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Abstract

We define and study distributions in Rd that we call q−Normal. For q = 1 they are really multi-
dimensional Normal, for q ∈ (−1,1) they have densities, compact support and many properties
that resemble properties of ordinary multidimensional Normal distribution. We also consider
some generalizations of these distributions and indicate close relationship of these distributions
to Askey-Wilson weight function i.e. weight with respect to which Askey-Wilson polynomials are
orthogonal and prove some properties of this weight function. In particular we prove a general-
ization of Poisson-Mehler expansion formula.
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1 Introduction

The aim of this paper is to define, analyze and possibly ’accustom’ new distributions in Rd . They
are defined with a help of two one-dimensional distributions that first appeared recently, partially
in noncommutative context and are defined through infinite products. That is why it is difficult to
analyze them straightforwardly using ordinary calculus. One has to refer to some extent to notations
and results of so called q−series theory.

However the distributions we are going to define and examine have purely commutative, classical
probabilistic meaning. They appeared first in an excellent paper of Bożejko et al. [4] as a by product
of analysis of some non-commutative model. Later they also appeared in purely classical context of
so called one-dimensional random fields first analyzed by W. Bryc at al. in [1] and [3]. From these
papers we can deduce much information on these distributions. In particular we are able to indicate
sets of polynomials that are orthogonal with respect to measures defined by these distributions.
Those are so called q−Hermite and Al-Salam-Chihara polynomials - a generalizations of well known
sets of polynomials. Thus in particular we know all moments of the discussed one-dimensional
distributions.

What is interesting about distributions discussed in this paper is that many of their properties re-
semble similar properties of normal distribution. As stated in the title we consider three families
of distributions, however properties of one, called multidimensional q−Normal, are main subject of
the paper. The properties of the remaining two are in fact only sketched.

All distributions considered in this paper have densities. The distributions in this paper are
parametrized by several parameters. One of this parameters, called q, belongs to (−1, 1] and for
q = 1 the distributions considered in this paper become ordinary normal. Two out of three fami-
lies of distributions defined in this paper have the property that all their marginals belong to the
same class as the joint, hence one of the important properties of normal distribution. Conditional
distributions considered in this paper have the property that conditional expectation of a polyno-
mial is also a polynomial of the same order - one of the basic properties of normal distributions.
Distributions considered in this paper satisfy Gebelein inequality -property discovered first in the
normal distribution context. Furthermore as in the normal case lack of correlation between com-
ponents of a random vectors considered in the paper lead to independence of these components.
Finally conditional distribution fC

�

x |y, z
�

considered in this paper can be expanded in series of the
form fC

�

x |y, z
�

= fM (x)
∑∞

i=0 hi(x)gi
�

y, z
�

where fM is a marginal density,
�

hi
	

are orthogonal
polynomials of fM and gi

�

y, z
�

are also polynomials. In particular if fC
�

x |y, z
�

= fC
�

x |q
�

that is
when instead of conditional distribution of X |Y, Z we consider only distribution of X |Y then gi

�

y
�

= hi
�

y
�

. In this case such expansion formula it is a so called Poisson-Mehler formula, a generaliza-
tion of a formula with hi being ordinary Hermite polynomials and fM (x) = exp(−x2/2)/

p
2π that

appeared first in the normal distribution context.

On the other hand one of the conditional distributions that can be obtained with the help of distribu-
tions considered in this paper is in fact a re-scaled and normalized (that is multiplied by a constant
so its integral is equal to 1) Askey-Wilson weight function. Hence we are able to prove some prop-
erties of this Askey-Wilson density. In particular we will obtain mentioned above, generalization of
Poisson-Mehler expansion formula for this density.

To define briefly and swiftly these one-dimensional distributions that will be later used to construct
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multidimensional generalizations of normal distributions, let us define the following sets

S
�

q
�

=

¨

[−2/
p

1− q, 2/
p

1− q] i f
�

�q
�

�< 1
{−1,1} i f q =−1

.

Let us set also m+S
�

q
� d f
= {x = m+ y, y ∈ S

�

q
�

} and m+ S
�

q
� d f
= (m1+S

�

q
�

)× . . .×(md+S
�

q
�

)
if m= (m1, . . . , md). Sometimes to simplify notation we will use so called indicator functions

IA (x) =

¨

1 i f x ∈ A
0 i f x /∈ A

.

The two one-dimensional distributions (in fact families of distributions) are given by their densities.

The first one has density:

fN
�

x |q
�

=

p

1− q

2π
p

4− (1− q)x2

∞
∏

k=0

�

(1+ qk)2− (1− q)x2qk
�

∞
∏

k=0

(1− qk+1)IS(q) (x) (1.1)

defined for
�

�q
�

�< 1, x ∈ R. We will set also

fN (x |1) =
1
p

2π
exp
�

−x2/2
�

. (1.2)

For q = −1 considered distribution does not have density, is discrete with two equal mass points at
S (−1). Since this case leads to non-continuous distributions we will not analyze it in the sequel.

The fact that such definition is reasonable i.e. that distribution defined by fN
�

x |q
�

tends to normal
N (0, 1) as q −→ 1− will be justified in the sequel. The distribution defined by fN

�

x |q
�

, −1< q ≤ 1
will be referred to as q−Normal distribution.

The second distribution has density:

fCN
�

x |y,ρ, q
�

=

p

1− q

2π
p

4− (1− q)x2
× (1.3a)

∞
∏

k=0

(1−ρ2qk)
�

1− qk+1
��

(1+ qk)2− (1− q)x2qk
�

(1−ρ2q2k)2− (1− q)ρqk(1+ρ2q2k)x y + (1− q)ρ2(x2+ y2)q2k
IS(q) (x) (1.3b)

defined for
�

�q
�

�< 1,
�

�ρ
�

�< 1, x ∈ R, y ∈ S
�

q
�

. It will be referred to as (y,ρ, q)−Conditional Normal,
distribution. For q = 1 we set

fCN
�

x |y,ρ, 1
�

=
1

p

2π
�

1−ρ2�
exp

 

−
�

x −ρ y
�2

2
�

1−ρ2�

!

(in the sequel we will justify this fact). Notice that we have fCN
�

x |y, 0, q
�

= fN
�

x |q
�

for all
y ∈ S

�

q
�

.

The simplest example of multidimensional density that can be constructed from these two distribu-
tion is two dimensional density

g
�

x , y|ρ, q
�

= fCN
�

x |y,ρ, q
�

fN
�

y|q
�

,
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Figure 1: ρ = .5, q = .8

Figure 2: ρ = .5, q = .8

that will be referred to in the sequel as N2
�

0, 0,1, 1,ρ|q
�

. Below we give some examples of plots
of these densities. One can see from these pictures how large and versatile family of distributions is
this family.

It has compact support equal to S
�

q
�

× S
�

q
�

and two parameters. One playing similar rôle to
parameter ρ in two-dimensional Normal distribution. The other parameter q has a different rôle. In
particular it is responsible for modality of the distribution and of course it defines its support.

As stated above, distribution defined by fN
�

x |q
�

appeared in 1997 in [4] in basically non-
commutative context. It turns out to be important both for classical and noncommutative prob-
abilists as well as for physicists. This distribution has been ’accustomed’ i.e. equivalent form of the
density and methods of simulation of i.i.d. sequences drawn from it are e.g. presented in [18].
Distribution fCN , although known earlier in nonprobabilistic context, appeared (as an important
probability distribution) in the paper of W. Bryc [1] in a classical context as a conditional distri-
bution of certain Markov sequence. In the following section we will briefly recall basic properties
of these distributions as well as of so called q−Hermite polynomials (a generalization of ordinary
Hermite polynomials). To do this we have to refer to notation and some of the results of q−series

1299



theory.

The paper is organized as follows. In section 2 after recall some of the results of q−series theory
we present definition of multivariate q−Normal distribution. The following section presents main
result. The last section contains lengthy proofs of the results from previous section.

2 Definition of multivariate q-Normal and some related distributions

2.1 Auxiliary results

We will use traditional notation of q−series theory i.e. [0]q = 0; [n]q = 1 + q + . . . + qn−1 =

1−qn

1−q
, [n]q! =

∏n
i=1 [i]q , with [0]q! = 1,

�n
k

�

q
=

(

[n]q!

[n−k]q![k]q!
, n≥ k ≥ 0

0 , otherwise
. It will be useful

to use so called q−Pochhammer symbol for n ≥ 1 :
�

a|q
�

n =
∏n−1

i=0

�

1− aqi
�

, with
�

a|q
�

0 = 1 ,
�

a1, a2, . . . , ak|q
�

n =
∏k

i=1

�

ai|q
�

n. Often
�

a|q
�

n as well as
�

a1, a2, . . . , ak|q
�

n will be abbreviated to
(a)n and

�

a1, a2, . . . , ak
�

n , if it will not cause misunderstanding.

