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1. Introduction.

This paper concerns quantitative bounds on the time to stationarity of continuous

time Markov processes, in particular diffusion processes.

Quantitative bounds for discrete time Markov chains have recently been studied by

several authors, using drift conditions and minorization conditions (i.e. small sets) to es-

tablish couplings or shift-couplings for the chains. Bounding the distance of L(Xt) to

stationarity for a fixed t has been considered by Meyn and Tweedie (1994), Rosenthal

(1995), and Baxendale (1994). In Roberts and Rosenthal (1994), periodicity issues are

avoided by instead bounding the distance of ergodic average laws
∑t

k=1L(Xk) to sta-

tionarity. In each of these cases, quantitative bounds are obtained in terms of drift and

minorization conditions for the chain.

In this paper we extend these results to honest (i.e. stochastic) continuous time Markov

processes. We derive general bounds, using coupling and shift-coupling, which are similar

to the discrete case (Section 2). Drift conditions are defined in terms of infinitesimal

generators, and are fairly straightforward. However, the task of establishing minorization

conditions is rather less clear, and this is the heart of our paper. We approach this

problem for both one-dimensional (Section 3) and multi-dimensional (Section 4) diffusions,

by producing an auxiliary coupling of certain processes started at different points of the

proposed small set, which has probability ε > 0 of being successful by some fixed time

t0. This implies (Theorem 7) the existence of a corresponding minorization condition.

Our construction relies on the use of “medium sets” on which the drifts of the diffusions

remain bounded. It makes use of the Bachelier-Lévy formula (Lévy, 1965; Lerche, 1986)

to lower-bound the probability ε of coupling.

For one-dimensional diffusions, we are able to simultaneously couple an entire collec-

tion of processes, started from each point of the proposed small set. However, for multi-

dimensional diffusions, this is not possible. Instead, we couple the processes pairwise, thus

establishing the existence of a pseudo-small set (Section 4) rather than an actual small

set. We show that we can still use such a construction to obtain a coupling, even though

there is no longer a regenerative structure. This suggests a certain advantage to studying

minorization conditions through the use of coupling (e.g. Nummelin, 1992, Section III.10;
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Rosenthal, 1995) rather than the use of regeneration times as is often done (e.g. Athreya

and Ney, 1978; Nummelin, 1984; Asmussen, 1987).

We apply our results to some examples of Langevin diffusions in Section 5.

In discrete time, studies of quantitative convergence rates have been motivated largely

by Markov chain Monte Carlo algorithms (see Gelfand and Smith, 1990; Smith and

Roberts, 1993). The current study is motivated partially by recent work (Grenander and

Miller, 1994; Philips and Smith, 1994; Roberts and Tweedie, 1995; Roberts and Rosenthal,

1995) considering the use of Langevin diffusions for Monte Carlo simulations.

2. Bounds involving minorization and drift conditions.

We begin with some general results related to convergence rates of positive recurrent,

continuous time Markov processes to stationarity.

Let P t(x, ·) be the transition probabilities for a Markov process on a general state

space X . We say that a subset C ⊆ X is (t, ε)-small, for a positive time t and ε > 0, if

there exists a probability measure Q(·) on X , satisfying the minorization condition

P t(x, ·) ≥ εQ(·) x ∈ C . (1)

The subset C is small if it is (t, ε)-small for some positive t and ε. (For background on

small sets and the related notion of Harris chains, see Nummelin, 1978; Meyn and Tweedie,

1993b; Asmussen, 1987, pp. 150–158; Lindvall, 1992, pp. 91–92.)

The advantage of small sets, for our purposes, is that they can be used (together with

information about the return times to C) to establish couplings and shift-couplings of

Markov processes, leading to bounds on convergence rates of processes to their stationary

distributions. This is a well-studied idea; for extensive background, see Nummelin (1992,

pp. 91–98).

For simplicity, we begin with general results related to shift-coupling, which provides

for bounds on the ergodic averages of distances to stationary distributions. (Corresponding

results for ordinary coupling are considered in Theorem 3 and Corollary 4.) These results

are analogous to the discrete time results of Roberts and Rosenthal (1994). They bound
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the total variation distance between various probability measures, defined by

‖µ− ν‖ ≡ sup
S⊆X
|µ(S)− ν(S)| .

The proofs are deferred until after the statements of all of the initial results.

Theorem 1. Given a Markov process with transition probabilities P t(x, ·) and stationary

distribution π(·), suppose C ⊆ X is (t∗, ε)-small, for some positive time t∗, and ε > 0.

