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1 Introduction

This paper establishes infinite dimensional isoperimetric inequalities for a wide class of proba-
bility measures. We work in the setting of a Riemannian manifold (M,g). The geodesic distance
on M is denoted by d. Furthermore M is equipped with a Borel probability measure µ which is
assumed to be absolutely continuous with respect to the volume measure. For h ≥ 0 the closed
h-enlargement of a set A ⊂M is

Ah :=
{

x ∈M ; d(x,A) ≤ h
}

,

where d(x,A) := inf{d(x, a); a ∈ A} is +∞ by convention for A = ∅. We may define the
boundary measure, in the sense of µ, of a Borel set A by

µs(∂A) := lim inf
h→0+

µ(Ah \ A)

h
·

An isoperimetric inequality is a lower bound on the boundary measure of sets in terms of their
measure. Their study is an important topic in geometry, see e.g. (37). Finding sets of given
measure and of minimal boundary measure is very difficult. In many cases the only hope is
to estimate the isoperimetric function (also called isoperimetric profile) of the metric measured
space (M,d, µ), denoted by Iµ

Iµ(a) := inf
{

µs(∂A); µ(A) = a
}

, a ∈ [0, 1].

For h > 0 one may also investigate the best function Rh such that µ(Ah) ≥ Rh(µ(A)) holds for
all Borel sets. The two questions are related, and even equivalent in simple situations, see (17).
Since the function α(h) = 1−Rh(1/2) is the so-called concentration function, the isoperimetric
problem for probability measures is closely related to the concentration of measure phenomenon.
We refer the reader to the book (32) for more details on this topic.

The main probabilistic example where the isoperimetric problem is completely solved is the
Euclidean space (Rn, | · |) with the standard Gaussian measure, denoted γn in order to emphasize
its product structure

dγn(x) = e−|x|2/2 dx

(2π)n/2
, x ∈ R

n.

Sudakov-Tsirel’son (39) and Borell (19) have shown that among sets of prescribed measure,
half-spaces have h-enlargements of minimal measure. Setting G(t) = γ((−∞, t]), their result
reads as follows: for A ⊂ R

n set a = G−1(γn(A)), then

γn(Ah) ≥ γ
(

(−∞, a+ h]
)

= G
(

G−1
(

γn(A)
)

+ h
)

,

and letting h go to zero

(γn)s(∂A) ≥ G′(a) = G′
(

G−1
(

γn(A)
)

)

.

These inequalities are best possible, hence Iγn = G′ ◦ G−1 is independent of the dimension
n. Such dimension free properties are crucial in the study of large random systems, see e.g.
(31; 41). Asking which measures enjoy such a dimension free isoperimetric inequality is therefore
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a fundamental question. Let us be more specific about the products we are considering: if µ
is a probability measure on (M,g), we consider the product µn on the product Riemannian
manifold Mn where the geodesic distance is the ℓ2 combination of the distances on the factors.
Considering the ℓ∞ combination is easier and leads to different results, see (12; 16; 7). In the
rest of this paper we only consider the ℓ2 combination.

It can be shown that Gaussian measures are the only symmetric measures on the real line such
that for any dimension n, the coordinate half-spaces {x ∈ R

n; x1 ≤ t} solve the isoperimetric
problem for the corresponding product measure on R

n. See (14; 28; 34) for details and stronger
statements. Therefore it is natural to investigate measures on the real line for which half-lines
solve the isoperimetric problem, and in any dimension coordinate half-spaces are approximate
solutions of the isoperimetric problem for the products, up to a universal factor. More generally,
one looks for measures on the line for which there exists c < 1 with

Iµ ≥ Iµ∞ ≥ c Iµ, (1)

where by definition Iµ∞ := infn≥1 Iµn . Note that the first inequality is always true. Inequality
(1) means that for any n, and ε > 0, among subsets of R

n with µn-measure equal to a ∈ (0, 1)
there are sets of the form A× R

n−1 with boundary measure at most c−1 + ε times the minimal
boundary measure.

