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1. Introduction

Let (X,B, µ) be a σ-finite measure space and (E ,D) a symmetric
Dirichlet form on the L2 space of (X,B, µ). Let {Tt} denote the semi-
group associated with (E ,D), and set Pt(A,B) =

∫

X 1A · Tt1B dµ for
A,B ∈ B and t > 0. The small-time asymptotic behavior of Pt(A,B)
on a logarithmic scale is the main interest of this paper. In the pa-
per [4], under assumptions that the total mass of µ is finite and (E ,D)
is conservative and local, the following small-time asymptotic estimate
was proved:

(1.1) lim
t→0

t logPt(A,B) = −d(A,B)2

2
,

where d(A,B) is an intrinsic distance between A and B defined by

(1.2) d(A,B) = sup
f∈D0

{

essinf
x∈B

f(x)− esssup
x∈A

f(x)

}

,

(1.3) D0 =

{

f ∈ D ∩ L∞(µ)

∣
∣
∣
∣
∣

2E(fh, h)− E(f 2, h) ≤ ∫

X |h| dµ
for every h ∈ D ∩ L∞(µ)

}

.

This result generalizes former works (see [4] and references therein) and
can be regarded as an integral version of the small-time asymptotics of
the transition density of Varadhan type

lim
t→0

t log pt(x, y) = −
d(x, y)2

2
,

which was proved in [6] for a class of symmetric and non-degenerate
diffusion processes on Lipschitz manifolds.

In this paper, we further weaken the assumptions in [4] and prove
the small-time estimate (1.1) holds for any A,B ∈ B with finite mea-
sure, for all local symmetric Dirichlet forms on σ-finite measure spaces.
In other words, (1.1) now holds without assuming the finiteness of the
total measure nor the conservativeness of (E ,D), which may be consid-
ered as one of the most general results in this direction. The definition
of the intrinsic distance d(A,B) here has to be suitably modified, by
introducing the notion of nests. Note that we do not assume any topo-
logical structure of the underlying space, as in [4].

The proof is purely analytic and is done by careful modifications of
the proof in [4] based on the Ramı́rez method [7]. In contrast to the
simple statement of the result, the proof is rather technical. We will
explain an idea of the proof here following the articles [7, 4] and how
to generalize it.
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The upper side estimate

lim sup
t→0

t logPt(A,B) ≤ −d(A,B)2

2

is an easier part and follows from what is called Davies’ method. In
order to give the outline of the proof of the lower side estimate, let us
consider a typical example; suppose that X has a differential structure
and a gradient operator ∇ taking values in a Hilbert space with inner
product 〈·, ·〉 as in the case of Riemannian manifolds, and E is given by
E(f, g) = 1

2

∫

X〈∇f,∇g〉 dµ. Let us further assume that µ(X) is finite.
Then, we can deduce that D0 = {f ∈ D∩L∞(X) | |∇f | ≤ 1 a.e.}. The
function ut = −t log Tt1A satisfies the equation

(1.4) t(∂tut − Lut) = ut −
1

2
|∇ut|2,

where L is the generator of {Tt}. Letting t → 0, we expect that
|∇u0|2 = 2u0 for a limit u0 of ut, which implies that |∇√2u0|2 = 1.
(What we can actually expect is |∇√2u0|2 ≤ 1.) Since u0 should vanish
on A, this relation informally implies that

lim
t→0

√

−2t log Tt1A(x) ≤ d(A, {x}),

which is close to the lower side estimate. In practice, we cannot prove
the convergence of the left-hand side of (1.4) in this form and have to
consider the time-average ūt =

1
t

∫ t
0 us ds in place of ut and utilize the

Tauberian theorem. Moreover, we have to take the integrability of ūt
into consideration. In [7], this was assured by an additional assumption,
the spectral gap property. To remove such assumption, a suitable cut-
off function φ was introduced in [4] and the proof was done by replacing
ūt by φ̄t = 1

t

∫ t
0 φ(us) ds; bounded functions are always integrable as

long as µ is a finite measure. When µ(X) = ∞, this modification is
not sufficient. In order to include this case, in this paper, we further
introduce a sequence {χk} of ‘cut-off functions in the space-direction’
and consider φ̄tχk to guarantee the integrability. By such modification,
more and more extra terms appear in the argument, which have to be
estimated appropriately. This makes the proof rather long.

The organization of this paper is as follows. In Section 2, we state
the notion of nests and define the intrinsic distance d, which is natu-
rally consistent with what was given in [4]. Their basic properties are
discussed in Section 3. In Section 4, we prove the main theorem. In
the last section, we give a few additional claims which have also been
discussed in [4].
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2. Preliminaries

For p ∈ [1,∞], we denote by Lp(µ) the Lp-space on the σ-finite
measure space (X,B, µ) and its norm by ‖ · ‖Lp(µ). The totality of all
measurable functions f on X will be denoted by L0(µ). Here, as usual,
two functions which are equal µ-a.e. are identified. Let Lp+(µ) denote
the set of all functions f ∈ Lp(µ) such that f ≥ 0 µ-a.e. We set

C1
b (R

d) =

{

f

∣
∣
∣
∣
∣

f is a C1-function on R
d and

f and ∂f/∂xi (i = 1, 2, . . . , d) are all bounded

}

,

Ĉ1
b (R

d) =

{

f

∣
∣
∣
∣
∣

f is a C1-function on R
d and

∂f/∂xi (i = 1, 2, . . . , d) are all bounded

}

,

C1
c (R

d) =
{

f
∣
∣
∣ f is a C1-function on R

d with compact support
}

.

Let (E ,D) be a symmetric Dirichlet form on L2(µ). The norm ‖ · ‖D

of D is defined by ‖f‖D = (E(f, f) + ‖f‖2L2(µ))
1/2. We use the notation

E(f) for E(f, f). We assume that (E ,D) is local1, namely, for any f ∈ D

and F , G ∈ C1
b (R) with suppF ∩ suppG = ∅,

E(F (f)− F (0), G(f)−G(0)) = 0.

This is equivalent to the condition that E(f, g) = 0 if f, g ∈ D and
(f + a)g = 0 µ-a.e. for some a ∈ R. (For the proof, see [2, Proposi-
tion I.5.1.3].) The semigroup, the resolvent, and the nonpositive self-
adjoint operator on L2(µ) associated with (E ,D) will be denoted by
{Tt}t>0, {Gβ}β>0, and L, respectively. {Tt}t>0 uniquely extends to a
strongly continuous and contraction semigroup on Lp(µ) for p ∈ [1,∞).
For A ∈ B, set

DA = {f ∈ D | f = 0 µ-a.e. on X \ A}.
We also set Db = D ∩ L∞(µ), DA,b = DA ∩ L∞(µ) and DA,b,+ = DA ∩
L∞+ (µ).

Definition 2.1. An increasing sequence {Ek}∞k=1 of measurable subsets
of X is called nest if the following two conditions are satisfied.2

(i) For every k ∈ N, there exists χk ∈ D such that χk ≥ 1 µ-a.e.
on Ek.

(ii)
⋃∞
k=1 DEk

is dense in D.

1This terminology is taken from Bouleau-Hirsch’s book [2]. In Fukushima-
Oshima-Takeda’s book [3], the essentially same property is called strong local.

2This definition is slightly different from that in standard textbooks such as
[3, 5]. Note that X does not need any topology here.
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Remark 2.2. Concerning condition (i), we can take χk so that χk = 1
µ-a.e. on Ek and 0 ≤ χk ≤ 1 µ-a.e. in addition, by considering 0∨χk∧1
in place of χk.

