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Lévy Classes and Self–Normalization*
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Abstract. We prove a Chung’s law of the iterated logarithm
for recurrent linear Markov processes. In order to attain this level
of generality, our normalization is random. In particular, when the
Markov process in question is a diffusion, we obtain the integral test
corresponding to a law of the iterated logarithm due to Knight.
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§1. Introduction. Suppose (Bt; t ≥ 0) is a one–dimensional Brownian motion. Let (lt; t ≥ 0)
denote its local time process evaluated at the level 0. Amongst other results, Knight [Kn, Theorem
3] has proven the following Chung type of iterated logarithm law: almost surely,

(1.0) lim inf
t→∞

ln ln t

lt
sup

0≤s≤t
|Bs| = 1.

Here and throughout, lnx , loge(x ∨ e) where loge is the natural logarithm. (1.0) is achieved by
demonstarting that for any ε > 0, almost surely sup0≤s≤t |Bs| ≥ (1 − ε)lt/ ln ln t, for all t large
enough, while there is (a.s.) a random sequence tn → ∞, such that for all n, sup0≤s≤tn |Bs| ≤
(1 + ε)ltn/ ln ln tn. In other words, (1 + ε)lt/ ln ln t is in the upper Lévy class of sup0≤s≤t |Bs| if
ε > 0 and in the lower Lévy class of sup0≤s≤t |Bs| if ε < 0. It is worth mentioning that (1.0)
extends to other diffusions. Furthermore, the results of [Kn] are local, i.e., they hold for t → 0+.
However, the proofs translate to the case t→∞ with no essential changes. Finally, the results of
[Kn] are stated for the maximal unreflected process sup0≤s≤t Bs and due to the choice of the speed
measure, the local times in [Kn] are twice ours. The proofs go through with no essential changes.

The main goal of this paper is to extend (1.0) to a broad class of strong Markov processes while
providing an exact integral test determining when a suitable function is in the upper (or lower)
Lévy class of the maximal process. To this end, let (Xt; t ≥ 0) denote a recurrent irreducible linear
strong Markov process in the sense of Blumenthal and Getoor [BG]. We shall work under the
regime X0 = 0 although this is not necessary. Furthermore, we assume that X possesses local times
(Lt; t ≥ 0) at 0 (say); for details we refer the reader to [BG], Getoor and Kesten [GK] and
Sharpe [Sh]. In brief, this means that (Lt; t ≥ 0) is a continuous additive functional of X whose
Revuz measure is proportional to the point mass at 0. (The constant of proportionality does not
play a rôle in our main results.)

* Research partially supported by NSF grant DMS-95-03290
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It is well known that the recurrence of X implies that limt→∞ Lt =∞, almost surely (cf. the
remarks after Lemma (A.4) below.) Hence, even at this level of generality, it is plausible to try to
gauge the lower envelope of sups≤t |Xs| by the random function Lt.

As a consequence of our work, we prove in Theorem (4.2) that when X is a β–symmetric stable
Lévy process for β ∈ (1, 2), almost surely,

(1.1) lim inf
t→∞

( ln ln t

Lt

)1/(β−1)

sup
0≤s≤t

|Xs| =
(

2π−1/2χΓ
(β

2

)
Γ
(3− β

2

)
Γ(β)

∣∣cos
(πβ

2

)∣∣)1/(β−1)

,

where the constant χ comes from the characteristic exponent of X as: P exp
(
iξXt

)
= exp

(
−tχ|ξ|β

)
.

Moreover, the process L is normalized as follows:

P
(∫ ∞

0
e−sdLs

∣∣ X0 = a
)

= v1(a).

See (4.6) below, together with Getoor and Kesten [GK] for more remarks on normalization
of local times. Note also that upon letting χ , 1

2 and β , 2, one gets back (1.0). This is not
surprising, since in this case X is standard Brownian motion.

The above is part of the motivation behind this paper. Indeed, it is known (cf. Dupuis [Du],
Fristedt [F] and Wee [We1,We2]) that for some constant c = c(β) ∈ (0,∞),

lim inf
t→∞

(
ln ln t

t

)1/β

sup
0≤s≤t

|Xs| = c.

However, c is the principle eigenvalue of corresponding to the Dirichlet problem for ∆β on [−1, 1]
with a 0 exterior condition (cf. Widom [Wi]). As such, the value of c is unknown. One of the
interesting aspects of (1.1) is that the corresponding problem in self–normalization is quite calcu-
lable. Furthermore, together with the LIL of Marcus and Rosen [MR], one can get reasonably
good lower bounds on c via K(β).

We start with some notation. For any linear Borel set A, we let

T (A) , inf
(
s > 0 : Xs ∈ A

)
.

As is sometimes customary, we write P the probability measure as well as the expectation operator.
Furthermore, almost surely (with no reference to the underlying measure) means P–almost surely.
Finally, define for all x > 0,

(1.2) m(x) , 1

PLT (Fx)

,

where

(1.3) Fx = F (x) , [x,∞) ∪ (−∞,−x].