It is easy to notice that
�

q
�

n =
�

1− q
�n [n]q! and that

�n
k

�

q
=







(q)n
(q)n−k(q)k

, n≥ k ≥ 0

0 , otherwise
. The above mentioned quantities were defined for

�

�q
�

� < 1.

Note that for q = 1 [n]1 = n,
�

n1
�

!= n!, (a|1)n = (1− a)n and
�n

i

�

1
=
�n

i

�

.

Let us also introduce two functionals defined on functions g : R−→ C,



g




2
L =

∫

R

�

�g (x)
�

�

2
fN (x) d x ,



g




2
C L =

∫

R

�

�g (x)
�

�

2
fCN
�

x |y,ρ, q
�

d x

and sets:

L
�

q
�

=
¦

g : R−→ C :


g




L <∞
©

,

C L
�

y,ρ, q
�

= {g : R−→ C :


g




C L <∞}.

Spaces (L
�

q
�

,‖.‖L) and
�

C L
�

y,ρ, q
�

,‖.‖C L
�

are Hilbert spaces with the usual definition of scalar
product.

Let us also define the following two sets of polynomials:

-the q−Hermite polynomials defined by

Hn+1(x |q) = xHn(x |q)− [n]qHn−1(x |q), (2.1)

for n≥ 1 with H−1(x |q) = 0, H0(x |q) = 1, and

-the so called Al-Salam-Chihara polynomials defined by the relationship for n≥ 0 :

Pn+1(x |y,ρ, q) = (x −ρ yqn)Pn(x |y,ρ, q)− (1−ρ2qn−1)[n]qPn−1(x |y,ρ, q), (2.2)

with P−1
�

x |y,ρ, q
�

= 0, P0
�

x |y,ρ, q
�

= 1.
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Polynomials (2.1) satisfy the following very useful identity originally formulated for so called contin-
uous q−Hermite polynomials hn (can be found in e.g. [7] Thm. 13.1.5) and here below presented
for polynomials Hn using the relationship

hn
�

x |q
�

=
�

1− q
�n/2 Hn





2x
p

1− q
|q



 , n≥ 1, (2.3)

Hn
�

x |q
�

Hm
�

x |q
�

=
min(n,m)
∑

j=0

�

m

j

�

q

�

n

j

�

q

�

j
�

q!Hn+m−2k
�

x |q
�

. (2.4)

It is known (see e.g. [1]) that q−Hermite polynomials constitute an orthogonal base of L
�

q
�

while
from [3] one can deduce that

�

Pn
�

x |y,ρ, q
�	

n≥−1 constitute an orthogonal base of C L
�

y,ρ, q
�

.
Thus in particular 0 =

∫

S(q) P1
�

x |y,ρ, q
�

fCN
�

x |y,ρ, q
�

d x = E
�

X |Y = y
�

−ρ y . Consequently, if

Y has also q−Normal distribution, then EX Y = ρ.

It is known (see e.g. [7] formula 13.1.10) that

sup
x∈S(q)

�

�Hn
�

x |q
�

�

�≤Wn
�

q
��

1− q
�−n/2 , (2.5)

where

Wn
�

q
�

=
n
∑

i=0

�

n

i

�

q
. (2.6)

We will also use Chebyshev polynomials of the second kind Un (x), that is Un (cosθ) = sin(n+1)θ
sinθ

and ordinary (probabilistic) Hermite polynomials Hn (x) i.e. polynomials orthogonal with respect
to 1p

2π
exp(−x2/2). They satisfy 3−term recurrences:

2xUn (x) = Un+1 (x) + Un−1 (x) , (2.7)

xHn (x) = Hn+1 (x) + nHn−1 (2.8)

with U−1 (x) = H−1(x) = 0, U0 (x) = H1 (x) = 1.

Some immediate observations concerning q-Normal and (y,ρ, q)−Conditional Normal distributions
are collected in the following Proposition:

Proposition 1. 1. fCN
�

x |y, 0, q
�

= fN (x |q).
2. ∀n≥ 0 : Hn (x |0) = Un (x/2) , Hn (x |1) = Hn (x) .

3. ∀n ≥ 0 : Pn
�

x |y, 0, q
�

= Hn(x |q), Pn(x |y,ρ, 1) = (1 − ρ2)n/2Hn

�

x−ρ yp
1−ρ2

�

, Pn
�

x |y,ρ, 0
�

=

Un (x/2)−ρ yUn−1 (x/2) +ρ2Un−2 (x/2) .

4. fN (x |0) =
1

2π

p

4− x2 I<−2,2> (x) , fN
�

x |q
�

−→
q→1−

1p
2π

exp
�

−x2/2
�

pointwise.

5. fCN
�

x |y,ρ, 0
�

= (1−ρ2)
p

4−x2

2π
�

(1−ρ2)2−ρ(1+ρ2)x y+ρ2(x2+y2)
� I<−2,2> (x) , fCN

�

x |y,ρ, q
�

−→
q→1−

1p
2π(1−ρ2)

exp
�

−(x−ρ y)2

2(1−ρ2)

�

pointwise.
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Proof. 1. Is obvious. 2. Follows observation that (2.1) simplifies to (2.7) and (2.8) for q = 0 and q
= 1 respectively. 3. First two assertions follow either direct observation in case of Pn

�

x |y,ρ, 0
�

or

comparison of (2.2) and (2.8) considered for x −→ (x − ρ y)/
p

1−ρ2 and then multiplication of

both sides by
�

1−ρ2
�(n+1)/2

. Third assertion follows following observations: P−1
�

x |y,ρ, 0
�

= 0,

P0
�

x |y,ρ, 0
�

= 1, P1
�

x |y,ρ, 0
�

= x−ρ y , P2
�

x |y,ρ, 0
�

= x(x−ρ y)−
�

1−ρ2
�

, Pn+1
�

x |y,ρ, 0
�

= x Pn
�

x |y,ρ, 0
�

− Pn−1
�

x; y,ρ, 0
�

for n≥ 1 which is an equation (2.7) with x replaced by x/2.

4. 5. First assertions are obvious. Rigorous prove of pointwise convergence of respective densities
can be found in work of [9]. To support intuition we will sketch the proof of convergence in distri-
bution of respective distributions. To do this we apply 2. and 3. and see that ∀n ≥ 1 Hn

�

x |q
�

−→

Hn (x) , and Pn(x |y,ρ, q) −→ (1− ρ2)n/2Hn

�

x−ρ yp
1−ρ2

�

as q → 1−. Now keeping in mind that fam-

ilies
�

Hn
�

x |q
�	

n≥0 and
�

Pn
�

x |y,ρ, q
�	

≥0 are orthogonal with respect to distributions defined by
respectively fN and fCN we deduce that distributions defined by fN and fCN tend to normal N (0,1)
and N

�

ρ y,
�

1−ρ2
��

distributions weakly as q −→ 1− since both N (0, 1) and N
�

ρ y,
�

1−ρ2
��

are defined by their moments, which are defined by polynomials Hn, and Pn.

2.2 Multidimensional q−Normal and related distributions

Before we present definition of the multidimensional q−Normal and related distributions, let us
generalize the two discussed above one-dimensional distributions by introducing (m,σ2, q)−Normal
distribution as the distribution with the density fN ((x −m)/σ|q)/σ for m ∈ R, σ > 0, q ∈ (−1,1].
That is if X ∼ (m,σ2, q)−Normal then (X −m)/σ ∼ q−Normal.

Similarly let us extend definition of (y,ρ, q)−Conditional Normal by introducing for m ∈ R, σ > 0,
q ∈ (−1, 1],

�

�ρ
�

� < 1, (m,σ2, y,ρ, q)-Conditional Normal distribution as the distribution whose
density is equal to fCN

�

(x −m)/σ|y,ρ, q
�

/σ.

Let m,σ ∈ Rd and ρ ∈ (−1, 1)d−1 , q ∈ (−1, 1]. Now we are ready to introduce a multidimensional
q−Normal distribution Nd

�

m,σ2,ρ|q
�

.

Definition 1. Multidimensional q−Normal distribution Nd

�

m,σ2,ρ|q
�

, is the continuous distribu-
tion in Rd that has density equal to

g
�

x|m,σ2,ρ,q
�

= fN

�

(x1−m1

σ1
|q
� d−1
∏

i=1

fCN

�

x i+1−mi+1

σi+1
|
x i −mi

σi
,ρi , q

�

/

d
∏

i=1

σi

where x=
�

x1, . . . , xd
�d , m=

�

m1, . . . , md
�

, σ2=
�

σ2
1, . . . ,σ2

d

�

, ρ = (ρ1, . . . ,ρd−1).