Remark 2.3. For every k ∈ N, µ(Ek) <∞ because of condition (i). By
condition (ii), we can prove µ(X \ ⋃∞k=1Ek) = 0.

We will see in Section 3 that there do exist many nests.

Definition 2.4. For a nest {Ek}∞k=1, we set

Dloc({Ek})

=

{

f ∈ L0(µ)

∣
∣
∣
∣
∣

there exists a sequence of functions {fk}∞k=1 in D

such that f = fk µ-a.e. on Ek for each k

}

,

Dloc,b({Ek}) = Dloc({Ek}) ∩ L∞(µ).

For f, g, h ∈ Db, define

If,g(h) = E(fh, g) + E(gh, f)− E(fg, h)
and write If (h) for If,f (h). The following are basic properties of I.

Lemma 2.5. Let f, g, h, h1, and h2 be elements of Db.

(i) If h ≥ 0 µ-a.e., then 0 ≤ If (h) ≤ 2‖h‖L∞(µ)E(f).
(ii) If,g(h1h2)

2 ≤ If (h
2
1)Ig(h

2
2).

(iii)
√

If+g(h) ≤
√

If (h) +
√

Ig(h) if h ≥ 0 µ-a.e.

Proof. For f, g, h ∈ L2(µ) ∩ L∞(µ) and t > 0, define

I
(t)
f,g(h) = E (t)(fh, g) + E (t)(gh, f)− E (t)(fg, h),

where E (t)(f, g) = t−1(f − Ttf, g). By Lemma I.2.3.2.1 and Proposi-
tion I.2.3.3 in [2] and the limiting argument, the claims follow for I (t)

in place of I. Letting t→ 0 reaches the conclusion. ¤

By the properties (i) and (iii) above, we can define If (h) for f ∈ D

and h ∈ Db by continuity. Due to the locality of (E ,F), If (h) = 0 if
(f + a)h = 0 µ-a.e. for some a ∈ R. This allows us to define If (h) for
f ∈ Dloc,b({Ek}) and h ∈ DEk,b consistently by If (h) = Ifk(h), where
fk is an arbitrary element in Db such that fk = f µ-a.e. on Ek. In other
words, If (h) is well-defined for f ∈ Dloc,b({Ek}) and h ∈

⋃∞
k=1 DEk,b.

Definition 2.6. For a nest {Ek}∞k=1, we set

D0({Ek})

=

{

f ∈ Dloc,b({Ek})
∣
∣
∣
∣
∣
If (h) ≤ ‖h‖L1(µ) for every h ∈

∞⋃

k=1

DEk,b

}

.
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Clearly, we can replace DEk,b by DEk,b,+ in the definition above. We
will show in Proposition 3.9 that the set D0({Ek}) is in fact independent
of the choice of {Ek}∞k=1, so we denote it simply by D0 below.

For A,B ∈ B with positive µ-measure, we define

Pt(A,B) =
∫

X
1A · Tt1B dµ ( =

∫

X
Tt1A · 1B dµ), t > 0

and

d(A,B) = sup
f∈D0

{

essinf
x∈B

f(x)− esssup
x∈A

f(x)

}

.

The following is our main theorem.

Theorem 2.7. For any A,B ∈ B with 0 < µ(A) <∞, 0 < µ(B) <∞,

we have

lim
t→0

t logPt(A,B) = −d(A,B)2

2
.

Remark 2.8. To make the meaning of D0({Ek}) clearer, let us suppose
that X is a locally compact separable metric space, µ is a positive
Radon measure with suppµ = X, (E ,D) is a regular Dirichlet form
on L2(µ), and there exists a sequence of relatively compact open sets
{Ok}∞k=1 such that Ōk ⊂ Ok+1 for all k and

⋃

k Ok = X. Then, it
is easy to see that {Ōk}∞k=1 is a nest. Each f ∈ Dloc({Ōk}) provides
the energy measure µ〈f〉, a positive Radon measure on X such that
If (h) =

∫

X h dµ〈f〉 for every h ∈ F ∩C0(X), where C0(X) is a space of
all continuous functions on X with compact support. Then, D0({Ōk})
can be described as

{

f ∈ Dloc,b({Ōk})
∣
∣
∣
∣
∣

µ〈f〉 is absolutely continuous w.r.t. µ

and
dµ〈f〉
dµ

≤ 1 µ-a.e.

}

.

Therefore, d is a natural generalization of the usual notion of intrinsic
metric.

Example 2.9. The following are simple examples showing the neces-
sity of introducing Dloc,b instead of D or Dloc in the definition of d and
D0.

(i) Let X = [−1, 1], B = the Borel σ-field on X, µ = the Lebesgue
measure on X, D = {f ∈ H1([−1, 1]) | f(0) = 0}, and E(f, g) =
1
2

∫

X f
′(x)g′(x) dx, f, g ∈ D. The corresponding diffusion process is

the Brownian motion on X killed at 0. Let A = [−1,−1/2] and B =
[1/2, 1]. For each k ∈ N, let Ek = [−1,−1/k]∪ [1/k, 1]. Then, {Ek}∞k=1

is a nest and a function fM(x) := M · 1(0,1](x) belongs to D0({Ek})
for any M > 0. Therefore, d(A,B) = ∞. On the other hand, if we
adopted (1.2) and (1.3) as a definition of d, d(A,B) would be 1, which
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does not provide a correct distance. This implies the necessity of the
notion of nests even if µ is a finite measure, when the Dirichlet form is
not conservative.

(ii) LetX = R and B = the Borel σ-field on X. Letm be the Lebesgue
measure on X and µ′ a positive Radon measure on X such that suppµ′

is X, µ′ and m are mutually singular, and µ′((0,∞)) = µ′((−∞, 0)) =
∞. Define a Radon measure µ on X by µ(A) = m(A∩ [−1, 1])+µ′(A\
[−1, 1]), A ∈ B. Let

D =

{

f ∈ C(X) ∩ L2(µ)

∣
∣
∣
∣
∣

f is absolutely continuous
and

∫

X |f ′|2 dm <∞

}

and E(f, g) = 1
2

∫

X f
′g′ dm for f, g ∈ D. Then, (E ,D) is a regular

Dirichlet form on L2(µ). The corresponding diffusion process is a time
changed Brownian motion. The energy measure µ〈f〉 of f ∈ D is de-
scribed as dµ〈f〉 = |f ′|2 dm. Let A = [−2,−1] and B = [1, 2]. By Re-
mark 2.8, {Ōk}∞k=1 is a nest where Ok = (−k, k), k ∈ N, and D0({Ōk})
is represented as

{

f ∈ Dloc,b({Ōk})
∣
∣
∣
∣
∣

f is constant on (−∞, 1] and on [1,∞),
and |f ′| ≤ 1 m-a.e. on (−1, 1)

}

,

because of the singularity of µ and m on X \ [−1, 1]. Then, one of the
functions f attaining the infimum in the definition of d(A,B) is given
by f(x) = (−1) ∨ x ∧ 1, and d(A,B) = 2. However, f does not belong
to D. Indeed, any function g in D0({Ōk}) ∩ D has to satisfy g = 0 on
X \ [−1, 1] to assure the L2(µ)-integrability. In particular, we cannot
replace Dloc,b by D in the definition of D0.