For future reference, note that F (x) ⊆ F (x′) whenever x ≥ x′. This implies that x 7→ m(x)
is a decreasing function on (0,∞). Furthermore, by the strong Markov property, LT (Fx) is an
exponential random variable and hence m(x) ∈ (0,∞). We are ready to state our main result:

(1.4) Theorem. Suppose h : (0,∞) 7→ (0,∞) is nondecreasing so that x 7→ x(m ◦ h)(x) is also
nondecreasing. Then

P
(

sup
0≤s≤t

|Xs| ≥ h(Lt), eventually
)

=

 1, if
∫∞

1
m(h(x))e−xm(h(x))dx <∞

0, otherwise

.
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For the sake of completeness, we also provide the following which generalizes [Kn, Theorem 2];
see Motoo [Mo] and Erickson [Er] for related results.

(1.5) Theorem. Let h : (0,∞) 7→ (0,∞) be a nondecreasing function such that for all x large
enough, x(m ◦ h)(x) ≤ 1. Then,

P
(

sup
0≤s≤t

|Xs| ≤ h(Lt), eventually
)

=

 1, if
∫∞

1
m(h(t))dt <∞

0, otherwise

.

(1.6) Remark. Suppose X is a Hunt process on a locally compact space E with a countable basis
for which there exists a distinguished point b ∈ E, such that b is regular for {b} and is recurrent.
Let Lt denote the process of local times at b (cf. [BG] and [Sh] for details). By the Appendix,
L∞ = ∞. An inspection of the proofs of Theorems (1.4) and (1.5) show that they immediately
extend to results about

(
sups≤t g(Xs); t ≥ 0

)
where g : E 7→ [0,∞) with g−1

(
{0}
)

= b and Fx is

replaced by g−1
(
[x,∞)

)
.

(1.7) Remark. Working at the level of generality of Remark (1.6), it is possible to prove local
version of Theorems (1.4) and (1.5), i.e., where t ↓ 0. In this case, X need not have a recurrent
point; only that Lt exists which is the same as b being regular for {b}.

Let us finish by discussing what happens when X is a one–dimensional diffusion with scale
function S and speed measure M ; see Revuz and Yor [RY] for the necessary background. Define
for any x > 0,

gx(a, b) ,



(
S(a)−S(−x)

)(
S(b)−S(x)

)
S(x)−S(−x) , if −x ≤ a ≤ b ≤ x(

S(b)−S(−x)
)(
S(x)−S(a)

)
S(x)−S(−x) , if −x ≤ b ≤ a ≤ x

0, otherwise

.

This is the Green’s function for the interval [−x, x]. One can normalize local times as in [RY,
Chapter 7] so that for all x > 0,

PLT (Fx) = PLT ({x,−x})

=

∫
gx(0, y)M(dy)

=
S(0)− S(−x)

S(x)− S(−x)

∫ x

0

(
S(y)− S(x)

)
M(dy) +

S(x)− S(0)

S(x)− S(−x)

∫ 0

−x

(
S(y)− S(−x)

)
M(dy).

In particular, note that when X is symmetric (i.e., X and −X have the same finite–dimensional

distributions), m(x) =
( ∫ x

0
SdM

)−1
.

The organization of this paper is as follows. In Sections 2 and 3, we prove Theorems (1.4) and
(1.5), respectively. In Section 4, we show how one can make the necessary computations and use
these results when (Xt) is a symmetric stable Lévy process of index β ∈ (1, 2]. When β = 2, we
have Brownian motion. In this case, Theorem (1.4) provides the integral test for the Lévy class
corresponding to (1.0) above. In Section 5, we discuss the discrete–time analogues of (1.4) and
(1.5). More precisely, we discuss self–normalized laws of the iterated logarithms for recurrent walks
in Zd. For a special class of such walks, another self–normalization appears in the literature. See for
example, Griffin and Kuelbs [GK1,GK2] and Shao [S]; see also Lewis [Le] and the references
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in [S]. The advantage of self–normalizing by local times is apparent in that the class of analyzable
processes is quite large. Finally, we provide an appendix which contains several general remarks
about NBU random variables and local times.

§2. The Proof of Theorem (1.4). The strategy for proving (1.4) is to time–change

(2.1) X∗t , sup
0≤s≤t

|Xt|,

by

(2.2) τ(t) = τt , inf
(
s > 0 : Ls = t

)
.

We will exploit the fact that
(
X∗τ(t); t ≥ 0

)
is an extreme–value process. This would in turn allow

us to use facts about such processes: see Barndorff–Nielsen [BN], Robbins and Siegmund

[RS] and Klass [Kl]. Indeed, embedded in our proofs, one can find a streamlined derivation of
some of these results. Let us define

(2.3) E(t) ,
{
ω : X∗τ(t) < h(t)

}
,

where h is given by (1.4). We begin with some technical lemmas.

(2.4) Lemma. (i) For every t ≥ 0, P
(
E(t)

)
= e−tm(h(t)).

(ii) For any 0 < t < T , P
(
E(t) ∩E(T )

)
= exp

(
− (T − t)m(h(T ))

)
.

Proof. Let Nx(t) denote the total number of excursions before t which hit Fx. (Recall (1.3) as well
as the fact that excursions are always counted in the clock τ .) By [It],

(
Nx(t); t ≥ 0

)
is a Poisson

process with mean PNx(t) = tPNx(1) = tm(x). Part (i) follows since

P
(
E(t)

)
= P

(
Nh(t)(t) = 0

)
= e−tm(h(t)),

as desired. To prove part (ii), apply the strong Markov property at time τ(t). Since Xτ(t) =
Xτ(t)+ = 0, and since h is increasing,

P
(
E(t) ∩ E(T )

)
= P

(
E(t), sup

τ(t)≤r≤τ(T )

|Xr| < h(T )
)

= P
(
E(t)

)
P
(

sup
0≤r≤τ(T−t)

|Xr| < h(T )
)

= P
(
E(t)

)
P
(
Nh(T )(T − t) = 0

)
= P

(
E(t)

)
exp

(
− (T − t)m(h(T ))

)
.

