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1. Introduction.

In this paper we shall be concerned with the problem of homogenization of elliptic equations
in divergence form. Let (Ω,F , µ) be a probability space and a : Ω → Rd(d+1)/2 be a bounded
measurable function from Ω to the space of symmetric d × d matrices. We assume that there
are positive constants λ,Λ such that

(1.1) λId ≤ a(ω) ≤ ΛId, ω ∈ Ω,

in the sense of quadratic forms, where Id is the identity matrix in d dimensions. We assume
that Zd acts on Ω by translation operators τx : Ω → Ω, x ∈ Zd, which are measure preserving
and satisfy the properties τxτy = τx+y, τ0 = identity, x, y ∈ Zd. Using these operators we can
define a measurable matrix valued function on Zd × Ω by a(x, ω) = a(τxω), x ∈ Zd, ω ∈ Ω.

Let Zd
ε = εZd be the ε scaled integer lattice where ε > 0. For functions g : Zd

ε → R we define
the discrete derivative ∇ε

ig of g in the ith direction to be

∇ε
i g(x)

def.= [g(x+ εei) − g(x)]/ε, x ∈ Zd
ε,

where ei ∈ Zd is the element with entry 1 in the ith position and 0 in other positions. The
formal adjoint of ∇ε

i is given by ∇ε∗
i , where

∇ε∗
i g(x) def.= [g(x− εei) − g(x)]/ε, x ∈ Zd

ε .

We shall be interested in solutions of the elliptic equation,

(1.2)
d∑

i,j=1

∇ε∗
i

[
aij

(x
ε
, ω
)
∇ε

juε(x, ω)
]

+ uε(x, ω) = f(x), x ∈ Zd
ε, ω ∈ Ω.

Here f : Rd → R is assumed to be a smooth function with compact support and aij(y, ω) are
the entries of the matrix a(y, ω), y ∈ Zd.

It is well known [7, 4] that, under the assumptions of ergodicity of the translation operators
τx, x ∈ Zd, the solution of (1.2) converges as ε→ 0 to the solution of the homogenized equation,

(1.3) −
d∑

i,j=1

qi,j
∂2u

∂xi∂xj
+ u(x) = f(x), x ∈ Rd.

Here q = [qij ] is a symmetric positive definite matrix determined from a(ω), ω ∈ Ω. If we denote
expectation value on Ω by

〈 〉
and ∫

Zd
ε

dx
def.= εd

∑
x∈Zd

ε

,

then one has

(1.4) lim
ε→0

〈∫
Zd

ε

∣∣uε(x, ·) − u(x)
∣∣2dx〉 = 0.

See [2] for extensions to unbounded, non-symmetric a’s.

Our goal in this paper is to estimate the rate of convergence in the limit (1.4). To do this
we shall need to make rather restrictive assumptions on the matrix a(·) beyond the uniform
boundedness assumptions (1.1). We can however prove a result, just assuming (1.1), which is
helpful for us in studying the rate of convergence in (1.4). To motivate it observe that since
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(1.3) is a constant coefficient equation it is easy to see that the solution is C∞ and that for any
n tuple α = (α1, ..., αn) with 1 ≤ αi ≤ d, i = 1, ..., n, one has

(1.5) sup
x∈Rd

∣∣∣∣eδ|x|
( n∏

i=1

∂

∂xαi

)
u(x)

∣∣∣∣ ≤ Aα ,

where δ > 0 can be chosen to be fixed and Aα is a constant depending only on α and f . Consider
now the problem of proving an inequality analogous to (1.5) for the expectation

〈
uε(x, ·)

〉
of

the solution uε(x, ω) of (1.2). In view of the uniform boundedness (1.1) there exists δ > 0,
independent of ε such that

sup
x∈Rd

∣∣∣eδ|x|uε(x, ω)
∣∣∣ ≤ C, ω ∈ Ω,

where C is a constant. To prove this one needs to use the deep theory of Nash [3]. One evidently
can immediately conclude that

sup
x∈Rd

∣∣∣eδ|x|〈uε(x, ·)
〉∣∣∣ ≤ C.

Nash’s methods will not however yield similar inequalities on derivatives of
〈uε(x, ·)〉. In §3 we prove the following analogue of (1.5):
Theorem 1.1. Suppose (1.1) holds, f : Rd → R is a C∞ function with compact support and
uε(x, ω) is the solution of (1.2). Then there exists a constant δ > 0 depending only on λ,Λ, such
that for any n tuple α = (α1, ..., αn) with 1 ≤ αi ≤ d, i = 1, ..., n, one has

sup
x∈Rd

∣∣∣∣∣eδ|x|
(

n∏
i=1

∇ε
αi

)〈
uε(x, ·)

〉∣∣∣∣∣ ≤ Aα ,

where Aα depends only on λ,Λ, α and f .

We can obtain a rate of convergence in (1.4) if we assume that the random matrix a(·) satisfies
(1.1) and that the matrices a(τx·), x ∈ Zd, are independent. Our first theorem is as follows:
Theorem 1.2. Suppose a(·) satisfies (1.1), the matrices a(τx·), x ∈ Zd, are independent, and
γ = 1− λ/Λ, |γ| < 1. Let uε(x, ω) be the solution of (1.2) where f : Rd → R is assumed to be a
C∞ function of compact support. Then for d ≥ 2 there is the inequality〈∫

Zd
ε

∣∣uε(x, ·) −
〈
uε(x, ·)

〉∣∣2 dx〉 ≤ Cε2α,

where α > 0 is a constant depending only on γ, and C only on γ and f . If d ≥ 3 then one can
take α = 1 for sufficiently small γ > 0. For d = 2, α can be taken arbitrarily close to 1 if γ > 0
is taken sufficiently small.

Remark 1. One can see by explicit computation that when d = 1, then α = 1/2.

Theorem 1.2 is independent of the dimension d when d ≥ 3. We also have a theorem which is
dimension dependent for all d.
Theorem 1.3. Suppose a(·) and f satisfy the same conditions as in Theorem 1.2. Let g : Rd →
R be a C∞ function of compact support. Then for d ≥ 2 there is the inequality,〈{∫

Zd
ε

g(x)
[
uε(x, ·) −

〈
uε(x, ·)

〉]
dx

}2〉
≤ Cεβ,

where β > 0 is a constant depending only on γ, and C only on γ, g and f . The number β can
be taken arbitrarily close to d if γ > 0 is taken sufficiently small.
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Remark 2. Theorem 1.3 only gives more information than Theorem 1.2 in the case when d ≥ 3.

We first prove Theorems 2 and 3 under the assumption that the a(x, ω), x ∈ Zd, ω ∈ Ω, are
given by independent Bernoulli variables. This is accomplished in §4. We put

(1.6) a(x, ·) = (1 + γYx)Id, x ∈ Zd,

where the random variables Yx , x ∈ Zd, are assumed to be iid Bernoulli, Yx = ±1 with equal
probability. We must take γ in (1.6) to satisfy |γ| < 1 to ensure a(·) remains positive definite.
In §5 the method is extended to the general case. The methods can also be extended to deal
with variables a(x, ·), x ∈ Zd, which are weakly correlated. To carry this out one must have,
however, rather detailed knowledge on the decay of correlation functions.

To prove theorem 1.2 we use an idea from the proof of (1.4) in [7]. Thus we make an approxi-
mation uε(x, ω) ' u(x)+ random term, where u(x) is the solution of (1.3). The random term is
obtained from the solution Ψ(ω) of a variational problem on Ω (see lemma 2.2). The difference
between uε(x, ω) and the above approximation is estimated in proposition 2.1. One can obtain
a new proof of the homogenization result (1.4) from proposition 2.1 by using the fact that Ψ
is square integrable on Ω and applying the von Neumann ergodic theorem. For the proof of
theorem 1.2 one needs to show that Ψ is p integrable for some p < 2. This p integrability is
not in the conventional sense < |Ψ|p > < ∞. If a(x, ·) is given by (1.6), one expands Ψ in the
orthonormal basis of Walsh functions for L2(Ω) generated by the Bernoulli variables Yx, x ∈ Zd.
We say that Ψ is p integrable if the coefficients of Ψ in this basis are p summable. Evidently if
p = 2 then p integrability of Ψ and < |Ψ|p > < ∞ are equivalent, but not if p is different from
2. We use the Calderon-Zygmund theorem [3] to show that Ψ is p integrable for some p < 2.

Observe that when a(x, ·) is given by (1.6) then the entries of the matrix a(·) generate a 2
dimensional subspace of L2(Ω). One can readily generalise the proof described in the previous
paragraph to all random matrices a(·) whose entries generate a finite dimensional subspace of
L2(Ω). The main task of §5 is to extend the argument to the situation where the entries of a(·)
generate an infinite dimensional subspace of L2(Ω). To carry this out we introduce the Legendre
polynomials Pl(z) to give us an approximately orthogonal basis for the space generated by the
entries of a(·). We use in a crucial way the fact that the ratio of the L∞ norm of Pl to the L2

norm, on the interval [−1, 1], is polynomially bounded in l (in fact
√

2l + 1 ).

We cannot use proposition 2.1 to prove theorem 1.3. Instead, we have to make use of the Fourier
representation for uε(x, ω) given in §3. This representation appears to have considerable power.
To illustrate this we use it to prove theorem 1.1. The remainder of the proof of theorem 1.3
then follows along the same lines as the proof of theorem 1.2

The research in this paper was motivated by previous work of Naddaf and Spencer [6]. Let
A : R → Rd(d+1)/2 be a bounded measurable function from R to the space of real symmetric
d× d matrices. Assume that there are positive constants λ,Λ, such that

λId ≤ A(φ) ≤ ΛId, φ ∈ R.

Let φ(x, ω), x ∈ Zd, ω ∈ Ω, be an Euclidean field theory satisfying the Brascamp-Lieb inequality
[5]. The matrices a(x, ω), x ∈ Zd, ω ∈ Ω, are obtained by setting

a(x, ω) = A(φ(x, ω)), x ∈ Zd, ω ∈ Ω .

Naddaf and Spencer prove that the results of Theorem 1.3 hold under the assumption that φ is
a massive field theory and A has bounded derivative. They further prove that if γ is sufficiently
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small then one can take β = d. They also have corresponding results when φ is assumed to be
massless.

The Russian literature [8, 11] contains some previous work on the rate of convergence to ho-
mogenisation. This appears not to be rigorous.

2. Variational Formulation.

In this section we set out the variational formulation for the solution of (1.2) and for the effective
diffusion matrix q = [qij] in (1.3). Let H1(Zd

ε × Ω) be the space of all measurable functions
uε : Zd

ε × Ω → R which satisfy

(2.1) ‖uε‖2
H1

def.=
〈 d∑

i=1

∫
Zd

ε

[
∇ε

iuε(x, ·)
]2
dx+

∫
Zd

ε

uε(x, ·)2dx
〉
<∞.

Evidently H1(Zd
ε × Ω) is a Hilbert space with norm defined by (2.1). We define a functional G

on H1(Zd
ε × Ω) corresponding to the equation (1.2) by

(2.2) G(uε)
def.=
〈

1
2

d∑
i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iuε(x, ·)∇ε
juε(x, ·)+

1
2

∫
Zd

ε

dx uε(x, ·)2 −
∫
Zd

ε

dx f(x)uε(x, ·)
〉
.

The following lemma is then a consequence of the Banach-Alaoglu theorem [9].
Lemma 2.1. The functional G : H1(Zd

ε × Ω) → R has a unique minimizer uε ∈ H1(Zd
ε × Ω)

which satisfies the Euler-Lagrange equation,

(2.3)
〈 d∑

i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)∇ε
juε(x, ·) +

∫
Zd

ε

dxψε(x, ·)uε(x, ·)−
∫
Zd

ε

dx f(x)ψε(x, ·)
〉

= 0,

for all ψε ∈ H1(Zd
ε × Ω).

Next we turn to the variational formulation of the diffusion matrix q in (1.3). To do this we
use the translation operators τx on Ω to define discrete differentiation of a function on Ω. Let
ϕ : Ω → R be a measurable function. For i = 1, ..., d we define ∂iϕ by

∂iϕ(ω) def.= ϕ(τeiω) − ϕ(ω), ω ∈ Ω.

The formal adjoint ∂∗i of ∂i is given by

∂∗i ϕ(ω) def.= ϕ(τ−eiω) − ϕ(ω), ω ∈ Ω.

The discrete gradient of ϕ, ∇ϕ is then a function ∇ϕ : Ω → Rd given by ∇ϕ(ω) =
(∂1ϕ(ω), ..., ∂dϕ(ω)), ω ∈ Ω. For a function Ψ : Ω → Rd let ‖Ψ‖2 denote the L2 norm,

‖Ψ‖2
2

def.=

〈
d∑

i=1

Ψ2
i

〉
,
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where Ψ = (Ψ1, ...,Ψd). We consider the linear space

E = {∇ϕ : Ω → Rd|ϕ : Ω → R is measurable and ‖ϕ‖2 <∞}.
Evidently if Ψ ∈ E , Ψ = (Ψ1, ...,Ψd), then 〈Ψ〉 = 0 and ∂iΨj = ∂jΨi, 1 ≤ i, j ≤ d. Hence if
H(Ω) is the completion of E under the norm ‖ ‖2, one also has

(2.4)
〈
Ψ
〉

= 0, ∂iΨj = ∂jΨi, 1 ≤ i, j ≤ d, Ψ ∈ H(Ω).

For each k, 1 ≤ k ≤ d, we define a functional Gk on H(Ω) by

Gk(Ψ) def.=
〈

1
2

d∑
i,j=1

aij(·)Ψi(·)Ψj(·) +
d∑

j=1

akj(·)Ψj(·)
〉
.

We have then again from Banach-Alaoglu:
Lemma 2.2. The functional Gk : H(Ω) → R has a unique minimizer Ψk ∈ H(Ω) which satisfies
the Euler-Lagrange equation,〈 d∑

i,j=1

aij(·)Ψi(·)Ψk
j (·) +

d∑
j=1

akj(·)Ψj(·)
〉

= 0,

for all Ψ ∈ H(Ω).

The matrix q = [qkk′] is given by

(2.5) qkk′
def.=
〈
[ek + Ψk(·)]a(·)[ek′ + Ψk′

(·)]
〉
.

In view of the fact that 〈Ψk〉 = 0, k = 1, . . . , d, it follows that q is strictly positive definite. From
the Euler-Lagrange equation one has the alternative expression,

(2.6) qkk′ =
〈
akk′(·) +

d∑
j=1

akj(·)Ψk′
j (·)

〉
.

Next, let ∆ be the discrete Laplacian on Zd. Thus if u : Zd → R, then ∆u is defined by

∆u(x) def.=
d∑

i=1

[u(x+ ei) + u(x− ei) − 2u(x)], x ∈ Zd.

We denote by Gη the Green’s function for the operator −∆ + η, where η > 0 is a parameter.
Thus

(2.7) −∆Gη(x) + ηGη(x) = δ(x), x ∈ Zd,

and δ is the Kronecker δ function; δ(x) = 0 if x 6= 0, δ(0) = 1. For any Ψ ∈ H(Ω) we can use
Gη to define a function χ : Zd × Ω → R by the formula

(2.8) χ(x, ω) def.=
∑
y∈Zd

d∑
j=1

Gη(x− y)∂∗j Ψj(τyω), x ∈ Zd, ω ∈ Ω.

Lemma 2.3. For each x ∈ Zd the function χ(x, ·) on Ω is in L2(Ω). Furthermore, for 1 ≤ i ≤ d,

(2.9) ∇iχ(x, ω) = χ(x+ ei, ω) − χ(x, ω) = Ψi(τxω) − η
∑
y∈Zd

Gη(x− y)Ψi(τyω),

x ∈ Zd, ω ∈ Ω.
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Proof. The fact that χ(x, ·) is in L2(Ω) follows easily from the exponential decay of Gη. To
prove (2.9) we use the relations (2.4). Thus

∇iχ(x, ω) =
∑
y∈Zd

d∑
j=1

Gη(x− y)
[
∂∗jψj(τy+eiω) − ∂∗jψj(τyω)

]

=
∑
y∈Zd

d∑
j=1

Gη(x− y)∂∗j ∂iΨj(τyω)

=
∑
y∈Zd

d∑
j=1

Gη(x− y)∂∗j ∂jΨi(τyω)

from (2.4). Now a summation by parts yields

∇iχ(x, ω) =
∑
y∈Zd

−∆Gη(x− y)Ψi(τyω),

which gives (2.9) on using (2.7). �

The proof of homogenization [7, 4] proceeds by writing the minimizer uε in Lemma 2.1 approx-
imately as

(2.10) uε(x, ω) ' u(x) + ε

d∑
k=1

χk

(x
ε
, ω
)
∇ε

ku(x), x ∈ Zd
ε, ω ∈ Ω,

where χk is the function (2.8) corresponding to the minimizer Ψk of Gk in Lemma 2.2. Clearly
the parameter η must be chosen appropriately, depending on ε. Now let Zε(x, ω) be the RHS
of (2.10) minus the LHS,

(2.11) Zε(x, ω) def.= u(x) + ε

d∑
k=1

χk

(x
ε
, ω
)
∇ε

ku(x) − uε(x, ω),

and ψε be an arbitrary function in H1(Zd
ε × Ω). Then from Lemma 2.1 we have that

(2.12)
〈 d∑

i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)∇ε
jZε(x, ·) +

∫
Zd

ε

dxψε(x, ·)Zε(x, ·)
〉

=

〈 d∑
i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)
[
∇ε

ju(x) +
d∑

k=1

∇jχk

(x
ε
, ·
)
∇ε

ku(x+ εej)

+
d∑

k=1

εχk

(x
ε
, ·
)
∇ε

j∇ε
ku(x)

]
+
∫
Zd

ε

dxψε(x, ·)
[
u(x) + ε

d∑
k=1

χk

(x
ε
, ·
)
∇ε

ku(x)
]

−
∫
Zd

ε

dx f(x)ψε(x, ·)
〉
.

The first two terms on the RHS of the last equation can be rewritten as,
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〈 d∑
i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)
[
∇ε

ju(x) +
d∑

k=1

Ψk
j (τx/ε ·)∇ε

ku(x)
]〉

(2.13)

+
〈 d∑

i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)
d∑

k=1

Ψk
j (τx/ε ·) × [∇ε

ku(x+ εej) −∇ε
ku(x)]

〉

−
〈 d∑

i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)
d∑

k=1

∇ε
ku(x+ εej)η ×

∑
y∈Zd

Gη

(x
ε
− y
)

Ψk
j (τy·)

〉
.

The first term in the last expression can be rewritten as〈 d∑
i,j=1

∫
Zd

ε

dx∇ε
iψε(x, ·)∇ε

ju(x)
[
aij(τx/ε ·) +

d∑
k=1

aik(τx/ε ·)Ψj
k(τx/ε ·)

] 〉
.

Observe next that

∇ε
iψε(x, ·)∇ε

ju(x) = ψε(x, ·)∇ε∗
i ∇ε

ju(x) + ∇ε
i

[
ψε(x, ·)∇ε

ju(x− εei)
]
.

We have now that

(2.14)
〈 d∑

i,j=1

∫
Zd

ε

dx∇ε
i [ψε(x, ·)∇ε

ju(x− εei)]
[
aij(τx/ε ·) +

d∑
k=1

aik(τx/ε ·)Ψj
k(τx/ε ·)

] 〉

=
d∑

j=1

〈 d∑
i=1

∂i Φi,j(·)
[
aij(·) +

d∑
k=1

aik(·)Ψj
k(·)
] 〉

,

where

Φi,j(ω) def.= ε−1

∫
Zd

ε

dxψε(x, τ−x/ε ω)∇ε
ju(x− εei), ω ∈ Ω.

Since ψε ∈ H1(Zd
ε × Ω) and u(x) can be assumed to be converging exponentially to zero as

|x| → ∞, it follows that Φi,j ∈ L2(Ω). Defining Φj ∈ L2(Ω) by

Φj(ω) def.= ε−1

∫
Zd

ε

dxψε

(
x, τ−x/εω

)∇ε
ju(x), ω ∈ Ω,

it is clear that

Φi,j(ω) = Φj(ω) +
∫
Zd

ε

dxψε

(
x, τ−x/εω

)∇ε∗
i ∇ε

ju(x), ω ∈ Ω.

We conclude now from Lemma 2.2 that (2.14) is the same as

(2.15)
d∑

j=1

〈
d∑

i=1

[ ∫
Zd

ε

dxψε

(
x, τ−x/ε ·

)∇ε∗
i ∇ε

ju(x)
]
∂∗i
[
aij(·) +

d∑
k=1

aik(·)Ψj
k(·)
]〉

.

