the left-hand side of the statement in this simplified setting equals:

∫
{
∑
i

x i ≤ 1,
∑

j

y j ≤ 1}

f



∑

i

x i +
∑

j

y j ,

 
x i∑

i x i +
∑

j y j

!

i

,

 
y j∑

i x i +
∑

j y j

!

j


φ((x i)i, (y j) j)

∏

i

d x i

∏

j

d y j ,

where for some positive c0, φ((x i)i, (y j) j) = c0

�∏
i

x
αi−1

i

�
(1−

∑
i

x i)
γ

 
∏

j

y
α′

j
−1

j

!
(1−

∑
j

y j)
γ′ . We

successively procede to the following changes of variable: x1 7→ u=
∑

i x i+
∑

j y j , then x i 7→ ex i =
x i

u

for every i 6= 1, and y j 7→ ey j =
y j

u
for every j. The previous integral becomes:

∫
¨ ∑

i 6=1 ex i +
∑

j ey j ≤ 1,

1− 1

u
≤
∑

j ey j ≤
1

u

« f


u, 1−

∑

i 6=1

ex i +
∑

j

ey j ,
�ex i

�
i 6=1 ,

�
ey j

�

ψ(u, (ex i)i 6=1, (ey j) j) du

∏

i 6=1

dex i

∏

j

dey j ,

Bounding from above by 1 the last two factors of ψ where u appears, we get that the last quantity
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is less than:

∫
¨ ∑

i 6=1 ex i +
∑

j ey j ≤ 1,

u≤ 2

« f


u, 1−

∑

i 6=1

ex i +
∑

j

ey j ,
�ex i

�
i 6=1 ,

�
ey j

�

θ(u, (ex i)i 6=1, (ey j) j) du

∏

i 6=1

dex i

∏

j

dey j ,

where θ(u, (ex i)i 6=1, (ey j) j) = c0

 
1−

∑
i 6=1

ex i −
∑

j

ey j

!α1−1∏
i 6=1

exαi−1

i

∏
j

eyα
′
j
−1

j
.

This rewrites, for some positive c1, as: c1
eE
h

f (eΣ,ep1, . . . ,epk, ep′1, . . . , ep′ l)
i

, with the notations of the

statement. We have here eP(eΣ< ǫ) = c
∫ ǫ

0
u
∑

i αi+
∑

j α
′
j
−1

du= c′ǫ
∑

i αi+
∑

j α
′
j .

Proof of Proposition 12

Without loss of generality, we may assume α1+α−1 ≥ 2Σ− 1. As a consequence of Theorem 3, the

time spent by the random walk inside the edge (0, e1) is non-integrable under P0.

We prove that, for every e ∈ V , P0-a.s.,
T e

k

k
→k +∞, where :

T e
k
= inf{n≥ 0|Xn · e ≥ 2k}.

This implies that P0-a.s., lim supn
Xn·e

n
≤ 0 for all e ∈ V , and thus the proposition. Let e ∈ V . We

introduce the exit times :

τ0 = inf{n≥ 0|Xn /∈ {X0, X0+ e1}}

(with a minus sign instead of the plus if e =−e1) and, for k ≥ 1,

τk = τ0 ◦ΘT e
k
,

with the convention that τk = ∞ if T e
k
= ∞. The only dependence between the times τk, k ∈ N,

comes from the fact that τk = ∞ implies τl = ∞ for all l ≥ k. The “2” in the definition of T e
k

causes indeed the τk ’s to depend on disjoint parts of the environment, namely slabs {x ∈ Zd |x · e ∈

{2k, 2k+ 1}}. For t0, . . . , tk ∈ N, one has, using the Markov property at time T e
k
, the independence

and the translation invariance of P :

P0(τ0 = t0, . . . ,τk = tk) = P0(τ0 = t0, . . . ,τk−1 = tk−1,τk = tk, T e
k
<∞)

≤ P0(τ0 = t0, . . . ,τk−1 = tk−1)P0(τ0 = tk)

≤ · · · ≤ P0(τ0 = t0) · · · P0(τ0 = tk−1)P0(τ0 = tk)

= P(bτ0 = t0, . . . , bτk = tk),

where, under P, the random variables bτk, k ∈ N, are independent and have the same distribution as

τ0 (and hence are finite P-a.s.). From this we deduce that, for all A⊂ NN, P0((τk)k ∈ A)≤ P((bτk)k ∈

A). In particular,

P0

�
lim inf

k

τ0+ · · ·+τk−1

k
<∞

�
≤ P

�
lim inf

k

bτ0+ · · ·+ bτk−1

k
<∞

�
= 0,

where the equality results from the law of large number for i.i.d. random variables (recall E[bτk] =

E0[τ0] =∞). Finally, T e
k
≥ τ0+ · · ·+τk−1, so that lim infk

T e
k

k
=∞ P0-a.s., as wanted.
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