Dimension free isoperimetric inequalities as (1) are very restrictive. Heuristically one can say that
they force µ to have a tail behaviour which is intermediate between exponential and Gaussian.
More precisely, if Iµ∞ ≥ cIµ is bounded from below by a continuous positive function on (0, 1),
standard arguments imply that the measures µn all satisfy a concentration inequality which is
independent of n. As observed by Talagrand in (40), this property implies the existence of ε > 0
such that

∫

eε|t|dµ(t) < +∞, see (16) for more precise results. In particular, the central limit
theorem applies to µ. Setting m =

∫

x dµ(x), it allows to compute the limit of

µn
(

{

x ∈ R
n;

1√
n

n
∑

i=1

(xi −m) ≤ t
}

)

.

Under mild assumptions it follows that for some constant d, cIµ ≤ Iµ∞ ≤ d Iγ . Thus the
isoperimetric function of µ is at most a multiple of the Gaussian isoperimetric function. In
particular if µ is symmetric with a log-concave density, this is known to imply that µ has at
least Gaussian tails.

For the symmetric exponential law dν(t) = e−|t|dt/2, t ∈ R, Bobkov and Houdré (15) actually
showed Iν∞ ≥ Iν/(2

√
6). Their argument uses a functional isoperimetric inequality with the

tensorization property. In the earlier paper (40), Talagrand proved a different dimension free
isoperimetric inequality for the exponential measure, where the enlargements involve mixtures of
ℓ1 and ℓ2 balls with different scales (this result does not provide lower bounds on the boundary
measure of sets).

In a recent paper (8) we have studied in depth various types of inequalities allowing the precise
description of concentration phenomenon and isoperimetric profile for probability measures, in
the intermediate regime between exponential and Gaussian. Our approach of the isoperimetric
inequality followed the one of Ledoux (30) (which was improved in (4)): we studied the improving
properties of the underlying semigroups, but we had to replace Gross hypercontractivity by a
notion of Orlicz hyperboundedness, closely related to F -Sobolev inequalities (see Equation (7) in
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Section 6 for a definition). This approach yields a dimension free description of the isoperimetric
profile for the measures dνα(t) = e−|t|αdt for 1 ≤ α ≤ 2: there exists a universal constant K
such that for all α ∈ [1, 2]

Iνα ≥ Iν∞
α

≥ 1

K
Iνα .

It is plain that the method in (8) allows to deal with more general measures, at the price of
rather heavy technicalities.

In this paper, we wish to point out a softer approach to isoperimetric inequalities. It was re-
cently developed by Wang and his coauthors (42; 25; 43) and relies on so called super-Poincaré
inequalities. It can be combined with our techniques in order to provide dimension free isoperi-
metric inequalities for large classes of measures. Among them are the measures on the line with
density e−Φ(|t|) dt/Z where Φ(0) = 0, Φ is convex and

√
Φ is concave. This is achieved in the

first part of the paper: Sections 2–5. The dimension free inequalities are still valid for slight
modifications of the above examples. Other approaches and a few examples of perturbation
results are developed in the last sections of the article.

Finally, let us present the super-Poincaré inequality as introduced by Wang in order to study
the essential spectrum of Markov generators (actually we have found it convenient to exchange
the roles of s and β(s) in the definition below). We shall say that a probability measure µ on
(M,g) satisfies a super-Poincaré inequality, if there exists a nonnegative function β defined on
[1,+∞[ such that for all smooth f : M → R and all s ≥ 1,

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ.