Hence the first term in (2.13) is the sum of (2.15) and

(2.16)

〈
d∑

i,j=1

∫
Zd

ε

dxψε(x, ·)∇ε∗
i ∇ε

ju(x)
[
aij(τx/ε ·) +

d∑
k=1

aik(τx/ε ·)Ψj
k(τx/ε·)

]〉
.

8



Now, let us define Qij ∈ L2(Ω) by

Qij(ω) def.= ∂∗i
[
aij(ω) +

d∑
k=1

aik(ω)Ψj
k(ω)

]
+ aij(ω) +

d∑
k=1

aik(ω)Ψj
k(ω) − qij, ω ∈ Ω,

where qij is given by (2.5). It follows from (2.6) that 〈Qij〉 = 0. Furthermore, from (2.15),
(2.16), we see that the first term in (2.13) is the same as

(2.17)
d∑

i,j=1

∫
Zd

ε

dx
〈
ψε(x, ·)

〉
qij∇ε∗

i ∇ε
ju(x) +

d∑
i,j=1

∫
Zd

ε

dx
〈
ψε(x, ·)Qij(τx/ε ·)

〉
∇ε∗

i ∇ε
ju(x).

We can do a similar integration by parts for the second expression in (2.13). Thus,

(2.18) ∇ε
iψε(x, ·)

[
∇ε

ku(x+ εej) −∇ε
ku(x)

]
=

ψε(x, ·)
[
∇ε∗

i ∇ε
ku(x+ εej) −∇ε∗

i ∇ε
ku(x)

]
+ ∇ε

i

{
ψε(x, ·)

[
∇ε

ku(x+ εej − εei) −∇ε
ku(x− εei)

]}
.

We have that

〈 d∑
i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
) d∑

k=1

∇ε
i

{
ψε(x, ·) [∇ε

ku(x+ εej − εei)− ∇ε
ku(x− εei)]

}
Ψk

j (τx/ε ·)
〉

=
d∑

i,j,k=1

〈
∂iΦi,j,k(·)

[
aij(·)Ψk

j (·)
] 〉
,

where

Φi,j,k(ω) def.= ε−1

∫
Zd

ε

dxψε(x, τ−x/εω) [∇ε
ku(x+ εej − εei) −∇ε

ku(x− εei)] , ω ∈ Ω.

Once again it is clear that Φi,j,k ∈ L2(Ω). Integrating by parts we conclude that

d∑
i,j,k=1

〈
∂iΦi,j,k(·)

[
aij(·)Ψk

j (·)
] 〉

=
d∑

i,j,k=1

〈
Φi,j,k(·)∂∗i

[
aij(·)Ψk

j (·)
] 〉

=
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Qijk(τx/ε·)

〉
∇ε

j∇ε
ku(x− εei),

where

Qijk(ω) def.= ∂∗i
[
aijΨk

j

]
(ω), ω ∈ Ω.
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Evidently we have 〈Qijk〉 = 0. Next we take account of the second term in (2.18). Thus we have

〈 d∑
i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
) d∑

k=1

ψε(x, ·) [∇ε∗
i ∇ε

ku(x+ εej)− ∇ε∗
i ∇ε

ku(x)] Ψ
k
j (τx/ε ·)

〉

=
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)

〉
εrijk∇ε∗

i ∇ε
j∇ε

ku(x)

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Rijk(τx/ε·)

〉
ε∇ε∗

i ∇ε
j∇ε

ku(x),

where

Rijk(ω) def.= aij(ω)Ψk
j (ω) −

〈
aij(·)Ψk

j (·)
〉
, rijk =

〈
aij(·)Ψk

j (·)
〉
.

Evidently 〈Rijk〉 = 0. Hence the second term in (2.13) is the same as

(2.19)
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Qijk(τx/ε·)

〉
∇ε

j∇ε
ku(x− εei)

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Rijk(τx/ε·)

〉
ε∇ε∗

i ∇ε
j∇ε

ku(x)

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)

〉
εrijk∇ε∗

i ∇ε
j∇ε

ku(x).

Now let us assume that u(x) satisfies the partial difference equation,

(2.20) ε
d∑

i,j,k=1

rijk∇ε∗
i ∇ε

j∇ε
ku(x) +

d∑
i,j=1

qij∇ε∗
i ∇ε

ju(x) + u(x) = f(x), x ∈ Zd
ε .

This equation converges as ε→ 0 to the homogenized equation (1.3). Note that it is a singular
perturbation of (1.3) and therefore needs to be carefully analyzed. In particular, we shall have
to show that u(x) and its derivatives converge rapidly to zero as |x| → ∞. It follows now from
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(2.12), (2.13), (2.17), (2.19), that

(2.21)
〈 d∑

i,j=1

∫
Zd

ε

dx aij

(x
ε
, ·
)
∇ε

iψε(x, ·)∇ε
jZε(x, ·) +

∫
Zd

ε

dxψε(x, ·)Zε(x, ·)
〉

=
d∑

i,j=1

∫
Zd

ε

dx
〈
ψε(x, ·)Qij(τx/ε ·)

〉
∇ε∗

i ∇ε
ju(x)

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Qijk(τx/ε ·)

〉
∇ε

j∇ε
ku(x− εei)

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
ψε(x, ·)Rijk(τx/ε ·)

〉
ε∇ε∗

i ∇ε
j∇ε

ku(x)

−
d∑

i,j,k=1

∫
Zd

ε

dx
〈
∇ε

iψε(x, ·)∇ε
ku(x+ εej)aij(

x

ε
, ·)η

∑
y∈Zd

Gη

(x
ε
− y
)

Ψk
j (τy ·)

〉

+
d∑

i,j,k=1

∫
Zd

ε

dx
〈
∇ε

iψε(x, ·)aij(
x

ε
, ·)∇ε

j∇ε
ku(x) εχk(

x

ε
, ·)
〉

+
d∑

k=1

∫
Zd

ε

dx
〈
ψε(x, ·)∇ε

ku(x)εχk

(x
ε
, ·
)〉

.

Proposition 2.1. Let Zε be defined by (2.11). Then〈∫
Zd

ε

dxZε(x, ·)2
〉
≤ C [A1 +A2 +A3 +A4 +A5 +A6]

where C is a constant and

A1 =
d∑

i,j,`=1

〈 ∫
Zd

ε

dx

[
ε
∑
y∈Zd

∇∗
`G0

(x
ε
− y
)
Qij(τy ·)∇ε∗

i ∇ε
ju(εy)

]2
〉
,

A2 =
d∑

i,j,k,`=1

〈 ∫
Zd

ε

dx

[
ε
∑
y∈Zd

∇∗
`G0

(x
ε
− y
)
Qijk(τy·) ∇ε

j∇ε
ku(εy − εei)

]2
〉
,

A3 =
d∑

i,j,k,`=1

〈 ∫
Zd

ε

dx

[
ε
∑
y∈Zd

∇∗
`G0

(x
ε
− y
)
Rijk(τy ·) ε∇ε∗

i ∇ε
j∇ε

ku(εy)
]2
〉
,

A4 =
d∑

i,j,k=1

〈 ∫
Zd

ε

dx

[
∇ε

ku(x+ εej)η
∑
y∈Zd

Gη

(x
ε
− y
)

Ψk
j (τy ·)

]2
〉
,

A5 =
d∑

i,j,k=1

〈 ∫
Zd

ε

dx
[
∇ε

j∇ε
ku(x)ε χk

(x
ε
, ·
)]2 〉

,

A6 =
d∑

k=1

〈 ∫
Zd

ε

dx
[
∇ε

ku(x)ε χk

(x
ε
, ·
)]2 〉

.
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Proof. Let g = g(x, ω) be a function in L2(Zd
ε × Ω). Denote by Gg the functional (2.2) on

H1(Zd
ε × Ω) obtained by replacing the function f(x) with g(x, ω) in (2.2). Then, according to

Lemma 2.1 there is a minimizer of Gg in H1(Zd
ε × Ω) which we denote by ψε. It is clear that

‖ψε‖H1 ≤ C‖g‖2 for some constant C, where ‖g‖2 is the L2 norm of g. Furthermore, if we
assume the solutions of (2.20) are rapidly decreasing then it follows that Zε is in H1(Zd

ε × Ω).
The Euler-Lagrange equations for ψε as given by Lemma 2.1 then tells us that the LHS of (2.21)
is the same as 〈 ∫

Zd
ε

g(x, ·)Zε(x, ·)
〉
.

Next we consider the RHS of (2.21). If we use the Schwarz inequality on the sixth expression
it is clear it is bounded by C‖ψε‖H1 A

1/2
6 for some constant C, and hence by C‖g‖2 A

1/2
6 for

a different constant C. Similarly the fifth and fourth terms are bounded by C‖g‖2 A
1/2
5 and

C‖g‖2 A
1/2
4 respectively. To obtain bounds on the first three terms we need to represent ψε as

an integral of its gradient. We can do this by using the Green’s function G0 which is the solution
of (2.7) when η = 0. To see this observe that

(2.22) ψε(y′, ω) =
∑

x′∈Zd

δ
(y′
ε
− x′

)
ψε(εx′, ω), y′ ∈ Zd

ε, ω ∈ Ω.

Using (2.7) this is the same as

ψε(y′, ω) =
∑

x′∈Zd

−∆G0

(y′
ε
− x′

)
ψε(εx′, ω)

=
∑

x′∈Zd

d∑
`=1

∇∗
`G0

(y′
ε
− x′

)
ε ∇ε

`ψε(εx′, ω)

=
∫
Zd

ε

dx

d∑
`=1

∇ε
`ψε(x, ω)∇∗

`G0

(
x

ε
− y′

ε

)
ε1−d.

The first term on the RHS of (2.21) is therefore the same as

(2.23)
d∑

i,j,`=1

∫
Zd

ε

dx
〈
∇ε

`ψε(x, ·)
∑
y∈Zd

ε ∇∗
`G0

(x
ε
− y
)
Qij(τy ·)∇ε∗

i ∇ε
ju(εy)

〉
.

It follows again from the Schwarz inequality that this last expression is bounded by C‖g‖2A
1/2
1 .

A similar argument shows that the second and third terms on the RHS of (2.21) are bounded
by C‖g‖2A

1/2
2 , C‖g‖2A

1/2
3 respectively. The result follows now by taking g = Zε. �

Proposition 2.1 will help us obtain an estimate on the variance of the minimizer uε of Lemma
2.1. In fact there is the inequality

(2.24)
〈 ∫

Zd
ε

dx [uε(x, ·) − 〈uε(x, ·)〉]2
〉
≤ 2
〈∫

Zd
ε

dxZε(x, ·)2
〉

+ 2ε2
〈∫

Zd
ε

dx

[
d∑

k=1

χk

(x
ε
, ·
)
∇ε

ku(x)

]2 〉
.
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We shall also want to estimate the variance of the random variable∫
Zd

ε

dx g(x)uε(x, ·),

where g : Rd → R is a C∞ function with compact support. To help us do this we reformulate
the variational problem of Lemma 2.1. Suppose uε is in H1(Zd

ε ×Ω). We define a new function
vε by vε(x, ω) = uε(x, τ−x/εω), x ∈ Zd

ε , ω ∈ Ω. We then have

∇ε
iuε(x, ω) = [uε(x+ εei, ω) − uε(x, ω)]/ε

= [vε(x+ εei , τx/ετeiω) − vε(x, τx/εω)]/ε

= [vε(x+ εei , τx/ετeiω) − vε(x+ εei, τx/εω)]/ε
+[vε(x+ εei , τx/εω) − vε(x, τx/εω)]/ε

= ε−1∂ivε(x+ εei , τx/εω) + ∇ε
ivε(x, τx/εω).

Hence from (2.2) we have

G(uε) =
〈1

2

d∑
i,j=1

∫
Zd

ε

dx aij(·)[∇ε
i vε(x, ·) + ε−1∂ivε(x+ εei, ·)]×

[∇ε
jvε(x, ·) + ε−1∂jvε(x+ εej, ·)] +

1
2

∫
Zd

ε

dx vε(x, ·)2−∫
Zd

ε

dx f(x)vε(x, ·)
〉
.

Next we write vε(x, ω) = u(x) + εψε(x, ω) where 〈ψε(x, ·)〉 = 0. Then we have

(2.25) G(uε) =
〈 1

2

d∑
i,j=1

∫
Zd

ε

dx aij(·)[∇ε
iu(x) + ∂iψε(x+ εei, ·) + ε∇ε

iψε(x, ·)]×

[∇ε
ju(x) + ∂jψε(x+ εej , ·) + ε∇ε

jψε(x, ·)] +
1
2

∫
Zd

ε

dxu(x)2+

1
2
ε2
∫
Zd

ε

dxψε(x, ·)2 −
∫
Zd

ε

dx f(x)u(x)
〉

def.= Fε(u, ψε).

Let H1(Zd
ε) be the space of functions u : Zd

ε → R which satisfy

‖u‖2
H1

def.=
∫
Zd

ε

dxu(x)2 +
d∑

i=1

∫
Zd

ε

dx [∇ε
iu(x)]

2 <∞.

Let H1
0(Z

d
ε × Ω) be the subspace of H1(Zd

ε × Ω) consisting of functions ψε(x, ω) which satisfy
〈ψε(x, ·)〉 = 0, x ∈ Zd

ε .

Lemma 2.4. If ε > 0 the functional Fε : H1(Zd
ε) × H1

0(Z
d
ε × Ω) → R defined by (2.25) has

a unique minimizer (u, ψε) with u ∈ H1(Zd
ε), ψε ∈ H1

0(Z
d
ε × Ω). The minimizer satisfies the

13



Euler-Lagrange equation,

〈 d∑
i,j=1

∫
Zd

ε

dx aij(·)[∇ε
i v(x) + ∂iϕε(x+ εei, ·) + ε∇ε

iϕε(x, ·)]×

[∇ε
ju(x) + ∂jψε(x+ εej , ·) + ε∇ε

jψε(x, ·)] +
∫
Zd

ε

dx v(x)u(x)

+ ε2
∫
Zd

ε

dxϕε(x, ·)ψε(x, ·) −
∫
Zd

ε

dx f(x)v(x)
〉

= 0,

for all v ∈ H1(Zd
ε), ϕε ∈ H1

0(Z
d
ε × Ω). Further, if we put uε(x, ω) = u(x) + εψε(x, τx/ε ω),

x ∈ Zd
ε , ω ∈ Ω, then uε is the unique minimizer of Lemma 2.1.

Proof. To apply the Banach-Alaoglu theorem we need to show there are constants C1, C2 > 0
such that

‖v‖2
H1 + ‖ϕε‖2

H1 ≤ C1 + C2Fε(v, φε), v ∈ H1(Zd
ε), ϕε ∈ H1

0(Z
d
ε × Ω).

Observe now that

Fε(v, ϕε) ≥ λ

2

〈 d∑
i=1

∫
Zd

ε

dx [∇ε
iv(x) + ∂iϕε(x+ εei, ·) + ε∇ε

iϕε(x, ·)]2
〉
− 1

2

∫
Zd

ε

f(x)2dx ,

where λ > 0 is as in (1.1).

Now, using the fact that 〈ϕε(x, ·)〉 = 0 we conclude

Fε(v, ϕε) ≥ λ

2

d∑
i=1

〈 ∫
Zd

ε

dx [∂iϕε(x+ εei, ·) + ε∇ε
iϕε(x, ·)]2

〉

+
λ

2

d∑
i=1

∫
Zd

ε

dx [∇ε
iv(x)]

2 − 1
2

∫
Zd

ε

f(x)2dx.

We have then from the Schwarz inequality

‖v‖2
H1 ≤ 2

λ

[
1
2

∫
Zd

ε

f(x)2dx+ Fε(v, ϕε)

]
+ 4

[∫
Zd

ε

f(x)2dx+ Fε(v, ϕε)

]
.

Using the fact that

ε2
d∑

i=1

〈∫
Zd

ε

dx [∇ε
iϕε(x, ·)]2

〉
≤ 8d

〈 ∫
Zd

ε

dxϕε(x, ·)2
〉

+ 2
d∑

i=1

〈∫
Zd

ε

dx [∂iϕε(x+ εei, ·) + ε∇ε
iϕε(x, ·)]2

〉
,

we have

‖ϕε‖2
H1 ≤

[
4
λε2

+
16d
ε4

+
2
ε2

][
1
2

∫
Zd

ε

f(x)2dx + Fε(v, ϕε)

]
.

The Euler-Lagrange equation follows in the usual way. To verify that uε(x, ·) = u(x) +
εψε(x, τx/ε ·) is the minimizer of Lemma 2.1 we need only observe that, with this substitu-
tion, the Euler-Lagrange equation here is the same as that of Lemma 2.1. �

14



If we let ε → 0 in the expression (2.25) for Fε(u, ψε) we formally obtain a functional F0(u, ψ)
given by

F0(u, ψ) def.=
〈

1
2

d∑
i,j=1

∫
Rd

dx aij(·)
[
∂u(x)
∂xi

+ ∂iψ(x, ·)
]
×

[
∂u(x)
∂xj

+ ∂jψ(x, ·)
]〉

+
1
2

∫
Rd

dxu(x)2 −
∫
Rd

dx f(x)u(x).

Consider now the problem of minimizing F0(u, ψ). If we fix x ∈ Rd and minimize over all
ψ(x, ·) ∈ L2(Ω) then by Lemma 2.2 the minimizer is given by

(2.26) ∂iψ(x, ·) =
d∑

k=1

∂u(x)
∂xk

Ψk
i (·), i = 1, . . . , d

where the Ψk ∈ H(Ω) are the minimizers of Lemma 2.2. If we further minimize with respect to
the function u(x) then it is clear that u(x) is the solution of the pde (1.3), where the matrix q is
given by (2.6). Hence in the minimization of F0 we can separate the minimization problems in
ω and x variables. The function ψ defined by (2.26) has, however, no longer the property that
ψ(x, ·) ∈ L2(Ω).

We wish now to defined a new functional, closely related to Fε as ε→ 0, which has the property
that the minimization problems in ω and x variables can be separated and also that the minimizer
ψ(x, ω) has ψ(x, ·) ∈ L2(Ω). For u ∈ H1(Zd

ε) and ψε ∈ H1
0(Z

d
ε × Ω) we define FS,ε(u, ψε) by

(2.27) FS,ε(u, ψε)
def.=
〈 1

2

d∑
i,j=1

∫
Zd

ε

dx aij(·)[∇ε
iu(x) + ∂iψε(x, ·)]×

[∇ε
ju(x) + ∂jψε(x, ·)] +

1
2

∫
Zd

ε

dxu(x)2 +
1
2
ε2
∫
Zd

ε

dxψε(x, ·)2−∫
Zd

ε

dx f(x)u(x)
〉
.

It is clear that the formal limit of FS,ε as ε→ 0 is, like the formal limit of Fε, given by F0. The
advantage of FS,ε over Fε is that the minimization problem separates. We shall prove this in
the following lemmas. First we have the analogue of Lemma 2.4:
Lemma 2.5. If ε > 0 the functional FS,ε : H1(Zd

ε) × H1
0(Z

d
ε × Ω) → R defined by (2.27) has

a unique minimizer (u, ψε) with u ∈ H1(Zd
ε), ψε ∈ H1

0(Z
d
ε × Ω). The minimizer satisfies the

Euler-Lagrange equation,

(2.28)
〈 d∑

i,j=1

∫
Zd

ε

dx aij(·)[∇ε
i v(x) + ∂iϕε(x, ·)][∇ε

ju(x) + ∂jψε(x, ·)]

+
∫
Zd

ε

dx v(x)u(x) + ε2
∫
Zd

ε

dxϕε(x, ·)ψε(x, ·)

−
∫
Zd

ε

dx f(x)v(x)
〉

= 0,

for all v ∈ H1(Zd
ε), ϕε ∈ H1

0(Z
d
ε × Ω).

Proof. Same as Lemma 2.4. �
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Next we need an analogue of Lemma 2.2. For ε > 0 define a functional Gk,ε : L2(Ω) → R, where
1 ≤ k ≤ d, by

Gk,ε(ψ) def.=
〈 1

2

d∑
i,j=1

aij(·)∂iψ(·)∂jψ(·) +
1
2
ε2ψ(·)2 +

d∑
j=1

akj(·)∂jψ(·)
〉
.