Suppose further that there is δ > 0 and a non-negative function V : X → R with

V (x) ≥ 1 for all x ∈ X , such that

Ex

(
eδτC

)
≤ V (x) , x 6∈ C (2)

where τC is the first hitting time of C . Set A = sup
x∈C

Ex(V (Xt∗)), and assume that A <∞.

Then for t > 0, and for any 0 < r < 1/t∗ with Aeδt
∗−δ/r < 1,

‖
∫ t

0

P(Xs ∈ ·)ds − π(·)‖ ≤ 1

t

(
2

rε
+A−1(E(V (X0) + Eπ(V ))

eδ/r

r(1 −Aeδt∗−δ/r)

)
.

It can be difficult to directly establish bounds on return times such as (2). It is

often easier to establish drift conditions. Thus, we now consider using drift conditions and

generators to imply (2). We require some notation. We let A be the weak generator of our

Markov process, and let D be the “one-sided extended domain” consisting of all functions

U : X → R which satisfy the one-sided Dynkin’s formula

Ex (U(Xt)) ≤ Ex

(∫ t

0

AU(Xs)ds

)
+ U(x) .

This formula holds with equality if U is in the domain of the strong generator; furthermore,

it holds with inequality if U is in the domains of certain stopped versions of the diffusion.

For background and discussion see, e.g., Meyn and Tweedie (1993a). For smooth functions

in concrete examples, Dynkin’s formula can be verified directly using Itô’s formula and the

dominated convergence theorem, as we do in Section 5.
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Corollary 2. Suppose (1) holds, and in addition there is a function U ∈ D with U(x) ≥ 1

for all x ∈ X , and δ > 0 and Λ <∞, such that

AU(x)) ≤ −δU(x) + Λ1C(x) , x ∈ X .

Then (2) holds for this δ, with V = U , and hence the conclusion of Theorem 1 holds with

V = U . Furthermore, we have A ≤ Λ
δ

+ e−δt
∗

sup
x∈C

U(x).

Remark. Under the hypothesis of Corollary 2 (or similarly of Corollary 4 below), we

can also derive a bound on Eπ(U). Indeed, we have that

ExU(Xt)− U(x) ≤ Ex

t∫
0

AU(Xs)ds ≤ Ex

t∫
0

(−δ U(Xs) + Λ)ds .

Integrating both sides with respect to π(dx) and using the stationarity of π, we obtain

that 0 ≤ −δEπ(U) + Λ, so that

Eπ(U) ≤ Λ/δ .

This may be of help in cases where the stationary distribution π(·) is too complicated for

direct computation, as is often the case in the Markov chain Monte Carlo context.

We now consider results which directly bound ‖L(Xt)− π(·)‖, rather than bounding

ergodic averages. The statements are similar, except that the return-time conditions are

more involved since we now need two copies of the process to simultaneously return to C .

These results are analogous to the discrete-time results of Rosenthal (1995).

Theorem 3. Given a Markov process with transition probabilities P t(x, ·) and stationary

distribution π(·), suppose C ⊆ X is (t∗, ε)-small, for some positive time t∗, and ε > 0.

Suppose further that there is δ > 0 and a non-negative function h : X × X → R with

h(x, y) ≥ 1 for all x ∈ X , such that

Ex,y

(
eδτC×C

)
≤ h(x, y) , (x, y) 6∈ C × C (3)

where τC×C is the first hitting time of C × C. Set A = sup(x,y)∈C×C Ex,y(h(Xt∗ , Yt∗)),

where {Xt} and {Yt} are defined jointly as described in the proof, and assume that A <∞.
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Then for t > 0, and for any 0 < r < 1/t∗,

‖L(Xt) − π(·)‖ ≤ (1 − ε)[rt] + e−δ(t−t
∗)A[rt]−1E(h(X0, Y0)) .

As before, it can be hard to establish (3) directly, and it is thus desirable to relate

this bound to a drift condition.

Corollary 4. Suppose (1) holds, and in addition there is a function U ∈ D with U(x) ≥ 1

for all x ∈ X , and λ > 0 and Λ <∞, such that

AU(x)) ≤ −λU(x) + Λ1C(x) , x ∈ X .

Then, setting B = inf
x 6∈C

U(x), we have that (3) holds with h = 1
2 (U(x) + U(y)) and with

δ = λ− Λ
B

. Hence the conclusion of Theorem 3 holds with these values. Furthermore, we

have A ≤ Λ
δ

+ e−δt
∗

sup
x∈C

U(x).