(iii) Let X = R, B = the Borel σ-field on X, dµ(x) = (x−2 ∧ 1) dx.
Define E(f, g) = 1

2

∫

X f
′g′ dµ for f, g ∈ C∞0 (X). Then, (E , C∞0 (X)) is

closable on L2(µ). The closure, which will be denoted by (E ,D), is a
regular Dirichlet form on L2(µ). Note that 1 ∈ D. Define Ek = [−k, k]
and E ′k = X for each k ∈ N. Then, both {Ek}∞k=1 and {E ′k}∞k=1 are

nests. We define a function space D
]
0({Ek}) by

D
]
0({Ek}) = {f ∈ Dloc({Ek}) | |f ′| ≤ 1 µ-a.e.}

and D
]
0({E ′k}) in the same way. Then, the function f(x) = x belongs

to D
]
0({Ek}) but does not belong to D

]
0({E ′k}). Indeed, D

]
0({E ′k}) ⊂

Dloc({E ′k}) = D ⊂ L2(µ), but f 6∈ L2(µ). Therefore, the set D
]
0({Ek})

depends on the choice of a nest {Ek}∞k=1. This suggests that considering
Dloc,b is more natural than Dloc in the definition of D0.
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3. Basic properties

Recall that a function f ∈ L2(µ) is called 1-excessive if βGβ+1f ≤ f
µ-a.e. for every β ≥ 0.

Lemma 3.1. Let ξ ∈ D be a 1-excessive function with ξ > 0 µ-a.e.
Define Ek = {ξ ≥ 1/k} for each k ∈ N. Then, {Ek}∞k=1 is a nest.

Proof. Since χk := kξ satisfies condition (i) of Definition 2.1, it is
enough to prove that

⋃∞
k=1 DEk

is dense in D. Set

C = {f | f ∈ L2
+(µ) and there exists c > 0 such that f ≤ cξ µ-a.e.},

D = {G2f | f ∈ C}.
Since C − C = {g − h | g, h ∈ C} is dense in L2(µ), D − D is dense
in D. For g = G2f ∈ D, it holds that g ≤ cG2ξ ≤ cξ µ-a.e. since
ξ is 1-excessive. Therefore, gk := (g − c/k) ∨ 0 belongs to DEk

and
gk converges to g in D as k → ∞. This means that any element in
D − D can be approximated by functions in

⋃∞
k=1 DEk

, which proves
the claim. ¤

Note that for any function f ∈ L2(µ) with f > 0 µ-a.e., ξ = G1f sat-
isfies the condition of the lemma above. Therefore, there exist indeed
many nests.

The following claim is what is naturally expected. We give a proof
for it though it is not needed in the sequel.

Lemma 3.2. If both {Ek}∞k=1 and {E ′k}∞k=1 are nests, then so is {Ek ∩
E ′k}∞k=1.

Proof. It suffices to prove that any element f in
⋃∞
l=1 DEl,+ is approx-

imated by functions in
⋃∞
k=1 DEk∩E′k . Let f ∈ DEl,+ for some l ∈ N.

Take gk ∈ DE′
k
(k ∈ N) such that gk converges to f in D and µ-a.e. as

k → ∞. Let fk = 0 ∨ gk ∧ f for each k. Then, fk ∈ DEl∩E′k ⊂ DEk∩E′k
when k ≥ l. It also holds that ‖fk‖D ≤ ‖gk‖D + ‖f‖D and fk converges
to f µ-a.e. Therefore, {fk}∞k=l converges weakly to f in D. Taking
the Cesàro mean of an appropriate subsequence, we obtain a desired
approximating sequence. ¤

In order to investigate the space D0({Ek}), we will prove some aux-
iliary properties.

Lemma 3.3. Let f, h,fk, and hk (k ∈ N) be in Db.

(i) If fk converges weakly to f in D and h ≥ 0 µ-a.e., then

lim infk→∞ Ifk(h) ≥ If (h).
(ii) If fk converges to f in D, then limk→∞ Ifk(h) = If (h).
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(iii) If {‖hk‖L∞(µ)}∞k=1 is bounded and hk converges to h in D, then

limk→∞ If (hk) = If (h).

Proof. The first and the second claims follow from the fact that I·,·(h) is
a nonnegative definite continuous bilinear form on D when h ≥ 0 µ-a.e.
For the third one, it is enough to notice that fhk converges weakly to
fh in D as k →∞. ¤

One of the important consequences of the locality of (E ,D) is the
following.

Theorem 3.4. For f = (f1, . . . , fn) ∈ D× · · · × D
︸ ︷︷ ︸

n times

, there exists a

unique family (σfi,j)1≤i, j≤n of signed Radon measures on R
n of finite

total variation such that

(i) σfi,j = σfj,i for all i and j,

(ii)
∑n
i,j=1 aiajσ

f
i,j is a nonnegative measure for any ai ∈ R (i =

1, . . . , n),
(iii) the identity

E(F (f)− F (0, . . . , 0), G(f)−G(0, . . . , 0))(3.1)

=
n∑

i,j=1

∫

Rn

∂F

∂xi

∂G

∂xj
dσfi,j

holds for any F,G ∈ Ĉ1
b (R

n).

Moreover, these measures satisfy the following properties.

(iv) σfi,j(R
n) = E(fi, fj).

(v) If fi ∈ [a, b] and fj ∈ [c, d] µ-a.e., then the topological support

of σfi,j is included in {x = (x1, . . . , xn) ∈ R
n | xi ∈ [a, b], xj ∈

[c, d]}.
Proof. By [2, Theorem I.5.2.1], uniquely determined are the family

(σfi,j)1≤i, j≤n of signed Radon measures on R
n such that (i) and (ii)

hold, and (3.1) is true for any F and G ∈ C1
c (R

n). By the way of

construction of σfi,j (see also [8]), for any F ∈ C1
c (R

n),

2
∫

Rn
F dσfi,j = Iψ(fi),ψ(fj)(F (f)),

where ψ(x) = (−M) ∨ x ∧M for sufficiently large M depending on F .
Then,

∣
∣
∣
∣

∫

Rn
F dσfi,i

∣
∣
∣
∣ ≤ ‖F‖∞E(ψ(fi)) ≤ ‖F‖∞E(fi)
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so that σfi,i(R
n) ≤ E(fi). In addition, we have

∣
∣
∣
∣

∫

Rn
F dσfi,j

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

Rn
F dσfi,i

∣
∣
∣
∣

1/2 ∣∣
∣
∣

∫

Rn
F dσfj,j

∣
∣
∣
∣

1/2

≤ ‖F‖∞E(fi)1/2E(fj)1/2.

Therefore, σfi,j is of finite variation and |σfi,j|(Rn) ≤ E(fi)1/2E(fj)1/2.
Equation (3.1) now follows for F andG in Ĉ1

b (R
n), by taking an approx-

imate sequence from C1
c (R

n) and using the dominated convergence the-

orem. Letting F (x) = xi and G(x) = xj, we obtain σ
f
i,j(R

n) = E(fi, fj).
To prove (v), it is enough to prove that the support σfi,i is included in

{x ∈ R
d | xi ∈ [a, b]} when fi ∈ [a, b] µ-a.e. Take F (x) = φ(xi), where

φ is in Ĉ1
b (R) and φ(x) = 0 on [a, b], 0 < φ′(x) ≤ 1 on (−∞, a)∪(b,∞).