Lemma 2.6. The functional Gk,ε : L2(Ω) → R has a unique minimizer ψk,ε ∈ L2(Ω) which
satisfies 〈ψk,ε(·)〉 = 0 and the Euler-Lagrange equation,〈 d∑

i,j=1

aij(·)∂iϕ(·)∂jψk,ε(·) + ε2ϕ(·)ψk,ε(·) +
d∑

j=1

akj(·)∂jϕ(·)
〉

= 0,

for all ϕ ∈ L2(Ω).

Proof. Same as Lemma 2.2. Observe that since Gk,ε(ψ − 〈ψ〉) ≤ Gk,ε(ψ) for all ψ ∈ L2(Ω) we
have 〈ψk,ε〉 = 0. �

Next, in analogy to (2.5) we define a matrix qε by

qε
kk′ =

〈
[ek + ∇ψk,ε(·)]a(·)[ek′ + ∇ψk′,ε(·)]

〉
+ ε2

〈
ψk,ε(·)ψk′,ε(·)

〉
,

where the ψk,ε, k = 1, ..., d are the minimizers of Lemma 2.6. Evidently qε is a symmetric
positive definite matrix. Using the Euler-Lagrange equation we have a representation for qε

kk′
analogous to (2.6), namely

(2.29) qε
kk′ =

〈
akk′(·) +

d∑
j=1

akj(·)∂jψk′,ε(·)
〉
.

Let Gε : H1(Zd
ε) → R be the functional

Gε(u)
def.=

1
2

d∑
i,j=1

∫
Zd

ε

dx qε
ij∇ε

iu(x)∇ε
ju(x) +

1
2

∫
Zd

ε

dxu(x)2 −
∫
Zd

ε

dx f(x)u(x).

Lemma 2.7. The functional Gε : H1(Zd
ε) → R has a unique minimizer u ∈ H1(Zd

ε) which
satisfies the equation

(2.30)
d∑

i,j=1

qε
ij∇ε∗

i ∇ε
ju(x) + u(x) = f(x), x ∈ Zd

ε.

Proof. Standard. �

Proposition 2.2. Let ψk,ε , k = 1, ..., d be the minimizer of Lemma 2.6 and u the minimizer
of Lemma 2.7. Then (u, ψε), where

ψε(x, ω) =
d∑

k=1

∇ε
ku(x)ψk,ε(ω), x ∈ Zd

ε , ω ∈ Ω

is the minimizer of Lemma 2.5.
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Proof. Since u(x) satisfies (2.30) it follows that u(x) and its derivatives decrease exponentially
as |x| → ∞. Hence u ∈ H1(Zd

ε). Since also ψk,ε ∈ L2(Ω) and 〈ψk,ε〉 = 0 it follows that
ψε ∈ H1

0(Z
d
ε × Ω). To show that (u, ψε) is the minimizer for the functional of Lemma 2.5 it

will be sufficient to show (u, ψε) satisfies the Euler- Lagrange equation (2.28). Using the Euler-
Lagrange equation of Lemma 2.6 we see that the LHS of (2.28) is the same as

〈 d∑
i,j=1

∫
Zd

ε

dx aij(·)[∇ε
i v(x)∇ε

ju(x) + ∇ε
iv(x)∂jψε(x, ·)]

〉

+
∫
Zd

ε

dx v(x)u(x) −
∫
Zd

ε

dx f(x)v(x).

If we use now (2.29) we see this last expression is the same as

d∑
i,j=1

∫
Zd

ε

dx qε
ij∇ε

iv(x)∇ε
ju(x) +

∫
Zd

ε

dx v(x)u(x) −
∫
Zd

ε

dx f(x)v(x).

In view of (2.30) this last expression is zero. �

3. Analysis in Fourier Space

In this section we apply Fourier space methods to the problems of section 2. First we shall be
interested in finding a solution to the partial difference equation (2.20), where f : Rd → R is a
C∞ function with compact support. If we let ε→ 0 in (2.20) then we get formally the singular
perturbation problem,

(3.1) −ε
d∑

i,j,k=1

rijk
∂3u(x)

∂xi∂xj∂xk
−

d∑
i,j=1

qij
∂2u(x)
∂xi∂xj

+ u(x) = f(x), x ∈ Rd.

Evidently this is a singular perturbation of the homogenized equation (1.3). It is easy to see
that this equation has a solution u(x), all of whose derivatives decrease exponentially fast to
zero as |x| → ∞. Furthermore this decrease is uniform in ε as ε→ 0. Now let us write equation
(2.20) as

(3.2) Lεu(x) = f(x), x ∈ Zd
ε,

where the operator Lε is given by the LHS of (2.20). In contrast to the case of (3.1) we cannot
assert that (3.2) has a solution in general. We can however assert that it has an approximate
solution.

Proposition 3.1. Let f : Rd → R be a C∞ function with compact support. Then there exists
a function u : Zd

ε → R with the following properties:

(a) There exists a constant δ > 0 such that for any n tuple α = (α1, ..., αn) with 1 ≤ αi ≤
d, i = 1, ..., n, one has

sup
x∈Zd

ε

∣∣∣∣∣eδ|x|
(

n∏
i=1

∇ε
αi

)
u(x)

∣∣∣∣∣ ≤ Aα,

and Aα is independent of ε.
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(b) The function u(x) satisfies the equation Lεu(x) = f(x)+gε(x) and gε(x) has the property
that

|gε(x)| ≤ Cεγ exp[−δ|x|], x ∈ Zd
ε ,

where γ > 0 can be chosen arbitrarily large and the constant C is independent of ε.

Proof. We go into Fourier variables. For u : Zd
ε → C, the Fourier transform of u is given by

(3.3) û(ξ) =
∫
Zd

ε

dxu(x)eix·ξ, ξ ∈
[−π
ε
,
π

ε

]d

.

The function u can be obtained from its Fourier transform by the formula,

u(x) =
1

(2π)d

∫
[−π

ε
, π

ε
]d
û(ξ)e−ix·ξdξ, x ∈ Zd

ε.

The equation (3.2) is given in Fourier variables by

{ d∑
i,j,k=1

rijkε
−2(eiεei·ξ − 1)(e−iεej ·ξ − 1)(e−iεek ·ξ − 1)+

d∑
i,j=1

qijε
−2(eiεei·ξ − 1)(e−iεej ·ξ − 1) + 1

}
û(ξ) = f̂(ξ), ξ ∈

[−π
ε
,
π

ε

]d

.

We can rewrite this as

û(ξ)
{

1 + 4
d∑

i,j=1

qij exp[iε(ei − ej) · ξ/2]sin(εei · ξ/2)
ε

sin(εej · ξ/2)
ε

− 8i
d∑

i,j,k=1

rijk exp[iε(ei − ej − ek) · ξ/2]sin(εei · ξ/2)
ε

sin(εej · ξ/2)
ε

×

sin(εek · ξ/2)
}

= f̂(ξ).

Since the matrix q is positive definite it is clear that provided ε|ξ| � 1 then the coefficient of
û(ξ) in the last expression is non-zero. On the other hand if ε|ξ| = O(1) then this coefficient
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could become zero. To get around this problem we define a function u(x) by

(3.4) û(ξ)
{

1 + 4
d∑

i,j=1

qij exp[iε(ei − ej) · ξ/2]sin(εei · ξ/2)
ε

sin(εej · ξ/2)
ε

− 8i

[
1 +A

{ d∑
i=1

(1 − eiεei·ξ)(1 − e−iεei·ξ)
}N
]−1

×

d∑
i,j,k=1

rijk exp[iε(ei − ej − ek) · ξ/2]×

sin(εei · ξ/2)
ε

sin(εej · ξ/2)
ε

sin(εek · ξ/2)
}

= f̂(ξ),

ξ ∈
[−π
ε
,
π

ε

]d

.

In this last expression N is a positive integer and A a positive constant chosen large enough,
depending on N , so that the coefficient of û(ξ) is nonzero for all ξ ∈ [−π/ε, π/ε]d. Hence (3.4)
defines a function u : Zd

ε → C uniquely.

Since f is C∞ with compact support it follows that f̂ is analytic. In particular, for any positive
integer m and δ > 0 there exists a constant Cm,δ, independent of ε, such that

(3.5) (1 + |ξ|m)|f̂(ξ + iη)| ≤ Cm,δ, ξ ∈
[−π
ε
,
π

ε

]d

, η ∈ Rd, |η| < δ.

Observe next that the function û(ξ) defined in (3.4) is periodic in the cube [−π
ε ,

π
ε ]d. Furthermore

there exists δ > 0, independent of ε, such that û(ξ + iη) is analytic in ξ + iη ∈ Cd provided
|η| < δ. We have therefore that u(x) is given by the formula,

(3.6) u(x) =
1

(2π)d

∫
[−π

ε
, π

ε
]d
û(ξ + iη) exp[−ix · (ξ + iη)] dξ, x ∈ Zd

ε, |η| < δ.

Now if A is large and δ > 0 is taken sufficiently small it is easy to see that the modulus of the
coefficient of û(ξ + iη) on the LHS of (3.4) is strictly positive for ξ ∈ [−π/ε, π/ε]d, |η| < δ. It
follows then from (3.5), (3.6) that part (a) of proposition 3.1 holds.
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To prove part (b) we use (3.6) to compute Lεu(x) − f(x). We have for x ∈ Zd
ε ,

Lεu(x) − f(x) =
−1

(2π)d

∫
[−π

ε
, π
ε
]d
dξ û(ξ + iη) exp[−ix · (ξ + iη)]

8iA
{ d∑

i=1

(
1 − exp[iεei · (ξ + iη)]

)(
1 − exp[−iεei · (ξ + iη)]

)}N
×

[
1 +A

{ d∑
i=1

(
1 − exp[iεei · (ξ + iη)]

)(
1 − exp[−iεei · (ξ + iη)]

)}N
]−1

×
d∑

i,j,k=1

rijk exp [iε(ei − ej − ek) · (ξ + iη)/2]×

sin(εei · [ξ + iη]/2)
ε

sin(εej · [ξ + iη]/2)
ε

sin(εek.[ξ + iη]/2).

In view of (3.5) it follows that there is a constant C, independent of ε, such that

|Lεu(x) − f(x)| ≤ Cε2N+1 exp[η · x], x ∈ Zd
ε, |η| < δ.

Part (b) follows from this last inequality. �

Next we wish to rewrite the functional Fε of lemma 2.4 in Fourier variables. First observe
that if we define the space Ĥ1([−π

ε ,
π
ε ]d) as the set of all functions û : [−π

ε ,
π
ε ]d → C such that

û(ξ) = û(−ξ) and

||û||2Ĥ1

def.=
1

(2π)d

∫
[−π

ε
, π

ε
]d
dξ
[
|û(ξ)|2 +

d∑
j=1

ε−2 |1 − eiεej ·ξ|2|û(ξ)|2
]
<∞,

then H1(Zd
ε) and Ĥ1([−π

ε ,
π
ε ]d) are unitarily equivalent via the Fourier trans-

form (3.3). Similarly we can define a space Ĥ1
0([

−π
ε ,

π
ε ]d × Ω) as all functions

ψ̂ : [−π
ε ,

π
ε ]d × Ω → C such that ψ̂(ξ, ·) = ψ̂(−ξ, ·),

‖ψ̂‖2
H1

def.=
〈 1

(2π)d

∫
[−π

ε
, π
ε
]d
dξ
[
|ψ̂(ξ, ·)|2 +

d∑
j=1

ε−2|1 − eiεej ·ξ|2|ψ̂(ξ, ·)|2
] 〉

<∞,

and 〈ψ̂(ξ, ·)〉 = 0, ξ ∈ [−π
ε ,

π
ε ]d. Again it is clear that H1

0(Z
d
ε × Ω) and

Ĥ1
0([

−π
ε ,

π
ε ]d × Ω) are unitarily equivalent via the Fourier transform,

ψ̂(ξ, ·) =
∫
Zd

ε

dx ψ(x, ·)eix·ξ , ξ ∈
[−π
ε
,
π

ε

]d

.
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It is also clear that the functional Fε defined by (2.25) satisfies

(3.7) Fε(u, ψε) = F̂ε(û, ψ̂ε)

def.=
1

(2π)d

〈
1
2

d∑
i,j=1

∫
[−π

ε
, π

ε
]d
dξ aij(·)

[
ε−1(e−iεei·ξ − 1)û(ξ)+

e−iεei·ξ∂iψ̂ε(ξ, ·) + (e−iεei·ξ − 1)ψ̂ε(ξ, ·)
]
×[

ε−1(eiεej ·ξ − 1)û(ξ) + eiεej ·ξ∂jψ̂ε(ξ, ·) + (eiεej .ξ − 1)ψ̂ε(ξ, ·)
]

+
1
2

∫
[−π

ε
, π
ε
]d
dξ |û(ξ)|2 +

1
2
ε2
∫

[−π
ε

, π
ε
]d
dξ |ψ̂(ξ, ·)|2

−
∫

[−π
ε

, π
ε
]d
dξ f̂(ξ)û(ξ)

〉
,

for u ∈ H1(Zd
ε), ψε ∈ H1

o (Zd
ε × Ω).

We now follow the development of lemma 2.4 through proposition 2.2, but in Fourier space
variables. First we have:
Lemma 3.1. The functional F̂ε : Ĥ1 ([−π

ε ,
π
ε ]d) × Ĥ1

0([
−π
ε ,

π
ε ]d × Ω) → R defined by (3.7) has

a unique minimizer (û, ψ̂ε) with û ∈ Ĥ1([−π
ε ,

π
ε ]d), ψ̂ε ∈ Ĥ1

0 ([−π
ε ,

π
ε ]d × Ω). The minimizer

satisfies the Euler-Lagrange equation,

ε2ψ̂ε(ξ, ·) +
d∑

i,j=1

[
eiε(ej−ei)·ξ∂∗j [aij(·)∂iψ̂ε(ξ, ·)](3.8)

+ eiεej .ξ(e−iεei.ξ − 1)∂∗j [aij(·)ψ̂ε(ξ, ·)]
+ e−iεei.ξ(eiεej .ξ − 1)

{
aij(·)∂iψ̂ε(ξ, ·) − 〈aij(·)∂iψ̂ε(ξ, ·)〉

}
+ (eiεej .ξ − 1)(e−iεei.ξ − 1)

{
aij(·)ψ̂ε(ξ, ·) − 〈aij(·)ψ̂ε(ξ, ·)〉

}
+ ε−1(e−iεei.ξ − 1)û(ξ)

{
eiεej .ξ∂∗j (aij(·))

+ (eiεej .ξ − 1)
[
aij(·) − 〈aij(·)〉

]}]
= 0,

(3.9) f̂(ξ) = û(ξ) +
d∑

i,j=1

[
ε−1(eiεej .ξ − 1)ε−1 (e−iεei.ξ − 1)

〈
aij(·)

〉
û(ξ)

+ ε−1(eiεej .ξ − 1)e−iεei.ξ
〈
aij(·)∂iψ̂ε(ξ, ·)

〉

+ ε−1(eiεej .ξ − 1) (e−iεei.ξ − 1)
〈
aij(·)ψ̂ε(ξ, ·)

〉]
.

Conversely if there exists û ∈ Ĥ1 ([−π
ε ,

π
ε ]d) and ψ̂ε ∈ Ĥ1

0([
−π
ε ,

π
ε ]d × Ω) which satisfy the Euler-

Lagrange equations (3.8), (3.9) then (û, ψ̂ε) is the unique minimizer for F̂ε.

21



Proof. Standard. �

Next for ε > 0, 1 ≤ k ≤ d and ξ ∈ [−π
ε ,

π
ε ]d we define a functional Gξ,k,ε : L2(Ω) → R by

Gξ,k,ε(ψ̂) def.=

〈
1
2

d∑
i,j=1

aij(·)
[
e−iεei.ξ∂iψ̂(·) + (e−iεei.ξ − 1)ψ̂(·)

]
[
eiεej .ξ∂jψ̂(·) + (eiεej .ξ − 1)ψ̂(·)

]
+

1
2
ε2|ψ̂(·)|2

+Re

d∑
j=1

akj(·)
[
eiεej ·ξ∂jψ̂(·) + (eiεej ·ξ − 1)ψ̂(·)

]〉
.

Observe that the functional Gξ,k,ε at ξ = 0 is identical to the functional Gk,ε of lemma 2.6. The
following lemma corresponds to lemma 2.6.

Lemma 3.2. Let L2
0(Ω) be the square integrable functions ψ̂ : Ω → C such that

〈
ψ̂(·)〉 = 0.

The functional Gξ,k,ε : L2
0(Ω) → R has a unique minimizer ψ̂k,ε(ξ, ·) ∈ L2

0(Ω) which satisfies the
Euler-Lagrange equation,

(3.10)

ε2ψ̂k,ε(ξ, ·) +
d∑

i,j=1

[
eiε(ej−ei)·ξ∂∗j (aij(·)∂iψ̂k,ε(ξ, ·))

+ eiεej ·ξ(e−iεei·ξ − 1)∂∗j (aij(·)ψ̂k,ε(ξ, ·))
+ e−iεei·ξ(eiεej ·ξ − 1)

{
aij(·)∂iψ̂k,ε(ξ, ·) −

〈
aij(·)∂iψ̂k,ε(ξ, ·)

〉}

+ (eiεej ·ξ − 1)(e−iεei·ξ − 1)
{
aij(·)ψ̂k,ε(ξ, ·) −

〈
aij(·)ψ̂k,ε(ξ, ·)

〉}]

+
d∑

j=1

[
eiεej ·ξ∂∗j (akj(·)) + (eiεej ·ξ − 1)[akj(·) −

〈
akj(·)

〉
]

]
= 0.

Proof. Standard. �

Observe now that if ψ̂k,ε(ξ, ·) satisfy (3.10), k = 1, . . . , d, then ψ̂ε(ξ, ·) defined by

(3.11) ψ̂ε(ξ, ·) =
d∑

k=1

ε−1(e−iεek·ξ − 1)û(ξ)ψ̂k,ε(ξ, ·)

satisfies (3.8). It follows from uniqueness of the minimizer in Lemma 3.2 that ψε(ξ, ·) = ψε(−ξ, ·).
Making the substitution (3.11) for ψ̂ε in (3.9) we see that (3.9) is the same as

(3.12) f̂(ξ) = û(ξ) + û(ξ)
d∑

i,j=1

ε−1(eiεej ·ξ − 1)ε−1(e−iεei·ξ − 1) qε
ij(ξ),
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where

(3.13) qε
k,k′(ξ)

def.=
〈
ak,k′(·) +

d∑
j=1

e−iεej ·ξakj(·)∂j ψ̂k′,ε(ξ, ·) +
d∑

j=1

(e−iεej ·ξ − 1)akj(·)ψ̂k′,ε(ξ, ·)
〉
.

We can obtain an alternative expression for qε
kk′(ξ) by using the Euler-Lagrange equation, (3.10).

We have

(3.14) qε
kk′(ξ) =

〈
d∑

i,j=1

aij(·)
(
δki + eiεei·ξ∂iψ̂k,ε(ξ, ·) + (eiεei·ξ − 1)ψ̂k,ε(ξ, ·)

)
(
δk′j + e−iεej ·ξ∂jψ̂k′,ε(ξ, ·) + (e−iεej ·ξ − 1)ψ̂k′,ε(ξ, ·)

)〉

+ ε2
〈
ψ̂k,ε(ξ, ·)ψk′,ε(ξ, ·)

〉
.

It is clear from this last expression that the matrix qε(ξ) = [qε
kk′(ξ)] is Hermitian, non-negative

definite. In view of the fact that
〈
ψ̂k,ε(ξ, ·)

〉
= 0 it follows that it is bounded below by the

matrix λId, where λ is given by (1.1). Hence the equation (3.12) can be solved uniquely for û(ξ)
in terms of f̂(ξ).

Suppose now that we know the minimizer ψ̂k,ε(ξ, ·) of Lemma 3.2 is continuous as a function
from [−π

ε ,
π
ε ]d → L2

0(Ω), k = 1, . . . , d. Hence if we define û(ξ) by (3.12) then it is easy to see that
û(ξ) is continuous and

|û(ξ)| ≤ |f̂(ξ)|
1 + λ

∑d
i=1 ε

−2|eiεei·ξ − 1|2 , ξ ∈
[−π
ε
,
π

ε

]d

.