We now proceed to the proofs of these results. Recall (see e.g. Lindvall, 1992) that

T is a coupling time for {Xt} and {Yt} if the two processes can be defined jointly so that

XT+t = YT+t for t ≥ 0, in which case the coupling inequality states that ‖L(Xt)−L(Yt)‖ ≤
P(T > t).

Similarly, following Aldous and Thorisson (1993), we define T and T ′ to be shift-

coupling epochs for {Xt} and {Yt} if XT+t = YT ′+t for t ≥ 0. To make use of shift-coupling,

we use the following elementary result. (For a proof, and additional background on shift-

coupling, see Thorisson, 1992, equation 10.2; Thorisson, 1993; Thorisson, 1994; Roberts

and Rosenthal, 1994.)

Proposition 5. Let {Xt}, {Yt} be continuous-time Markov processes, each with tran-

sition probabilities P (x, ·), and let T and T ′ be shift-coupling epochs for {Xt} and {Yt}.
Then the total variation distance between ergodic averages of L({Xt}) and L({Yt}) satisfies∥∥∥∥ 1

t

∫ t

0

P (Xs ∈ ·)ds −
1

t

∫ t

0

P (Ys ∈ ·)ds
∥∥∥∥ ≤ 1

t
E (min(t,max(T, T ′)))

≤ 1

t
(E(T ) + E(T ′)) =

1

t

(∫ ∞
0

P(T > s)ds +

∫ ∞
0

P(T ′ > s)ds

)
.

6



The key computation for the proofs of Theorems 1 and 3 is contained in the following

lemma, which is a straightforward consequence of regeneration theory (cf. Nummelin,

1992, p. 92; see also Athreya and Ney, 1978; Asmussen, 1987; Meyn and Tweedie, 1994;

Rosenthal, 1995).

Lemma 6. With notation and assumptions as in Theorem 1, there is a random stopping

time T with L(XT ) = Q(·), such that for any 0 < r < 1/t∗ and s > 0,

P(T > s) ≤ (1 − ε)[rs] + e−δ(s−t
∗)A[rs]−1E(V (X0)) .

Proof. We construct {Xt} as follows. We begin by choosing q ∼ Q(·), and letting

Z1, Z2, . . . be a sequence of i.i.d. random variables with P(Zi = 1) = 1 −P(Zi = 0) = ε.

Let τ1 be the first time the process {Xt} is in the set C . If Z1 = 1, we set Xτ1+t∗ = q. If

Z1 = 0, we choose Xτ1+t∗ ∼ 1
1−ε(P (Xτ1 , ·) − εQ(·)). In either case, we then fill in Xt for

τ1 < t < τ1 + t∗ from the appropriate conditional distributions. Similarly, for i ≥ 2, we

let τi be the first time ≥ τi−1 + t∗ at which the process {Xt} is in the set C , and again if

Zi = 1 we set Xτi+t∗ = q, otherwise choose Xτi+t∗ ∼ 1
1−ε (P (Xτi , ·)− εQ(·)). This defines

the process {Xt} for all times t ≥ 0, such that {Xt} follows the transition probabilities

P t(x, ·).

To proceed, we define Nt = max{i; τi ≤ t}. Now, for any 0 < r < 1
t∗ ,

P(T > s) ≤ (1 − ε)[rs] + P(Ns−t∗ < [rs]) .

However, setting D1 = τ1 and Di = τi − τi−1 for i ≥ 2, for any positive integer j, we have

from Markov’s inequality that

P(Ns < j) = P

(
j∑
i=1

Di > s

)
≤ e−δsE

(
j∏
i=1

eδDi

)
.

Moreover, from (2), as in Rosenthal (1995), we have

E

(
j∏
i=1

eδDi

)
≤

j∏
i=1

E
(
eδDi | Fi−1

)
≤ Aj−1E(V (X0)) ,

where Fi = σ{Xt; 0 ≤ t ≤ τi}.
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Hence,

P(T > s) ≤ (1 − ε)[rs] + e−δ(s−t
∗)A[rs]−1E(V (X0)) ,

as required.

Proof of Theorem 1. We augment the process {Xt} with a second process {Yt},
also following the transition probabilities P t(x, ·), but with L(Y0) = π(·), so that P (Ys ∈

·) = π(·) for all times s ≥ 0. From the lemma, there are times T and T ′ with L(XT ) =

L(YT ′ ) = Q(·). We define the two processes jointly in the obvious way so that XT = YT ′ .