As an immediate consequence of the definition we see that supp(Nd(m,σ2|q)) = m+ S
�

q
�

. One
can also easily see that m is a shift parameter and σ is a scale parameter. Hence in particular
EX=m. In the sequel we will be mostly concerned with distributions Nd(0,1,ρ|q).
Remark 1. Following assertion 1. of Proposition 1 we see that distribution Nd

�

0,1,0|q
�

is the prod-
uct distribution of d i.i.d. q−Normal distributions. Another words "lack of correlation means in-
dependence" in the case of multidimensional q−Normal distributions. More generally if the se-
quence ρ = (ρ1, . . . ,ρd−1) contain, say, r zeros at, say, positions t1, . . . , tr then the distribution of
Nd
�

0,1,ρ
�

is a product distribution of r+1 independent multidimensional q−Normal distributions:
Nt1

�

0,1, (ρ1, . . . ,ρ t1−1)
�

, . . . , Nd−tr

�

0,1, (ρ tr+1, . . . ,ρ td

�

).
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Thus in the sequel all considered vectors ρ will be assumed to contain only nonzero elements.

Let us introduce the following functions (generating functions of the families of polynomials):

ϕ
�

x , t|q
�

=
∞
∑

i=0

t i

[i]q!
Hi
�

x |q
�

, (2.9)

τ
�

x , t|y,ρ, q
�

=
∞
∑

i=0

t i

[i]q!
Pi
�

x |y,ρ, q
�

. (2.10)

The basic properties of the discussed distributions will be collected in the following Lemma that
contains facts from mostly [7] and the paper [3].

Lemma 1. i) For n, m≥ 0 :
∫

S(q)
Hn
�

x |q
�

Hm
�

x |q
�

fN
�

x |q
�

d x =

¨

0 when n 6= m
[n]q! when n= m

.

ii) For n≥ 0 :
∫

S(q)
Hn
�

x |q
�

fCN
�

x |y,ρ, q
�

d x = ρnHn
�

y|q
�

.

iii) For n, m≥ 0 :
∫

S(q)
Pn
�

x |y,ρ, q
�

Pm
�

x |y,ρ, q
�

fCN
�

x |y,ρ, q
�

d x =

¨

0 when n 6= m
�

ρ2
�

n
[n]q! when n= m

.

iv)
∫

S(q)
fCN
�

x |y,ρ1, q
�

fCN
�

y|z,ρ2, q
�

d y = fCN
�

x |z,ρ1ρ2, q
�

.

v) For |t|,
�

�q
�

�< 1 :
∞
∑

i=0

Wi
�

q
�

t i

�

q
�

i
=

1

(t)2∞
,
∞
∑

i=0

W 2
i

�

q
�

t i

�

q
�

i
=

�

t2
�

∞

(t)4∞
,

convergence is absolute, where Wi
�

q
�

is defined by (2.6).

vi) For (1− q)x2 ≤ 2 and ∀(1− q)t2 < 1 :

ϕ
�

x , t|q
�

=
∞
∏

k=0

�

1−
�

1− q
�

x tqk +
�

1− q
�

t2q2k
�−1

,

convergence (2.9) is absolute in t & x and uniform in x. Moreover ϕ
�

x , t|q
�

is positive and
∫

S(q)ϕ
�

x , t|q
�

fN
�

x |q
�

d x = 1. ϕ (t, x |1) = exp
�

x t − t2/2
�

.

vii) For (1− q)max(x2, y2)≤ 2,
�

�ρ
�

�< 1 and ∀(1− q)t2 < 1 :

τ
�

x , t|y,ρ, q
�

=
∞
∏

k=0

�

1−
�

1− q
�

ρ y tqk +
�

1− q
�

ρ2 t2q2k
�

�

1−
�

1− q
�

x tqk +
�

1− q
�

t2q2k
� ,
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convergence (2.10) is absolute in t & x and uniform in x. Moreover τ
�

x , t|θ ,ρ, q
�

is positive and
∫

S(q)τ
�

x , t|y,ρ, q
�

fCN
�

x |y,ρ, q
�

d x = 1.

τ
�

x , t|y,ρ, 1
�

= exp
�

t
�

x −ρ y
�

− t2(1−ρ2)/2
�

.

viii) For (1− q)max(x2, y2)≤ 2,
�

�ρ
�

�< 1 :

fCN
�

x |y,ρ, q
�

= fN
�

x |q
�

∞
∑

n=0

ρn

[n]q!
Hn(x |q)Hn(y|q) (2.11)

and convergence is absolute t, y & x and uniform in x and y.

Proof. i) It is formula 13.1.11 of [7] with obvious modification for polynomials Hn instead of hn
(compare (2.3)) and normalized weight function (i.e. fN ) ii) Exercise 15.7 of [7] also in [1], iii)
Formula 15.1.5 of [7] with obvious modification for polynomials Pn instead of pn

�

x |y,ρ, q
�

=

(1− q)n/2P
�

2xp
1−q
| 2yp

1−q
,ρ, q

�

and normalized weight function (i.e. fCN ), iv) see (2.6) of [3]. v)

Exercise 12.2(b) and 12.2(c) of [7]. vi)-viii) The exact formulae are known and are given in e.g.
[7] (Thm. 13.1.1, 13.1.6) and [10] (3.6, 3.10). Absolute convergence of ϕ and τ follow (2.5) and
v). Positivity of ϕ and τ follow formulae 1−

�

1− q
�

x tqk +
�

1− q
�

t2q2k = (1− q)(tqk − x/2)2 +
1−(1−q)x2/4 and 1−

�

1− q
�

ρ y tqk+
�

1− q
�

ρ2 t2q2k = (1−q)ρ2(qk t− y/(2ρ))2+1−(1−q)y2/4.
Values of integrals follow (2.9) and (2.10) and the fact that

�

Hn
	

and
�

Pn
	

are orthogonal bases in
spaces L

�

q
�

and C L
�

y,ρ, q
�

.

Corollary 1. Every marginal distribution of multidimensional q−Normal distribution Nd

�

m,σ2,ρ|q
�

is multidimensional q−Normal. In particular every one-dimensional distribution is q−Normal. More
precisely i−th coordinate of Nd

�

m,σ2,ρ|q
�

− vector has (mi ,σ
2
i , q)− Normal distribution.

Proof. By considering transformation (X1, . . . , Xd)−→ (
X1−m1

σ1
, . . . , Xd−md

σd
) we reduce considerations

to the case Nd
�

0,1,ρ|q
�

. First let us consider d − 1 dimensional marginal distributions. The asser-
tion of Corollary is obviously true since we have assertion iv) of the Lemma 1. We can repeat this
reasoning and deduce that all d − 2, d − 3, . . . , 2 dimensional distributions are multidimensional
q−Normal. The fact that 1− dimensional marginal distributions are q−normal follows the fact that
fCN
�

y|x ,ρ, q
�

is a one-dimensional density and integrates to 1.

Corollary 2. If X= (X1, . . . , Xd)∼ Nd
�

m,1,ρ|q
�

, then

i) ∀n ∈ N, 1≤ j1 < j2 . . .< jm < i ≤ d :

X i|X jm , . . . , X j1 ∼ fCN

�

x i|x jm ,
∏i−1

k= jm
ρk, q

�

. Thus in particular

E
�

Hn
�

X i −mi
�

|X j1 , . . . , X jm

�

=







i−1
∏

k= jm

ρk







n

Hn

�

X jm −m jm

�

and var
�

X i|X j1 , . . . , X jm

�

= 1−
�

∏i−1
k= jm

ρk

�2
.

ii) ∀n ∈ N, 1≤ j1 < . . . jk < i < jm < . . .< jh ≤ d :

X i|X j1 , . . . X jk , X jm , . . . , X jh ∼ fN
�

x i|q
�

∞
∏

l=0

hl

�

x jk , x jm ,ρ∗kρ
∗
m, q
�

hl(x i , x jk ,ρ∗k, q)hl(x i , x jm ,ρ∗m, q)
,
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where hl
�

x , y,ρ, q
�

= ((1− ρ2q2l)2 − (1− q)ρql
�

1+ρ2q2l
�

x y + (1− q)ρ2q2l(x2 + y2)), ρ∗k =
∏i−1

i= jk
ρi , ρ

∗
m =

∏ jm−1
i=i ρi . Thus in particular this density depends only on X jk and X jm .

Proof. i) As before, by suitable change of variables we can work with distribution Nd
�

0,1,ρ|q
�

.
Then following assertion iii) of the Lemma 1 and the fact that m− dimensional marginal, with
respect to which we have to integrate is also multidimensional q−Normal and that the last factor in

the product representing density of this distribution is fCN

�

x i|x jm ,
∏i−1

k= jm
ρk, q

�

we get i).

ii) First of all notice that joint distribution of (X j1 , . . . X jk , X i , X jm , . . . , X jh) depends only on x jk , x i , x jm
since sequence X i , i = 1 . . . , n is Markov. It is also obvious that the density of this distribution exist
and can be found as a ratio of joint distribution of

�

X jk , X i , X jm

�

divided by the joint density of
�

X jk , X jm

�

. Keeping in mind that X jk , X i , X jm have the same marginal fN and because of assertion iv
of Lemma 1 we get the postulated form.

Having Lemma 1 we can present Proposition concerning mutual relationship between spaces L
�

q
�

and C L
�

y,ρ, q
�

defined at the beginning of previous section.