Since we are assuming f is C∞ of compact support it follows that f̂ is in
L2([−π

ε ,
π
ε ]d), whence û is in Ĥ1([−π

ε ,
π
ε ]d). Defining ψ̂ε(ξ, ·) by (3.11) it is easy to see that

ψ̂ε(ξ, ·) is in Ĥ1
0([

−π
ε ,

π
ε ]d × Ω). We conclude that û(ξ), ψ̂ε(ξ, ·) defined by (3.12) and (3.11) are

the unique solution to the variational problem of lemma 3.1.

We still need to establish the continuity of the ψ̂k,ε(ξ, ·), k = 1, · · · , d. We can actually assert
more than this.

Proposition 3.2. For ξ ∈ Rd let ψ̂k,ε(ξ, ·) be the minimizer of lemma 3.2. Then
(a) ψ̂k,ε(ξ, ·) regarded as a function from Rd to L2

0(Ω) is continuous and periodic,

ψ̂k,ε

(
ξ +

2πn
ε
, ·
)

= ψ̂k,ε(ξ, ·) if ξ ∈ Rd, n ∈ Zd.

(b)There exists α > 0, independent of ε, such that ψ̂k,ε : Rd → L2
0(Ω) has an analytic continua-

tion into the region {ξ + iη ∈ Cd : ξ, η ∈ Rd, |η| < α}.
(c) For any δ > 0, the number α > 0 can be chosen, independent of ε, such that the matrix qε(ξ)
defined by (3.13) satisfies the inequality,

|qε
kk′(ξ + iη) − qε

kk′(ξ)| < δ, 1 ≤ k, k′ ≤ d, ξ, η ∈ Rd, |η| < α.
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To prove proposition 3.2 we define operators from L2(Ω) to L2
0(Ω) as follows: If ϕ ∈ L2(Ω) let

ψ(·) be the solution of the equation,

(3.15)
d∑

i=1

(
∂∗i + 1 − e−iεei·ξ

)(
∂i + 1 − eiεei·ξ

)
ψ(·) +

ε2

Λ
ψ(·) =

(
eiεek·ξ∂∗k + eiεek·ξ − 1

)(
ϕ(·) − 〈ϕ〉

)
,

where Λ is given in (1.1).

The operator Tk,ε,ξ is defined by putting ψ = Tk,ε,ξϕ. Let ‖ ‖ denote the usual L2 norm and for
ξ ∈ Rd define ‖ ‖ε,ξ by

‖ ψ ‖2
ε,ξ

def.=
d∑

i=1

‖ [∂i + 1 − eiεei·ξ]ψ ‖2 +
ε2

Λ
‖ ψ ‖2 .

It is easy to see that Tk,ε,ξ is a bounded operator from L2(Ω), equipped with the standard
norm, to L2

0(Ω), equipped with the norm ‖ ‖ε,ξ, and that the operator norm of Tk,ε,ξ satisfies
‖ Tk,ε,ξ ‖≤ 1.

We can rewrite the Euler-Lagrange equation (3.10) using the operators Tk,ε,ξ. First let b(·)
be the random matrix defined by b(·) = [ΛId − a(·)]/Λ. Evidently b(·) is symmetric positive
definite and b(·) ≤ (1−λ/Λ)Id. Substituting for a(·) in terms of b(·) into (3.10) yields then the
equation,

(3.16) ψ̂k,ε(ξ, ·) −
d∑

i,j=1

Tj,ε,ξ

{
bij(·)

[
e−iεei·ξ∂i + e−iεei·ξ − 1

]
ψ̂k,ε(ξ, ·)

}
+

1
Λ

d∑
j=1

Tj,ε,ξ(akj(·)) = 0.

We define an operator Tb,ε,ξ on L2
0(Ω) by

(3.17) Tb,ε,ξϕ(·) =
d∑

i,j=1

Tj,ε,ξ

{
bij(·)[e−iεei·ξ∂i + e−iεei·ξ − 1]ϕ(·)

}
, ϕ ∈ L2

0(Ω),

where b(·) is an arbitrary random real symmetric matrix. We define ‖ b ‖ to be

‖ b ‖= sup
{
|

d∑
i,j=1

bij(ω)λiλj | :
d∑

i=1

λ2
i = 1, ω ∈ Ω

}
.

Thus ‖ b ‖ is the maximum over ω ∈ Ω of the spectral radii of b(ω). It is easy to see now that
Tb,ε,ξ is a bounded operator on L2

0(Ω) equipped with the norm ‖ ‖ε,ξ and that the corresponding
operator norm satisfies ‖ Tb,ε,ξ ‖≤‖ b ‖.
Our goal now is to show that the operators Tk,ε,ξ and Tb,ε,ξ can be analytically continued from
ξ ∈ Rd to a strip {ξ + iη : ξ, η ∈ Rd, |η| < α} in Cd. Furthermore, the norm bounds we have
obtained continue to approximately hold.
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Lemma 3.3. (a) Assume L2(Ω) is equipped with the standard norm and let
B(L2(Ω)) be the corresponding Banach space of bounded operators on L2(Ω). Then there
exists α > 0, independent of ε, such that the mapping ξ → Tk,ε,ξ from Rd to B(L2(Ω)) can be
analytically continued into the region {ξ + iη ∈ Cd : ξ, η ∈ Rd, |η| < α}.
(b) For ξ, η ∈ Rd, |η| < α consider Tk,ε,ξ+iη as a bounded operator from L2(Ω), equipped with
the standard norm, to L2

0(Ω), equipped with the norm ‖ ‖ε,ξ. We denote the corresponding
operator norm also by ‖ ‖ε,ξ. Then, for α sufficiently small, independent of ε, there exists a
constant Cα, depending only on α, such that

‖ Tk,ε,ξ+iη − Tk,ε,ξ ‖ε,ξ≤ Cα|η|, ξ, η ∈ Rd, |η| < α.

Proof. We can write down the solution of (3.15) by using a Green’s function. Thus, in analogy
to (2.7), let Gε,ξ be the solution of the equation,

(3.18)
d∑

i=1

[
∇i + 1 − e−iεei·ξ

][
∇∗

i + 1 − eiεei·ξ
]
Gε,ξ(x) +

ε2

Λ
Gε,ξ(x) = δ(x), x ∈ Zd.

Then Tk,ε,ξ is given by

(3.19) Tk,ε,ξφ(·) =
∑
y∈Zd

[
eiεek·ξ∇k + eiεek·ξ − 1

]
Gε,ξ(y)

[
φ(τy·) − 〈φ〉

]
, φ ∈ L2(Ω).

The function Gε,ξ(y) decays exponentially as |y| → ∞. Hence the RHS of (3.19) is in L2
0(Ω). It

is a simple matter to verify that ψ = Tk,ε,ξφ, defined by (3.19), satisfies (3.15).

To prove part (a) we need to analyze the solution of (3.18). To do this we go into Fourier
variables. Thus if

Ĝε,ξ(ζ) =
∑
x∈Zd

Gε,ξ(x)eix·ζ , ζ ∈ [−π, π]d,

then from (3.18) we have that

(3.20) Ĝε,ξ(ζ) =

{
d∑

i=1

[
e−iei·ζ − e−iεei·ξ

][
eiei·ζ − eiεei·ξ

]
+ ε2/Λ

}−1

, ζ ∈ [−π, π]d.

Taking the inverse Fourier transform we reconstruct Gε,ξ from Ĝε,ξ by the formula,

(3.21) Gε,ξ(x) =
1

(2π)d

∫
[−π,π]d

Ĝε,ξ(ζ)e−ix·ζdζ, x ∈ Zd.

Observe now that there exists α > 0, independent of ε, such that Ĝε,ξ(ζ), regarded as a function
of ξ and ζ, is analytic in the region {(ξ, ζ) ∈ C2d : |Im ξ| < α, |Im ζ| < εα}. From (3.20), (3.21)
we have that[

eiεek·ξ∇k + eiεek·ξ − 1
]
Gε,ξ(x) =

1
(2π)d

∫
[−π,π]d

dζe−ix·ζeiεek·ξ×

[
e−iek·ζ − e−iεek·ξ

]{ d∑
i=1

[e−iei·ζ − e−iεei·ξ][eiei·ζ − eiεei·ξ] + ε2 /Λ
}−1

.

25



By deforming the contour of integration in ζ in (3.21) into the complex space Cd we see that
for every x ∈ Zd the function [eiεek·ξ∇k + eiεek·ξ − 1]× Gε,ξ(x) is analytic in ξ for ξ ∈ Cd with
| Im ξ |< α. Furthermore there is a universal constant C such that

(3.22) | [eiεek·ξ∇k + eiεek·ξ − 1]Gε,ξ(x) |≤ C exp[−εα|x|], x ∈ Zd, ξ ∈ Cd, |Im ξ| < α.

Note that a similar inequality for Gε,ξ(x) holds if d ≥ 3 but not if d = 2. Part (a) follows now
since it is clear that the RHS of (3.19) is analytic if we have a finite summation instead of the
sum over all of Zd. The inequality (3.22) gives uniform convergence in the norm of B(L2(Ω)),
whence the result of part (a).

We turn to the proof of part (b). We have from (3.19) that

‖Tk,ε,ξ+iηφ− Tk,ε,ξφ‖2
ε,ξ

=
∑

n∈Zd

Γ(n)
∑
x∈Zd

( d∑
j=1

[hj(η, x) − hj(0, x)]
[
hj(η, x− n) − hj(0, x− n)

]

+
[
h(η, x) − h(0, x)

][
h(η, x − n) − h(0, x− n)

])
,

where Γ is the correlation function,

Γ(n) =
〈[
φ(τn·) − 〈φ〉

][
φ(τ0·) − 〈φ〉

]〉
, n ∈ Zd,

and the h, hj are given by

(3.23) h(η, x) =
ε√
Λ

[
eiεek·(ξ+iη)∇k + eiεek·(ξ+iη) − 1

]
Gε,ξ+iη(x), x ∈ Zd,

hj(η, x) =
[
eiεek·(ξ+iη)∇k + eiεek ·(ξ+iη) − 1

][
∇∗

j + 1 − eiεej ·ξ
]
Gε,ξ+iη(x), x ∈ Zd, 1 ≤ j ≤ d.

Now Γ(n) is a positive definite function. Hence by Bochner’s theorem [9] there is a finite positive
measure dµφ on [−π, π]d such that

Γ(n) =
∫

[−π,π]d
ein·ζdµφ(ζ), n ∈ Zd,

and, ∫
[−π,π]d

dµφ(ζ) = ‖φ− 〈φ〉‖2 ≤ ‖φ‖2.

It follows that

‖ Tk,ε,ξ+iηφ− Tk,ε,ξφ ‖2
ε,ξ=∫

[−π,π]d

[ d∑
j=1

|ĥj(η, ζ) − ĥj(0, ζ)|2 + |ĥ(η, ζ) − ĥ(0, ζ)|2
]
dµφ(ζ) ≤

‖ φ ‖2 sup
ζ∈[−π,π]d

{ d∑
j=1

|ĥj(η, ζ) − ĥj(0, ζ)|2 + |ĥ(η, ζ) − ĥ(0, ζ)|2
}
.
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From (3.20) , (3.23) we have that

ĥ(η, ζ) =
ε√
Λ

{
exp

[
iεek · (ξ + iη) − iek · ζ

]
− 1
}
Ĝε,ξ+iη(ζ),

ĥj(η, ζ) =
{

exp
[
iεek · (ξ + iη) − iek · ζ

]
− 1
} {

eiej ·ζ − eiεej ·ξ
}
Ĝε,ξ+iη(ζ).

Hence,

d∑
j=1

|ĥj(η, ζ) − ĥj(0, ζ)|2 + |ĥ(η, ζ) − ĥ(0, ζ)|2 =

Ĝε,ξ(ζ)−1|
[
eiεek·(ξ+iη) − eiek ·ζ

]
Ĝε,ξ+iη(ζ) −

[
eiεek·ξ − eiek ·ζ

]
Ĝε,ξ(ζ)|2.

It is easy to see that we can choose α sufficiently small, independent of ε, such that this last
expression is less that C|η|2 for all ζ ∈ [−π, π]d, |η| < α, where the constant C is independent of
ε. The result follows. �

Corollary 3.1. Let Tb,ε,ξ+iη be the analytic continuation of the operator Tb,ε,ξ of (3.17). Then,
for α sufficiently small, independent of ε, there exists a constant Cα, depending only on α, such
that ‖ Tb,ε,ξ+iη − Tb,ε,ξ ‖ε,ξ≤ Cα|η| ‖ b ‖ . Here the operator norm ‖ ‖ε,ξ is that induced on
bounded operators on L2

0(Ω), equipped with the norm ‖ ‖ε,ξ.

Proof. Follows from lemma 3.3 and Taylor expansion. �

Proof of Proposition 3.2. ¿From (3.16), (3.17) the function ψ̂k,ε(ξ, ·) can be obtained as the
solution of the equation,

ψ̂k,ε(ξ, ·) − Tb,ε,ξψ̂k,ε(ξ, ·) +
1
Λ

d∑
j=1

Tj,ε,ξ(akj(·)) = 0,

where the matrix b has ‖ b ‖≤ 1 − λ/Λ. In view of lemma 3.3 and corollary 3.1 there exists
α > 0, independent of ε, such that the equation

(3.24) ψ̂k,ε(ξ + iη, ·) − Tb,ε,ξ+iηψ̂k,ε(ξ + iη, ·) +
1
Λ

d∑
j=1

Tj,ε,ξ+iη(akj(·)) = 0,

has a unique solution ψ̂k,ε(ξ + iη, ·) ∈ L2
0(Ω), provided ξ, η ∈ Rd, |η| < α. Further, α can be

chosen sufficiently small, independent of ε, such that

(3.25) ‖ ψ̂k,ε(ξ + iη, ·) − ψ̂k,ε(ξ, ·) ‖ε,ξ≤ Cα|η|,

where the constant Cα is independent of ε. It is easy to see that the function ψ̂k,ε(ξ + iη, ·) is
the analytic continuation of ψ̂k,ε(ξ, ·), ξ ∈ Rd. In fact we just write the solution of (3.24) as
a perturbation series. A finite truncation of the series is clearly analytic in ξ + iη ∈ Cd. Now
we use the fact that lemma 3.3 and corollary 3.1 gives us uniform convergence in the standard
norm on L2

0(Ω) to assert the analyticity of the entire series. This proves parts (a) and (b).
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To prove part (c) we use the representation (3.13) for qε(ξ). Thus

qε
kk′(ξ + iη) − qε

kk′(ξ) =
〈 d∑

j=1

akj(·)
[
e−iεej ·ξ∂j + (e−iεej ·ξ − 1)

][
ψ̂k′,ε(ξ + iη, ·) − ψ̂k′,ε(ξ, ·)

]〉

+
〈 d∑

j=1

akj(·)(e−iεej ·(ξ+iη) − e−iεej ·ξ)(∂j + 1)ψ̂k′,ε(ξ + iη, ·)
〉
.

Hence from the Schwarz inequality,

|qε
kk′(ξ + iη) − qε

kk′(ξ)| ≤ C ‖ ψ̂k′,ε(ξ + iη, ·)
− ψ̂k′,ε(ξ, ·) ‖ε,ξ +C|η| ‖ ψ̂k′,ε(ξ + iη, ·) ‖ε,ξ ,

where the constant C depends only on α and the uniform bound Λ on the matrix a(·). The
result follows now from (3.25).

Proof of Theorem 1.1. From proposition 3.2 there exists α > 0 such that the matrix qε(ξ) has an
analytic continuation into the region

{
ξ+iη : |η| < α

}
. From (3.12) we have then that û(ξ) can

also be analytically continued into this region. The result follows now by using the deformation
of contour argument of proposition 3.1, the fact that qε(ξ) is bounded below as a quadratic form
by λId and part (c) of proposition 3.2.

4. A Bernoulli Environment.

In this section we consider a situation in which the random matrix a : Ω → Rd(d+1)/2 is
generated by independent Bernoulli variables. For each n ∈ Zd let Yn be independent Bernoulli
variables, whence Yn = ±1 with equal probability. The probability space (Ω,F , µ) is then the
space generated by all the variables Yn , n ∈ Zd. A point ω ∈ Ω is a set of configurations
{(Yn , n) : n ∈ Zd}. For y ∈ Zd the translation operator τy acts on Ω by taking the point
ω = {(Yn , n) : n ∈ Zd} to τyω = {(Yn+y, n) : n ∈ Zd}. The random matrix a is then defined
by

a(ω) def.= (1 + γY0)Id, ω = {(Yn , n) : n ∈ Zd},
where Id is the identity d×d matrix and γ is a number satisfying 0 < γ < 1. Evidently, we have
a(x, ω) = (1 + γYx)Id, x ∈ Zd.

For N = 1, 2, ..., let Zd,N be the collection of all sets of N distinct elements {n1, ..., nN} with
nj ∈ Zd, 1 ≤ j ≤ N . For 1 ≤ p <∞ a function ψN : Zd,N → R is in Lp(Zd,N ) if

‖ψN‖p
p

def.=
∑

m∈Zd,N

|ψN (m)|p <∞.

For each y ∈ Zd we may define a translation operator τy on Zd,N by

τy{n1, ..., nN} def.= {n1 − y, ..., nN − y}.
We can then define the convolution of two functions ψN , ϕN : Zd,N → R. This is a function
ψN ∗ ϕN : Zd → R given by

(4.1) ψN ∗ ϕN (y) =
∑

m∈Zd,N

ψN (m)ϕN (τym), y ∈ Zd.
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If N = 1 this is just the standard discrete convolution. We have the following generalization of
Young’s inequality:
Proposition 4.1. Suppose p, q satisfy 1 ≤ p, q ≤ ∞ and 1

p + 1
q = 1 + 1

r with 1 ≤ r ≤ ∞. Then
if ψN ∈ Lp(Zd,N ) and ϕN ∈ Lq(Zd,N ) it follows that ψN ∗ ϕN ∈ Lr(Zd) and

(4.2) ‖ψN ∗ ϕN‖r ≤ ‖ψN‖p‖ϕN‖q.

Proof. We follow the standard procedure. If r = ∞ the result follows from Hölder’s inequality
applied to (4.1). For p = 1 we have from Hölder’s inequality that

|ψN ∗ ϕN (y)|q ≤
[ ∑

m∈Zd,N

|ψN (m)|
]q−1 ∑

m∈Zd,N

|ψN (m)||ϕN (τym)|q

≤ ‖ψN‖q−1
1

∑
m∈Zd,N

|ψN (m)||ϕN (τym)|q.

Now if we sum this last inequality over y ∈ Zd we get the inequality (4.2) with r = q. For the
general case we have

|ψN ∗ ϕN (y)|r ≤
[ ∑

m∈Zd,N

|ψN (m)|p
](1−α)r/p

×
[ ∑

m∈Zd,N

|ϕN (m)|q
](1−β)r/q ∑

m∈Zd,N

|ψN (m)|p|ϕN (τym)|q,

where α, β are given by rα = p, rβ = q. The result follows from this last inequality by summing
over y ∈ Zd. �

Next we define the Fock space corresponding to the N body spaces Lp(Zd,N ), N = 1, 2, . . .. We
denote by ψ a set {ψN : N = 0, 1, 2, ...} of functions ψN : Zd,N → R, N = 1, 2, ... and ψ0 ∈ R.
The Lp Fock space which we denote by Fp(Zd) is all such ψ which satisfy

‖ψ‖p
p = |ψ0|p +

∞∑
N=1

‖ψN‖p
p <∞.

For two functions ψ = {ψN : N = 0, 1, 2, ...} and ϕ = {ϕN : N = 0, 1, 2, ...} we define the
convolution ψ ∗ ϕ : Zd → R by

(4.3) ψ ∗ ϕ(y) def.=
∞∑

N=1

ψN ∗ ϕN (y), y ∈ Zd.

Arguing as in Proposition 4.1 we have a version of Young’s inequality for this situation.
Corollary 4.1. Suppose p, q, r are as in Proposition 4.1, and ψ ∈ Fp(Zd), ϕ ∈ Fq(Zd). Then
ψ ∗ ϕ ∈ Lr(Zd) and ‖ψ ∗ ϕ‖r ≤ ‖ψ‖p‖ϕ‖q.