Then, by (3.1), 0 =
∫

Rn φ′(xi)
2 dσfi,i. This implies the assertion. ¤

The following theorem is also necessary for subsequent arguments.

Theorem 3.5 ([2, Theorem I.5.2.3]). When n = 1 in Theorem 3.4, any

σf1,1 is absolutely continuous with respect to one dimensional Lebesgue

measure.

Let f1, . . . , fk, g1, . . . , gl, h1 . . . , hm be functions in D and let f =

(f1, . . . , fk), g = (g1, . . . , gl), and h = (h1 . . . , hm). Set λ
f,g,h
i,j = 2σ

(f,g,h)
i,k+j

for i = 1, . . . , k and j = 1, . . . , l, where σ(f,g,h)
·,· is provided in The-

orem 3.4 by letting n = k + l + m and taking (f1, . . . , fk, g1, . . . , gl,
h1, . . . , hm) as f . Then,

λf,g,hi,j (Rk+l+m) = 2E(fi, gj),
and simple calculation deduces the following identities.

Proposition 3.6. For all F ∈ Ĉ1
b (R

k), G ∈ Ĉ1
b (R

l), and H ∈ C1
b (R

k+l+m)
with F (0, . . . , 0) = G(0, . . . , 0) = H(0, . . . , 0) = 0,

IF (f),G(g)(H(f, g, h))(3.2)

=
k∑

i=1

l∑

j=1

∫

Rk+l+m
∂iF (x)∂jG(y)H(x, y, z) dλf,g,hi,j (x, y, z).

When k = 1 and l = 1, we will write λf,g,h for λf,g,h1,1 . By Proposi-
tion 3.6, we have the integral expression

(3.3) If,g(F (h)) =
∫

R3
F (z) dλf,g,h(x, y, z)

for f, g, h ∈ D and F ∈ C1
b (R) with F (0) = 0. We can define If,g(F (h))

for F ∈ C1
b (R) (possibly with F (0) 6= 0) by the right-hand side of (3.3).
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In other words, when we set D̂b = {h | h = h0 + α, h0 ∈ Db, α ∈ R},
If,g(h) =

∫

R3
(z + α) dλf,g,h0(x, y, z) = If,g(h0) + 2αE(f, g)

for f, g ∈ D and h = h0 + α ∈ D̂b is well-defined. Then, Lemma 2.5
and Lemma 3.3 (i) (ii) are true for h, h1, h2 ∈ D̂b.

Lemma 3.7. (i) Let f = (f1, . . . , fk), fi ∈ D, g = (g1, . . . , gl),

gj ∈ D, and h ∈ D̂b. Then,

IF (f),G(g)(h) =
k∑

i=1

l∑

j=1

Ifi,gj(∂iF (f)∂jG(g)h)

for F ∈ Ĉ1
b (R

k), G ∈ Ĉ1
b (R

l) with F (0, . . . , 0) = G(0, . . . , 0) =
0.

(ii) For f, g ∈ Db, {2E(fg)}1/2 = Ifg(1)
1/2 ≤ If (g

2)1/2 + Ig(f
2)1/2.

Proof. This is immediately proved by the integral representation of
I. ¤

Lemma 3.8. Let f ∈ D0({Ek}) for some nest {Ek}∞k=1 and g ∈ Db.

Then, fg ∈ D and ‖fg‖D ≤
√
2‖f‖L∞(µ)‖g‖D + ‖g‖L2(µ).

Proof. We can take sequences {fk}∞k=1 and {gk}∞k=1 from D such that
fk = f µ-a.e. on Ek, ‖fk‖L∞(µ) ≤ ‖f‖L∞(µ), gk ∈ DEk

, ‖gk‖L∞(µ) ≤
‖g‖L∞(µ) for every k, and gk converges to g in D and µ-a.e. as k →∞.
By Lemma 3.7 (ii) and Lemma 2.5 (i), we have

{2E(fkgk)}1/2 ≤ Ifk(g
2
k)

1/2 + Igk(f
2
k )

1/2

≤ ‖g2k‖1/2L1(µ) + ‖fk‖L∞(µ){2E(gk)}1/2

≤ ‖gk‖L2(µ) + ‖f‖L∞(µ){2E(gk)}1/2,
‖fkgk‖L2(µ) ≤ ‖f‖L∞(µ)‖gk‖L2(µ).

Therefore, {fkgk}∞k=1 is bounded in D. Since fkgk converges to fg
µ-a.e., we obtain that fg ∈ D and

‖fg‖D ≤ lim inf
k→∞

‖fkgk‖D

≤ lim inf
k→∞

(

E(fkgk)1/2 + ‖fkgk‖L2(µ)

)

≤ 2−1/2‖g‖L2(µ) + ‖f‖L∞(µ)E(g)1/2 + ‖f‖L∞(µ)‖g‖L2(µ)

≤ ‖g‖L2(µ) +
√
2‖f‖L∞(µ)‖g‖D.

¤

Proposition 3.9. The set D0({Ek}) does not depend on the choice of

the nest {Ek}∞k=1.
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Proof. Let {Ek}∞k=1 and {E ′k}∞k=1 be two nests and f ∈ D0({E ′k}). It is
enough to prove f ∈ D0({Ek}). Take {χk}∞k=1 ⊂ D as in Definition 2.1
and Remark 2.2 for the nest {Ek}∞k=1. From Lemma 3.8, fχk ∈ D

for each k. Therefore, f ∈ Dloc,b({Ek}). Let h ∈ DEk,b,+ for some
k ∈ N. As in the proof of Lemma 3.2, we can take {hl}∞l=1 such that
hl ∈ DEk∩E′l , 0 ≤ hl ≤ h µ-a.e. for all l and hl converges to h in D as
l→∞. Then, for all l,

‖hl‖L1(µ) ≥ If (hl) = Ifχk(hl).

Letting l →∞, we obtain from Lemma 3.3 (iii) that

‖h‖L1(µ) ≥ Ifχk(h) = If (h).

Hence, we conclude f ∈ D0({Ek}). ¤

By this proposition, we will use the notation D0 as well as D0({Ek})
from now on. Note that 1 ∈ D0. When µ(X) < ∞ and 1 ∈ D, the
space D0 is the same as given in [4], namely (1.3), because we can take
Ek = X (k ∈ N) as a nest.

Proposition 3.10. Let f , g ∈ D0. Then, −f , f ∨ g, and f ∧ g also

belong to D0.

Proof. It is trivial that f ∈ D0 implies −f ∈ D0. Let f and g be in
D0. Take an arbitrary nest {Ek}∞k=1. It is easy to see that f ∨ g ∈
Dloc,b({Ek}). Take {fk}∞k=1 and {gk}∞k=1 from D so that fk = f , gk = g
µ-a.e. on Ek, ‖fk‖L∞(µ) ≤ ‖f‖L∞(µ) and ‖gk‖L∞(µ) ≤ ‖g‖L∞(µ) for each
k. Take any h ∈ DEk,b,+, k ∈ N. Define for l ∈ N

h1,l = (0 ∨ l(fk − gk) ∧ 1)h, h2,l = (0 ∨ l(gk − fk + 1/l) ∧ 1)h.