Proposition 2. ∀q ∈ (−1, 1), y ∈ S
�

q
�

,
�

�ρ
�

� < 1 : L
�

q
�

= C L
�

y,ρ, q
�

. Besides ∃C1
�

y,ρ, q
�

,
C2
�

y,ρ, q
�

:


g




L ≤ C1



g




C L and


g




C L ≤ C2



g




L for every g ∈ L
�

q
�

.

Proof. Firstly observe that : (1− ρ2q2k)2 − (1− q)ρqk(1+ ρ2q2k)x y + (1− q)ρ2(x2 + y2)q2k =

(1 − q)ρ2q2k
�

x − y ρqk+ρ−1q−k

2

�2
+ (1 − (1 − q)y2/4)(1 − ρ2q2k)2 which is elementary to prove.

We will use modification of the formula (2.11) that is obtained from it by dividing both sides by
fN
�

x |q
�

. That is formula:

∞
∏

k=0

�

1−ρ2qk
�

(1−ρ2q2k)2− (1− q)ρqk(1+ρ2q2k)x y + (1− q)ρ2(x2+ y2)q2k

=
∞
∑

n=0

ρn

[n]q!
Hn
�

x |q
�

Hn
�

y|q
�

.

Now we use (2.5) and assertion v) of Lemma 1 and get ∀x , y ∈ S
�

q
�

:

fCN
�

x |y,ρ, q
�

≤ fN
�

x |q
�

�

ρ2
�

∞
�

ρ
�4
∞

.

Hence C2 =
(ρ2)∞
(ρ)4∞

and


g




2
C L ≤



g




2
L , for every g ∈ L

�

q
�

. Thus g ∈ C L
�

y,ρ, q
�

.

Conversely to take a function g ∈ C L
�

y,ρ, q
�

. We have

∞>
∫

S(q)

�

�g (x)
�

�

2
fCN
�

x |y,ρ, q
�

d x .

Now we keeping in mind that (1−ρ2q2k)2 − (1− q)ρqk(1+ρ2q2k)x y + (1− q)ρ2(x2 + y2)q2k is
a quadratic function in x , we deduce that it reaches its maximum for x ∈ S

�

q
�

on the end points of
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S
�

q
�

. Hence we have

(1−ρ2q2k)2− (1− q)ρqk(1+ρ2q2k)x y + (1− q)ρ2(x2+ y2)q2k

≤ (1+ρ2q2k +
p

1− q
�

�ρ y
�

�

�

�q
�

�

k
)2.

Since for ∀y ∈ S
�

q
�

,
�

�ρ
�

� ,
�

�q
�

�< 1 :

∞
∏

k=0

(1+ρ2q2k +
p

1− q
�

�ρ y
�

�

�

�q
�

�

k
)2 <∞

and we see that

∞>
∫

S(q)

�

�g (x)
�

�

2
fCN
�

x |y,ρ, q
�

d x =

∫

S(q)

�

�g (x)
�

�

2
fN
�

x |q
�

×
∞
∏

k=0

1−ρ2qk

(1−ρ2q2k)2− (1− q)ρqk(1+ρ2q2k)x y + (1− q)ρ2(x2+ y2)q2k
d x

≥

�

ρ2
�

∞
∏∞

k=0(1+ρ
2q2k +

p

1− q
�

�ρ y
�

�

�

�q
�

�

k
)2

∫

S(q)

�

�g (x)
�

�

2
fN
�

x |q
�

d x .

So g ∈ L
�

q
�

.

Remark 2. Notice that the assertion of Proposition 2 is not true for q = 1 since then the respective
densities are N (0,1) and N

�

ρ y, 1−ρ2
�

.

Remark 3. Using assertion of Proposition 2 we can rephrase Corollary 2 in terms of contraction
R
�

ρ, q
�

, (defined by (2.12), below). For g ∈ L
�

q
�

we have

E
�

g
�

X i
�

|X j1 , . . . , X jm

�

=R







i−1
∏

k= jm

ρk, q







�

g
�

X jm

��

,

where R
�

ρ, q
�

is a contraction on the space L
�

q
�

defined by the formula (using polynomials Hn
for
�

�ρ
�

� ,
�

�q
�

�< 1) :

L
�

q
�

3 f =
∞
∑

i=0

aiHi
�

x |q
�

−→R
�

ρ, q
��

f
�

=
∞
∑

i=0

aiρ
iHi
�

x |q
�

. (2.12)

By the way it is known that R is not only contraction but also ultra contraction i.e. mapping L2 on
L∞ (Bożejko).

We have also the following almost obvious observation that follows, in fact, from assertion iii) of
the Lemma 1.

Proposition 3. Suppose that X=(X1, . . . , Xd)∼ Nd
�

0,1,ρ|q
�

and g ∈ L
�

q
�

. Assume that for some
n ∈ N, and 1≤ j1 < j2 . . .< jm < i ≤ d.

i) If E
�

g
�

X i
�

|X j1 , . . . , X jm

�

=polynomial of degree at most n of X jm , then function g must be also a
polynomial of degree at most n.
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ii) If additionally Eg
�

X i
�

= 0

E((E(g(X i)|X j1 , . . . , X jm)
2)≤ r2Eg2(X i), (Generalized Gebelein’s inequality)

where r =
∏i−1

k= jm
ρk.

Proof. i) The fact that E
�

g
�

X i
�

|X j1 , . . . , X jm

�

is a function of X jm only, is obvious. Since g ∈
L
�

q
�

we can expand it in the series g (x) =
∑

i≥0 ciHi
�

x |q
�

. By Corollary 2 we know that

E
�

g
�

X i
�

|X j1 , . . . , X jm

�

=
∑

i≥0 ci r
iH
�

X jm |q
�

for r =
∏i−1

k= jm
ρk. Now since ci r

i = 0 for i > n
and r 6= 0 we deduce that ci = 0 for i > n.

ii) Suppose g (x) =
∑∞

i=1 giHi(x). We have E(g(X i)|X j1 , . . . , X jm) =
∑∞

i=1 gi r
iHi(Yjm). Hence

E((E(g(X i)|X j1 , . . . , X jm)
2) =

∑∞
i=1 g2

i r2i [i]q!≤ r2
∑∞

i=1 g2
i [i]q!= r2Eg2(X i).

Remark 4. As it follows from the above mentioned definition, the multidimensional q−Normal dis-
tribution is not a true generalization of n−dimensional Normal law Nn (m,˚). It a generalization
of distribution Nn (m,˚) with very specific matrix ˚ namely with entries equal to σii = σ2

i ;σi j =
σiσ j

∏ j−1
k=i ρk for i < j and σi j = σ ji for i > j where σi ; i = 1, . . . , n are some positive numbers

and
�

�ρi

�

�< 1, i = 1, . . . , n− 1.

Proof. Follows the fact that two dimensional q−Normal distribution of say
�

X i/σi , X j/σ j

�

has den-

sity fN
�

x i|q
�

fCN

�

x j|x i ,
∏ j−1

k=i ρk, q
�

if i < j.

Remark 5. Suppose that (X1, . . . , Xn) ∼ Nn
�

m,σ,ρ|q
�

then X1, . . . , Xn form a finite Markov chain
with X i ∼ (mi ,σ

2
i , q)−Normal and transition density X i|X i−1 = y ∼ (mi ,σ

2
i , y,ρi−1, q)-Conditional

Normal distribution

Following assertions vi) and vii) of Lemma 1 we deduce that for ∀t2<1/(1− q),
�

�ρ
�

� < 1 functions
ϕ
�

x , t|q
�

fN
�

x |q
�

and τ
�

x , t|y,ρ, q
�

fCN
�

x |y,ρ, q
�

are densities. Hence we obtain new densities
with additional parameter t. This observation leads to the following definitions:

Definition 2. Let
�

�q
�

� ∈ (−1, 1], t2 < 1/(1 − q), x ∈ S
�

q
�

. A distribution with the density
ϕ
�

x , t|q
�

fN
�

x |q
�

will be called modified
�

t, q
�

−Normal (briefly
�

t, q
�

−MN distribution).

We have immediate observation that follows from assertion vi) of Lemma 1.

Proposition 4. i)
∫

S(q)ϕ
�

y, t|q
�

fN
�

y|q
�

fCN
�

x |y,ρ, q
�

d y = ϕ
�

x , tρ|q
�

fN (x |q)

ii) Let X ∼
�

t, q
�

−MN. Then for n ∈ N : E
�

Hn
�

X |q
��

= tn.

Proof. i) Using assertions vi) and viii) of the Lemma 1 we get:

∫

S(q)
ϕ
�

y, t|q
�

fN
�

y|q
�

fCN
�

x |y,ρ, q
�

d y

= fN
�

x |q
�

∫

S(q)
fN
�

y|q
�

∞
∑

i=1

t i

[i]q!
Hi
�

y|q
�

∞
∑

j=0

ρ j

[ j]q!
H j
�

y|q
�

H j
�

x |q
�

d y.