We are done by part (i). ♦
Following Erdős [E], define tn , exp(n/ lnn) for all n ≥ 1. Let us begin with some useful

combinatorial properties of (tn; n ≥ 1).

(2.5) Lemma. There exists c1 > 1 such that

(i) for all n ≥ 1,

c−1
1

tn
lnn
≤ tn+1 − tn ≤ c1

tn
lnn

;
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(ii) for all k, n ≥ 1,

k ≤ c1 ·
tn+k − tn

tn
· lnn.

Proof. By Taylor’s expansion, it is easy to see that

lim
n→∞

lnn · tn+1 − tn
tn

= 1.

Part (i) follows. To prove part (ii), notice that n 7→ tn/ lnn is increasing. Hence, by (i),

tn+k − tn =
k∑
j=1

(
tn+j − tn+j−1

)
≥ c−1

1

k∑
j=1

tn+j−1

ln(n+ j − 1)

≥ c−1
1 k

tn
lnn

.

The result follows. ♦
We need some more notation. For positive integers n < N , let us define,

(2.6)

GNn , [2 lnn · ln lnn,N ],

BNn , [lnn, 2 lnn · ln lnn),

UNn , [1, lnn).

Note that the sets GNn (for good), BNn (for bad) and UNn (for ugly) form an integer partition of
[1, N ]. For integers 0 < n < N and j ≥ 1, define the discrete annuli,

(2.7) ANn (j) ,
{

1 ≤ k ≤ N :
j

lnn
≤ 1− tn

tn+k
≤ j + 1

lnn

}
.

Finally, define

(2.8) ONn , BNn ∪ UNn .

(2.9) Lemma. There exists a c2 > 0 such that for all integers n, k, j ≥ 1,

#
(
ONn ∩ANn (j)

)
≤ c2

(
j + 1

)3
.

Proof. Without loss of generality, we may suppose that BNn ∩ ANn (j) 6= ∅ and UNn ∩ ANn (j) 6= ∅,
for otherwise there is nothing to prove. Let k ∈ BNn ∩ ANn (j). By (2.6) and Lemma (2.5)(ii),

k ≤ c1 ·
tn+k − tn

tn
· lnn

= c1 ·
(

1− tn
tn+k

)tn+k

tn
· lnn

≤ c1(j + 1)
tn+k

tn
.(2.10)
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By the definition of BNn , tn+k ≤ tn+[2 ln n·ln ln n]+1. By Taylor’s expansion, as n→∞,

tn+[2 lnn·ln ln n]+1 ∼ (lnn)2 · tn.

Therefore, the following is finite:

c3 , sup
n

tn+[2 lnn·ln ln n]+1

(lnn)2tn
.

To recapitulate, whenever k ∈ BNn ∩ANn (j),

(2.11) k ≤ c3(j + 1)(lnn)2.

On the other hand, for our values of n,N, k and j,

j + 1

lnn
≥ 1− tn

tn+k
≥ 1− tn

tn+[ln n]
.

Since limn→∞ tn+[ln n]/tn = e > 1, it follows that for some c4 ∈ (0,∞), (j+ 1) ≥ c4 lnn. By (2.11),

this means that whenever k ∈ BNn ∩ ANn (j), k ≤ c3c−2
4 (j + 1)3. In other words,

(2.12) #
(
BNn ∩ ANn (j)

)
≤ c3c−2

4 (j + 1)3.

Next, suppose k ∈ UNn ∩ANn (j). By (2.7) and (2.10),

k ≤ c1(j + 1)
tn+[ln n]+1

tn
.

Since limn→∞ tn+[ln n]+1/tn = e, we have shown that for some c5 ∈ (0,∞), k ≤ c5(j + 1). In other

words, #
(
UNn ∩ ANn (j)

)
≤ c5(j + 1) ≤ c5(j + 1)3. Together with (2.8) and (2.12), we obtain the

lemma. ♦
We are ready to prove Theorem (1.4). Define ψ(x) , xm(h(x)). Recalling (2.3) and that

tn = exp(n/ lnn), let ψn , ψ(tn), En , E(tn) and Pn , P
(
En
)
, for simplicity. By the argument

of Erdős [E], it suffices to prove (1.4) when

(2.13) c6 lnn ≤ ψn ≤ c7 lnn,

for some 0 < c6 < c7 <∞ and all n ≥ 1. With this in mind, it is easy to see that∫ ∞
1

m(h(x))e−xm(h(x))dx <∞ if and only if
∑
n

e−ψn <∞.

By Lemma (2.4)(i) and the definition of Pn,

(2.14)

∫ ∞
1

m(h(x))e−xm(h(x))dx <∞ if and only if
∑
n

Pn <∞.

Suppose
∫∞

1
m(h(x))e−xm(h(x))dx =∞. It clearly suffices to prove that P

(
En, i.o.

)
= 1. By (2.14),

it follows that
∑
n Pn =∞. By Kochen and Stone [KS], in turn, it suffices to show that

lim sup
N→∞

∑N
n=1

∑N−n
k=1 P

(
En ∩En+k

)(∑
n Pn

)2 ≤ 1
2
.