We complete the construction by re-defining Ys for s > T ′, by the formula YT ′+t = XT+t

for t > 0. It is easily seen that {Ys} still follows the transition probabilities P t(x, ·). The

times T and T ′ are then shift-coupling epochs as defined above. The lemma gives upper

bounds on P (T > s) and P (T ′ > s). Hence, integrating,∫ ∞
0

P(T > s)ds ≤ 1

rε
+A−1(E(V (X0))

eδ/r

r(1 −Aeδt∗−δ/r) ,

with a similar formula for
∫
P (T ′ > s)ds. The result then follows from Proposition 5.

Proof of Corollary 2. The statement about (2) follows directly by a standard mar-

tingale argument, as in Rosenthal (1995). Specifically, eδ(t∧τC)U(Xt∧τC ) is a non-negative

local supermartingale, so that

EU(X0) ≥ E
(
eδτCU(XτC )

)
≥ E

(
eδτC

)
.

For the statement about A, let E(t, x) = Ex(U(Xt)). Then

E(t, x) ≤ Ex

(∫ t

0

AU(Xs)ds

)
+ U(x)

≤ −δ
∫ t

0

E(s, x)ds + Λt + U(x) .

Therefore, E(t, x) ≤W (t, x) for all t and x, where

W (t, x) = −δ
∫ t

0

W (s, x)ds + Λt+ U(x) ,
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with W (0, x) = E(0, x) for all x ∈ X . Hence, solving, we have

E(t, x) ≤W (t, x) =
Λ

δ
+ U(x)e−δt .

The result follows by taking t = t∗ and taking supremum over x ∈ X .

Proof of Theorem 3. We construct the processes {Xt} and {Yt} jointly as follows.

We begin by choosing q ∼ Q(·). We further set t0 = inf{t ≥ 0 ; (Xt, Yt) ∈ C × C}, and

tn = inf{t ≥ tn−1 + t∗ ; (Xt, Yt) ∈ C ×C} for n ≥ 1. Then, for each time ti, if we have not

yet coupled, then we proceed as follows. With probability ε we set Xti+t∗ = Yti+t∗ = q, set

T = ti + t∗, and declare the processes to have coupled. Otherwise (with probability 1− ε,

we choose {Xt+t∗} ∼ 1
1−ε

(
P t
∗
(Xt, ·)− εQ(·)

)
and {Yt+t∗} ∼ 1

1−ε
(
P t
∗
(Yt, ·)− εQ(·)

)
,

conditionally independently. In either case, we then fill in the values Xs and Ys for ti <

s < ti + t∗ conditionally independently, using the correct conditional distributions given

Xti , Yti ,Xti+t∗ , Yti+t∗ .

Finally, if {Xt} and {Yt} have already coupled, then we let them proceed conditionally

independently.

It is easily seen that {Xt} and {Yt} each marginally follow the transition probabilities

P t(·, ·). Furthermore, T is a coupling time. We bound P (T > s) as in Lemma 6 above.

The result then follows from the coupling inequality.

Proof of Corollary 4. Setting h(x, y) = 1
2 (U(x) + U(y)), we compute that

A(h(x, y)) ≤ −1

2
λ(U(x) + U(y)) +

Λ

2
(1C(x) + 1C(y))

≤ −λh(x, y) +
Λ

2
+

Λ

2
1C×C(x, y)

≤ −(λ− Λ

B
)h(x, y) + Λ1C×C(x, y)

= −δ h(x, y) + Λ1C×C(x, y) .

Statement (3), and also the statement about A, then follow just as in Corollary 2.
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3. Computing minorizations for one-dimensional diffusions.

To use Theorem 1 or Theorem 3, it is necessary to establish drift and minorization

conditions. Consideration of the action of the generator A on test functions U provides a

method of establishing drift conditions. However, finding a minorization condition appears

to be more difficult. In this section, we present a method for doing so.

We shall have considerable occasion to estimate first hitting time distributions of

one-dimensional diffusions. A key quantity is provided by the Bachelier-Lévy formula

(Lévy, 1965; Lerche, 1986): Suppose {Zt} is a Brownian motion with drift µ and diffusion

coefficient σ, defined by dZt = µdt+ σdBt, started at Z0 = 0. Then if Tx is the first time

that {Zt} hits a point x > 0, then

P(Tx < t) = Φ

(
−x+ tµ√

σ2t

)
+ e2xµ/σ2

Φ

(
−x− tµ√

σ2t

)
,

where Φ(s) =
s∫
−∞

1√
2π
e−u

2/2du.

Now consider a one-dimensional diffusion process {Xt} defined by

dXt = µ(Xt)dt+ dBt .