1307



Now utilizing assertion ii) of the same Lemma we get:
∫

S(q)
ϕ
�

y, t|q
�

fN
�

y|q
�

fCN
�

x |y,ρ, q
�

d y

= fN
�

x |q
�

∞
∑

i=0

�

tρ
�i

[i]q!
Hi
�

x |q
�

= ϕ
�

x , tρ|q
�

fN (x |q).

To get ii) we utilize assertion vi) of the Lemma 1.

In particular we have:

Corollary 3. If X ∼ (t, q)−MN, then EX = t, var (X ) = 1, E
�

(X − t)3
�

=−t
�

1− q
�

, E (X − t)4 =
2+ q− t2

�

5+ 6q+ q2
�

.

Proof. We have x3 = H3
�

x |q
�

+
�

2+ q
�

H1 (x) and H4
�

x |q
�

+ (3 + 2q + q2)H2
�

x |q
�

+ 2 + q =
x4 so E (X − t)3 = E

�

X 3
�

− 3E
�

X 2
�

t + 3E (X ) t2− t3 = t3+
�

2+ q
�

t − 3t
�

1+ t2
�

+ 3t3− t3 =
−t
�

1− q
�

and E (X − t)4 = E
�

X 4
�

−4tE
�

X 3
�

+6t2E
�

X 2
�

−4t3E (X )+ t4 = t4−(3+2q+q2)t2+
2+q−4t

�

t3+
�

2+ q
�

t
�

+6t2
�

t2+ 1
�

−4t4+ t4 which reduces to 2+q− t2
�

5+ 6q+ q2
�

.

In particular kurtosis of
�

t, q
�

−MN distributions is equal to −
�

1− q
�

− t2
�

5+ 6q+ q2
�

. Hence it
is negative and less, for t 6= 0, than that of q−Normal which is also negative (equal to −

�

1− q
�

).

Assertion i) of the Proposition 4 leads to the generalization of the multidimensional q−Normal
distribution that allows different one-dimensional and other marginals.

Definition 3. A distribution in Rd having density equal to

ϕ
�

x1, t|q
�

fN
�

x1|q
�

d−1
∏

i=1

fCN
�

x i+1|x i ,ρi , q
�

,

where x i ∈ S
�

q
�

, ρi ∈ (−1,1)\{0} , i = 1, . . . , d − 1,
�

�q
�

� ∈ (−1,1], t2 < 1/(1− q) will be called
modified multidimensional q-Normal distribution (briefly M MNd(ρ|q, t)).

Reasoning in the similar way as in the proof of Corollary 1 and utilizing observation following from
Proposition 4, we have immediately the following observation.

Proposition 5. Let (X1, . . . , Xd) ∼ M MNd(ρ|q, t). Then every marginal of it is also modified multidi-

mensional q−Normal. In particular ∀i = 1, . . . , d : X i ∼
�

t
∏i−1

k=1ρk, q
�

−MN

Remark 6. Suppose that (X1, . . . Xd)∼ M MNd(ρ|q, t) and define ρ0 = 1, then the sequence X1, . . . Xd

form a non-stationary Markov chain such that X i ∼ ϕ
�

x |t
∏i−1

k=1ρk, q
�

fN
�

x |q
�

with transitional

probability X i+1|X i = y ∼ fCN
�

x |y,ρi , q
�

.

We can define another one-dimensional distribution depending on 4 parameters. We have:
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Definition 4. Let
�

�q
�

� ∈ (−1, 1], t2 < 1/(1− q), x , y ∈ S
�

q
�

,
�

�ρ
�

� < 1. A distribution with the den-
sity τ

�

x , t|y,ρ, q
�

fCN
�

x |y,ρ, q
�

will be called modified
�

y,ρ, t, q
�

−Conditional Normal (briefly
�

y,ρ, t, q
�

−MCN).

We have immediate observation that follows from assertion vii) of Lemma 1.

Proposition 6. Let X ∼
�

y,ρ, t, q
�

−MCN. Then for n ∈ N : E
�

Pn
�

X |y,ρ, q
��

=
�

ρ2
�

n
tn.

Hence in particular one can state the following Corollary.

Corollary 4. EX = ρ y + (1−ρ2)t, var (X ) = (1−ρ2)(1− (1− q)t yρ+ (1− q)t2ρ2).

Proof. Follows expressions for first two Al-Salam-Chihara polynomials. Namely we have:
P1(x |y,ρ, q) = x −ρ y, P2(x |y,ρ, q) = x2− 1+ρ2+ qρ2 y2− xρ y(1+ q).

We can define two formulae for densities of multidimensional distributions in Rd . Namely one of
them would have density of the form

ϕ
�

x1, t|q
�

fN
�

x1|q
�

τ
�

x2, t|x1,ρ1, q
�

d−1
∏

i=1

fCN
�

x i+1|x i ,ρi , q
�

and the other of the form

fN
�

x1|q
�

τ
�

x2, t|x1,ρ1, q
�

d−1
∏

i=1

fCN
�

x i+1|x i ,ρi , q
�

.

However to find marginals of such families of distributions is a challenge and an open question. In
particular are they also of modified conditional normal type?

3 Main Results

In this section we are going to study properties of 3 dimensional case of multidimensional
normal distribution. To simplify notation we will consider vector (Y, X , Z) having distribution
N3((0, 0,0), (1, 1,1), (ρ1,ρ2)|q) that is having density fCN

�

y|x ,ρ1, q
�

fCN (x |z,ρ2, q) fN (z|q). We
start with the following obvious result:

Remark 7. Conditional distribution X |Y, Z has density

φ
�

x |y, z,ρ1,ρ2, q
�

= fN
�

x |q
�

�

ρ2
1,ρ2

2

�

∞
�

ρ2
1ρ

2
2

�

∞

∞
∏

i=0

wk
�

y, z,ρ1ρ2, q
�

wk
�

x , y,ρ1, q
�

wk
�

x , z,ρ2, q
� , (3.1)

where we denoted wk
�

s, t,ρ, q
�

= (1−ρ2q2k)2− (1− q)ρqk(1+ρ2q2k)st +(1− q)ρ2(s2+ t2)q2k.

Proof. It is in fact rewritten version of the proof of assertion ii) of Corollary 2.
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Remark 8. Notice that φ
�

x |y, z,ρ1,ρ2, q
�

is the re-scaled Askey-Wilson density. Namely

φ
�

x |y, z,ρ1,ρ2, q
�

=ψ(
p

1−q
2

x |a, b, c, d) where

a =

p

1− q

2
ρ1(y − i

r

4

1− q
− y2), b =

p

1− q

2
ρ1(y + i

r

4

1− q
− y2),

c=

p

1− q

2
ρ2(z− i

r

4

1− q
− z2), d =

p

1− q

2
ρ2(z+ i

r

4

1− q
− z2).

and ψ(t|a, b, c, d) is a normalized (that is multiplied by a constant so that its integral is 1) weight
function of Askey-Wilson polynomials. Compare e.g. [5] and [7]. Hence our results would concern
properties of Askey - Wilson density and Askey-Wilson polynomials.

Let us denote

gn(y, z,ρ1,ρ2, q) =

∫

S(q)
Hn
�

x |q
�

φ
�

x |y, z,ρ1,ρ2, q
�

.

Remark 9. Following probabilistic interpretation of function gn (as conditional expectation) and
(2.5) we deduce that for

�

�q
�

�< 1, y, z ∈ S
�

q
�

�

�gn
�

y, z,ρ1,ρ2, q
�

�

�≤Wn
�

q
��

1− q
�−n/2 . (3.2)

Our main result is the following

Theorem 1. i) φ
�

x |y, z,ρ1,ρ2|q
�

= fN
�

x |q
�

×
∑∞

n=0
Hn(x |q)
[n]q!

gn
�

y, z,ρ1,ρ2, q
�

, where gn is a polynomial of order n in (y, z).

ii) More over polynomial gn has the following structure ∀n ≥ 1 : gn
�

y, z,ρ1,ρ2, q
�

=
∑n

i=0

�n
i

�

q
ρi

1ρ
n−i
2 Θi,n−i

�

y, z,ρ1ρ2|q
�

, where Θk,l
�

y, z,ρ1ρ2|q
�

is a polynomial in y of order k and

in z of order l. Moreover Θ0,n
�

y, z, 0|q
�

= Hn
�

z|q
�

and Θn,0
�

y, z, 0, q
�

= Hn
�

y|q
�

.

Remark 10. Assertion i) of the Theorem 1 is in fact a generalization of Poisson-Mehler formula (that
is assertion viii) of Lemma 1) for Askey-Wilson density.

Remark 11. Notice also that for q = 1, φ is a density function of normal distribution

N
�

yρ1(1−ρ2
2)+zρ2(1−ρ2

1)
1−ρ2

1ρ
2
2

, (
1−ρ2

1)(1−ρ2
2)

1−ρ2
1ρ

2
2

�

and it is obvious that expectation of any polynomial is a

polynomial in
yρ1(1−ρ2

2)+zρ2(1−ρ2
1)

1−ρ2
1ρ

2
2

. Hence it turns out that this is true for all q−Normal distribu-

tions for q ∈ (−1, 1].