The point in defining the Fock spaces Fp(Zd) here is the fact that F2(Zd) is unitarily equivalent
to L2(Ω). In fact if ψ = {ψN : N = 0, 1, 2, ...} with ψ0 ∈ R and ψN : Zd,N → R we can define a
function Uψ on Ω by

Uψ = ψ0 +
∞∑

N=1

∑
{m={n1,...,nN}∈Zd,N}

ψN (m)Yn1Yn2...YnN
.
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Evidently U : F2(Zd) → L2(Ω) is unitary. We now define Lp(Ω) for 1 ≤ p < ∞ as the image
of Fp(Zd) under U equipped with the induced norm. Evidently we can define the convolution
for functions in Lp(Ω) and Young’s inequality holds as in Corollary 4.1. Observe now that
Lp(Ω) is contained in L2(Ω) if 1 ≤ p ≤ 2. We have seen in Lemma 2.2 that the minimizer
Ψk = (Ψk

1, ...,Ψ
k
d) has Ψk

i ∈ L2(Ω), i = 1, ..., d. We can strengthen this result here as follows:
Proposition 4.2. Suppose the random matrix a(ω) is given by a(ω) = (1+γY0)Id with 0 < γ <
1, and Ψk = (Ψk

1 , ...,Ψ
k
d) is the minimizer for the corresponding variational problem as given in

Lemma 2.2. Then there exists p, 1 < p < 2, depending on γ such that Ψk
i ∈ Lp(Ω), i = 1, ..., d.

The number p can be chosen arbitrarily close to 1 provided γ > 0 is taken sufficiently small.

Proof. Writing Ψi = ∂iΦ, i = 1, ..., d and assuming Φ is an arbitrary function in L2(Ω) it is clear
that the Euler-Lagrange equation in Lemma 2.2 is the same as

(4.4)
d∑

i,j=1

∂∗i
[
aij(ω)Ψk

j (ω)
]

+
d∑

j=1

∂∗j akj(ω) = 0.

Thus if we can find Ψk ∈ H(Ω) satisfying (4.4) then Ψk is the unique solution to the variational
problem of Lemma 2.2.

For any k = 1, . . . , d we define an operator Tk : L2(Ω) → H(Ω) as follows: Suppose Φ ∈ L2(Ω).
Then, in analogy to our derivation of (4.4) we see that there is a unique Ψ ∈ H(Ω) such that

(4.5)
d∑

i=1

∂∗i Ψi = ∂∗kΦ.

We put Ψ = TkΦ. It is easy to see that Tk is a bounded operator with ‖Tk‖ ≤ 1. Next, for
k = 1, ..., d and η > 0 we define an operator Tk,η : L2(Ω) → H(Ω) as follows: Suppose Φ ∈ L2(Ω).
Then by using the variational argument of Lemma 2.2 one sees that there is a unique Φη ∈ L2(Ω)
such that

(4.6)
d∑

i=1

∂∗i ∂i Φη + ηΦη = ∂∗kΦ.

We put ∇Φη = Tk,ηΦ. It is again clear that Tk,η is a bounded operator and ‖Tk,η‖ ≤ 1.

We can obtain a representation for the solution Φη of (4.6) with the help of the Green’s function
Gη of (2.7). It is easy to see that

(4.7) Φη(ω) =
∑
y∈Zd

∇kGη(y)Φ(τyω), ω ∈ Ω,

is in L2(Ω) and satisfies (4.6). From (4.5), (4.6), we see that for Φ ∈ L2(Ω), Tk,ηΦ converges
weakly to TkΦ in H(Ω) as η → 0 provided the corresponding function Φη defined by (4.7) satisfies
ηΦη → 0 weakly in L2(Ω). This last fact follows from the ergodicity of the translation operators
τy. One sees this by going to the spectral representation of the τy [9].

We consider now the case of the a(ω) in the statement of Proposition 4.2. In this situation (4.4)
can be rewritten as

Ψk + γ

d∑
j=1

Tj(Y0Ψk
j ) +

d∑
j=1

Tj(akj) = 0.
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Define T : H(Ω) → H(Ω) by the formula,

TΨ =
d∑

j=1

Tj(Y0Ψj), Ψ ∈ H(Ω).

Since the operation of multiplication by Y0 is unitary on L2(Ω) it follows that T is bounded and
in fact ‖T‖ ≤ 1. Hence (4.4) is equivalent to solving the equation

(4.8) (I + γT )Ψk +
d∑

j=1

Tj(akj) = 0.

Since ‖T‖ ≤ 1 it is evident this equation has a unique solution provided |γ| < 1. We can for
η > 0 define an operator Tη : H(Ω) → H(Ω) in analogy to the definition of T by

TηΨ =
d∑

j=1

Tj,η(Y0Ψj), Ψ ∈ H(Ω).

It is clear that Tη is bounded with ‖Tη‖ ≤ 1. Hence if |γ| < 1 there is a unique solution to the
equation

(4.9) (I + γTη)Ψk,η +
d∑

j=1

Tj,η(akj) = 0.

Furthermore the solution Ψk,η of (4.9) converges weakly to the solution Ψk of (4.4) as η → 0 in
H(Ω).

For 1 ≤ p < ∞ we define the spaces Hp(Ω) as follows: Let Ep = {∇ϕ : ϕ ∈ Lp(Ω)}. For Ψ ∈ Ep

we define the norm of Ψ, ‖Ψ‖p to be given by ‖Ψ‖p
p =

∑d
i=1 ‖Ψi‖p

p, where Ψ = (Ψ1, ...,Ψd). The
Banach space Hp(Ω) is the closure of Ep in this norm. Evidently H2(Ω) is the same as H(Ω). We
can show that there exists p < 2, depending on γ < 1 such that (4.9) has a solution in Hp(Ω).
To see this observe that

(TηΨ)i(ω) =
d∑

j=1

∑
y∈Zd

∇∗
i∇jGη(y)(Y0Ψj)(τyω), ω ∈ Ω.

Now the RHS of this last equation is just a singular integral. In fact if ϕ = {ϕN : N = 0, 1, 2, ...}
is in Lp(Ω) then the function ψ defined by

ψ(ω) =
∑
y∈Zd

∇∗
i∇jGη(y)ϕ(τyω), ω ∈ Ω ,

is given by ψ = {ψN : N = 0, 1, 2, ...} where ψ0 = 0 and for N ≥ 1, one has

ψN (m) =
∑
y∈Zd

∇∗
i∇jGη(y)ϕN (τym), m ∈ Zd,N .

Thus ψN is the convolution of a second derivative of a Green’s function with ϕN . We can
therefore invoke the Calderon-Zygmund theorem [10] to conclude the following: Let 1 < p <∞.
Then Tη is a bounded operator on Hp(Ω) for every η > 0. Further, there exists a bounded
operator T on Hp(Ω) such that limη→0 ‖TΨ − TηΨ‖p = 0 for every Ψ ∈ Hp(Ω). There exists
p < 2 such that limη→0 γ‖Tη‖p < 1.

In the last statement we are using the fact that ‖T‖2 ≤ 1 and the continuity of the operator
norms in p. Hence there exists p < 2 such that for all sufficiently small η the equation (4.9) has
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a unique solution Ψk,η in Hp(Ω). It also follows from the above that as η → 0, Ψk,η converges
in Hp(Ω) to a function Ψk ∈ Hp(Ω). Since Hp(Ω) ⊂ H2(Ω) = H(Ω) it follows that this Ψk is
also the solution of the variational problem. This proves the first part of Proposition 4.2. The
fact that p can be taken arbitrarily close to 1 for sufficiently small γ is clearly also a direct
consequence of the Calderon-Zygmund theorem. �

Proposition 4.3. Suppose the random matrix a(ω) is given by a(ω) = (1+γY0)Id with 0 < γ < 1
and Zε(x, ω) is as in Proposition 2.1. Then if d > 2 one has

(4.10)

〈∫
Zd

ε

dxZε(x, ·)2
〉

≤ Cε2α ,

where α > 0 is a constant depending only on γ and C is independent of ε. If γ is sufficiently
small one can take α = 1.

Proof. From Proposition 2.1 it is sufficient to obtain estimates on A1, A2, A3, A4, A5, A6. We
first consider A1. In view of the boundedness of the matrix a(ω) and Proposition 4.2 it follows
that Qij(ω) is in Lp(Ω) for some p, 1 < p < 2, i, j = 1, ..., d. Taking the expectation value and
using translation invariance we see that A1 is given by the expression,

A1 =
d∑

i,j,`=1

∫
Zd

ε

dxε2
∑
y∈Zd

∑
y′∈Zd

∇∗
`G0

(x
ε
− y
)
×

∇ε∗
i ∇ε

ju(εy)∇∗
`G0

(x
ε
− y′

)
∇ε∗

i ∇ε
ju(εy

′) Qij ∗Qij(y − y′),

where convolution is defined by (4.3). Making the change of variable n = y − y′, this becomes

A1 =
d∑

i,j,`=1

ε2
∑
n∈Zd

hij`(n)Qij ∗Qij(n),

where

(4.11) hij`(n) =
∫
Zd

ε

dx
∑
y∈Zd

∇∗
`G0

(x
ε
− y
)
∇ε∗

i ∇ε
ju(εy)×

∇∗
`G0

(x
ε
− y + n

)
∇ε∗

i ∇ε
ju(ε[y − n]).

We can estimate the summation with respect to x from our knowledge of the properties of G0.
We conclude that there is a constant C independent of ε such that

|hij`(n)| ≤ Cεd

1 + |n|d−2

∑
y∈Zd

|∇ε∗
i ∇ε

ju(εy)|

|∇ε∗
i ∇ε

ju(ε[y − n])| ≤ C

1 + |n|d−2
exp[−δε|n|],

where C, δ > 0 are independent of ε. In this last inequality we have used Proposition 3.1. From
Corollary 4.1 it follows that Qij ∗Qij ∈ Lr(Zd) where 1/r = 2/p − 1. Since 1 < p < 2 one has
1 < r <∞. Hence from Hölder’s inequality we conclude that

A1 ≤ Cε2


∑

n∈Zd

1
(1 + |n|d−2)r′

exp[−δr′ε|n|]



1/r′

,
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where 1/r + 1/r′ = 1. Evidently this yields

A1 ≤ Cε2 max
[
1, (1/ε)2 − d/r

]
.

Since r < ∞ it follows that A1 ≤ Cε2α for some α > 0. If γ is sufficiently small we can choose
p close to 1 and hence r close to 1. Since d > 2 it follows that A1 ≤ Cε2 in this case.

It is clear that A2 and A3 can be dealt with in exactly the same way as A1. To deal with A4 we
choose η = ε2. Arguing as before we have

A4 =
d∑

i,j,k=1

ε4
∑
n∈Zd

hijk(n)Ψk
j ∗ Ψk

j (n),

where

hijk(n) =
∫
Zd

ε

dx[∇ε
ku(x+ εej)]2

∑
y∈Zd

Gη

(x
ε
− y
)
Gη

(x
ε
− y + n

)
.

Again we see from known properties of Green’s functions that

|hijk(n)| ≤ C

1 + |n|d−4
exp[−δε|n|], d > 4,

|hijk(n)| ≤ C log(1/ε) exp[−δε|n|], d = 4,

|hijk(n)| ≤ C

ε
exp[−δε|n|], d = 3.

Using these inequalities and arguing as before we see that A4 ≤ Cε2α with α > 0 and α = 1 if
γ is sufficiently small.

To deal with A5 and A6 we use the representation,

χk

(x
ε
, ·
)

=
∑
y∈Zd

d∑
j=1

∇∗
jGη

(x
ε
− y
)

Ψk
j (τy ·),

and argue as previously. �

For d = 2 we can get almost the same result as in Proposition 4.3. We have

Proposition 4.4. Suppose d = 2 in the statement of Proposition 4.3. Then (4.10) holds for
some α > 0 depending on γ. The number α can be taken arbitrarily close to 1 provided γ is
chosen sufficiently small.

Proof. We consider A1 again. The problem is that when d = 2 the summation with respect to
x in (4.11) gives infinity. To get around this we replace G0 in the representation (2.23) of the
first term on the RHS of (2.21) by Gη with η = ε2. Hence from (2.7), (2.22), we have

ψε(y′, ω) =
∑

x′∈Zd

−∆Gη

(
y′

ε
− x′

)
ψε(εx′, ω)

+
∑

x′∈Zd

η Gη

(
y′

ε
− x′

)
ψε(εx′, ω), y′ ∈ Zd

ε , ω ∈ Ω.
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We can rewrite this as

ψε(y′, ω) =
∑

x′∈Zd

d∑
`=1

∇∗
`Gη

(
y′

ε
− x′

)
ε ∇ε

`ψε(εx′, ω)

+
∑

x′∈Zd

η Gη

(
y′

ε
− x′

)
ψε(εx′, ω)

=
∫
Zd

ε

dx

d∑
`=1

∇ε
`ψε(x, ω)∇∗

`Gη

(
x

ε
− y′

ε

)
ε1−d

+
∫
Zd

ε

dxψε(x, ω)Gη

(
x

ε
− y′

ε

)
ε2−d.

The first term on the RHS of (2.21) is therefore the same as

(4.12)
d∑

i,j,`=1

∫
Zd

ε

dx

〈
∇ε

`ψε(x, ·)
∑
y∈Zd

ε∇∗
`Gη

(x
ε
− y
)
Qij(τy·)∇ε∗

i ∇ε
ju(εy)

〉

+
d∑

i,j=1

∫
Zd

ε

dx

〈
ψε(x, ·)

∑
y∈Zd

ε2Gη

(x
ε
− y
)
Qij(τy·)∇ε∗

i ∇ε
ju(εy)

〉
.

If we use the Schwarz inequality in (4.12) we see the first term is bounded by C‖ψε‖H1 A
1/2
1,0

and the second term by C‖ψε‖H1 A
1/2
1,1 , where

A1,0 =
d∑

i,j,`=1

〈 ∫
Zd

ε

dx


ε ∑

y∈Zd

∇∗
`Gη

(x
ε
− y
)
Qij(τy·)∇ε∗

i ∇ε
ju(εy)




2 〉
,

A1,1 =
d∑

i,j=1

〈 ∫
Zd

ε

dx


ε2 ∑

y∈Zd

Gη

(x
ε
− y
)
Qij(τy·)∇ε∗

i ∇ε
ju(εy)




2 〉
.

We proceed now as in Proposition 4.3. Thus A1,0 can be written as

A1,0 =
d∑

i,j,`=1

ε2
∑
n∈Zd

hij`(n)Qij ∗Qij(n),

where

hij`(n) =
∫
Zd

ε

dx
∑
y∈Zd

∇∗
`Gη

(x
ε
− y
)
∇ε∗

i ∇ε
ju(εy) ∇∗

`Gη

(x
ε
− y + n

)
∇ε∗

i ∇ε
ju(ε[y − n]).

It is clear now that there are constants C, δ > 0 such that

|hi,j,`(n)| ≤ C log
(

1
ε

)
exp[−δε|n|].
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Arguing as before we see that A1,0 ≤ Cε2α for some α > 0 and α can be chosen arbitrarily close
to 1 if γ is small. We have a similar representation for A1,1 given by

A1,1 =
d∑

i,j=1

ε4
∑
n∈Zd

hij(n)Qij ∗Qij(n),

where in this case hij is given by

hij(n) =
∫
Zd

ε

dx
∑
y∈Zd

Gη

(x
ε
− y
)
∇ε∗

i ∇ε
ju(εy) Gη

(x
ε
− y + n

)
∇ε∗

i ∇ε
ju(ε[y − n]).

The estimate now on hij is

|hij(n)| ≤ C ε−2[log(1/ε)]2 exp[−δε|n|].
We conclude again that A1,1 ≤ Cε2α for some α > 0 and α can be chosen arbitrarily close to 1
if γ is small.

The second and third terms on the RHS of (2.21) can be dealt with exactly the same way we
dealt with the first term. The fourth, fifth and sixth terms are handled in the same way we
handled A4, A5, A6 in Proposition 4.3. �

Proof of Theorem 1.2. In view of Proposition 4.3, 4.4 and the inequality (2.24), it is sufficient
for us to estimate

ε2
〈 ∫

Zd
ε

dx

[
d∑

k=1

χk(
x

ε
, ·)∇ε

ku(x)

]2 〉
.

Since this quantity is bounded by dA6, we just have to use the estimates from Propositions 4.3,
4.4.

Next we turn to the proof of Theorem 1.3. It is clear from Lemma 2.4 that if uε is the minimizer
for Lemma 2.1 and (u, ψε) the minimizer for Lemma 2.4 then

〈 [ ∫
Zd

ε

dx g(x)uε(x, ·) −
〈 ∫

Zd
ε

dx g(x)uε(x, ·)
〉 ]2 〉

= ε2
〈 [∫

Zd
ε

dx g(x)ψε(x, τx/ε ·)
]2 〉

.

We shall first prove a result when ψε is the minimizer for the separable problem given in Lemma
2.5.
Proposition 4.5. Let (u, ψε) be the minimizer of the functional FS,ε given in Lemma 2.5, and
g : Rd → R a C∞ function of compact support. Then

(4.13) ε2
〈 [ ∫

Zd
ε

dx g(x)ψε(x, τx/ε ·)
]2 〉

≤ C εα

for some α > 0, provided |γ| < 1. The number α can be taken arbitrarily close to d provided γ
is taken sufficiently small.

Proof. From Proposition 2.2 it is sufficient for us to bound

ε2
〈 [∫

Zd
ε

dx g(x)∇ε
ku(x)ψk,ε(τx/ε ·)

]2 〉
,
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where ψk,ε(·) is the minimizer of Lemma 2.6. This last expression is the same as

εd+2
∑

n∈Zd

h(n)ψk,ε ∗ ψk,ε(n),

where

(4.14) h(n) =
∫
Zd

ε

dx g(x)∇ε
ku(x)g(x− εn)∇ε

ku(x− εn), n ∈ Zd.

We shall see in the next lemma that εψk,ε ∈ Lp(Ω) for some p, 1 < p < 2, and that ‖εψk,ε‖p ≤ C
where C is independent of ε as ε → 0. Further, p can be taken arbitrarily close to 1 for
sufficiently small γ > 0. The result follows easily from this and Young’s inequality, Corollary
4.1. Since εψk,ε is in Lp(Ω) it follows that ε2ψk,ε ∗ ψk,ε is in Lr(Zd) with 1/r = 2/p − 1, and
‖ε2ψk,ε ∗ ψk,ε‖r ≤ C where C is independent of ε. Hence from Hölder’s inequality the LHS of
(4.13) is bounded by

C εd‖h‖r′ , where 1/r + 1/r′ = 1.
It is easy now to see from (4.14) that ‖h‖r′ ≤ Cε−d/r′ . Note that r′ > 1 since p < 2, hence
r <∞.

�

Lemma 4.1. Suppose the random matrix a(ω) is given by a(ω) = (1 + γY0)Id with 0 < γ < 1,
and ψk,ε(·) is the minimizer for the corresponding variational problem as given in Lemma 2.6.
Then there exists p, 1 < p < 2, depending on γ such that εψk,ε ∈ Lp(Ω) with ‖εψk,ε‖p bounded
independent of ε as ε→ 0. The number p can be chosen arbitrarily close to 1 provided γ > 0 is
taken sufficiently small.

Proof. Observe that the result is trivial for p = 2. In fact we have

‖εψk,ε‖2
2 ≤

〈
akk(·)

〉
+ 2Gk,ε(ψk,ε)

≤
〈
akk(·)

〉
, ( since Gk,ε(0) = 0).

To prove the Lp result with p < 2 we proceed similarly to Proposition 4.2. First note that the
Euler-Lagrange equation of Lemma 2.6 is the same as

(4.15)
d∑

i,j=1

∂∗i [aij(ω)∂jψk,ε(ω)] + ε2ψk,ε(ε) +
d∑

j=1

∂∗j akj(ω) = 0, ω ∈ Ω.

If we can find ψk,ε ∈ L2(Ω) satisfying (4.15) then ψk,ε is the unique solution to the variational
problem of Lemma 2.6.

For any k = 1, ..., d define an operator Tk,ε : L2(Ω) → L2(Ω) as follows: Suppose ϕ ∈ L2(Ω).
Then, in analogy to our derivation of (4.15) we see that there is a unique ψ ∈ L2(Ω) satisfying

d∑
i=1

∂∗i ∂iψ + ε2ψ = ∂∗kϕ.

We put ψ = Tk,εϕ. It is easy to see that Tk,ε is a bounded operator with ‖Tk,ε‖ ≤ 2ε2. We can
obtain a representation of Tk,εϕ using the Green’s function Gη of (2.7). We have

Tk,εϕ(ω) =
∑
y∈Zd

∇kGε2(y)ϕ(τyω), ω ∈ Ω.
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Putting a(ω) = (1 + γY0)Id we see that (4.15) is the same as

(4.16) ψk,ε + γ

d∑
j=1

Tj,ε(Y0∂jψk,ε) +
d∑

j=1

Tj,ε(ak,j) = 0.