Assume that µ(·) is C1, and that there exist positive constants a, b,N such that sgn(x)µ(x) ≤
a|x|+b whenever |x| ≥ N . This implies (see for example Roberts and Tweedie, 1995, The-

orem 2.1) that the diffusion is non-explosive. Furthermore, it is straightforward to check

that this diffusion has a unique strong solution.

For c, d ∈ R, call a set S ⊆ X a “[c, d]-medium set” if c ≤ µ(x) ≤ d for all x ∈ S.

The set S is medium if it is [c, d]-medium for some c < d. Note that if µ(·) is a continuous

function, then all compact sets are medium. On medium sets we have some control over

the drift of the process; this will allow us to get bounds to help establish minorization

conditions.

Theorem 7. Let {Xt} be a one-dimensional diffusion process defined by dXt = µ(Xt)dt+

dBt. Suppose C = [α, β] is a finite interval. Suppose further that S = [a, b] is an interval

containing C , which is [c, d]-medium. Then for any t > 0, there exists an ε > 0 such that
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C is (t, ε)-small. Moreover, given any t0 > 0, for all t ≥ t0, we have that C is (t, ε)-small

where

ε = Φ

(
−(β − α)− t0(d − c)√

4t0

)
+ e−(β−α)(d−c)/2Φ

(
t0(d− c)− (β − α)√

4t0

)
−Φ

(
−(α − a)− t0c√

t0

)
− e−2(α−a)cΦ

(
t0c− (α − a)√

t0

)
−Φ

(
−(b− β) + t0d√

t0

)
− e2(b−β)dΦ

(
−t0d− (b− β)√

t0

)
.

Proof. Given a standard Brownian motion {Bt}, we simultaneously construct, for each

x ∈ C , a version {Xx
t } of Xt started at x, and defined by

dXx
t = µ(Xx

t )dt+ (1− 21τx
β
≥t)dBt ,

where τxβ = inf{t ≥ 0 ; Xx
t = Xβ

t } is the first time the process {Xx
t } hits the process {Xβ

t }
(in particular, τββ = 0). Thus, for t ≥ τxβ , we have Xx

t = Xβ
t . Note also that, if x ≤ y, then

Xx
t ≤ X

y
t for all t ≥ 0. Hence, for t ≥ ταβ , the collection of processes {{Xx

t } ; α ≤ x ≤ β}

are all coincident.

Set r = P(ταβ ≤ t0), and for t ≥ t0 let

Qt(·) = P(Xα
t ∈ · | ταβ ≤ t) .

Then it follows by construction that

P t(x, ·) ≥ r Qt(·) , x ∈ C ,

as desired.

It remains to compute a lower bound for r. We let Zt = Xβ
t −Xα

t , and let Ut satisfy

the S.D.E.

dUt = (d− c)dt− 2 dBt ,

for the same Brownian motion {Bt} as before, with U0 = β − α. We let T0 be the first

hitting time of {Ut} to 0. We have that Zt0 ≤ Ut0 on the event EC1 ∩ EC2 , where

E1 = {∃t ≤ t0;Xα
t ≤ a}
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and

E2 = {∃t ≤ t0;Xβ
t ≥ b} .

Furthermore, defining processes {V 1
t } and {V 2

t } by

dV 1
t = c dt+ (1− 21τα

β
≤t)dBt ;

dV 2
t = d dt− dBt ;

with V 1
0 = α and V 2

0 = β, it is clear that E1 ∩E2 ⊆ Ẽ1 ∩ Ẽ2 where

Ẽ1 = {∃t ≤ t0;V 1
t ≤ a}

and

Ẽ2 = {∃t ≤ t0;V 2
t ≥ b} .

Hence,
r = P(ταβ ≤ t0) ≥ P(T0 ≤ t0)−P(E1 ∪ E2)

≥ P(T0 ≤ t0)−P(Ẽ1)−P(Ẽ2) .

The result now follows from applying the Bachelier-Lévy formula to each of these three

probabilities.

4. Multi-dimensional diffusions and pseudo-small sets.

In this section we consider k-dimensional diffusions {Xt} defined by dXt = µ(Xt)dt+

dBt. Here B is standard k-dimensional Brownian motion, and Xt, µ(·) ∈ Rk. As before, we

assume that µ(·) is C1, and that there exist positive constants a, b,N such that nx ·µ(x) ≤

a‖x‖2 + b whenever ‖x‖2 ≥ N . This again implies (see for example Roberts and Tweedie,

1995, Theorem 2.1) that the diffusion is non-explosive; and again the diffusion has a unique

strong solution.