7



Recalling the integral partition of [1, N ] given by (2.6) and (2.8), it suffices to show the following:

P
(
En ∩En+k

)
≤ exp(c8/ lnn)PnPn+k ∀n < N and ∀k ∈ GNn ,(2.15)

N∑
n=1

∑
k∈ONn

P
(
En ∩En+k

)
≤ c9

N∑
k=1

Pn.(2.16)

Note that by Lemma (2.4)(i) and (ii),

P
(
En ∩En+k

)
= PnPn+k exp

(
ψn+ktn/tn+k

)
.

Thus, to prove (2.15), it suffices to show that there exists some c8 > 0 (independent of N ≥ 1),
such that

(2.17) sup
k∈GNn

exp
(
ψn+ktn/tn+k

)
≤ exp(c8/ lnn).

However, for any k ∈ GNn , tn+k ≥ tn+2[ln n·ln ln n] ∼ tn(lnn)2. By (2.13) and monotonicity, there
exist some c′8, c

′′
8 ∈ (0,∞), such that

ψ−1
n+ktn+k/tn ≥ c′8(lnn)2ψ−1

n+2 ln n·ln lnn ≥ c′′8 lnn.

This implies (2.17) with c8 , (c′′8)−1. As mentioned before, (2.15) follows. To prove (2.16), use
Lemmas (2.4)(ii) and (2.9) in the following manner:

N∑
n=1

∑
k∈ONn

P
(
En ∩En+k

)
=

N∑
n=1

∞∑
j=0

∑
k∈ONn ∩ANn (j)

P
(
En ∩En+k

)
=

N∑
n=1

∞∑
j=0

∑
k∈ONn ∩ANn (j)

Pn · exp
(
− (1− (tn/tn+k))ψn+k

)
≤

N∑
n=1

∞∑
j=0

#
(
ONn ∩ANn (j)

)
· Pn · exp(−jψn/ lnn),

since n 7→ ψn is increasing. By (2.13), ψn ≥ c7 lnn. Hence, by Lemma (2.9),

N∑
n=1

∑
k∈ONn

P
(
En ∩En+k

)
≤ c2

N∑
n=1

∞∑
j=0

(j + 1)3e−c7jPn

= c9

N∑
n=1

Pn,

where c9 , c2
∑∞
j=0(j+1)3e−c7j <∞. This proves (2.16) and hence the divergence half of Theorem

(1.4).
To prove the convergence half, suppose

∫∞
1
m(h(x))e−xm(h(x))dx <∞. Define

Ẽn ,
{
ω : X∗τ(tn−1) ≤ h(tn)

}
.
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(Compare this with En , E(tn) defined in (2.3).) By the proof of Lemma (2.4)(i),

P
(
Ẽn
)

= exp
(
− tn−1ψn/tn

)
.

Applying (2.13), we see that

P
(
Ẽn
)
≤ exp

(
− ψn

)
· exp

(
− c7tn−1 lnn/tn

)
.

By Lemma (2.5)(i), tn−1/tn ≥ 1− (c1/ lnn). Therefore, for all n ≥ exp(c1 + c−1
7 ),

P
(
Ẽn
)
≤ e−1 · exp

(
− ψn

)
= e−1Pn,

by Lemma (2.4)(i). By (2.14) and the Borel–Cantelli lemma, P
(
Ẽn, i.o.

)
= 0. A monotonicity

argument à la [E] finishes the proof. ♦
§3. The Proof of Theorem (1.5). Let sn , 2n and recalling (2.1) and (2.2) define,

Fn ,
{
ω : X∗τ(sn) ≥ h(sn)

}
F̃n ,

{
ω : X∗τ(sn+1) ≥ h(sn)

}
.

(3.1) Lemma. There exists ε > 0 so that for all n ≥ 1,

(i) P(F̃n) ≤ 2snm(h(sn));
(ii) εsnm(h(sn)) ≤ P(Fn) ≤ snm(h(sn)).

Proof. In the excursion theory notation of §2, using the fact that for x ≥ 0, e−x ≥ 1− x,

P(F̃n) = 1− P
(
Nh(sn)(sn+1) = 0

)
= 1− e−sn+1m(h(sn))

≤ sn+1m(h(sn)),

proving (i), since sn+1 = 2sn. The proof of the upper bound in (ii) is similar. To prove the lower
bound in (ii), we can use the fact that e−x ≤ 1− x+ 1

2
x2 for x ≥ 0 to see that

P(Fn) = 1− e−snm(h(sn))

≥ snm(h(sn))
(
1− 1

2
snm(h(sn))

)
≥ 1

2snm(h(sn)),

for all n large, since by assumption xm(h(x)) ≤ 1 for all x large. The result follows for ε appropri-
ately small. ♦

We are now ready to prove Theorem (1.5). Suppose
∫∞

1
m(h(t))dt < ∞. By Lemma (3.1)(i),∑

n P(F̃n) <∞. By the Borel–Cantelli lemma and monotonicity, it follows that

P
(
X∗τ(s) ≤ h(s), eventually

)
= 1,

as desired. On the other hand, if
∫∞

1
m(h(t))dt =∞, Lemma (3.1)(ii) implies that

(3.2)
∑
n

P(Fn) =∞.