Then, h1,l, h2,l ∈ DEk,b,+, h = h1,l+h2,l, h1,l = 0 µ-a.e. on {fk∨gk 6= fk},
and h2,l ≤ Fl(fk ∨ gk− gk)‖h‖L∞(µ) for every l. Here, Fl is an arbitrary
C1-function on R such that 0 ≤ Fl ≤ 1, Fl(x) = 0 on (−∞,−1/l] ∪
[2/l,∞), and Fl(x) = 1 on [0, 1/l]. Then, we have

If∨g(h)− ‖h‖L1(µ)

= Ifk∨gk(h1,l)− ‖h1,l‖L1(µ) + Ifk∨gk(h2,l)− ‖h2,l‖L1(µ)

≤ Ifk(h1,l)− ‖h1,l‖L1(µ)

+
(

Ifk∨gk−gk(h2,l)
1/2 + Igk(h2,l)

1/2
)2 − ‖h2,l‖L1(µ)

≤ (1 + ε−1)‖h‖L∞(µ)Ifk∨gk−gk(Fl(fk ∨ gk − gk)) + (1 + ε)Igk(h2,l)

− ‖h2,l‖L1(µ)

≤ (1 + ε−1)‖h‖L∞(µ)

∫

R

Fl(x)σ
fk∨gk−gk
1,1 (dx) + εIgk(h),
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for any ε > 0, where σfk∨gk−gk1,1 is a measure on R given in Theorem 3.4

with n = 1. Since Theorem 3.5 implies σfk∨gk−gk1,1 ({0}) = 0, we obtain
If∨g(h) − ‖h‖L1(µ) ≤ 0 by letting l → ∞, then ε → 0. This means
f ∨ g ∈ D0. We also have f ∧ g = −((−f) ∨ (−g)) ∈ D0. ¤

For A ∈ B and M ≥ 0, define

DA,M := {f ∈ D0 | f = 0 on A and f ≤M µ-a.e.}
Proposition 3.11. For each A ∈ B, there exists a unique [0,∞]-valued
measurable function dA such that, for every M > 0, dA ∧ M is the

maximal element of DA,M . Namely, dA = 0 µ-a.e. on A and f ≤ dA∧M
for every f ∈ DA,M . Moreover, d(A,B) = essinfx∈B dA(x) for every

B ∈ B.
Proof. Take a finite measure ν on X such that ν and µ are mutu-
ally absolutely continuous. Fix M > 0 and let a = sup{∫X f dν |
f ∈ DA,M}( < ∞). There is a sequence {gk}∞k=1 in DA,M such that
limk→∞

∫

X gk dν = a. Let fk = g1 ∨ g2 ∨ · · · ∨ gk. By Proposition 3.10,
fk ∈ DA,M . It also holds that fk converges to some f µ-a.e. and
∫

X f dν = a. We will prove f ∈ DA,M . Take a nest {Ek}∞k=1 and
functions {χk}∞k=1 as in Definition 2.1 and Remark 2.2. By Lemma 3.8,
fkχl ∈ D for every k and l, and {fkχl}∞k=1 is bounded in D for each l.
Therefore, fχl ∈ D and fkχl converges to fχl weakly in D as k →∞.
For any h ∈ DEl,b,+, we have

Ifkχl(h) = Ifk(h) ≤ ‖h‖L1(µ).

Lemma 3.3 (i) assures that If (h) = Ifχl(h) ≤ ‖h‖L1(µ) by letting k →
∞. Therefore, f ∈ D0. It is easy to see that f is the maximal element
in DA,M . Denote f by fM to indicate the dependency of M . Since fM

has consistency in M , namely, fM
′
= fM ∧M ′ when M > M ′, the

existence of dA follows. The uniqueness of dA is clear.
To prove the latter part of the proposition, let B ∈ B. By definition,

d(A,B) ≥ essinfx∈B dA(x) ∧M for every M . Letting M → ∞, we get
d(A,B) ≥ essinfx∈B dA(x). For the converse inequality, let f ∈ D0 and

define f̂ = (f − esssupx∈A f(x)) ∨ 0. Then, f̂ ∈ DA,M for some M > 0
and

essinf
x∈B

f(x)− esssup
x∈A

f(x) ≤ essinf
x∈B

f̂(x) ≤ essinf
x∈B

dA(x).

Taking a supremum over f , we obtain d(A,B) ≤ essinfx∈B dA(x). ¤

4. Proof of Theorem 2.7

We first prove the upper side estimate.
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Theorem 4.1. For any A,B ∈ B with 0 < µ(A) <∞ and 0 < µ(B) <
∞,

Pt(A,B) ≤
√

µ(A)µ(B) exp

(

−d(A,B)2

2t

)

, t > 0.

In particular, lim supt→0 t logPt(A,B) ≤ −d(A,B)2/2.

Proof. Let w ∈ DA,M and let {Ek}∞k=1 be an arbitrary nest. There
exists {wk}∞k=1 ⊂ D such that ‖wk‖L∞(µ) ≤ M and wk = w µ-a.e. on
Ek for all k. Note that wk converges to w µ-a.e. Set vt = Tt1A for t > 0.
For α ∈ R, define q(t) =

∫

X(e
αwvt)

2 dµ, t > 0. Fix t > 0. We can take
{uk}∞k=1 from D so that uk ∈ DEk

, 0 ≤ uk ≤ 1 µ-a.e. for each k, and uk
converges to vt in D and µ-a.e. as k →∞. Then,

q′(t) =
∫

X
2Lvt · vte2αw dµ

= lim
k→∞

∫

X
2Lvt · uke2αwk dµ

= lim
k→∞

−2E(vt, uke2αwk).

Since uk → vt in D as k →∞, we have

lim
k→∞

(E(vt, uk)− E(uk, uk)) = 0.

In the inequality

∣
∣
∣E(vt, uk(e2αwk − 1))− E(uk, uk(e2αwk − 1))

∣
∣
∣

≤ E(vt − uk)
1/2E(uk(e2αwk − 1))1/2,

the right-hand side converges to 0 as k →∞, since

{

2E(uk(e2αwk − 1))
}1/2

≤ Iuk((e
2αwk − 1)2)1/2 + Ie2αwk−1(u

2
k)

1/2 (by Lemma 3.7 (ii))

≤ (e2|α|M + 1){2E(uk)}1/2 + Iwk
((2αe2αwk)2u2k)

1/2

(by Lemma 2.5 (i) and Lemma 3.7 (i))

≤ (e2|α|M + 1){2E(uk)}1/2 + 2|α|e2|α|M‖uk‖L2(µ),

which is bounded in k. Thus we have

q′(t) = lim
k→∞

−2E(uk, uke2αwk).
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Letting f = (uk, wk) in Theorem 3.4, we have

−2E(uk, uke2αwk) = −2
∫

R2
e2αy dσf1,1(x, y)− 2

∫

R2
2αxe2αy dσf1,2(x, y)

≤ 2
∫

R2
α2x2e2αy dσf2,2(x, y)

= α2Iwk
(u2ke

2αwk) ≤ α2‖u2ke2αwk‖L1(µ).

Therefore, we have

q′(t) ≤ α2‖v2t e2αw‖L1(µ) = α2q(t).

Solving this differential inequality, we have

(4.1) q(t) ≤ q(0)eα
2t, t > 0.

By setting w = dA ∧M , (4.1) implies that

‖eαwTt1A‖L2(µ) ≤
√

µ(A)eα
2t/2.

A similar calculation for vt = Tt1B gives, for α ≥ 0,

‖e−αwTt1B‖L2(µ) ≤
√

µ(B)e−α(d(A,B)∧M)+α2t/2.