It may appear that the method of the previous section is quite specific to one-

dimension. There, diffusions were jointly constructed so that they had probability ε > 0

of coupling by time t∗, and this produced the required minorization condition. However,
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in multi-dimensions, it may be possible for the two diffusions to “miss” each other, so that

bounding the probability of their coupling would not be easy.

It is possible to get around this difficulty by considering what might be called “rotating

axes”. Specifically, we shall break up the two processes into components parallel and

perpendicular to the direction of their difference. We shall define them so that they

proceed identically in the perpendicular direction, but are perfectly negatively correlated

in the parallel direction. Thus, they will have a useful positive probability of coupling in

finite time t∗. (For other approaches to coupling multi-dimensional processes in various

contexts, see Lindvall and Rogers, 1986; Davies, 1986; Chen and Li, 1989; Lindvall, 1992,

Chapter VI.)

However, it is no longer possible to use such a construction to simultaneously couple

all of the processes started from different points of a proposed small set. This is because

the parallel and perpendicular axes are different for different pairs of processes. Instead,

we shall couple the processes pairwise only. This does not establish the existence of a small

set, however it does establish the existence of a pseudo-small set as we define now.

Definition. A subset S ⊆ X is (t, ε)-pseudo-small for a Markov process P t(·, ·) on a

state space X if, for all x, y ∈ S, there exists a probability measure Qxy(·) on X , such that

P t(x, ·) ≥ εQxy(·) and P t(y, ·) ≥ εQxy(·) .

That pseudo-small sets are useful for our purposes is given by the following theorem,

whose statement and proof are very similar to Theorem 3, but which substitutes pseudo-

smallness for smallness.

Theorem 8. Given a Markov process with transition probabilities P t(x, ·) and stationary

distribution π(·), suppose C ⊆ X is (t∗, ε)-pseudo-small, for some positive time t∗, and

ε > 0. Suppose further that there is δ > 0 and a non-negative function h : X × X → R

with h(x, y) ≥ 1 for all x ∈ X , such that

Ex,y

(
eδτC×C

)
≤ h(x, y) , (x, y) 6∈ C × C

13



where τC×C is the first hitting time of C × C. Set A = sup(x,y)∈C×C Ex,y(h(Xt∗ , Yt∗)),

where {Xt} and {Yt} are defined jointly as described in the proof, and assume that A <∞.

Then for s > 0, and for any 0 < r < 1/t∗,

‖L(Xs) − π(·)‖ ≤ (1− ε)[rs] + e−δ(s−t
∗)A[rs]−1E(h(X0, Y0)) .

Proof. We construct the processes {Xt} and {Yt} jointly as follows. We first set

T = ∞. Then, each time (Xt, Yt) ∈ C × C and T = ∞, with probability ε we choose

Xt+t∗ = Yt+t∗ ∼ QXtYt(·) and set T = t + t∗, while with probability 1 − ε we choose

Xt+t∗ ∼ 1
1−ε

(
P t
∗
(Xt, ·)− εQXtYt (·)

)
and Yt+t∗ ∼ 1

1−ε
(
P t
∗
(Yt, ·)− εQXtYt(·)

)
, condition-

ally independently. If (Xt, Yt) 6∈ C × C or T < ∞, we simply choose Xt+t∗ ∼ P t
∗
(Xt, ·)

and Yt+t∗ ∼ P t
∗
(Yt, ·), conditionally independently.

Having chosenXt+t∗ and Yt+t∗ , we then fill in the values ofXs and Ys for t < s < t+t∗

conditionally independently, with the correct conditional distributions given Xt, Yt, Xt+t∗ ,

and Yt+t∗ .

It is easily seen that {Xt} and {Yt} each marginally follow the transition probabilities

P t(·, ·). Furthermore, T is a coupling time. We bound P (T > s) as in Lemma 6 above.

The result then follows from the coupling inequality.

We now turn our attention to the multi-dimensional diffusions. As in the one-

dimensional case, it is necessary to restrict attention to events where the processes remain

in some medium set on which their drifts are bounded. Here, for c,d ∈ Rk, we say a set

S ⊆ Rk a “[c,d]-medium set” if ci ≤ µi(x) ≤ di for all x ∈ S, for 1 ≤ i ≤ k.