As a Corollary we have the following result.

Corollary 5. Let X= (X1, . . . , Xd)∼ Nd
�

0,1,ρ|q
�

. Let us select indices 1 ≤ j1 < . . . jk < i < jm <
. . .< jh ≤ d. Then

∀n ∈ N : E(Hn
�

X i|q
�

|X j1 , . . . , X jk , X jm , . . . , X jh) = (3.3)
bn/2c
∑

r=0

n−2r
∑

l=0

A(n)r,−bn/2c+r+l Hl

�

X jk |q
�

Hn−2r−l

�

X jm |q
�

,

for
�

n+2
2

��

n+3
2

�

constants (depending only on n, q,ρ and numbers i, jk jm) A(n)r,s ;. r = 0, . . . , bn/2c , s
=−bn/2c+ r, . . . ,−bn/2c+ r + n− 2r.
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Corollary bellow gives detailed form of coefficients A(n)r,s for n= 1, . . . , 4.

Corollary 6. Let X= (X1, . . . , Xd)∼ Nd
�

0,1,ρ|q
�

. Let 1≤ i− 1< i < i+ 1≤ d. Then:

E
�

Hn
�

X i
�

|F6=i

�

=
∑bn/2c

r=0

∑n−2r
l=0 A(n)r,−bn/2c+r+l Hl

�

X i−1|q
�

Hn−2r−l
�

X i+1|q
�

,

where A(n)0,−bn/2c+l =
�n

l

�

q

ρn−l
i−1(ρ2

i )n−lρ
l
i(ρ2

i−1)l
�

ρ2
i−1ρ

2
i

�

n

, l = 0, . . . , n, n = 1 . . . , 4. If n ≤ 3 then A(n)1,−bn/2c+l =

− [n− 1]q ρi−1ρiA
(n)
0,−bn/2c+l , l = 1, . . . , n− 1, If n = 4 then A(4)1, j = − [3]q ρi−1ρiA

(4)
0, j , j = −1, 1 and

A(4)1,0 =− [2]
2
q ρi−1ρiA

(4)
0,0, A(4)2,0 = q(1+ q)ρ2

i−1ρ
2
i A(4)0,0.

In particular :

var
�

X i|X1, . . . , X i−1, X i+1, . . . , Xd
�

=
(1−ρ2

i−1)
�

1−ρ2
i

�

�

1− qρ2
i−1ρ

2
i

� (3.4)

×(1−
�

1− q
�

(X i−1−ρi−1ρiX i+1)
�

X i − X i−1ρi−1ρi
�

�

1−ρ2
i−1ρ

2
i

�2 ). (3.5)

Remark 12. Notice that in general conditional variance
var
�

X i|X1, . . . , X i−1, X i+1, . . . , Xd
�

is not nonrandom indicating that q−Normal distribution does
not behave as Normal in this case, however if we set q = 1 in (3.4) then we get

var
�

X i|X1, . . . , X i−1, X i+1, . . . , Xd
�

=
(1−ρ2

i−1)(1−ρ2
i )

�

1−ρ2
i ρ

2
i−1

� as it should be in the normal case.

Notice that examining the form of coefficients A(n)m,k for n = 1, . . . , 4 we can formulate the following
Hypothesis concerning general form of them:

Conjecture 1. For n ≥ 1, we have: A(n)0,−bn/2c+l =
�n

l

�

q

ρn−l
i−1(ρ2

i )n−lρ
l
i(ρ2

i−1)l
�

ρ2
i−1ρ

2
i

�

n

, l = 0, . . . , n. Moreover for

r = 0, . . . , bn/2c and l = 0, . . . , n− 2r A(n)r,−bn/2c+r+l/A
(n)
0,−bn/2c+l = ρ

r
i−1ρ

r
i Qr,l

�

q
�

, where Qr,l
�

q
�

is a
polynomial in q with coefficients depending only on r and l.

4 Proofs

Proof of the Theorem 1 is based on the properties of the following function Gl,k
�

y, z, t|q
�

=
∑

m≥0
tm

[m]q!
Hm+l

�

y|q
�

Hm+k
�

z|q
�

. We will need some of its properties. Namely we will prove

the following Proposition which is in fact a generalization and reformulation (in terms of polyno-
mials Hn) of an old result of Carlitz. Original result of Carlitz concerned polynomials wn(x |q) =
∑n

i=0

�n
i

�

q
x i and expressions of the form

∑∞
i=0

wi(x |q)wi+k(x |q)t i

(q)n
, compare [7], Exercise 12.3(d) or

[6].

Proposition 7. i) ∀k, l ≥ 0 : Gk,l
�

y, z, t|q
�

= Gl,k
�

z, y, t|q
�

ii) for 1≤ j ≤ k :

Gk,l(y, z, t|q) =
j−1
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i+l(y, z, t|q) (4.1)

+(−1) jq(
j
2)

k
∑

i= j

�

k

i

�

q

�

i− 1

j− 1

�

q
t iGk−i,i+l(y, z, t|q).
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iii)

Gk,0
�

y, z, t|q
�

=
k
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i(y, z, t|q). (4.2)

iv)

Gk,0
�

y, z, t|q
�

=
1

1− qk(k−1) t2k

k−1
∑

i=0

(−1)iq(
i
2)
�

k

i

�

q
t iτk,i

�

y, z, t|q
�

, (4.3)

where τk,i
�

y, z, t|q
�

= (Hk−i(y|q)G0,i(y, z, t|q) + (−1)kq(
k
2) tkHk−i(z|q)Gi,0(y, z, t|q)).

Proof. i) is obvious.

iii) Take j = k and l = 0 in ii).

ii) To prove (4.1) we will use formula
Hn+m

�

x |q
�

= Hn
�

x |q
�

Hm(x |q)−
∑min(n,m)

j=1

�n
j

�

q

�m
j

�

q

�

j
�

q!Hn+m−2 j(x |q). We have

Gk,l
�

y, z, t
�

=
∑

m≥0

tm

[m]q!
Hm+k

�

y|q
�

Hm+l
�

z|q
�

=
∑

m≥0

tm

[m]q!
(Hk

�

y|q
�

Hm(y|q)

−
min(k,m)
∑

j=1

�

k

j

�

q

�

m

j

�

q

�

j
�

q!Hk+m−2 j(y|q))Hm+l
�

z|q
�

= Hk
�

y|q
�

G0,l(y, z, t)−
k
∑

j=1

t j
�

k

j

�

q

∞
∑

m= j

tm− j

�

m− j
�

q!
Hk+(m− j)− j(y|q)Hl+ j+(m− j)(z|q)

= Hk
�

y|q
�

G0,l(y, z, t)−
k
∑

j=1

t j
�

k

j

�

q
Gk− j,l+ j(y, z, t).

Hence let us assume that (4.1) is true for j = 1,2, . . . , m. We have after applying just obtained
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formula (for Gk,l) applied for k−> k−m and l−> m+ l :

Gk,l(y, z, t) =
m−1
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i+l(y, z, t)

+(−1)mq(
m
2)

k
∑

i=m

�

k

i

�

q

�

i− 1

m− 1

�

q
t iGk−i,i+l(y, z, t)

=
m−1
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i+l(y, z, t)

+(−1)mq(
m
2)
�

k

m

�

q
tm(Hk−m(y|q)G0,m+l(y, z, t)

−
k−m
∑

i=1

�

k−m

i

�

q
t iGk−m−i,l+m+i(y, z, t))

+(−1)mq(
m
2)

k
∑

i=m+1

�

k

i

�

q

�

i− 1

m− 1

�

q
t iGk−i,i+l(y, z, t)

Now since
� k

m

�

q

�k−m
i−m

�

q
−
�k

i

�

q

� i−1
m−1

�

q
=
�k

i

�

q
(
� i

m

�

q
−
� i−1

m−1

�

q
) = qm�k

i

�

q

�i−1
m

�

q
and

�m
2

�

+ m =
�m+1

2

�

we have

Gk,l(y, z, t) =
m
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i+l(y, z, t)

−(−1)mq(
m
2)

k
∑

i=m+1

(
�

k

m

�

q

�

k−m

i−m

�

q
−
�

k

i

�

q

�

i− 1

m− 1

�

q
)t iGk−i,l+i(y, z, t)

=
m
∑

i=0

(−1)i
�

k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i+l(y, z, t)

+(−1)m+1q(
m+1

2 )
k
∑

i=m+1

�

k

i

�

q

�

i− 1

m

�

q
t iGk−i,i+l(y, z, t)

iv) For k = 0 this is obviously true. Now let us iterate (4.2) once, applied however, for G0,k. We will
get then

Gk,0
�

y, z, t|q
�

=
∑k−1

i=0 (−1)i
�k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i(y, z, t|q) + (−1)k q(

k
2) tkG0,k

�

y, z, t|q
�

=
∑k−1

i=0 (−1)i
�k

i

�

q
q(

i
2) t iHk−i(y|q)G0,i(y, z, t|q)+

(−1)k q(
k
2) tk(

∑k−1
i=0 (−1)i

�k
i

�

q
q(

i
2) t iHk−i(z|q)Gi,0(y, z, t|q)) + qk(k−1) t2kGk.0

�

y, z, t|q
�

. Thus we see

that since for all i ≤ k− 1 Gi,0 and G0,i and are of the claimed form then from (4.3) it follows that
Gk,0 has the claimed form.