9



Now for any n, k ≥ 1, consider,

P
(
Fn ∩ Fn+k

)
= P

(
X∗τ(sn) ≥ h(sn), X∗τ(sn+k)

≥ h(sn+k)
)

= P
(
X∗τ(sn) ≥ h(sn+k)

)
+ P

(
h(sn) ≤ X∗τ(sn) ≤ h(sn+k), sup

τ(sn)≤r≤τ(sn+k)

≥ h(sn+k)
)

≤ P
(
X∗τ(sn) ≥ h(sn+k)

)
+ P

(
X∗τ(sn) ≥ h(sn)

)
P
(
X∗τ(sn+k−sn) ≥ h(sn+k)

)
,

by the strong Markov property. By monotonicity, the second summand is bounded above by
P(Fn)P(Fn+k). Furthermore, the first summand equals 1 − P

(
Nh(sn+k)(sn) = 0

)
= 1 − exp

(
−

snm(h(sn+k))
)
≤ 2−ksnm

(
h(sn+k)

)
≤ 2−kε−1P(Fn+k), by Lemma (3.1)(ii). Hence,

P
(
Fn ∩ Fn+k

)
≤ P(Fn+k)

(
ε−12−k + P(Fn)

)
.

Together with (3.2) and the lemma of Kochen and Stone [KS], this implies that P
(
Fn, i.o.

)
= 1

which finishes the proof. ♦
§4. Examples. Throughout this section, X denotes a symmetric β–stable Lévy process with
β ∈ (1, 2]. That is, X is an infinitely divisible process whose Fourier transform is given by

(4.1) P exp(iξXt) = e−tχ|ξ|
β

,

where ξ ∈ R1 and χ > 0 is arbitrary. It is well–known that X is recurrent and possesses local times
L at 0; cf. Getoor and Kesten [GK] for this and much more. Let X∗t , sup0≤s≤t |Xs|. The
main result of this section is the following explicit calculation of the function m of (1.2) in this
setting.

(4.2) Theorem. For all β ∈ (1, 2] and any x > 0, m(x) = K(β)x1−β, where,

(4.3) K(β) , 2√
π
χΓ
(β

2

)
Γ
(3− β

2

)
Γ(β)

∣∣∣cos
(πβ

2

)∣∣∣.
Together with Theorems (1.4) and (1.5), Theorem (4.2) immediately implies our next two

results.

(4.4) Theorem. Let f : (0,∞) 7→ (0,∞) be nonincreasing so that x 7→ xf(x) is nondecreasing.
Then for the K(β) defined in (4.3),

P
(
X∗t ≥

(
K(β)/f(Lt)

) 1
β−1 , eventually

)
=

 1, if
∫∞

1
f(x) exp(−xf(x))dx <∞

0, otherwise

.

(4.5) Theorem. Let f : (0,∞) 7→ (0,∞) be nonincreasing so that for all x large enough, xf(x) ≤ 1.
Then,

P
(
X∗t ≤ f(Lt)

1
1−β , eventually

)
=

 1, if
∫∞

1
f(x)dx <∞

0, otherwise

.

It is possible to show that in the case of β–stable Lévy processes with β ∈ (1, 2], ln lnLt ∼ ln ln t,
a.s. . Therefore, Theorem (4.2) implies (1.1) and (1.0).

We will use the rest of this section to prove Theorem (4.2).

10



For α > 0, define for all x ∈ R1,

(4.6) vα(x) , 1

π

∫ ∞
0

cos(rx)

α+ χrβ
dr.

Note that vα is a symmetric function and in the language of [GK], the α–resolvent density, uα, of
X is given by

(4.7) uα(a, b) , vα(a− b).

See Bretagnolle [B] and Kesten [K]. Since 0 is used as a distinguished point, we will have need
for one more piece of notation. Define for all α > 0,

(4.8) κ(α) , uα(0, 0) = Cβα
−1+1/β ,

where

Cβ ,
B
(

1
β , 1−

1
β

)
πβχ1/β

.

Next, we need to construct a version of the local times L. In order to do so, let γ(α) be an
independent exponential random variable with mean α−1. Since uα(0, ·) is excessive, the Doob–
Meyer decomposition implies the following which is a special case of the work of [GK]:

(4.9) vα(X0)− vα(Xt∧γ(α))− Lt∧γ(α) = a stopped martingale,

stopped at time γ(α). Let us start with some technical lemmas.

(4.10) Lemma. For any x > 0, there exists a constant c10 = c10(x, β) ∈ (0,∞) such that for any
random time ζ > 0,

P
(
vα(Xζ); T (Fx) > γ(α)

)
≤ c10α

1/β .

Proof. It follows from (4.6) and (4.7) that vα(x) ≤ κ(α). By (4.8),

(4.11) P
(
vα(Xζ); T (Fx) > γ(α)

)
≤ Cβα−1+1/βP

(
T (Fx) > γ(α)

)
.

By an eigenfunction expansion (cf. Widom [Wi]; or alternatively use the estimates of Fristedt

[F, Proposition 10.3]), there exists some c11 = c11(x) ∈ (0,∞), such that for all r > 0, P
(
T (Fx) >

r
)
≤ exp(−c11r). Therefore,

P
(
T (Fx) > γ(α)

)
≤ α

∫ ∞
0

e−c11re−αrdr

≤ c−1
11 α.