Therefore,

Pt(A,B) ≤ ‖eαwTt/21A‖L2(µ)‖e−αwTt/21B‖L2(µ)

≤
√

µ(A)µ(B)e−α(d(A,B)∧M)+α2t/2.

The conclusion follows by optimizing the right-hand side in α and let-
ting M →∞. ¤

We turn to the lower side estimate. Fix a nest {Ek}∞k=1 and asso-
ciated functions {χk}∞k=1 as in Definition 2.1 and Remark 2.2. Take
functions φK , ΦK , ΨK for K > 0 as in Section 2.1 of [4]. That is, using
an arbitrary concave function g : R+ → R+ such that

• g is bounded and three times continuously differentiable;
• g(x) = x for x ≤ 1 and 0 < g′(x) ≤ 1 for any x ∈ R+;
• there is a positive constant C such that 0 ≤ −g′′(x) ≤ Cg′(x)
for all x ≥ 0,

define

φK(x) = Kg(x/K), ΦK(x) =
∫ x

0
(φK)′(s)2 ds, ΨK(x) = x(φK)′(x)2.

In what follows, we suppress the symbolK from the notation sinceK is
fixed in most of the argument. The following are some basic properties
for these functions, proved in [4].

• 0 < φ′(x) ≤ 1, 0 ≤ −φ′′(x) ≤ (C/K)φ′(x),
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• 0 ≤ Ψ(x) ≤ Φ(x) ≤ φ(x) ≤ LK, where L := limx→∞ g(x) <
∞.

• Φ(x) = Ψ(x) = x for x ∈ [0, K].

We also adopt the same abbreviations there; for functions uδt on X
with parameters t and δ, we write φδt for φ(uδt ), Φ

δ
t for Φ(uδt ), φ̄

δ
t for

t−1
∫ t
0 φ

δ
s ds, and so on. We denote

∫

X fg dµ by (f, g) for functions f
and g on X.

For δ ∈ (0, 1] and f ∈ L2(µ) with 0 ≤ f ≤ 1 − δ µ-a.e., define for
t > 0

uδt (x) = −t log(Ttf(x) + δ), eδt = −t log δ.
Lemma 4.2. uδt − eδt ∈ D and

∂t(Φ
δ
t , ρ)(4.2)

= −E(((φ′)δt )2ρ, uδt − eδt )−
1

2t
Iuδt−eδt (((φ

′)δt )
2ρ) +

1

t
(Ψδ

t , ρ)

for ρ ∈ L1(µ) ∩ Db.

Proof. Since uδt − eδt = F (Ttf), where F (s) = −t log((s + δ)/δ) is a
Lipschitz function on [0,∞) with F (0) = 0, we conclude that uδt − eδt ∈
D. The identity (4.2) is proved in the same way as [4, Lemma 2.10],
but we give the proof for completeness.

Using Lemma 3.7, it holds that

E(uδt − eδt , ρ) = −tE
(

Ttf,
ρ

Ttf + δ

)

− 1

2t
Iuδt−eδt (ρ).

Then,

∂t(u
δ
t , ρ) =

1

t
(uδt , ρ)−

(

tLTtf
Ttf + δ

, ρ

)

=
1

t
(uδt , ρ)− tE

(

Ttf,
ρ

Ttf + δ

)

=
1

t
(uδt , ρ)− E(uδt − eδt , ρ)−

1

2t
Iuδt−eδt (ρ).

By using the identity ∂t(Φ
δ
t , ρ) = (∂tu

δ
t , ((φ

′)δt )
2ρ) and replacing ρ by

((φ′)δt )
2ρ in the relation above, we obtain (4.2). ¤

Define uδt = −t log((1− δ)Tt1A + δ) for A ∈ B with µ(A) <∞.

Lemma 4.3. There exists T0 > 0 such that both {E(φ̄δtχk)}0<t≤T0, 0<δ≤1
and {E(Φ̄δ

tχk)}0<t≤T0, 0<δ≤1 are bounded for each k.
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Proof. Let U δ
t = 2E(φδtχk) and ak = 2E(χk). Since φδt = φ((uδt − eδt ) +

eδt ), Lemma 3.7 and Lemma 2.5 imply

U δ
t = Iuδt−eδt (((φ

′)δt )
2χ2

k) + 2Iuδt−eδt ,χk(φ
δ
t (φ

′)δtχk) + Iχk((φ
δ
t )

2)(4.3)

≤ 2Iuδt−eδt (((φ
′)δt )

2χ2
k) + 2Iχk((φ

δ
t )

2)

≤ 2Iuδt−eδt (((φ
′)δt )

2χ2
k) + 2K2L2ak.

Set V δ
t = Iuδt−eδt (((φ

′)δt )
2χ2

k). By letting ρ = χ2
k in Lemma 4.2,

V δ
t = −2t∂t(Φδ

t , χ
2
k)− 2tE(((φ′)δt )2χ2

k, u
δ
t − eδt ) + 2(Ψδ

t , χ
2
k).

The last term of the right-hand side is dominated by 2KL. Regarding
the second term, we have

E(((φ′)δt )2χ2
k, u

δ
t − eδt )

= Iχk,φδtχk((φ
′)δt )− Iχk((φ

′)δtφ
δ
t ) + Iuδt−eδt ((φ

′′)δt (φ
′)δtχ

2
k)

≥ −{2E(χk)}1/2{2E(φδtχk)}1/2 −KL · 2E(χk)
− (C/K)Iuδt−eδt (((φ

′)δt )
2χ2

k)

= −a1/2k (U δ
t )

1/2 −KLak − (C/K)V δ
t .

Here, the first equality follows from Lemma 3.7. By combining these
estimates,
(

1− 2Ct

K

)

V δ
t ≤ −2t∂t(Φδ

t , χ
2
k) + 2a

1/2
k t(U δ

t )
1/2 + 2KLakt+ 2KL

≤ −2t∂t(Φδ
t , χ

2
k) + U δ

t /8 + 8akt
2 + 2KLakt+ 2KL.

Take T0 = K/(4C). For t ∈ (0, T0], V
δ
t /2 ≤ (1− (2Ct)/K)V δ

t . Putting
this and the above inequalities into (4.3),

U δ
t ≤ 4{−2t∂t(Φδ

t , χ
2
k) + U δ

t /8 + 8akt
2 + 2KLakt+ 2KL}+ 2K2L2ak,

so that
U δ
t ≤ −16t∂t(Φδ

t , χ
2
k) + c,

where c is a constant independent of t and δ. Therefore,
∫ t

ε
E(φδsχk) ds =

1

2

∫ t

ε
U δ
s ds

≤ −8
∫ t

ε
s(∂sΦ

δ
s, χ

2
k) ds+

c

2
(t− ε)

= −8s(Φδ
s, χ

2
k)|s=ts=ε + 8

∫ t

ε
(Φδ

s, χ
2
k) ds+

c

2
(t− ε).