Now we are ready to present the proof if Theorem 1.

Proof of the Theorem 1. First notice that following (3.2) and assertion v of Lemma 1 we see that

series
∑

n≥0
Hn(x |q)gn(y,z,ρ1,ρ2,q)

[n]q!
converges absolutely. To prove i) we will use formula viii) of Lemma
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1, that is Poisson-Mehler expansion formula. Following (3.1) we see that

φ
�

x |y, z,ρ1,ρ2, q
�

= fN
�

x |q
�

∞
∑

i=0

ρi
1

[i]q!
Hi
�

x |q
�

Hi
�

y|q
�

×
∞
∑

i=0

ρi
2

[i]q!
Hi
�

x |q
�

Hi
�

z|q
�

/

∞
∑

i=0

ρi
1ρ

i
2

[i]q!
Hi
�

y|q
�

Hi
�

z|q
�

.

First, let us concentrate on the quantity:

R
�

x , y, z,ρ1,ρ2|q
�

=
∑

n≥0

ρn
1

[n]q!
Hn
�

x |q
�

Hn
�

y|q
�

×
∑

m≥0

ρn
2

[n]q!
Hn
�

x |q
�

Hn
�

z|q
�

.

We will apply identity (2.4), distinguish two cases n+m is even and n+m is odd, denote n+m−2 j
= 2k or n+m− 2 j = 2k+ 1 depending om the case and sum over the set of {(n, m) : n+m− 2k ≤
2min(n, m), m, n≥ 0}∪{(n, m) : n+m− 2k− 1≤ 2min(n, m), m, n≥ 0}. We have

R
�

x , y, z,ρ1,ρ2|q
�

=
∑

n,m≥0

ρn
1ρ

m
2

[n]q! [m]q!
Hn
�

y|q
�

Hm
�

z|q
�

min(n,m)
∑

j=0

�

n

j

�

q

�

m

j

�

q

�

j
�

q!Hn+m−2 j
�

x |q
�

=
∞
∑

k=0

H2k(x |q)
[2k]q!

∞
∑

j=0

2k+ j
∑

m= j

[2k]q!ρm
1 ρ

2k+2 j−m
2

�

m− j
�

q!
�

2k− (m− j)
�

q!
�

j
�

q
Hm(y|q)H2k+2 j−m(z|q)

+
∞
∑

k=0

H2k+1(x |q)
[2k+ 1]q!

∞
∑

j=0

2k+1+ j
∑

m= j

[2k+ 1]q!ρi+ j
1 ρ

2k+1−i+ j
2

�

j
�

q
�

m− j
�

q!
�

2k+ 1− (m− j)
�

q!
Hm
�

y|q
�

H2k+1+2 j−m
�

z|q
�

=
∞
∑

k=0

H2k(x |q)
[2k]q!

∞
∑

j=0

2k
∑

i=0

[2k]q!ρi+ j
1 ρ

2k−i+ j
2

�

j
�

q! [i]q![2k− i]q!
Hi+ j

�

y|q
�

H2k−i+ j
�

z|q
�

+
∞
∑

k=0

H2k+1(x |q)
[2k+ 1]q!

∞
∑

j=0

2k+1
∑

i=0

[2k+ 1]q!ρi+ j
1 ρ

2k+1−i+ j
2

�

j
�

q! [i]q! [2k+ 1− i]q!
Hi+ j

�

y|q
�

H2k+1+ j−i
�

z|q
�

We get then

R
�

x , y, z,ρ1,ρ2|q
�

=
∞
∑

k=0

H2k(x |q)
[2k]q!

2k
∑

i=0

�

2k

i

�

q
ρi

1ρ
2k−i
2

∞
∑

j=0

(ρ1ρ2)
j

�

j
�

q!
Hi+ j(y|q)H2k−i+ j(z|q)

+
∞
∑

k=0

H2k+1(x |q)
[2k+ 1]q!

2k+1
∑

i=0

�

2k+ 1

i

�

q
ρi

1ρ
2k+1−i
2

∞
∑

j=0

(ρ1ρ2)
j

�

j
�

q!
Hi+ j(y|q)H2k+1−i+ j(z|q)

=
∞
∑

n=0

Hn
�

x |q
�

[n]q!

n
∑

i=0

�

n

i

�

q
ρi

1ρ
n−i
2

∞
∑

j=0

(ρ1ρ2)
j

�

j
�

q!
Hi+ j(y|q)Hn−i+ j(z|q)

Using introduced in Proposition 7 function Gl,k
�

y, z, t|q
�

=
∑

m≥0
tm

[m]q!
Hm+l

�

y|q
�

Hm+k
�

z|q
�

we

can express both
∑∞

i=0
ρi

1ρ
i
2

[i]q!
Hi
�

y|q
�

Hi
�

z|q
�

= G0,0(y, z,ρ1ρ2|q) and
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R
�

x , y, z,ρ1,ρ2|q
�

=
∑∞

n=0
Hn(x |q)
[n]q!

∑n
i=0

�n
i

�

q
ρi

1ρ
n−i
2 Gi,n−i

�

y, z,ρ1ρ2|q
�

. Our Theorem will be

proved if we will be able to show that ∀l, k ≥ 0 : Gl,k
�

y, z, t|q
�

= G0,0
�

y, z, t|q
�

Θl,k
�

y, z, t|q
�

where Θl,k is a polynomial of order a l in y k in z. This fact follows by induction from formula (4.3)
of assertion iv) of the Proposition 7 since it expresses Gk,0 in terms of k functions Gi,0 and G0,i for
i = 0, . . . , k− 1 and the fact that all Gl,k can be expressed by Gi,0 and G0,i ; i ≤ k+ l.

Proof of Corollary 5. By Theorem 1 we know that regression
E(Hn

�

X i|q
�

|X j1 , . . . , X jk , X jm , . . . , X jh) is a polynomial in X jk and X jm of order at most n. To analyze
the structure of this polynomial let us present it in the form

∑n
s=0 as,nHs

�

X jm |q
�

where coefficients
as,n are some polynomials of X jk . Now let us take conditional expectation with respect to X j1 , . . . , X jk
of both sides. On one hand we get

E
�

Hn
�

X i|q
�

|X j1 , . . . , X jk

�

=







i−1
∏

m= jk

σm







n

Hn

�

X jk

�

on the other we get

n
∑

s=0

as,n







jm−1
∏

m= jk

σm







s

Hs

�

X jk|q
�

.

Since as,n are polynomials in X jk of order at most n, we can present them in the form

as,n =
n
∑

t=0

β t,sHt

�

x jk |q
�

.

Thus we have equality:






i−1
∏

m= jk

σm







n

Hn

�

x jk

�

=
n
∑

s=0







jm−1
∏

m= jk

σm







s
n
∑

t=0

β t,sHt

�

x jk

�

Hs

�

x jk

�

.

Now we use the identity (2.4) and get






i−1
∏

m= jk

σm







n

Hn

�

x jk |q
�

=
n
∑

s=0

n
∑

t=0

β t,s







jm−1
∏

m= jk

σm







s

×
min(t,s)
∑

m=0

�

t

m

�

q

�

s

m

�

q
[m]q!Ht+s−2m

�

x jk |q
�

.

Hence we deduce that β t,s = 0 for t + s > n , t + s = n− 1, n− 3, . . . ,. To count the number of

coefficients A(n)j,k observe that we have n+1 coefficients A(n)0,k since k ranges from −
�

n
2

�

to −
�

n
2

�

+n

, n− 1 coefficients A(n)1,k where k ranges from −bn/2c+ 1 to −bn/2c+ n− 1 and so on.