Putting this into (4.11) yields the lemma with c10 , Cβc−1
11 . ♦

(4.12) Lemma. Fix some x > 0. As α→ 0+,

PLT (Fx)∧γ(α) = κ(α)− Pvα(XT (Fx)) + o(1).

11



Proof. By (4.9), almost surely,
(
κ(α) − vα(Xt∧γ(α)) − Lt∧γ(α); 0 ≤ t ≤ γ(α)

)
is a mean zero

martingale stopped at time γ(α). Hence,

PLT (Fx)∧γ(α) = κ(α)− P
(
vα(XT (Fx)∧γ(α))

)
= κ(α)− P

(
vα(XT (Fx)); T (Fx) < γ(α)

)
− P

(
vα(Xγ(α)); T (Fx) > γ(α)

)
= κ(α)− P

(
vα(XT (Fx))

)
−

−
(
P
(
vα(Xγ(α)); T (Fx) > γ(α)

)
− P

(
vα(XT (Fx)); T (Fx) > γ(α)

))
= κ(α)− P

(
vα(XT (Fx))

)
+O

(
α1/β

)
,

by Lemma (4.10). This proves the result. ♦
The proof of Theorem (4.2). By Lemma (4.12) and the monotone convergence theorem,

(4.13) m(x) = lim
α→0+

1

κ(α)− Pvα(XT (Fx))
.

By (4.6) and (4.8),

κ(α)− vα(x) =
1

π

∫ ∞
0

1− cos(rx)

α + χrβ
dr

↑ 1

π

∫ ∞
0

1− cos(rx)

χrβ
dr,

as α→ 0+. By (4.13) and the monotone convergence theorem,

(4.14)
1

m(x)
=

1

π

∫ ∞
0

1− P cos
(
rXT (Fx)

)
χrβ

dr.

By (4.1), when β = 2, Bt , (2χ)−1/2Xt is standard Brownian motion. Using symmetry and path
continuity of B we see that,

P cos
(
rXT (Fx)

)
= P cos

(
rXT ({−x,x})

)
= cos(rx).

Hence, (4.14) implies that when β = 2,

1

m(x)
=

1

π

∫ ∞
0

1− cos(rx)

χr2
dr =

x

2χ
.

In light of (4.3), this proves Theorem (4.2) when β = 2. To finish the proof of (4.2), let β ∈ (1, 2).
By Widom [Wi], (see also Blumenthal et al. [BGR] and its references),

(4.15) P
(
XT (F1) ∈ da

)
=

1

π
sin
(πβ

2

)
|a|−1(a2 − 1)−β/2da, ∀a ∈ R1 \ [−1, 1].

(Actually, the above references prove (4.15) for the case χ = 1. The general case follows from their
work together with scaling considerations.) Moreover, by (4.14), scaling and symmetry,

1

m(x)
=

2

πχ

∫ ∞
x

P
(
XT (Fx) ∈ da

) ∫ ∞
0

1− cos(ra)

rβ
dr

=
2

πχ

∫ ∞
x

aβ−1P
(
XT (Fx) ∈ da

) ∫ ∞
0

1− cos r

rβ
dr

=
1

πχ
P|XT (Fx)|β−1

∫ ∞
0

1− cos r

rβ
dr

=
xβ−1

πχ
P|XT (F1)|β−1

∫ ∞
0

1− cos r

rβ
dr.(4.16)
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By (4.15) and some calculus,

P|XT (F1)|β−1 =
2

π
sin
(πβ

2

)∫ ∞
1

aβ−2
(
a2 − 1

)−β/2
da

=
2

π
sin
(πβ

2

)∫ ∞
1

a−2
(
1− a−2

)−β/2
da

=
1

π
sin
(πβ

2

)∫ 1

0

u−1/2(1− u)−β/2du

=
1

π
sin
(πβ

2

)
B
(

1
2
, 1− β

2

)
.

Contour integration shows that for all z ∈ C, Γ(z)Γ(1− z) = π/ sin(πz). Consequently,

B
(1

2
, 1− β

2

)
=

π3/2

Γ
(
β
2

)
Γ
(

3−β
2

)
sin
(
πβ
2

) .
Therefore,

(4.17) P|XT (F1)|β−1 =

√
π

Γ
(
β
2

)
Γ
(

3−β
2

) .
Recall the following well–known identity:∫ ∞

0

1− cos r

rβ
dr = −1

2

π

Γ(β) cos
(
πβ
2

) .
To evaluate the aformentioned integral, we can write x−β(1− cosx) as x2−β times x−2(1− cosx)
and perform integration by parts to see that the integral equals (β− 1)−1

∫∞
0
x1−β sinxdx and the

latter is computable by standard means. Together with (4.16) and (4.17), this finishes the proof.♦

§5. Recurrent walks in Zd. Let Y1, Y2, · · · be i.i.d. random vectors, taking values in Zd. The
corresponding random walk, Xn is defined by

(5.1) Xn ,
n∑
j=1

Yj , n ≥ 1.

We shall assume that X is a genuinely d–dimensional random walk. By recurrence, this implies
that d ≤ 2. Define the local time of X as

(5.2) Ln ,
n∑
j=1

1{0}(Xj), n ≥ 1.

Arguments similar to those presented in Section 1 show that the recurrence of X is equivalent to
P
(

limn→∞ Ln =∞
)

= 1. As in §1, define for any Borel set A ⊂ Zd,

(5.3) T (A) , inf
(
k ≥ 1 : Xk ∈ A

)
.