Letting ε→ 0 and dividing by t, we obtain

E(φ̄δtχk) ≤
1

t

∫ t

0
E(φδsχk) ds ≤ 8KL+

cT0
2
.
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Therefore, {E(φ̄δtχk)}0<t≤T0, 0<δ≤1 is bounded. Moreover, since

E(Φδ
tχk) = Iuδt−eδt (((φ

′)δt )
4χ2

k) + 2Iuδt−eδt ,χk(Φ
δ
t ((φ

′)δt )
2χk) + Iχk((Φ

δ
t )

2)

≤ 2Iuδt−eδt (((φ
′)δt )

4χ2
k) + 2Iχk((Φ

δ
t )

2)

≤ 2V δ
t + 2K2L2ak,

we can prove the boundedness of {E(Φ̄δ
tχk)}0<t≤T0, 0<δ≤1 in the same

way. ¤

Since φ̄δtχk converges to φ̄tχk µ-a.e. as δ → 0, we conclude that
φ̄tχk ∈ D and {φ̄tχk}t∈(0,T0] is bounded in D for each k. By the di-
agonal argument, for any decreasing sequence {tn} ↓ 0, we can take
a subsequence {tn′} such that for every k, φ̄tn′χk converges weakly to
some ψk in D. Since χk = 1 on El if k ≥ l, ψk and ψl should be identical
on El for k ≥ l. Therefore, there exists φ̄0 ∈ Dloc,b,+({Ek}) such that
ψk = φ̄0 on Ek for every k.

We may also assume, by taking a further subsequence if necessary,
that there exist Φ0, Φ̄0, and Ψ̄0 in L∞+ (µ) such that Φtn′

→ Ψ0, Φ̄tn′
→

Φ̄0, Ψ̄tn′
→ Ψ̄0 both in weak-L2(ν) sense and in weak*-L∞(µ) sense.

Here, ν is an arbitrarily fixed finite measure on X such that ν and µ
are mutually absolutely continuous, and L∞(µ) is regarded as the dual
space of L1(µ).

Now, fix k and let h ∈ DEk,b,+. By Lemma 3.7 and Lemma 4.2,

Iφδtχk(h) = Iuδt−eδt (((φ
′)δt )

2χ2
kh) + 2Iuδt−eδt ,χk((φ

′)δtφ
δ
tχkh) + Iχk((φ

δ
t )

2h)

= Iuδt−eδt (((φ
′)δt )

2h)

= −2t∂t(Φδ
t , h)− 2tE(((φ′)δt )2h, uδt − eδt ) + 2(Ψδ

t , h).

Regarding the second term, we have

E(((φ′)δt )2h, uδt − eδt ) = E(Φδ
tχk, h) + Iuδt−eδt ((φ

′)δt (φ
′′)δth)

≥ E(Φδ
tχk, h)− (C/K)Iφδt−φ(eδt )(h).

It also holds that

Iφδt−φ(eδt )(h) = Iφδtχk−φ(eδt )χk(h) = Iφδtχk(h).
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Then,

1

2

∫ T

0
Iφδtχk(h) dt ≤ −t(Φ

δ
t , h)|t=Tt=0 +

∫ T

0
(Φδ

t , h) dt

−
∫ T

0
t{E(Φδ

tχk, h)− (C/K)Iφδtχk(h)} dt+ T (Ψ̄δ
T , h)

≤ −T (Φδ
T , h) + T (Φ̄δ

T , h)−
∫ T

0
tE(Φδ

tχk, h) dt

+
CT

K

∫ T

0
Iφδtχk(h) dt+ T (Ψ̄δ

T , h),

which implies
(
1

2
− CT

K

)
1

T

∫ T

0
Iφδtχk(h) dt(4.4)

≤ −(Φδ
T , h) + (Φ̄δ

T , h)−
1

T

∫ T

0
tE(Φδ

tχk, h) dt+ (Ψ̄δ
T , h).

For the third term of the right-hand side, the integration by parts
formula gives

1

T

∫ T

0
tE(Φδ

tχk, h) dt

=
t

T

∫ t

0
E(Φδ

sχk, h) ds
∣
∣
∣
∣

t=T

t=0
− 1

T

∫ T

0

∫ t

0
E(Φδ

sχk, h) ds dt

= TE(Φ̄δ
Tχk, h)−

1

T

∫ T

0
tE(Φ̄δ

tχk, h) dt,

which converges to 0 as δ → 0 and T → 0 because E(Φ̄δ
tχk) is bounded

in δ and t by Lemma 4.3.
Letting δ → 0, dividing by T and letting T → 0 along the sequence

{tn′} in (4.4), we obtain

(4.5)
1

2
Iφ̄0

(h) ≤ (−Φ0 + Φ̄0 + Ψ̄0, h) ≤ (2φ̄0, h).

Then, for ε > 0,

I√
φ̄0+ε−

√
ε
(h) =

1

4
Iφ̄0

(

h

φ̄0 + ε

)

≤ 1

2

(

2φ̄0,
h

φ̄0 + ε

)

≤ ‖h‖L1(µ).

Hence
√

φ̄0 + ε−√ε ∈ D0, which implies
√

φ̄0 ∈ D0 by Lemma 3.3 (i).

Lemma 4.4. φ̄0 = 0 µ-a.e. on A.

Proof. Since Ts1A converges to 1A in L2(µ) as s → 0, we can take
a subsequence {sk′} from an arbitrary sequence {sk} ↓ 0 such that
Tsk′1A → 1A µ-a.e. as k

′ →∞. By the dominated convergence theorem,
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limk′→∞
∫

A φsk′ dµ = 0. This means that limt→0

∫

A φt dµ = 0. Then, by
letting t→ 0 along the sequence {tn′} in the identity

∫

A
φ̄t dµ =

1

t

∫ t

0

∫

A
φs dµ ds,

we obtain
∫

A φ̄0 dµ = 0, which implies the claim. ¤

From these arguments, we conclude that
√

φ̄0 ∈ DA,
√
KL and there-

fore, φ̄0 ≤ d2A µ-a.e. But this inequality is not optimal; a sharper esti-
mate is obtained by the following lemma.

Lemma 4.5. If the inequality

φ̄K0 (x) ≤ c
dA(x)

2

2

holds true µ-a.e. for some c > 1 for every K and every limit φ̄K0 , then

φ̄K0 (x) ≤ (2− c−1)
dA(x)

2

2
µ-a.e.

Proof. The proof is a modification of Lemma 2.12 in [4]. Given K, we
can choose M <∞ such that ΦK(M) ≤ supxΨ

K(x). Then ΦK(φMt ) ≥
ΨK
t holds µ-a.e. Let D be a measurable set with 0 < µ(D) <∞. Using

the convexity of Φ(−t log(·)) for small t (see Lemma 2.1 in [4]), we have

(ΦK
t , 1D) =

∫

D
ΦK(−t log Tt1A)) dµ

≥ µ(D)ΦK

(

−t log
(

1

µ(D)
(Tt1A, 1D)

))

.

Also, by Theorem 4.1,

lim inf
t→0

−t log(Tt1A, 1D) = lim inf
t→0

−t logPt(A,D) ≥ d(A,D)2

2
.

Therefore, in the limit,

(ΦK
0 , 1D) ≥ µ(D)ΦK

(

d(A,D)2

2

)

≥ µ(D)

c
essinf
x∈D

ΦK(φ̄M0 (x)).

Since ΦK is concave,

ΦK(φ̄Mt ) = ΦK
(
1

t

∫ t

0
φMs ds

)

≥ 1

t

∫ t

0
ΨK
s ds = Ψ̄K

t µ-a.e.