Proof of Corollary 6. The proof is based on the idea of writing down system of
�

n+2
2

��

n+3
2

�

( n

= 1, . . . , 4 ) linear equations satisfied by coefficients A(n)m,k. These equations are obtained according
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to the similar pattern. Namely we multiply both sides of identity (3.3) by Hm
�

X i−1
�

and Hk
�

X i
�

and calculate conditional expectation of both sides with respect to F<i or with respect to F>i re-
membering that E

�

Hm
�

X i+1
�

|F<i
�

= ρm
i−1ρ

m
i Hm

�

X i−1
�

and E
�

Hm
�

X i
�

|F<i
�

= ρm
i−1Hm

�

X i−1
�

and similar formulae for F>i . We expand both sides with respect to Hs, s = n+ m+ k − 2t, t =
0, . . . , b(n+m+ k)/2c. On the way we utilize (2.4) and compare coefficients standing by Hs on
both sides. Thus each obtained equation involving coefficients A(n)i, j can be indexed by s, m, j and
r if we calculate conditional expectation with respect to F<i of l if we conditional expectation is
calculated with respect to F>i . Of course if s = 0 then r and l lead to the same result. Formulae
for A(n)i, j , for n = 1 are obtained by taking s = 1, m = 0, j = 0 and applying r and l. For n =
2 first we consider m = 0, j = 0 and s = 2 and applying r and l and then m = 0, j = 0 and s
= 0. In this way we get 3 equations. The forth one is obtained by taking m = 0, j = 1, s = 1
and r. Denote X= (A(20,−1, A(2)0,0, A(2)0,1, A(2)1,0)

T , then X satisfies system of linear equation with matrix










1 ρi−1ρi ρ2
i−1ρ

2
i 0

ρ2
i−1ρ

2
i ρi−1ρi 1 0

0 ρi−1ρi 0 1
[2]q ρi−1ρi 1+ [2]q ρ2

i−1ρ
2
i [2]q ρi−1ρi ρi−1ρi











and with right side vector equal to :











ρ2
i−1
ρ2

i
0

[2]q ρi−1ρi











. Besides formulae for coefficients A(n)m,k,

for n = 1, 2 can be obtained from formulae scattered in the literature like e.g. [1], [12] or
[19]. To get equations satisfied by coefficients A(n)i, j , for n = 3,4 First n + 1 equations are
obtained by taking m = 0 , k = 0 and s =3,1 if n = 3 and s =4, 2,0 if n = 4 and then ap-
plying operations r and l. Then, in order to get remaining 2 (in case of n = 3) or 4 (in case
of n = 4) equations one has to be more careful since it often turns out that many equations
obtained for some m and k are linearly dependent on the previously obtained equations. In
the case of n = 3 to get remaining two linearly independent equations we took m = 2, k = 0, s
= 3 and applied operations r and l. In this way we obtained system of 6 linear equations with matrix


















1 ρi−1ρi ρ2
i−1ρ

2
i ρ3

i−1ρ
3
i 0 0

ρ3
i−1ρ

3
i ρ2

i−1ρ
2
i ρi−1ρi 1 0 0

0 (1+ q)ρi−1ρi (1+ q)ρ2
i−1ρ

2
i 0 1 ρi−1ρi

0 (1+ q)ρ2
i−1ρ

2
i (1+ q)ρi−1ρi 0 ρi−1ρi 1

[3]q ρi−1ρi 1+ [2]2q ρ
2
i−1ρ

2
i [2]q ρi−1ρi + [3]q ρ

3
i−1ρ

3
i [3]q ρ2

i−1ρ
2
i ρi−1ρi ρ2

i−1ρ
2
i

[3]q ρ2
i−1ρ

2
i [2]q ρi−1ρi + [3]q ρ

3
i−1ρ

3
i 1+ [2]2q ρ

2
i−1ρ

2
i [3]q ρi−1ρi ρ2

i−1ρ
2
i ρi−1ρi



















right hand side vector



















ρ3
i−1
ρ3

i
0
0

[3]q ρ2
i−1ρi

[3]q ρi−1ρ
2
i



















if the vector of unknowns is the following

(A(3)0,−1, . . . A(2)0,2, A(3)1,0, A(3)1,1)
T . For n= 4 remaining 4 equations we obtained by taking: (m= 1 , k = 4, s

= 3, r), (m= 4, k = 1, s= 1, r), (m= 4, k = 2, s = 4, r) and (m= 2, k = 4, s = 4, , r). Recall that in
this case we have 9 equations. Matrix of this system has 81 entries. That is why we will skip writing
down the whole system of equations. To get the scent of how complicated these equations are we

1316



will present one equation. For n= 4 one of the equations (referring to the case m= 4, k = 1, s = 1,
r) is [2]2q

�

1+ q2
�

[3]q ([4]q + [5]q))ρi−1ρiA
(4)
0,−2+[2]

2
q

�

1+ q2
�

[3]q×(1+ ρ2
i−1ρ

2
i + 3qρ2

i−1ρ
2
i +

3q2ρ2
i−1ρ

2
i + q3ρ2

i−1ρ
2
i + q4ρ2

i−1ρ
2
i )A
(4)
0,−1+[2]

2
q

�

1+ q2
�

[3]q ρi−1ρi([2]q +ρ
2
i−1ρ

2
i + 3qρ2

i−1ρ
2
i +

3q2ρ2
i−1ρ

2
i +q3ρ2

i−1ρ
2
i +q4ρ2

i−1ρ
2
i )A
(4)
0,0+[2]

2
q

�

1+ q2
�

[3]q ρ12ρ22([3]q+([4]q+[5]q)ρ2
i−1ρ

2
i )A
(4)
0,1

+ [2]2q
�

1+ q2
�

[3]q ρ13ρ23(1 + q + q2 + q3 + ρ2
i−1ρ

2
i + qρ2

i−1ρ
2
i + q2ρ2

i−1ρ
2
i + q3ρ2

i−1ρ
2
i +

q4ρ2
i−1ρ

2
i )A
(4)
0,2+

[2]2q
�

1+ q2
�

[3]q ρi−1ρiA
(4)
1,−1 + [2]

2
q

�

1+ q2
�

[3]q ρ2
i−1ρ

2
i A(4)1,0 + [2]

2
q

�

1+ q2
�

[3]q ρ3
i−1ρ

3
i A(4)1,1 =

[2]2q
�

1+ q2
�

[3]q ρ3
i−1([4]q + [5]q ρ

2
i−1)ρi .
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[4] Bożejko, Marek; Kümmerer, Burkhard; Speicher, Roland. q-Gaussian processes: non-
commutative and classical aspects. Comm. Math. Phys. 185 (1997), no. 1, 129–154.
MR1463036 (98h:81053)

[5] Askey, Richard; Wilson, James. Some basic hypergeometric orthogonal polynomials that gen-
eralize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (1985), no. 319, iv+55 pp. MR0783216
(87a:05023)

[6] Carlitz, L. Generating functions for certain Q-orthogonal polynomials. Collect. Math. 23
(1972), 91–104. MR0316773 (47 #5321),

[7] Ismail, Mourad E. H. Classical and quantum orthogonal polynomials in one variable. With
two chapters by Walter Van Assche. With a foreword by Richard A. Askey. Encyclopedia of
Mathematics and its Applications, 98. Cambridge University Press, Cambridge, 2005. xviii+706
pp. ISBN: 978-0-521-78201-2; 0-521-78201-5 MR2191786 (2007f:33001)

[8] Ismail, Mourad E. H.; Stanton, Dennis. On the Askey-Wilson and Rogers polynomials. Canad.
J. Math. 40 (1988), no. 5, 1025–1045. MR0973507 (89m:33003)

[9] Ismail, Mourad E. H.; Stanton, Dennis; Viennot, Gérard. The combinatorics of q-Hermite
polynomials and the Askey-Wilson integral. European J. Combin. 8 (1987), no. 4, 379–392.
MR2191786 (89h:33015)

1317

http://www.ams.org/mathscinet-getitem?mr=1825162
http://www.ams.org/mathscinet-getitem?mr=1828779
http://www.ams.org/mathscinet-getitem?mr=2117214
http://www.ams.org/mathscinet-getitem?mr=1463036
http://www.ams.org/mathscinet-getitem?mr=0783216
http://www.ams.org/mathscinet-getitem?mr=0316773
http://www.ams.org/mathscinet-getitem?mr=2191786
http://www.ams.org/mathscinet-getitem?mr=0973507
http://www.ams.org/mathscinet-getitem?mr=2191786


[10] Askey, Richard; Ismail, Mourad. Recurrence relations, continued fractions, and orthogonal
polynomials. Mem. Amer. Math. Soc. 49 (1984), no. 300, iv+108 pp. MR0743545 (85g:33008)

[11] Matysiak, Wojciech; Szabłowski, Paweł J. A few remarks on Bryc’s paper on random
fields with linear regressions. Ann. Probab. 30 (2002), no. 3, 1486–1491. MR1920274
(2003e:60111)

[12] Matysiak, Wojciech; Szabłowski, Paweł J. (2005), Bryc’s Random Fields: The Existence and
Distributions Analysis, ArXiv:math.PR/math/0507296

[13] Bryc, Włodzimierz; Wesołowski, Jacek. Conditional moments of q-Meixner processes.
Probab. Theory Related Fields 131 (2005), no. 3, 415–441. MR2123251 (2005k:60233)

[14] Bryc, Włodzimierz; Wesołowski, Jacek. Bi-Poisson process. Infin. Dimens. Anal. Quantum
Probab. Relat. Top. 10 (2007), no. 2, 277–291. MR2337523 (2008d:60097)
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