Interpreting |x| as the `2 norm of x ∈ Z2 \ {0}, we can define m and Fx as in (1.2) and (1.3),
respectively. The main result of this section is the following analogue of Theorem (1.4):
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(5.4) Theorem. Suppose h : (0,∞) 7→ (0,∞) is nondecreasing so that x 7→ x(m ◦ h)(x) is also
nondecreasing. Then,

P
(

max
1≤k≤n

|Xk| ≥ h(Ln), eventually
)

=

 1, if
∫∞

1
m(h(x))e−xm(h(x))dx <∞

0, otherwise

.

A discrete–time analogue of (1.5) is also possible; its statement (and proof) is left to the
interested reader.

The proof of (5.4) is much like that of (1.4) except that one need use discrete excursion theory.
The latter is not as well–documented as continuous–time excursion theory. Therefore, we will
include an outline of the proof of (5.4). Before doing so, however, let us investigate two interesting
examples. Namely, the simple walk in Z1 and the simple walk in Z2.

(5.5) Example. Suppose d = 1 and Y1 = ±1 with probability 1
2 each. In order to apply (5.4), we

first and foremost need to compute the function m. One can proceed in complete analogy to §4.
However, there is a simpler way to compute m. For all x ∈ Z1 \ {0},

m(x) =
1

PLT (Fx)

= P
(
T (Fx) < T0

)
,

where Ta , T ({a}). This is essentially a renewal–theoretic argument; see the proof of (5.4). Let
〈x〉 , [|x|]. Note that XT (Fx) = X〈x〉. Hence, m(x) = P

(
T ({〈x〉,−〈x〉}) < T0

)
. By symmetry,

m(x) = 2P
(
T〈x〉 < T0

)
. Therefore, by the gambler’s ruin calculation, m(x) = 1/〈x〉. Theorem (5.4)

then implies the following:

P
(

max
1≤k≤n

|Xk| ≥ h(Ln), eventually
)

=

 1, if
∑∞
j=1

1
h(j)e

−j/h(j) <∞

0, otherwise

.

It is possible to show that ln lnLn ∼ ln lnn. Thus, we obtain the analogue of (1.0): almost surely,

lim inf
n→∞

ln lnn

Ln
max

1≤k≤n
|Xk| = 1.

♦
(5.6) Example. Suppose d = 2 and Y1 ∈

{
(±1,±1), (∓1,±1)

}
, with probability 1

4
each. Analysis

similar to that of Example (5.5) shows that for all x ∈ Z2 \ {0},

m(x) =
π

2 ln |x|
(
1 + o(1)

)
,

where o(1) is a term which goes to 0 as |x| → ∞. It can be shown that almost surely, lnLn ∼ ln lnn.
(Many results of this type can be found in Révész [R], for example). Therefore, we obtain

lim inf
n→∞

ln ln lnn

Ln
max

1≤k≤n
ln |Xk| =

π

2
,

almost surely. An interesting consequence of the above — suggested to us by an anonymous referee
— is the following: since ln max1≤k≤n |Xk| ∼ 1

2
lnn, almost surely,

lim sup
n→∞

Ln
lnn · ln ln lnn

=
1

π
.
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Thus, we obtain an alternative proof of the LIL of Erdős and Taylor (cf. Révész [R, p.202]):
♦

The proof of Theorem (5.4). As in (2.1) and (2.2) define for all n ≥ 1,

(5.7)
X∗n , max

1≤k≤n
|Xk|

τ(n) , min
(
k ≥ 1 : Lk = n

) .
Notice that τ(n) is none other than the n–th return time to 0. In analogy with (2.3), define for all
n ≥ 1

E(n) ,
{
ω : X∗τ(n) < h(n)

}
.

Since the excursions of X from 0 are i.i.d., X∗τ(n) = max1≤j≤n maxτ(j−1)<k≤τ(j) |Xk| is the maxi-

mum of n i.i.d. random variables (τ(0) , 0). Moreover,

P
(
X∗τ(1) ≥ x

)
= P

(
T (Fx) < T0

)
,

where Ta , T ({a}). Hence, by renewal theory, P
(
X∗τ(1) ≥ x

)
=
(
PLT (Fx)

)−1
= m(x). To see this,

define path–valued processes ek as follows:

ek(j) ,
(
Xi; τ(k− 1) ≤ i ≤ τ(k)

)
.

The ek’s are the excursions from 0 and are ordered according to their natural clock, τ , in which
things are measured. Let A be any Borel set on the space of paths. (We shall not bother with
the topological asides here. They are straight–forward, especially as the state space is discrete.)
By the strong Markov property, N(A)m ,

∑m
j=1 1A(ej) is a Bernoulli process in that it is a sum

of m i.i.d. random variable and its growth times are geometric random variables with parameter
p(A) , P

(
e1 ∈ A

)
. Applying the optional sampling theorem, we see that for all stopping times σ

(in the filtration of N(A)) and all n ≥ 1, PN(A)σ∧n = p(A)P(σ∧n). By the monotone convergence
theorem, PN(A)σ = p(A)Pσ. Now let σ be the first growth time of N(A). In other words, σ =

LT (A). Clearly, σ is a N(A)–stopping time. Since N(A)σ = 1, it follows that p(A) =
(
PLT (A)

)−1
.