Theorem 9. Let {Xs} be a multi-dimensional diffusion process defined by dXs =

µ(Xs)ds+ dBs. Suppose C is contained in
k∏
i=1

[αi, βi], and let D = sup
x,y∈C

‖x − y‖2 be the

L2 diameter of C . Let S =
k∏
i=1

[ai, bi], where ai < αi < βi < bi for each i, and suppose

S is a [c,d]-medium set. Set L = ‖d − c‖2 ≡
(

k∑
i=1

(di − ci)2

)1/2

. Then for any t > 0,

there exists an ε > 0 such that C is (t, ε)-pseudo-small. Moreover, given any t0 > 0, for all
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t ≥ t0, we have that C is (t, ε)-pseudo-small where

ε = Φ

(
−D − t0L√

4t0

)
+ e−DL/2Φ

(
t0L−D√

4t0

)
− 2

k∑
i=1

Φ

(
−(αi − ai)− t0ci√

t0

)
− 2

k∑
i=1

e−2(αi−ai)ciΦ

(
t0ci − (αi − ai)√

t0

)

− 2
k∑
i=1

Φ

(
−(bi − βi) + t0di√

t0

)
− 2

k∑
i=1

e2(bi−βi)diΦ

(
−t0di − (bi − βi)√

t0

)
.

The above estimates are clearly based again upon the Bachelier-Lévy formula; in fact

many aspects of this proof are similar to those of Theorem 7. In some special cases the

estimates can be improved upon considerably; the method of proof will indicate where

improvements might be possible.

Proof. Given a standard k-dimensional Brownian motion {Bs}, and a pair of points

x,y ∈ C , we define diffusions Xx and Xy simultaneously by Xx
0 = x, Xy

0 = y,

dXy
s = µ(Xy

s )ds+ dBs ,

and

dXx
s = µ(Xx

s )ds + dBs − 2(ns · dBs)1τ≥sns ,

where τ denotes the first time that Xx and Xy coincide, and ns denotes the unit vector

in the direction from Xx
s to Xy

s .

This has the effect that Xx and Xy proceed identically tangentially to the axis join-

ing them, but are perfectly negatively correlated in the direction parallel to this axis. The

processes Xx and Xy coalesce on coincidence. (Note that, unlike in the one-dimensional

case, this intricate construction is necessary to ensure that coupling is achieved with pos-

itive probability.) Hence, if r = P(τ ≤ t0), then for t ≥ t0 we have P t(x, ·) ≥ r Qt(·) and

P t(y, ·) ≥ r Qt(·), exactly as in Theorem 7. We now proceed to lower-bound r.

If we set Zs = Xy
s − Xx

s , then by a simple application of Itô’s formula, and at least

up until the first time one of the Xx processes exits S, we have that

‖Zs‖2 ≤ |Us|

15



where Us is the one-dimensional diffusion defined by U0 = D and

dUs = 2 dB̃s + sgn(Us)Lds ,

where B̃s = Bs · ns is a standard one-dimensional Brownian motion.

Now note that, if A = {Xx
s ∈ S and Xy

s ∈ S, for 0 ≤ s ≤ τ}, then

r ≥ P({τ ≤ t0} ∩A)

≥ P({U hits zero before time t0} ∩ A)

≥ P(U hits zero before time t0)−P(Ac) .

We compute the first of these two probabilities using the Bachelier-Lévy formula,

exactly as in Theorem 7. We bound the second by writing P (Ac) ≤
k∑
i=1

P (Aci ), where

Ai = {Xx
s,i ∈ S and Xy

s,i ∈ S, for 0 ≤ s ≤ τ} (here Xx
s,i is the ith component of Xx

s ), and

computing each P (Ai) similarly to Theorem 7 (after first redefining µ(x) = c for x 6∈ S,

so that we can assume ci ≤ µi(x) ≤ di for all x ∈ X ). (The extra factor of 2 is required

because either of Xx and Xy can now escape from either side; orderings like Xx
s,i ≤ Xy

s,i

need not be preserved.) The result follows.

5. Examples: Langevin diffusions.

In this section, we consider applying our results to some simple examples of Langevin

diffusions. A Langevin diffusion requires a probability distribution π(·) on Rk, having C1

density f(·) with respect to Lebesgue measure. It is defined by the S.D.E.

dXt = dBt + µ(Xt)dt ≡ dBt +
1

2
∇ log f(Xt)dt .

Such a diffusion is reversible with respect to π(·), which is thus a stationary distribution

(intuitively, the diffusion is more likely to proceed in the direction where f is increasing).

This fact has been exploited to use Langevin diffusions for Monte Carlo simulation (see

Grenander and Miller, 1994; Philips and Smith, 1994; Roberts and Tweedie, 1995; Roberts

and Rosenthal, 1995).
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5.1. Standard normal distribution; the Ornstein-Uhlenbeck process.