Observe that (4.16) cannot necessarily be solved in L2(Ω) since the norms of Tj,ε, as bounded
operators on L2(Ω), can become arbitrarily large as ε→ 0. To get around this we define a norm
on L2(Ω) which depends on ε. For ψ ∈ L2(Ω) let ‖ψ‖ε be defined by

‖ψ‖2
ε

def.=
d∑

j=1

‖∂jψ‖2 + ε2‖ψ‖2.

Let Tε be the operator on L2(Ω) given by

(4.17) Tεψ =
d∑

j=1

Tj,ε(Y0∂jψ).

We show that the operator norm of Tε with respect to ‖ ‖ε on L2(Ω) has ‖Tε‖ε ≤ 1. In fact
(4.17) implies that [

d∑
i=1

∂∗i ∂i + ε2

]
Tεψ =

d∑
j=1

∂∗j (Y0∂jψ),

whence

‖Tεψ‖2
ε ≤ ‖Tεψ‖ε‖ψ‖ε,

which implies the result. We conclude that (4.16) is uniquely solvable for ψk,ε in L2(Ω) provided
|γ| < 1. Following Proposition 4.2, we define a p norm on Lp(Ω), 1 < p < ∞, which depends
on ε, by

(4.18) ‖ψ‖p
ε,p

def.=
d∑

j=1

‖∂jψ‖p
p + ‖εψ‖p

p, ψ ∈ Lp(Ω).

The result follows if we can show that Tε is a bounded operator on Lp(Ω) with the norm ‖Tε‖ε,p

induced by the vector norm (4.18), bounded independent of ε as ε → 0. This again is just a
consequence of the Calderon-Zygmund theorem. �

Proof of Theorem 1.3. We need to go into the Fourier representation studied in §3. Thus from
(3.11) we have that

ε

∫
Zd

ε

dx g(x)ψε(x, τx/ε·) =
∫
Zd

ε

dx g(x)
1

(2π)d

∫
[−π

ε
, π
ε
]d
ψ̂ε(ξ, τx/ε·)e−ix·ξ dξ

=
d∑

k=1

∫
Zd

ε

dxg(x)
1

(2π)d

∫
[−π

ε
, π
ε
]d
(e−iεek·ξ − 1) ×

û(ξ)ψ̂k,ε(ξ, τx/ε·)e−ix·ξdξ
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Hence〈 [
ε

∫
Zd

ε

dx g(x) ψε(x, τx/ε·)
]2〉

≤

d

d∑
k=1

〈∣∣∣∣∣
∫
Zd

ε

dxg(x)
1

(2π)d

∫
[−π

ε
, π

ε
]d
(e−iεek ·ξ − 1)û(ξ)ψ̂k,ε(ξ, τx/ε·)e−ix·ξdξ

∣∣∣∣∣
2〉

= d
d∑

k=1

∫
[−π

ε
, π

ε
]d

∫
[−π

ε
, π
ε
]d
dξdζ(2π)−dε−1(e−iεek·ξ − 1)û(ξ)(2π)−dε−1×

(eiεek·ξ − 1)û(ξ)
∑
n∈Zd

εd+2hk(n, ξ, ζ)ψ̂k,ε(ξ) ∗ ψ̂k,ε(ζ)(n),

where ψ̂k,ε(ξ), ψ̂k,ε(ζ) denote the functions ψ̂k,ε(ξ, ·), ψ̂k,ε(ζ, ·) respectively in L2(Ω), and hk is
given by the formula

hk(n, ξ, ζ) =
∫
Zd

ε

dx g(x)g(x − εn) exp[ix · (ζ − ξ) − iεn · ζ].

Since g : Rd → R is a C∞ function with compact support it is easy to see that for every r′,
1 ≤ r′ ≤ ∞, hk(·, ξ, ζ) is in Lr′(Zd) and ‖hk(·, ξ, ζ)‖r′ ≤ C ε−d/r′ , where C depends only on g.
We know now from § 3 that

∣∣∣ε−1(e−iεek·ξ − 1)û(ξ)
∣∣∣ ≤ Cm

1 + |ξ|m , ξ ∈
[−π
ε
,
π

ε

]d

,

for any positive integer m, where Cm depends only on m. Hence to finish the proof of Theorem
1.3 we need to prove an analogue of Lemma 4.1 for the function ψ̂k,ε(ξ, ·) and our bounds must
be uniform for ξ ∈ [−π

ε ,
π
ε ]d. This is accomplished by replacing the operator Tε of (4.17) by the

operator Tb,ε,ξ of (3.17) and following the argument of Lemma 4.1.

5. More General Environments.

In this section we shall show how to generalize the methods of §4 to prove Theorem 1.2 and
Theorem 1.3. Just as in § 3 we define a random matrix b(·) by b(·) = [ΛId − a(·)]/Λ. Thus b(·)
is a symmetric positive definite matrix and b(·) ≤ (1 − λ/Λ)Id = γId in the sense of quadratic
forms. Next let S be the set S = {∪m

k=1{ik, jk} : 1 ≤ ik ≤ jk ≤ d, k = 1, ...,m, 1 ≤ m < ∞}.
For s ∈ S we define a random variable, bs by

bs(·) =
m∏

k=1

bik,jk
(·), s =

m⋃
k=1

{ik, jk},

and a random variable Y0,s = bs − 〈bs〉. For s ∈ S, n ∈ Zd we define Yn,s as the translate of Y0,s.
Thus Yn,s(·) = Y0,s(τn ·). It follows from our assumptions that the variables Yn1,s1, Yn2,s2 are
independent if n1 6= n2. They are not necessarily independent if n1 = n2. We can think of the
extra index s on the variable Yn,s as denoting a spin. We are therefore led to define a Fock space
Fp

S(Zd) of many particle functions where the particles move in Zd and have spin in S. Thus
ψ ∈ Fp

S(Zd) is a collection of N particle functions ψ = {ψN : N = 0, 1, 2, ...} where ψ0 ∈ R and
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ψN : Zd,N × SN → R, N = 1, 2, .... Each ψN is in Lp(Zd,N × SN ) with Lp norm given by

‖ψN‖p
p

def.=
∑

m∈Zd,N×SN

|ψN (m)|p.

The norm on Fp
S(Zd) is given as before by

‖ψ‖p
p

def.= |ψ0|p +
∞∑

N=1

‖ψN‖p
p .

For s = ∪m
k=1{ik, jk} ∈ S, let |s| = m. Given a parameter α > 0 we define a mapping Uα from

F2
S(Zd) to functions on Ω by

(5.1) Uαψ
def.= ψ0 +

∞∑
N=1

∑
{n1,...,nN}∈Zd,N

si∈S, 1≤i≤N

ψN (n1, s1, n2, s2, ..., nN , sN )×

α|s1|+...+|sN | Yn1,s1Yn2,s2 · · ·YnN ,sN
.

Lemma 5.1. For any α > 0 the number γ can be chosen sufficiently small so that Uα is a
bounded operator from F2

S(Zd) to L2(Ω) and ‖Uα‖ ≤ 1.

Proof. Since 〈Y0,s〉 = 0, s ∈ S, we have

‖Uα ψ‖2
2 = ψ2

0 +
∞∑

N=1

∑
{n1,...,nN}∈Zd,N ,
si,s

′
i∈S, 1≤i≤N

ψN (n1, s1, n2, s2, ..., nN , sN )×

ψN (ni, s
′
1, ..., nN , s

′
N )α|s1|+...+|sN |+|s′1|+...+|s′N |

〈
Yn1,s1 Yn1,s′1

〉
×〈

Yn2,s2 Yn2,s′2

〉
· · ·
〈
YnN ,sN

YnN ,s′N

〉

≤ ψ2
0 +

∞∑
N=1

∑
{n1,...,nN}∈Zd,N ,

si,s
′
i∈S,1≤i≤N

|ψN (n1, s1, ..., nN , sN )|×

|ψN (n1, s
′
1, ..., nN , s

′
N )|δ|s1|+...+|sN |+|s′1|+...+|s′N | ,

where δ > 0 can be chosen arbitrarily small provided γ > 0 is taken sufficiently small. It is
evident now that for fixed (n1, ..., nN ) ∈ Zd,N one has

∑
si,s′i∈S,1≤i≤N

|ψN (n1, s1, ..., nN , sN )| |ψN (n1, s
′
1, ..., nN , s

′
N )|×

δ|s1|+...+|sN |+|s′1|+...+|s′N | ≤
[∑

s∈S

δ2|s|
]N ∑

si∈S,1≤i≤N

|ψN (n1, s1, ..., nN , sN )|2.

The result follows now by taking δ small enough so that
∑

s∈S δ
2|s| ≤ 1. �
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Our first goal here will be to prove an analogue of Proposition 4.2. Let Tb : H(Ω) → H(Ω) be
the operator defined by

(5.2) TbΨ =
d∑

i,j=1

Ti

(
bij(·)Ψj

)
, Ψ ∈ H(Ω),

where the operators Ti are given by (4.5). It is clear that ‖Tb‖ ≤ γ and that the minimizer Ψk

of Lemma 2.2 is the unique solution to the equation

(5.3) Ψk = TbΨk − 1
Λ

d∑
j=1

Tj(akj).

For each y ∈ Zd we can define a translation operator τy on F2
S(Zd) as follows:

τyψ0 = ψ0,

τyψN (n1, s1, ..., nN , sN ) = ψN (n1 − y, s1, ..., nN − y, sN ), N ≥ 1.

It is clear that τyUα = Uατy, y ∈ Zd, α > 0. Just as in §2 we can use the translation operators
to define derivative operators ∂i , ∂

∗
i , 1 ≤ i ≤ d, on F2

S(Zd). We define the space of gradients of
functions in F2

S(Zd), which we denote by H2
S(Zd), in analogy to the definition of H(Ω). Thus

for ϕ ∈ F2
S(Zd) let ∇ϕ be the gradient (∂1ϕ, ..., ∂dϕ). Then H2

S(Zd) is the completion of the
space of gradients {∇ϕ : ϕ ∈ F2

S(Zd)} under the norm ‖ ‖2,

‖Ψ‖2
2 =

d∑
i=1

‖Ψi‖2
2, Ψ = (Ψ1, ...,Ψd), Ψi ∈ F2

S(Zd), 1 ≤ i ≤ d.

We wish to define an operator Tb,α,F on H2
S(Zd) which has the property that if Tb is the

operator of (5.2) then Uα Tb,α,F = TbUα. First we define operators Tk,F : F2
S(Zd) −→ H2

S(Zd),
1 ≤ k ≤ d. These are defined exactly as in (4.5). Thus, note that for Φ ∈ F2

S(Zd) there is a
unique Ψ ∈ H2

S(Zd) such that

d∑
i=1

∂∗i Ψi = ∂∗kΦ.

We can see this by a variational argument as previously. We put then Ψ = Tk,FΦ and it is easy
to see that Tk,F is bounded with ‖Tk,F‖ ≤ 1. It is also clear that UαTk,F = TkUα, where Tk is
defined by (4.5).

Next we need to define analogues of the multiplication operators bij(·), 1 ≤ i, j ≤ d. For any
pair (i, j) with 1 ≤ i, j ≤ d and α > 0 define an operator Bi,j,α : F2

S(Zd) → F2
S(Zd) as follows:
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Suppose ϕ ∈ F2
S(Zd), ϕ = {ϕN : N = 0, 1, 2, ...}. Then Bi,j,α ϕ = ψ = {ψN : N = 0, 1, 2, ....}.

Here ψ is given in terms of ϕ by

ψN (n1, s1, ..., nN , sN ) = 〈bi,j(·)〉ϕN (n1, s1, ..., nN , sN )

+
∑
s∈S

[〈bi,jbs〉 − 〈bi,j〉〈bs〉]α|s|ϕN+1(0, s, n1, s1, ..., nN , sN ),

if nk 6= 0, 1 ≤ k ≤ N, N ≥ 0;

ψN (0, s1, n2, s2, ..., nN , sN ) = 0,

if nk 6= 0, 2 ≤ k ≤ N, and {i, j} not contained in s1;

ψN (0, s1, n2, s2, ..., nN , sN ) = α−1ϕN (0, s1\{i, j}, n2, s2, ..., nN , sN ),

if nk 6= 0, 2 ≤ k ≤ N, and {i, j} strictly contained in s1;

ψN (0, s1, n2, s2, ..., nN , sN ) = α−1ϕN−1(n2, s2, ..., nN , sN )

−
∑
s∈S

〈bs〉α|s|−1 ϕN (0, s, n2, s2, ..., nN , sN ),

if nk 6= 0, 2 ≤ k ≤ N and {i, j} = s1.

Observe that UαBi,j,α = bi,j(·)Uα. It is clear that if we define Tb,α,F by

Tb,α,F Ψ =
d∑

i,j,=1

Ti,F (Bi,j,αΨj) , Ψ ∈ H2
S(Zd),

then Uα Tb,α,F = TbUα.

We wish to obtain an equation in H2
S(Zd) which corresponds to the equation (5.3) in H(Ω). For

1 ≤ k, j ≤ d define Φk,j ∈ F2
S(Zd) by Φk,j = {ΦN

k,j : N = 0, 1, 2, ...} with ΦN
k,j = 0 if N 6= 1 and

Φ1
k,j(n, s) = 0 if n 6= 0 or s 6= {k, j}, Φ1

k,j(0, {k, j}) = 1. The equation corresponding to (5.3) is
given by

(5.4) Ψk = Tb,α,FΨk + α−1
d∑

j=1

Tj,F(Φk,j).

It is easy to see that we have the following:
Lemma 5.2. (a) The number γ can be chosen sufficiently small so that for some α > 1 the
operator Tb,α,F is a bounded operator on H2

S(Zd) with norm strictly less than 1.
(b) Suppose γ, α have been chosen so that part (a) holds and also Lemma 5.1. Then if Ψk is the
unique solution to (5.4) the function Uα Ψk is in H(Ω) and satisfies (5.3).

We can use the same method of proof as in Proposition 4.2 to prove the corresponding analogue
for the solution of (5.4).
Lemma 5.3. Suppose Ψk =

(
Ψk

1 , ...,Ψ
k
d

)
is the solution of (5.4) given by Lemma 5.2. Then

for γ, α−1 sufficiently small there exists p, 1 < p < 2, depending only on γ, α−1 such that
Ψk

i ∈ Fp
S(Zd), i = 1, ..., d. The number p can be chosen arbitrarily close to 1 provided γ, α−1 are

taken small enough.
Lemma 5.4. Let p satisfy 1 < p < 2 and ψ ∈ Fp

S(Zd) ⊂ F2
S(Zd) where ψ = {ψN : N = 0, 1, 2, ...}

with ψ0 = 0. Assume γ > 0 is chosen small enough so that Uαψ ∈ L2(Ω). Let g : Zd → R be
the function g(n) = 〈Uαψ(·)Uαψ(τn ·)〉, n ∈ Zd. Then γ > 0 can be chosen small enough so that
g ∈ Lr(Zd) where 1/r = 2/p − 1.
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Proof. Similarly to Lemma 5.1 we have that

|g(n)| ≤
∞∑

N=1

∑
{n1,...,nN}∈Zd,N ,
si,s′i∈S, 1≤i≤N

|ψN (n1, s1, ..., nN , sN )|×

|τnψN (n1, s
′
1, ..., nN , s

′
N )|δ|s1|+...+|sN |+|s′1|+...+|s′N |,

where δ > 0 can be taken arbitrarily small. We now use the method of Proposition 4.1 to finish
the proof. �

The previous three lemmas can be used to prove part of Theorem 1.2, the case when γ may
be taken arbitrarily small. This is done by simply following through the corresponding proofs
for the Bernoulli case given in §4. Next we wish to consider the case of Theorem 1.2 when γ is
assumed only to be strictly less than 1. First we shall deal with the case where the variables
bs(·), s ∈ S, are finitely generated. This means there exist variables Yk(·), k = 0, 1, ...,M such
that 〈YkYk′〉 = δk,k′ , 1 ≤ k, k′ ≤ M and Y0 ≡ 1. Furthermore, for any i, j, 1 ≤ i, j ≤ d, and k,
0 ≤ k ≤ M , the variable bi,j(·)Yk is in the linear span of the variables Yk′ , 0 ≤ k′ ≤ M . This
was the situation in § 4 where we could take M = 1.

We proceed now as before, taking our spin space S to be the set of integers {1, 2, ...,M}. Letting
Y0,s = Ys, s = 1, ...,M , we may define as before the spaces Fp

S(Zd) and the transformation U1.
It is clear that the following holds:

Lemma 5.5. U1 is a bounded operator from F2
S(Zd) to L2(Ω) and ‖U1‖ ≤ 1.

Next, let Fp
S,d(Z

d) be the space of vectors Ψ = (Ψ1, ...,Ψd) with Ψi ∈ Fp
S(Zd), 1 ≤ i ≤ d. The

norm of Ψ is given by

‖Ψ‖p
p =

d∑
i=1

‖Ψi‖p
p .

We can define an operator B on Fp
S,d(Z

d) with the property that

(U1BΨ)i =
d∑

j=1

bi,j(·)(U1Ψ)j, 1 ≤ i ≤ d.

To do this let us write

bij(·)Yk =
M∑

k′=0

Bi,j,k,k′ Yk′, 1 ≤ i, j ≤ d, 0 ≤ k ≤M.
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For a function ϕ ∈ Fp
S(Zd), ϕ = {ϕN : N = 0, 1, 2, ...}, we put Bi,jϕ = ψ = {ψN : N =

0, 1, 2, ...}, where ψ is given in terms of ϕ as follows:

(5.5) ψ0 = Bi,j,0,0 ϕ0 +
M∑

k=1

Bi,j,k,0ϕ1(0, k);

ψN (n1, k1, ..., nN , kN ) = Bi,j,0,0ϕN (n1, k1, ..., nN , kN )

+
M∑

k=1

Bi,j,k,0ϕN+1(0, k, n1, k1, ..., nN , kN ),

if nk 6= 0, 1 ≤ k ≤ N, N ≥ 1;

ψN (n1, k1, ..., nN , kN ) = Bi,j,0,k1ϕN−1(n2, k2, ..., nN , kN )

+
M∑

k=1

Bi,j,k,k1ϕN (n1, k, n2, k2, ..., nN , kN ),

if n1 = 0.

It is clear that for any ϕ ∈ F2
p (Zd) one has U1(Bi,jϕ) = bi,j(·)U1 ϕ. It follows that the operator

B is given by

(BΨ)i =
d∑

j=1

Bi,jΨj, Ψ = (Ψ1, ...,Ψd) ∈ F2
S,d(Z

d).

Lemma 5.6. There exists p0 < 2 depending only on γ,M such that if p0 ≤ p ≤ 2 then B is a
bounded operator on Fp

S,d(Z
d) with norm, ‖B‖ ≤ 2γ/(1 + γ).

Proof. For 1 ≤ i ≤ d, 0 ≤ k ≤ M , let λi,k be real parameters. Then it follows from the
orthogonality of the variables Yk and the bound on the quadratic form b(·) that

d∑
i=1

M∑
k=0


 d∑

j=1

M∑
k′=0

Bi,j,k′,kλj,k′




2

≤ γ2
d∑

i=1

M∑
k=0

λ2
i,k.

Suppose now ϕ = (ϕ(1), ..., ϕ(d)) ∈ F2
S,d(Z

d). From (5.5) and the previous inequality we have

d∑
i=1

{[ d∑
j=1

Bi,jϕ
(j)
N (n1, k1, ..., nN , kN )

]2

+
M∑

k=1

[ d∑
j=1

Bi,jϕ
(j)
N+1(0, k, n1, k1, ..., nN , kN )

]2}

≤ γ2
d∑

i=1

{
ϕ

(i)
N (n1, k1, ..., nN , kN )2 +

M∑
k=1

ϕ
(i)
N (0, k, n1, k1, ..., nN , kN )2

}
,
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if nr 6= 0, 1 ≤ r ≤ N . Applying Hölder’s inequality this yields for 1 < p < 2 the inequality

d∑
i=1

{[ d∑
j=1

Bi,jϕ
(j)
N (n1, k1, ..., nN , kN )

]p

+
M∑

k=1

[ d∑
j=1

Bi,jϕ
(j)
N+1(0, k, n1, k1, ..., nN , kN )

]p}

≤ [d(M + 1)]1 − p/2γ2
d∑

i=1

{
ϕ

(i)
N (n1, k1, ..., nN , kN )p

+
M∑

k=1

ϕ
(i)
N (0, k, n1, k1, ..., nN , kN )p

}
.