The above argument can be pushed further to show that (m,A) 7→ N(A)m is a Bernoulli point
process in that it is a Bernoulli process for each A and N(A) and N(B) are independent if A∩B = ∅.
This is the essentials of discrete excursion theory.

Now to see why P
(
Xτ(1)∗ ≥ x

)
=
(
PLT (Fx)

)−1
, let A , Fx. Therefore, P

(
E(n)

)
=
(
1 −

m(h(n))
)n
. Without loss of generality, we can assume that h(n) → ∞, as n → ∞ for otherwise,

there is nothing to prove. Furthermore, just as in (2.13), we can assume that for some c12 > 1,

c−1
12 ln lnk ≤ m(h(k)) ≤ c12 ln lnk.

Therefore, for some c13 ∈ (0, 1),

c13e
−nm(h(n)) ≤ P

(
E(n)

)
≤ e−nm(h(n)) .

This is the analogue of Lemma (2.4)(i). Lemma (2.4)(ii)’s analogue is proved along the same lines.
Since the combinatorial aspects of the proof of Theorem (5.4) are not at all different from those of
Theorem (1.5), the same proof now goes through without any further difficulties. ♦
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Appendix: NBU random variables and local times. Following Shaked and Shanthiku-

mar [SS, p.11], we say that a positive random variable S is NBU if for all a, b > 0,

(A.1) P
(
S > a+ b

)
≤ P

(
S ≥ a

)
P
(
S ≥ b

)
.

(NBU stands for New Better than Used.) As is customary, we write ‖S‖p , P1/pSp for the moments
of S.Let us begin with a basic Lp(P) estimate for NBU random variables.

(A.2) Lemma. If S is NBU, for all p ≥ 1, ‖S‖p ≤ Γ1/p(1 + p)‖S‖1, where Γ is the standard
Gamma function.

Proof. When p = 1, this is clear. Suppose we could prove the result for all integer p ≥ 1. By the
convexity theorem of Riesz (cf. Stein [St], Theorem B.1 for a version of this), we are done. To this
end, we proceed by induction. We can suppose that for some integer p ≥ 1, ‖S‖p ≤ Γ1/p(1+p)‖S‖1.
We will strive to prove that it also holds for p+ 1. To do this, we use the induction hypothesis and
integrate by parts as follows:

‖S‖p+1
1 = ‖S‖1 · ‖S‖p1

≥ 1

Γ(1 + p)
‖S‖1 · ‖S‖pp

=
p

Γ(p+ 1)

∫ ∞
0

P
(
S ≥ x

)
dx ·

∫ ∞
0

yp−1P
(
S ≥ y

)
dy

≥ p

Γ(1 + p)

∫ ∞
0

∫ ∞
0

yp−1P
(
S ≥ x+ y

)
dx dy,

by (A.1). Making a change of variables from (x, y) to (u, v) = (x+ y, y), we see that

‖S‖p+1
p =

p

Γ(1 + p)

∫ ∞
0

∫ ∞
v

vp−1P
(
S ≥ u

)
du dv

=
1

Γ(1 + p)

∫ ∞
0

upP
(
S ≥ u

)
du

=
1

(p+ 1)Γ(1 + p)
‖S‖p+1

p+1

=
1

Γ(p+ 2)
‖S‖p+1

p+1,

as desired. ♦
It is not difficult to see that the above is sharp.

(A.3) Lemma. Let Sn be a sequence of NBU random variables. Suppose further that PSn increases
to infinity, as n→∞. Then with probability one, lim supn→∞ Sn =∞.
Proof. Take p > 1 and θ ∈ (0, 1) and let 1A be the characteristic function of a Borel set A ⊆ (0,∞).
By Lemma (A.2) and Hölder’s inequality,

‖Sn‖1 = ‖Sn1(−∞,θ‖Sn‖1)(Sn)‖1 + ‖Sn1[θ‖Sn‖1,∞)(Sn)‖1

≤ θ‖Sn‖1 + ‖Sn‖p
(
P
(
Sn ≥ θ‖Sn‖1

))1/q

≤ θ‖Sn‖1 + Γ1/p(p+ 1)‖Sn‖1
(
P
(
Sn ≥ θ‖Sn‖1

))1/q

,
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where q−1 + p−1 = 1. Solving, we obtain,

P
(
Sn ≥ θ‖Sn‖1

)
≥ (1− θ)q · Γ−q/p(p+ 1),

By the monotonicity of ‖Sn‖1,

P
(

lim sup
n→∞

Sn =∞
)
≥ (1− θ)q · Γ−q/p(p+ 1).

First, let θ ↓ 0 and then p ↓ 1 to obtain the result. ♦

The relation to local times is the following result which is a consequence of the strong Markov
property.

(A.4) Lemma. For each t ≥ 0, Lt is NBU.

Since t 7→ Lt is a.s. increasing, Lemmas (A.3) and (A.4) together imply that limt→∞ Lt =∞,
a.s. if and only if EL∞ =∞. This condition is the well–known condition that X is point recurrent.
(Indeed, the corresponding potential measure is U(A) ,

∫∞
0
P
(
Xs ∈ A

)
ds; cf. Blumenthal and

Getoor [BG] and Sharpe [Sh].)
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Sém. de Prob., Lecture Notes in Mathematics, 191, 21–36

[Du] C. Dupuis (1974). Mesure de Hausdorff de la trajectoire de certains processus à accroissements
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