Here f(x) = 1√
2π
e−x

2/2; hence, the Langevin diffusion has drift µ(x) = 1
2f
′(x)/f(x) =

−x/2 (and is thus an Ornstein-Uhlenbeck process). We recall that this process has gener-

ator

A =
1

2

d2

dx2
− x

2

d

dx
.

We choose U(x) = 1 + x2, and compute that AU(x) = 1− x2. Setting

M(t) = U(Xt) −
t∫

0

AU(Xs)ds ,

Itô’s lemma (see, e.g., Bhattacharya and Waymire, Chapter VII) implies that M(t) is a

local martingale, satisfying the S.D.E.

dM(t) = Xt dBt .

This is L2-bounded on compact time intervals, so by the dominated convergence theorem,

M(t) is in fact a martingale. Thus U ∈ D.

We choose C = [−β, β], and choose S = [−b, b] (where 1 < β < b may be chosen as

desired to optimize the results). To make AU(x) ≤ −λU(x)+Λ1C(x), we choose λ = β2−1
β2+1

and Λ = λ+ 1.

We now apply Theorem 7 and Corollary 4. Choosing β = 1.6, b = 5, and t0 = t∗ =

0.32, we compute that ε = 0.00003176 and δ = 0.03421, to obtain that for any 0 < r < 1/t∗,

‖L(Xt)− π(·)‖ ≤ (0.9999683)[rt] + (0.96637 · 45.6361r)t(
3

2
+ E) ,

where E = Eµ0(X0)2 is found from the initial distribution of our chain. Choosing r > 0

sufficiently small, we can ensure that 0.96637 · 45.6361r < 1, thus giving an exponentially-

decreasing quantitative upper bound as a function of t.

The main point is that Theorem 7 and Corollary 4 provide us with concrete, quanti-

tative bounds on the distance of L(Xt) to the stationary distribution.
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Remark. Multivariate normal distributions. In Rk, if f(·) is the density for a multi-

variate normal distribution, then we can get similar bounds without any additional work.

Indeed, an appropriate linear transformation reduces this case to that of a standard mul-

tivariate normal. From there, we inductively use the inequality ‖µ1 × µ2 − ν1 × ν2‖ ≤
‖µ1−ν1‖+‖µ2−ν2‖, to reduce this to the one-dimensional case. Thus, we obtain bounds

identical to the above, except multiplied by a global factor of k.

5.2. A two-dimensional diffusion.

Following Roberts and Tweedie (1995), we consider the density on R2 given by

f(x, y) = C e−x
2−y2−x2y2

,

where C > 0 is the appropriate normalizing constant. The associated Langevin diffusion

has drift

µ(x, y) = −
(
x(1 + y2), y(1 + x2)

)
.

This diffusion has generator

A =
1

2

(
∂2

(∂x)2
+

∂2

(∂y)2

)
− x(1 + y2)

∂

∂x
− y(1 + x2)

∂

∂y
.

We choose the function U(x, y) = 1 + x2 + y2 + x2y2, and compute that AU(x, y) =

2 + x2 + y2 − 2x2(1 + y2)2 − 2y2(1 + x2)2. As in the previous example, we set

M(t) = U(Xt) −
t∫

0

AU(Xs)ds .

Again, by Itô’s lemma, M(t) is a local martingale. Furthermore, by comparison to two

independent Ornstein-Uhlenbeck processes, we see that M(t) is again L2-bounded on com-

pact time intervals, so that by dominated convergence M(t) is again a martingale. Hence

again U ∈ D.

We let C be the square with corners (±β,±β) and let S be the square with corners

(±b,±b). For fixed λ > 0 (to be chosen later to optimize the results), we choose β =
√

2+λ
1−λ
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and Λ = 2 + λ, so that the drift condition AU(x, y) ≤ −λU(x, y) + Λ1C(x, y) is satisfied.

We note that we have d1 = d2 = −c1 = −c2 = b(1 + b2).

We apply Theorem 9 and Corollary 4. We choose λ = 0.5 so that β = 2.236. We

further choose b = 6.836 and t0 = t∗ = 0.3, to get that δ = 0.0833 and ε = 4.146 · 10−9.

We thus obtain that for any 0 < r < 1/t∗,

‖L(Xt)− π(·)‖ ≤ (1− 4.146 · 10−9)[rt] +
1

2
(0.9201 · 66.915r)t

(
Eµ0U(X0) + EπU(Y0)

)
.

As before, choosing r > 0 sufficiently small, we can ensure that 0.9201 · 66.915r < 1, thus

giving an exponentially-decreasing quantitative upper bound as a function of t.
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