The result follows now by summing the last inequality over nj, kj , 1 ≤ j ≤ N , N = 0, 1, 2, ... .
�

Next we define an operator TF : F2
S,d(Z

d) → H2
S(Zd) by

TFΨ def.=
d∑

i=1

Ti,F (Ψi), Ψ ∈ F2
S,d(Z

d),

where the operators Ti,F are defined as before. It is easy to see that TF is bounded with
‖TF‖ ≤ 1. Let Φk,j ∈ F2

S(Zd) have the property that U1Φk,j = bk,j(·). Then if Ψk ∈ H2
S(Zd)

satisfies the equation

(5.6) Ψk = TF (BΨk) +
d∑

j=1

Tj,F(Φk,j),

the function U1Ψk ∈ H(Ω) is the unique solution to (5.3). It is clear from Lemma 5.6 that the
following holds:
Lemma 5.7. Suppose Ψk = (Ψk

1 , ...,Ψ
k
d) is the solution of (5.6). Then there exists p, 1 < p < 2,

depending only on γ < 1 such that Ψk
i ∈ Fp

S(Zd), 1 ≤ i ≤ d.

Theorem 1.2, in the case when γ is close to 1, follows from lemma 5.7 just as before. To complete
the proof of Theorem 1.2, in the case when γ is close to 1, we need to deal with the situation
where the variables bi,j(·) are not finitely generated. To do this let V0 be the subspace of L2(Ω)
generated by the constant function. For k ≥ 1 we define the linear space Vk inductively as
the span of the spaces Vk−1 and bi,j(·)Vk−1, 1 ≤ i, j ≤ d. By our assumption Vk−1 is strictly
contained in Vk, k ≥ 1. We suppose further for the moment that bi,j(·) = b(·)δi,j , 1 ≤ i, j ≤ d,
whence |b(·)| ≤ γ. It follows that the dimension of the space Vk is k + 1, k ≥ 0. Let Y0, Y1, ...
be an orthonormal set of variables in L2(Ω) with the property that Y0 ≡ 1 and Vk is spanned
by the variables Yk′ , 0 ≤ k′ ≤ k, k = 0, 1, 2, ... . For k = 0, 1, 2, ... we write

(5.7) b(·)Yk =
k+1∑
k′=0

Bk,k′Yk′ .

Let S be the set of integers {1, 2, ...} and Fp
S(Zd) be the corresponding Fock space defined as

before. For s ∈ S let the modulus of s, |s| = s. Then for any α > 0 we can define the mapping
Uα from F2

S(Zd) to functions on Ω by (5.1). Let Bα be the operator on F2
S(Zd) with the property

that
Uα Bα ϕ = b(·)Uαϕ, ϕ ∈ F2

S(Zd).
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Then Bα is given as follows: For ϕ = {ϕN : N = 0, 1, 2, ...} we put Bαϕ = ψ = {ψN : N =
0, 1, 2, ...}, where ψ is defined in terms of ϕ by,

(5.8) ψ0 = B0,0ϕ0 +
∞∑

k=1

αkBk,0ϕ1(0, k) ;

ψN (n1, k1, ..., nN , kN ) = B0,0ϕN (n1, k1, ..., nN , kN )

+
∞∑

k=1

αkBk,0ϕN+1(0, k, n1, k1, ..., nN , kN ),

if nj 6= 0, 1 ≤ j ≤ N, N ≥ 1;

ψN (0, 1, n2, k2, ..., nN , kN ) = α−1B0,1ϕN−1(n2, k2, ..., nN , kN )

+
∞∑

k=1

αk−1Bk,1ϕN (0, k, n2, k2, ..., nN , kN ),

if nj 6= 0, 2 ≤ j ≤ N, N ≥ 1;

ψN (0, k1, n2, k2, ..., nN , kN ) =
∞∑

k=k1−1

αk−k1Bk,k1ϕN (0, k, n2, k2, ..., nN , kN ),

if nj 6= 0, 2 ≤ j ≤ N, k1 > 1, N ≥ 1.

Lemma 5.8. There exists α, p0, 0 < α < 1, 1 < p0 < 2, depending only on γ such that if
p0 ≤ p ≤ 2, then Bα is a bounded operator on Fp

S(Zd) with norm, ‖Bα‖ ≤ 2γ/(1 + γ).

Proof. For k = 0, 1, 2... let λk be real parameters. Then it follows from (5.7) that

(5.9)
[ ∞∑

k′=0

Bk′,0λk′

]2

+
∞∑

k=1

[ ∞∑
k′=k−1

Bk′,kλk′

]2

≤ γ2
∞∑

k=0

λ2
k.

Observe now from (5.8) that if nj 6= 0, 1 ≤ j ≤ N , then

(5.10) |BαϕN (n1, k1, ..., nN , kN )|p +
∞∑

k=1

|Bα ϕN+1(0, k, n1, k1, ..., nN , kN )|p

≤
∣∣∣∣

∞∑
k′=0

αk′
Bk′,0λk′

∣∣∣∣
p

+
∞∑

k=1

∣∣∣∣
∞∑

k′=k−1

αk′−kBk′,kλk′

∣∣∣∣
p

,

where

λ0 = ϕN (n1, k1, ..., nN , kN ),
λk = ϕN+1(0, k, n1, k1, ..., nN , kN ), k ≥ 1.

We can use (5.9) to obtain a bound on the RHS of (5.10) when p = 2. To do this let gα(k) be
defined for k = 0, 1, 2, ... by

gα(0) =
[ ∞∑

k′=0

αk′
Bk′,0λk′

]2

,

gα(k) =
[ ∞∑

k′=k−1

αk′
Bk′,kλk′

]2

, k ≥ 1.
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Then, when p = 2, the RHS of (5.10) is
∞∑

k=0

α−2kgα(k) =
∞∑

k=0

gα(k) +
∞∑

k=1

[
α−2k − α−2(k−1)

] ∞∑
m=k

gα(m).

It follows from (5.9) that
∞∑

k=0

gα(k) ≤ γ2
∞∑

k=0

α2kλ2
k,

∞∑
m=k

gα(m) ≤ γ2
∞∑

m=k−1

α2mλ2
m , k ≥ 1.

We conclude that

(5.11)
∞∑

k=0

α−2kgα(k) ≤ α−2γ2
∞∑

k=0

λ2
k.

Next let M ≥ 1 be an integer. We have that
∞∑

k=0

∣∣∣∣
∞∑

k′=k+M

αk′−kBk′,kλk′

∣∣∣∣
p

≤
∞∑

k=0

[ ∞∑
k′=k+M

αk′−k|Bk′,k|p/(p−1)

]p−1 ∞∑
k′=k+M

αk′−k|λk′ |p,

by Hölder’s inequality. From (5.9) it follows that
∞∑

k′=0

B2
k,k′ ≤ 1, k = 0, 1, 2, ...,

whence it follows that
∞∑

k′=k+M

αk′−k|Bk′,k|p/(p−1) ≤ αM/(1 − α).

We conclude from these last inequalities that

(5.12)
∞∑

k=0

∣∣∣∣
∞∑

k′=k+M

αk′−kBk′,kλk′

∣∣∣∣
p

≤ αpM

(1 − α)p

∞∑
k=0

|λk|p .

This last inequality, with p = 2, and (5.11) yields the inequality,[M−1∑
k′=0

αk′
Bk′,0λk′

]2

+
∞∑

k=1

[ k+M−1∑
k′=k−1

αk′−kBk′,kλk′

]2

≤
[
α−2γ2(1 + δ) +

α2M

(1 − α)2
(1 + δ−1)

] ∞∑
k=0

λ2
k ,

for any δ > 0.

Next, let N be an integer, N � M , and n ≥ 0 be an integer. Then we have from the previous
inequality that[M−1∑

k′=0

αk′
Bk′,0λk′

]2

+
N+n−1∑

k=1

[ k+M−1∑
k′=k−1

αk′−kBk′,kλk′

]2

≤ Cα,γ,δ,M

N+n+M−2∑
k=0

λ2
k,
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and

N+n+(r+1)N−1∑
k=N+n+rN

[ k+M−1∑
k′=k−1

αk′−kBk′,kλk′

]2

≤ Cα,γ,δ,M

N+n+(r+1)N+M−2∑
k=N+n+rN−1

λ2
k, r = 0, 1, 2, ...,

where

Cα,γ,δ,M = α−2γ2(1 + δ) +
α2M

(1 − α)2
(1 + δ−1).

If we use Hölder’s inequality this last inequality implies that for any p, 1 < p < 2, one has

∣∣∣∣
M−1∑
k′=0

αk′
Bk′,0λk′

∣∣∣∣
p

+
N+n−1∑

k=1

∣∣∣∣
k+M−1∑
k′=k−1

αk′−kBk′,kλk′

∣∣∣∣
p

≤ (N + n)1−p/2 C
p/2
α,γ,δ,M

N+n+M−2∑
k=0

|λk|p,

and

N+n+(r+1)N−1∑
k=N+n+rN

∣∣∣∣
k+M−1∑
k′=k−1

αk′−kBk′,kλk′

∣∣∣∣
p

≤ N1−p/2 C
p/2
α,γ,δ,M

N+n+(r+1)N+M−2∑
k=N+n+rN−1

|λk|p , r = 0, 1, 2, ....

If we sum this last inequality with respect to r and average over n, 0 ≤ n ≤ N , we obtain the
inequality,

∣∣∣∣
M−1∑
k′=0

αk′
Bk′,0 λk′

∣∣∣∣
p

+
∞∑

k=1

∣∣∣∣
k+M−1∑
k′=k−1

αk′−kBk′,k λk′

∣∣∣∣
p

≤ (2N)1−p/2C
p/2
α,γ,δ,M

1
N + 1

×
N∑

n=0

[N+n+M−2∑
k=0

|λk|p +
∞∑

r=0

N+n+(r+1)N+M−2∑
k=N+n+rN−1

|λk|p
]
.

This last inequality together with (5.12) imply that we can choose α, p0, 0 < α < 1, such that
the RHS of (5.10) is bounded by (

2γ
1 + γ

)p ∞∑
k=0

|λk|p.

To see this we need to see how to choose the constants α, δ,M,N, p0. Evidently we can take
α = (1 +

√
γ)/2. Next we pick δ small enough so that α−1(1 + δ)1/2 < 2/(1 + γ). Then we

choose M to be large enough so that Cα,γ,δ,M < 4γ2/(1 + γ)2. Finally we choose N, p0 so that
for p0 ≤ p ≤ 2 one has

(2N)1−p/2(1 + 10M/N)Cp/2
α,γ,δ,M < [2γ/(1 + γ)]p.
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We conclude from (5.10) that for this choice of α, p0, if p0 ≤ p ≤ 2, then

|BαϕN (n1, k1, ..., nN , kN )|p +
∞∑

k=1

|BαϕN+1(0, k, n1, k1, ..., nN , kN )|p ≤
(

2γ
1 + γ

)p [
|ϕN (n1, k1, ..., nN , kN )|p +

∞∑
k=1

|ϕN+1(0, k, n1, k1, ..., nN , kN )|p
]
,

if nj 6= 0, 1 ≤ j ≤ N . The result follows now by summing the last inequality with respect to
the nj, 1 ≤ j ≤ N , and N . �

Next we extend the previous method to the case where the random matrix b(·) is assumed to
be a diagonal matrix. We cannot now compute the dimension of the linear spaces Vk defined
after Lemma 5.7. We can however estimate their dimension. It is easy to see that the dimension
of Vk is bounded above by (k + 1)d. Let Yk,j, 0 ≤ j ≤ Jk, k = 0, 1, 2, ..., be an orthonormal
set of variables in L2(Ω) with the property that Y0,0 ≡ 1 and Vk is spanned by the variables
Yk′,j , 0 ≤ j ≤ Jk′ , 0 ≤ k′ ≤ k, k = 0, 1, 2, ... . For a variable Yk,j let us denote by s = (k, j) the
spin of that variable with modulus |s| = k. It follows from the definition of the spaces Vk that
then,

(5.13) bii(·)Ys =
∑

|s′|≤|s|+1

Bi,s,s′Ys′ , 1 ≤ i ≤ d,

for appropriate constants Bi,s,s′. Evidently the variables Ys, |s| ≥ 0, span the space generated
by the bii(·), 1 ≤ i ≤ d.
Let S be the set of spins s defined in the previous paragraph such that |s| > 0. For any integer
M ≥ 1, let SM be the set,

SM =
{
s ∈ S : |s| ≤M} ∪ {(r1, ..., rd, s′) : s′ ∈ S, |s′| = M,

ri non-negative integers , 1 ≤ i ≤ d, r1 + · · · + rd > 0
}
.

We associate a modulus |s| with each s ∈ SM . If s ∈ S ∩ SM then the modulus of s is as in the
previous paragraph. Otherwise if s = (r1, ..., rd, s′) then |s| = r1+...+rd+|s′| = r1+..+rd+M >
M . We can also associate a variable to each s ∈ SM . For s ∈ S ∩ SM we put Ys,M = Ys. If
s = (r1, .., rd, s′) we put

Ys,M =

[
d∏

i=1

bii(·)riYs′ −
〈

d∏
i=1

bii(·)riYs′

〉]
γ−r1−r2−···−rd .

It is clear that 〈Ys,M 〉 = 0, 〈Y 2
s,M〉 ≤ 1, s ∈ SM .

In analogy to before we define for n ∈ Zd, s ∈ SM , variables Yn,s,M by Yn,s,M(·) = Ys,M(τn ·).
We may also define the Fock space F2

SM
(Zd) and a mapping Uα,M corresponding to (5.1). Thus

for ψ ∈ F2
SM

(Zd) one has,

Uα,M ψ = ψ0 +
∞∑

N=1

∑
{n1,..,nN}∈Zd,N ,
si∈SM , 1≤i≤N

ψN (n1, s1, n2, s2, ..., nN , sN )×

α|s1|+···+|sN |Yn1,s1,M Yn2,s2,M · · · YnN ,sN ,M .
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Lemma 5.9. Suppose 0 < α < 1. Then M can be chosen sufficiently large, depending only on
α, such that Uα,M is a bounded operator from F2

SM
(Zd) to L2(Ω) and ‖Uα,M‖ ≤ 1.

Proof. Just as in Lemma 5.1 we have that

(5.14) ‖Uα,M ψ‖2
2 = ψ2

0+
∞∑

N=1

∑
{n1,...,nN}∈Zd,N ,
si,s

′
i∈SM , 1≤i≤N

ψN (n1, s1, ..., nN , sN )ψN (n1, s
′
1, . . . , nN , s

′
N )×

α|s1|+···+|sN |+|s′1|+···+|s′N |δM (s1, s′1) · · · δM (sN , s
′
N )×〈

Yn1,s1,M Yn1,s′1,M

〉
· · ·
〈
YnN ,sN .M YnN ,s′M ,M

〉
,

where

δM (s, s′) = 0, |s|, |s′| ≤M, s 6= s′,
δM (s, s′) = 1, otherwise.

If we use the Schwarz inequality on the RHS of (5.14) we have

‖Uα,M ψ‖2
2 ≤ ψ2

0 +
∞∑

N=1

∑
{n1,...,nN}∈Zd,N ,
si,s′i∈SM , 1≤i≤N

ψ2
N (n1, s1, . . . , nN , sN )×

α|s1|+···+|sN |+|s′1|+···+|s′N |δM (s1, s′1) · · · δM (sN , s
′
N )×〈
Y 2

n1,s1,M

〉 · · · 〈Y 2
nN ,sN ,M

〉
.

We consider now the sum,

(5.15)
∑

s′∈SM

α|s|+|s′|δM (s, s′), s ∈ SM .

If |s| > M this sum is bounded by

α|s| ∑
s′∈SM

α|s′| ≤ α|s|
M∑

k=1

(k + 1)dαk

+ α|s| ∑
r1+..+rd≥1

αr1+..+rd(M + 1)dαM ≤ 2 α|s|(M + 1)d/(1 − α)d

If |s| ≤M then (5.15) is bounded by

α2|s| + α|s| ∑
|s′|>M

α|s′| ≤ α2|s| + α|s|+M(M + 1)d/(1 − α)d.

It is clear from these last two inequalities that we may choose M , depending only on α, such
that (5.15) is bounded above by 1 for all s ∈ SM . The result follows now since 〈Y 2

nj ,sj ,M〉 ≤ 1,
1 ≤ j ≤ N, N = 1, 2, ... . �

Next, in analogy to the development following Lemma 5.7, we define for any i, 1 ≤ i ≤ d, an
operator Bi,α,M on F2

SM
(Zd) which has the property,

Uα,MBi,α,M = bii(·)Uα,M .
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For a function ϕ ∈ F2
SM

(Zd), ϕ = {ϕN : N = 0, 1, 2, ...} we put Bi,α,M ϕ = ψ = {ψN : N =
0, 1, 2, ...}, where ψ is given in terms of ϕ as follows:

Let Bi,s,s′ be the parameters defined by (5.13). Then,

• If nj 6= 0, 1 ≤ j ≤ N, N ≥ 0,

ψN (n1, s1, ..., nN , sN ) = Bi,0,0ϕ(n1, s1, ..., nN , sN )

+
∑

s∈SM ,|s|<M

α|s|Bi,s,0ϕN+1(0, s, n1, s1, ..., nN , sN )

+
∑

s∈SM ,|s|≥M

α|s| 〈bii(·)Ys,M 〉ϕN+1(0, s, n1, s1, ..., nN , sN ).

• Suppose |s1| > M, s1 = (r1, .., rd, s′1), nj 6= 0, 2 ≤ j ≤ N . Then

ψN (0, s1, n2, s2, ..., nN , sN ) = 0 if ri = 0,

ψN (0, s1, n2, s2, ..., nN , sN ) = α−1γϕN (0, s̄1, n2, s2, ..., nN , sN ),

where s̄1 = (r1, ..., ri−1, ri − 1, ri+1, ..., rd, s
′
1) if ri ≥ 1.

• Suppose 1 < |s1| ≤M , nj 6= 0, 2 ≤ j ≤ N . Then

ψN (0, s1, n2, s2, ..., nN , sN ) =
∑

|s1|−1≤|s|<M

α|s|−|s1|Bi,s,s1 ϕN (0, s, n2, s2, ..., nN , sN ).

• Suppose |s1| = 1, nj 6= 0, 2 ≤ j ≤ N . Then

ψN (0, s1, n2, s2, ..., nN , sN ) = Bi,0,s1α
−1ϕN−1(n2, s2, ..., nN , sN )

+
∑

1≤|s|<M

α|s|−1Bi,s,s1ϕN (0, s, n2, s2, ..., nN , sN ) − αM−1Bi,0,s1×

∑
|s|=M,

r1+..+rd>0

(αγ−1)r1+..+rd

〈
d∏

j=1

bjj(·)rjYs

〉
×

ϕN

(
0, (r1, ..., rd, s), n2, s2, ..., nN , sN

)
.

Lemma 5.10. There exists α, M0, 0 < α < 1, M0 a positive integer, depending only on γ, such
that if M ≥M0 then Bi,α,M is a bounded operator on F2

SM
(Zd) with norm ‖Bi,α,M‖ ≤ 2γ/(1+γ),

1 ≤ i ≤ d.

Proof. We have just as in Lemma 5.8 that if λs, 0 ≤ |s| < M , are parameters then

(5.16)
∑

0≤|s|≤M


 ∑

0≤|s′|<M

Bi,s′,sλs′




2

≤ γ2
∑

0≤|s|<M

λ2
s.

Arguing as in Lemma 5.8 we conclude from the above inequality that

(5.17)
∑

0≤|s|≤M


 ∑

0≤|s′|<M

α|s′|−|s|Bi,s′,sλs′




2

≤ α−2γ2
∑

0≤|s|<M

λ2
s.
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Suppose ϕ ∈ F2
SM

(Zd). We fix points {n1, ..., nN} ∈ Zd,N with nj 6= 0, 1 ≤ j ≤ N , and
sj ∈ SM , 1 ≤ j ≤ N . We then define parameters λs, s ∈ SM , and λ0 by

λ0 = ϕ(n1, s1, . . . , nN , sN ),
λs = ϕN+1(0, s, n1, s1, . . . , nN , sN ), s ∈ SM .