Lemma 2.2 in [4] is applied to obtain that ΦK(φ̄M0 ) ≥ Ψ̄K
0 µ-a.e. There-

fore,

(4.6) (ΦK
0 , 1D) ≥

µ(D)

c
essinf
x∈D

Ψ̄K
0 (x).
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We will prove

(4.7) ΦK
0 ≥ c−1Ψ̄K

0 µ-a.e.

from the estimate (4.6). If (4.7) is false, there exists some D′ ∈ B with
0 < µ(D′) <∞ and ε > 0 such that ΦK

0 ≤ c−1Ψ̄K
0 −ε µ-a.e. on D′. Let

D = {x ∈ D′ | Ψ̄K
0 (x) ≤ essinf

x∈D′
Ψ̄K

0 + cε/2}.

Then µ(D) > 0 and ΦK
0 ≤ c−1 essinfx∈D Ψ̄K

0 − ε/2 µ-a.e. on D. This is
contradictory to (4.6).

Combining (4.7) with (4.5), we obtain

1

2
Iφ̄K

0
(h) ≤ (−c−1Ψ̄K

0 + Φ̄K
0 + Ψ̄K

0 , h) ≤ ((2− c−1)φ̄K0 , h)

for every h ∈ ⋃∞
k=1 DEk,b,+. The claim follows by the same argument

after Eq. (4.5). ¤

By the iterated use of Lemma 4.5, we obtain that φ̄0 ≤ d2A/2 µ-a.e.
and, therefore, Φ̄0 ≤ d2A/2 µ-a.e.

Now, Lemmas 2.13 and 2.14 in [4] are valid in the present setting
(by replacing µ with ν suitably in the proof), and we know that Φ̄t

converges both in weak L2(ν) sense and in weak* L∞(µ) sense as t→ 0
and the limit Φ̄0 is equal to Φ(d2A/2).

Lemma 4.6. Let τ > 0 and B ∈ B with µ(B) <∞. Then,

lim
t→0

(Tτ−t1B,Φt) = (Tτ1B, Φ̄0) = (Tτ1B,Φ(d
2
A/2)).

Proof. Let f(t) = (Tτ−t1B,Φt−Φ(∞)), t > 0. If we check the following
two conditions:

(i) T−1
∫ T
0 f(t) dt→ (Tτ1B, Φ̄0 − Φ(∞)) as T → 0,

(ii) there existM > 0 and t0 > 0 such that f(t)−f(s) ≤M(t−s)/s
for any 0 < s < t ≤ t0,

then we can apply the Tauberian theorem (Lemma 3.11 in [7]) to obtain
that limt→0 f(t) = (Tτ1B, Φ̄0 − Φ(∞)), which implies the assertion.

Condition (i) is proved as follows:
∣
∣
∣
∣
∣

1

T

∫ T

0
f(t) dt− (Tτ1B, Φ̄0 − Φ(∞))

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

1

T

∫ T

0
f(t) dt− 1

T

∫ T

0
(Tτ1B,Φt − Φ(∞)) dt

∣
∣
∣
∣
∣
+
∣
∣
∣(Tτ1B, Φ̄T − Φ̄0)

∣
∣
∣

≤ 2LK

T

∫ T

0
‖1B − Tt1B‖L1(µ) dt+

∣
∣
∣(Tτ1B, Φ̄T − Φ̄0)

∣
∣
∣

→ 0 as T → 0.
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Regarding (ii), for δ ∈ (0, 1), Lemma 4.2 implies

(Tτ−r1B,Φ
δ
r − Φ(eδr))|r=tr=s

=
∫ t

s
(Tτ−r1B, ∂rΦ

δ
r) dr −

∫ t

s
(Tτ−r1B, ∂rΦ(e

δ
r)) dr

+
∫ t

s
(∂rTτ−r1B,Φ

δ
r − Φ(eδr)) dr

= −
∫ t

s
E(((φ′)δr)2Tτ−r1B, uδr − eδr) dr −

∫ t

s

1

2r
Iuδr−eδr(((φ

′)δr)
2Tτ−r1B) dr

+
∫ t

s

1

r
(Ψδ

r, Tτ−r1B) dr −
∫ t

s
(Tτ−r1B,

1

r
Ψ(eδr)) dr

+
∫ t

s
E(Tτ−r1B,Φδ

r − Φ(eδr)) dr

=: −J1 − J2 + J3 − J4 + J5.

We have

J3 ≤
∫ t

s

KLµ(B)

s
dr ≤ KLµ(B)(t− s)/s, J4 ≥ 0,

J1 =
1

2

∫ t

s
Iuδr−eδr(2(φ

′)δr(φ
′′)δrTτ−r1B) dr +

1

2

∫ t

s
ITτ−r1B ,uδr−eδr(((φ

′)δr)
2) dr

≥ −C
K

∫ t

s
Iuδr−eδr(((φ

′)δr)
2Tτ−r1B) dr + J5.

If t ≤ t0 := K/(2C), then J1 ≥ −J2 + J5. Therefore,

(Tτ−r1B,Φ
δ
r − Φ(eδr))|r=tr=s ≤ KLµ(B)(t− s)/s

for s < t ≤ t0. By letting δ → 0, condition (ii) follows. ¤

In the identity
∫

B
Φt dµ = (Φt, Tτ−t1B) + (Φt, 1B − Tτ−t1B),

the first term of the right-hand side converges to
∫

B Φ̄0 dµ as t → 0,
then τ → 0, by the lemma above. The modulus of the second term
is dominated by KL‖1B − Tτ−t1B‖L1(µ), which also converges to 0 as
t→ 0 and τ → 0. Therefore,

lim
t→0

∫

B
Φt dµ =

∫

B
Φ̄0 dµ =

∫

B
Φ(d2A/2) dµ

for any B ∈ B with µ(B) < ∞. Now, by the exactly same argument
as the end of Section 2.6 of [4], it follows that

lim sup
t→0

−t logPt(A,B) ≤ d(A,B)2

2
.

Combining Theorem 4.1, we finish the proof of Theorem 2.7.
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5. Additional results

Proposition 5.1. For every t > 0 and A ∈ B with 0 < µ(A) < ∞, it

holds that {Tt1A = 0} = {dA =∞} µ-a.e. Moreover, the following are

equivalent for A, B ∈ B with 0 < µ(A) <∞, 0 < µ(B) <∞.

• d(A,B) =∞.

• Pt(A,B) = 0 for every t > 0.
• Pt(A,B) = 0 for some t > 0.

Proof. This is almost the same as Lemma 2.16 in [4]. By Theorem 4.1,
it holds that {Tt1A = 0} ⊃ {dA =∞} µ-a.e. Let 0 < s < t and suppose
Pt(A,B) = 0. Then we have

0 = Pt(A,B) = (1A, Tt−sTs1B) ≥ (1A · Ts1B, Tt−s(1A · Ts1B))
= ‖T(t−s)/2(1A · Ts1B)‖L2(µ).

Therefore, 1A ·Ts1B = 0, in particular, Ps(A,B) = 0. By Theorem 2.7,
we obtain {Tt1A = 0} ⊂ {dA =∞} µ-a.e. The second assertion follows
from the first one. ¤

The proof of Theorem 1.3 of [4] is also valid in our setting here with
slight modification, and we have the following counterpart.

Theorem 5.2. Let A ∈ B with 0 < µ(A) < ∞ take any probability

measure ν which is mutually absolutely continuous with respect to µ.
Then, the functions ut = −t log Tt1A converges to d2A/2 as t→ 0 in the

following senses.

(i) ut · 1{ut<∞} converges to d2A/2 · 1{dA<∞} in ν-probability.
(ii) If F is a bounded function on [0,∞] that is continuous on

[0,∞), then F (ut) converges to F (d
2
A/2) in L

2(ν).
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