Then,

|Bi,α,MϕN (n1, s1, . . . , nN , sN )|2 +
∑

s∈SM

|Bi,α,MϕN+1(0, s, n1, s1, . . . , nN , sN )|2

=


 ∑

0≤|s|<M

α|s|Bi,s,0λs +
∑

|s|≥M

α|s| < bii(·)Ys,M > λs




2

+
∑
|s|=1

[ ∑
0≤|s′|<M

α|s′|−1Bi,s′,sλs′ − αM−1Bi,0,s×

∑
|s′|=M,

r1+···+rd>0

(αγ−1)r1+..+rd

〈
d∏

j=1

bjj(·)rjYs′

〉
λ(r1,...,rd,s′)

]2

+
∑

1<|s|≤M

[ ∑
|s|−1≤|s′|<M

α|s′|−|s|Bi,s′,sλs′

]2

+ α−2γ2
∑

|s|≥M

λ2
s.

From the Schwarz inequality the RHS of the last equation is bounded above by

(5.18) (1 + δ)
∑

0≤|s|≤1


 ∑

0≤|s′|<M

α|s′|−|s|Bi,s′,sλs′




2

+
∑

1<|s|≤M


 ∑

0≤|s′|<M

α|s′|−|s|Bi,s′,sλs′




2

+ α−2γ2
∑

|s|≥M

λ2
s

+ (1 + δ−1)


 ∑
|s|≥M

α|s| 〈bii(·)Ys,M 〉λs




2

+ (1 + δ−1)×

∑
|s|=1

[
αM−1Bi,0,s

∑
|s′|=M,

r1+···+rd>0

(αγ−1)r1+···+rd

〈
d∏

j=1

bjj(·)rjYs′

〉
λ(r1...,rd,s′)

]2

,

for any δ > 0. In view of (5.17) the sum of the first three terms in the last expression is bounded
above by

(1 + δ)α−2γ2
∑
|s|≥0

λ2
s.

The fourth term is bounded above by

(1 + δ−1)γ2


 ∑
|s|≥M

α2|s|


 ∑

|s|≥M

λ2
s ≤ (1 + δ−1)γ2α2M (M + 1)d

(1 − α2)d
∑

|s|≥M

λ2
s.
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The final term in the expression is bounded above by

(1 + δ−1)α2M (M + 1)d

(1 − α)2d


∑
|s|=1

B2
i,0,s




 ∑
|s|>M

λ2
s


 .

It is also clear from (5.16) that ∑
|s|=1

B2
i,0,s ≤ γ2.

The result follows from the last set of inequalities by first picking α, δ, 0 < α < 1, δ > 0, such
that (1 + δ)1/2α−1γ < 2γ/(1 + γ). Then M0 can be chosen large enough, depending on δ, α so
that the sum (5.18) is bounded above by(

2γ
1 + γ

)2 ∑
|s|≥0

λ2
s.

�

We may easily deduce from the proof of Lemma 5.10 the analogue of Lemma 5.8.
Lemma 5.11. There exists α, M0, p0, 0 < α < 1, M0 a positive integer, 1 < p0 < 2, depending
only on γ, such that if p0 ≤ p ≤ 2, then Bi,α,M0 is a bounded operator on Fp

SM0
(Zd) with norm

‖Bi,α,M0‖ ≤ 2γ/(1 + γ) .

If we follow the development after Lemma 5.5 we can deduce from Lemma 5.11 the analogue of
Lemma 5.6. Thus we may define a space of vector valued functions Fp

SM ,d(Z
d) and an operator

Bα,M on it corresponding to the operators Bi,α,M , i = 1, . . . , d. We then have
Corollary 5.1. There exists α, M0, p0, 0 < α < 1, M0 a positive integer, 1 < p0 < 2,
depending only on γ, such that if p0 ≤ p ≤ 2, then Bα,M0 is a bounded operator on Fp

SM0
,d(Z

d)
with norm

‖Bα,M0‖ ≤ 2γ/(1 + γ).

Theorem 1.2, with γ close to 1, follows from Corollary 5.1 provided we assume b(·) is diagonal.
Next we deal with the case of nondiagonal b(·). We restrict ourselves first to the case d = 2.
An arbitrary real symmetric 2 × 2 matrix can be written as

 cos θ sin θ

− sin θ cos θ




 λ 0

0 µ




 cos θ − sin θ

sin θ cos θ




=


 λ cos2 θ + µ sin2 θ (µ− λ) sin θ cos θ

(µ− λ) sin θ cos θ µ cos2 θ + λ sin2 θ




=


 λ+µ

2 + λ−µ
2 cos 2θ µ−λ

2 sin 2θ

µ−λ
2 sin 2θ λ+µ

2 + µ−λ
2 cos 2θ


 .

The random matrix

b(·) =


 b11(·) b12(·)

b12(·) b22(·)
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induces random values of the variables λ, µ, θ as follows:

λ(·) + µ(·) = b11(·) + b22(·),
λ(·) − µ(·) =

{
[b11(·) − b22(·)]2 + 4b12(·)2

}1/2
.

If λ(·) > µ(·) then θ(·) is the unique angle, 0 ≤ θ < π, such that

[λ(·) − µ(·)] cos 2θ = b11(·) − b22(·),
[λ(·) − µ(·)] sin 2θ = −2b12(·).

If λ(·) = µ(·) then we take θ(·) = 0.

Since λ(·), µ(·) are the eigenvalues of b(·) it follows that |λ(·)|, |µ(·)| ≤ γ < 1. For ` = 0, 1, 2, . . .,
let P`(z), z ∈ R, be the Legendre polynomials.

Let `,m, r be integers with the property `,m ≥ 0. We associate with the 3-tuple (`,m, r) a
variable X`,m,r as follows:
If r > 0 then,

X`,m,r =
√

2`+ 1P`

(
λ(·)
γ

)√
2m+ 1Pm

(
µ(·)
γ

)√
2 sin rθ(·).

If r = 0 then

X`,m,r =
√

2`+ 1P`

(
λ(·)
γ

)√
2m+ 1Pm

(
µ(·)
γ

)
.

If r < 0 then

X`,m,r =
√

2`+ 1P`

(
λ(·)
γ

)√
2m+ 1Pm

(
µ(·)
γ

)√
2 cos rθ(·).

Observe that if λ(·), µ(·), θ(·) are independent variables, with λ(·), µ(·) uniformly distributed on
[−γ, γ] and θ(·) uniformly distributed on [−π, π], then the variables X`,m,r form an orthonormal
set. This set includes the constant function X0,0,0.

We can use the recurrence relation for Legendre polynomials,

(2`+ 1)zP`(z) = `P`−1(z) + (`+ 1)P`+1(z),

to be found in [1], and the addition theorems for trigonometric functions to obtain the result of
multiplying the variables X`,m,r by the components of the matrix b(·). In particular we have

bij(·)X`,m,r =
∑

|`′−`|=1,
|m′−m|=1,
||r′|−|r||=2

Γi,j,`,m,r,`′,m′,r′X`′,m′,r′ ,

where the parameters Γi,j,`,m,r,`′,m′,r′ are explicitly computable. In view of the fact that the
variables X`,m,r are orthonormal when λ(·), µ(·), θ(·) are uniformly distributed, it follows that

(5.19)
2∑

i=1

∞∑
`,m=0

∞∑
r=−∞


 2∑

j=1

∞∑
`′,m′=0

∞∑
r′=−∞

Γi,j,`′,m′,r′,`,m,rλj,`′,m′,r′




2

≤ γ2
2∑

i=1

∞∑
`,m=0

∞∑
r=−∞

λ2
i,`,m,r,

where the λi,`,m,r are arbitrary parameters.

We consider again the linear spaces Vk defined after Lemma 5.7. The dimension of Vk is bounded
by (k + 1)d(d+1)/2 which is (k + 1)3 when d = 2. Just as before we let Yk,j, 0 ≤ j ≤ Jk, k =
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0, 1, 2, ... be an orthonormal set of variables in L2(Ω) with the property that Y0,0 ≡ 1 and Vk is
spanned by the variables Yk′,j, 0 ≤ j ≤ Jk′ , 0 ≤ k′ ≤ k, k = 0, 1, 2, .... . For a variable Yk,j we
denote by s = |s| = k. It follows from the definition of the spaces Vk that then,

(5.20) bij(·)Ys =
∑

|s′|≤|s|+1

Bi,j,s,s′ Ys′ , 1 ≤ i, j ≤ d,

for appropriate constants Bi,j,s,s′. We conclude in the same way we obtained (5.19) that

(5.21)
d∑

i=1

∑
s∈S


 d∑

j=1

∑
s′∈S

Bi,j,s′,sλj,s′




2

≤ γ2
d∑

i=1

∑
s∈S

λ2
i,s ,

where S is the set of spins s = (k, j) and λi,s are arbitrary parameters.

For integers M,K ≥ 1 let SM,K be the set,

SM,K =
{
s ∈ S : 0 < |s| < M} ∪ {(`,m, r, k, s′) : s′ ∈ S, |s′| = M,

`,m, r, k integers with `,m ≥ 0, 0 ≤ k < K

}
.

We associate a modulus |s| with each s ∈ SM,K . If s ∈ S∩SM,K then the modulus of s is as in the
previous paragraph. Otherwise if s = (`,m, r, k, s′) then |s| = `+m+|r|+|s′| = `+m+|r|+M.We
associate a variable to each s ∈ SM,K . For s ∈ S∩SM,K we put Ys,M,K = Ys. If s = (`,m, r, k, s′)
we put

Ys,M,K = X`,m,r Ys′ − 〈X`,m,r Ys′〉 .
It is clear that 〈Ys,M,K〉 = 0. If we use the fact that the L∞ norm of the Legendre polynomials
is 1 (see, for example,[1]) then we see also that 〈Y 2

s,M,K〉 ≤ 8|s|2 + 1, s ∈ SM,K.

In analogy to before we define for n ∈ Z2, s ∈ SM,K, variables Yn,s,M,K by Yn,s,M,K(·) =
Ys,M,K(τn ·). We may also define the Fock space F2

SM,K
(Zd) and a mapping Uα,M,K corresponding

to (5.1). Thus for ψ ∈ FSM,K
(Zd) one has

Uα,M,K ψ = ψ0 +
∞∑

N=1

∑
{n1,..,nN}∈Zd,N ,
si∈SM,K ,1≤i≤N

ψN (n1, s1, n2, s2, ..., nN , sN )×

α|s1|+···+|sN |Yn1,s1,M,K Yn2,s2,M,K · · ·YnN ,sN ,M,K.

Lemma 5.12. Suppose 0 < α < 1 and K ≥ 1. Then M can be chosen sufficiently large,
depending only on α and K, such that Uα,M,K is a bounded operator from F2

SM,K
(Zd) to L2(Ω)

and ‖Uα,M,K‖ ≤ 1.

Proof. We can use the same argument as in Lemma 5.9 since we know that
〈
Y 2

s,M,K

〉 ≤ 8|s|2 +
1. �

Next we define for any i, j, 1 ≤ i, j ≤ 2, an operator Bi,j,α,M,K on F2
SM,K

(Z2) which has the
property,

Uα,M,K Bi,j,α,M,K = bij(·)Uα,M,K .

For a function ϕ ∈ F2
SM,K

(Z2), ϕ = {ϕN : N = 0, 1, 2, ...} we put

Bi,j,α,M,Kϕ = ψ = {ψN : N = 0, 1, 2, ...},
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where ψ is given in terms of ϕ as follows: Let Bi,j,s,s′ be defined as in (5.20). Then

• If nt 6= 0, 1 ≤ t ≤ N, N ≥ 0.

ψN (n1, s1, . . . , nN , sN ) = Bi,j,0,0ϕN (n1, s1, ..., nN , sN )

+
∑

s∈SM,K ,
|s|<M

α|s|Bi,j,s,0ϕN+1(0, s, n1, s1, . . . , nN , sN )

+
∑

s∈SM,K ,
|s|≥M

α|s| 〈bij(·)Ys,M,K〉ϕN+1(0, s, n1, s1, . . . , nN , sN ) ,

• Suppose |s1| > M, s1 = (`,m, r, k, s′1), nt 6= 0, 2 ≤ t ≤ N . Then

ψN (0, s1, n2, s2, ..., nN , sN ) =
∑

`′,m′,r′
Γi,j,`′,m′,r′,`,m,r

α`′+m′+|r′|−`−m−|r| ϕN

(
0, (`′,m′, r′, k, s′1), n2, s2, . . . , nN , sN

)
.

• Suppose 1 < |s1| < M, nt 6= 0, 2 ≤ t ≤ N . Then

ψN (0, s1, n2, s2, . . . , nN , sN ) =
∑

|s1|−1≤|s|<M

α|s|−|s1|Bi,j,s,s1×

ϕN (0, s, n2, s2, . . . , nN , sN ).

• Suppose |s1| = M, s1 = (0, 0, 0, k, s′1), nt 6= 0, 2 ≤ t ≤ N . Then

ψN (0, s1, n2, s2, . . . , nN , sN ) =
∑

`′,m′,r′
Γi,j,`′,m′,r′,0,0,0×

α`′+m′+|r′|ϕN

(
0, (`′,m′, r′, k, s′1), n2, s2, ..., nN , sN

)
+

1
K

∑
|s|=|s1|−1

α−1Bi,j,s,s1ϕN (0, s, n2, s2, ..., nN , sN ).

• Suppose |s1| = 1, nt 6= 0, 2 ≤ t ≤ N . Then

ψN (0, s1, n2, s2, . . . , nN , sN ) = Bi,j,0,s1 α
−1ϕN−1(n2, s2, ..., nN , sN )

+
∑

1≤|s|<M

α|s|−1Bi,j,s,s1ϕN (0, s, n2, s2, ..., nN , sN )

− αM−1Bi,j,0,s1

∑
|s|=M

K−1∑
k=0

∞∑
`,m=0

∞∑
r=−∞

α`+m+|r|

〈X`,m,rYs〉 ϕN

(
0, (`,m, r, k, s), n2 , s2, . . . , nN , sN

)
.

Next we may define as previously the space Fp
SM,K ,2(Z

2) of vector valued functions Ψ = (Ψ1,Ψ2)
on Fock space. We define an operator Bα,M,K by

(Bα,M,K Ψ)i =
2∑

j=1

Bi,j,α,M,KΨj, i = 1, 2.
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Lemma 5.13. There exists α,K,M0, 0 < α < 1, K,M0 positive integers, depending only
on γ, such that if M ≥ M0 then Bα,M,K is a bounded operator on F2

SM,K ,2(Z
2) with norm

‖Bα,M,K‖ ≤ 2γ/(1 + γ).

Proof. Suppose Ψ ∈ F2
SM,K

(Z2). We fix points {n1, ..., nN} ∈ Z2,N with nj 6= 0, 1 ≤ j ≤ N and
sj ∈ SM,K , 1 ≤ j ≤ N . We define parameters λi,s, s ∈ SM,K and λi,0, i = 1, 2 by

λi,0 = Ψi,N (n1, s1, ..., nN , sN ), i = 1, 2,
λi,s = Ψi,N+1(0, s, n1, s1, ..., nN , sN ), ∈ SM,K, i = 1, 2.

Then

2∑
i=1


 2∑

j=1

Bi,j,α,M,KΨj,N(n1, s1, ..., nN , sN )




2

+
∑

s∈SM,K

2∑
i=1


 2∑

j=1

Bi,j,α,M,KΨj,N+1(0, s, n1, s1, ..., nN , sN )




2

=
2∑

i=1


 2∑

j=1




∑
0≤|s|<M

α|s|Bi,j,s,0λj,s +
∑

|s|≥M

α|s| 〈bij(·)Ys,M,K〉λj,s






2

+
∑
|s|=1

2∑
i=1

[ 2∑
j=1

{ ∑
0≤|s′|<M

α|s|−1Bi,j,s′,sλj,s′

−αM−1Bi,j,0,s

∑
|s′|=M

K−1∑
k=0

∞∑
`,m=0

∞∑
r=−∞

α`+m+|r| 〈X`,m,r, Ys′〉λj,(`,m,r,k,s′)

}]2

+
∑

1<|s|<M

2∑
i=1


 2∑

j=1

∑
|s|−1≤|s′|<M

α|s′|−|s|Bi,j,s′,sλj,s′




2

+
∑

|s|=M

K−1∑
k=0

2∑
i=1

[ 2∑
j=1

{ ∑
`′,m′,r′

Γi,j,`′,m′r′,0,0,0α
`′+m′+|r′|λj,(`′,m′,r′,k,s)

+
1
K

∑
|s′|=|s|−1

α−1 Bi,j,s′,s λj,s′

}]2

+
∑

|s|=M

K−1∑
k=0

∑
`+m+|r|>0

2∑
i=1

[ 2∑
j=1

{ ∑
`′,m′,r′

Γi,j,`′,m′r′,`,m,r ×

α`′+m′+|r′|−`−m−|r|λj,(`′,m′,r′,k,s)

}]2

.
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From the Schwarz inequality the RHS of the last equation is bounded above by

(1 + δ)
∑

0≤|s|≤1

2∑
i=1


 2∑

j=1

∑
0≤|s′|<M

α|s′|−|s|Bi,j,s′,sλj,s′




2

+
∑

1<|s|<M

2∑
i=1


 2∑

j=1

∑
|s|−1≤|s′|<M

α|s′|−|s|Bi,j,s′,sλj,s′




2

+(1 + δ)
∑

|s|=M

K−1∑
k=0

2∑
i=1

[ 2∑
j=1

∑
`′,m′,r′

Γi,j,`′,m′r′,0,0,0α
`′+m′+|r′|λj,(`′,m′,r′,k,s)

]2

+
∑

|s|=M

K−1∑
k=0

∑
`+m+|r|>0

2∑
i=1

[ 2∑
j=1

∑
`′,m′,r′

Γi,j,`′,m′r′,`,m,r ×

α`′+m′+|r′|−`−m−|r|λj,(`′,m′,r′,k,s)

]2

+(1 + δ−1)
2∑

i=1


 2∑

j=1

∑
|s|≥M

α|s| 〈bi,j(·)Ys,M,K〉λj,s




2

+(1 + δ−1)
∑
|s|=1

2∑
i=1

[ 2∑
j=1

{
αM−1Bi,j,0,s

∑
|s′|=M

K−1∑
k=0

∞∑
`,m=0

∞∑
r=−∞

α`+m+|r| 〈X`,m,rYs′〉λj,(`,m,r,k,s′)

}]2

+
(1 + δ−1)

K

∑
s∈S,|s|=M

2∑
i=1


 2∑

j=1

∑
|s′|=|s|−1

α−1Bi,j,s′,sλj,s′




2

.

for any δ > 0. In view of (5.21) it follows that the sum of the first two terms in the last expression
is bounded above by

(1 + δ)α−2γ2
2∑

i=1

∑
0≤|s|<M

λ2
i,s.

In view of (5.19) the sum of the next two terms is bounded above by

(1 + δ)α−6γ2
2∑

i=1

∑
|s|≥M

λ2
i,s.

The fifth term is bounded above by

(1 + δ−1)γ2
2∑

i=1

〈[ ∑
|s|≥M

α|s|λi,sYs,M,K

]2〉 ≤ (1 + δ−1)γ2
[ ∑
|s|≥M

(8|s|2 + 1)α2|s|
] 2∑

i=1

∑
|s|≥M

λ2
i,s.

57



The sixth term is bounded above by

(1 + δ−1)γ2
2∑

i=1

[ ∑
|s|≥M

α|s|−1
√

8|s|2 + 1 |λi,s|
]2

≤ (1 + δ−1)γ2
[ ∑
|s|≥M

(8|s|2 + 1)α2|s|−2
] 2∑

i=1

∑
|s|≥M

λ2
i,s.

The final term is bounded by

(1 + δ−1)
K

γ2α−2
2∑

i=1

∑
|s|=M−1

λ2
i,s .

The result follows now exactly as in Lemma 5.10 by choosing α, 0 < α < 1, such that α−3γ <
2γ/(1 + γ), then choosing δ small and K large so that (1 + δ−1)/K is small. �

We can easily extend the argument in Lemma 5.13 to obtain:
Corollary 5.2. There exists α, M0,K0, p0, 0 < α < 1, M0,K0 positive integers, 1 < p0 < 2,
depending only on γ such that if p0 ≤ p ≤ 2 then Bα,M0,K0 is a bounded operator on Fp

SM0,K0
,2(Z

2)
with norm ‖Bα,M0,K0‖ ≤ 2γ/(1 + γ).

Theorem 1.2, with γ close to 1, follows from Corollary 5.2 just as before. Since it is clear that
one can extend the previous argument to d > 2, the proof of Theorem 1.2 is complete. The
proof of Theorem 1.3 follows in a similar manner.
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