This family of inequalities is equivalent to the following Nash type inequality: for all smooth f ,

∫

f2dµ ≤
(
∫

|f |dµ
)2

Θ

(

∫

|∇f |2dµ
(∫

|f |dµ
)2

)

,

where Θ(x) := infs≥1{β(s)x + s}. But it is often easier to work with the first form. Similar
inequalities appear in the literature, see (10; 22). Wang discovered that super-Poincaré in-
equalities imply precise isoperimetric estimates, and are related to Beckner-type inequalities via
F -Sobolev inequalities. In fact, Beckner-type inequalities, as developed by Lata la-Oleszkiewicz
(29) were crucial in deriving dimension-free concentration in our paper (8). In full generality
they read as follows: for all smooth f and all p ∈ [1, 2),

∫

f2dµ−
(
∫

|f |pdµ
)

2
p

≤ T (2 − p)

∫

|∇f |2dµ,

where T : (0, 1] → R
+ is a non-decreasing function. Following (9) we could characterize the

measures on the line which enjoy this property, and then take advantage of the tensorization
property. As the reader noticed, the super-Poincaré and Beckner-type inequalities are formally
very similar. It turns out that the tools of (9) apply to both, see for example Lemma 3 below.
This remark allows us to present a rather concise proof of the dimension-free isoperimetric
inequalities, since the two functional inequalities involved (Beckner type for the tensorization
property, and super-Poincaré for its isoperimetric implications) can be studied in one go.
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2 A measure-Capacity sufficient condition for super-Poincaré

inequality

This section provides a sufficient condition for the super Poincaré inequality to hold, in terms of
a comparison between capacity of sets and their measure. This point of view was put forward in
(8) in order to give a natural unified presentation of the many functional inequalities appearing
in the field.

Given A ⊂ Ω, the capacity Capµ(A,Ω), is defined as

Capµ(A,Ω) = inf

{
∫

|∇f |2dµ; f|A ≥ 1, f|Ωc = 0

}

= inf

{
∫

|∇f |2dµ; 1A ≤ f ≤ 1Ω

}

,

where the infimum is over locally Lipschitz functions. Recall that Rademacher’s theorem (see
e.g. (23, 3.1.6)) ensures that such functions are Lebesgue almost everywhere differentiable, hence
µ-almost surely differentiable. The latter equality follows from an easy truncation argument,
reducing to functions with values in [0, 1]. Finally we defined in (9) the capacity of A with
respect to µ when µ(A) < 1/2 as

Capµ(A) := inf{Cap(A,Ω); A ⊂ Ω, µ(Ω) ≤ 1/2}.
Theorem 1. Assume that for every measurable A ⊂M with µ(A) < 1/2, one has

Capµ(A) ≥ sup
s≥1

1

β(s)

(

µ(A)

1 + (s− 1)µ(A)

)

.

for some function β defined on [1,+∞[ .

Then, for every smooth f : M → R and every s ≥ 1 one has
∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 4β(s)

∫

|∇f |2dµ.

Proof. We use four results that we recall or prove just after this proof. Let s ≥ 1, f : M → R

be locally Lipschitz and m a median of the law of f under µ. Define F+ = (f − m)+ and
F− = (f −m)−. Setting

Gs =

{

g : M → [0, 1);

∫

(1 − g)−1dµ ≤ 1 +
1

s− 1

}

,

it follows from Lemmas 2 and 3 (used with A = s− 1 and a = 1/2) that
∫

f2dµ− s

(
∫

|f |dµ
)2

≤
∫

(f −m)2dµ− (s− 1)

(
∫

|f −m| dµ
)2

≤ sup

{
∫

(f −m)2g dµ; g ∈ Gs

}

≤ sup

{
∫

F 2
+g dµ; g ∈ Gs

}

+ sup

{
∫

F 2
−g dµ; g ∈ Gs

}

,
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where we have used the fact that the supremum of a sum is less than the sum of the suprema.
We deal with the first term of the right hand side. By Theorem 5 we have

sup

{
∫

F 2
+g dµ; g ∈ Gs

}

≤ 4Bs

∫

|∇F+|2dµ

where Bs is the smallest constant so that for all A ⊂M with µ(A) < 1/2

BsCapµ(A) ≥ sup

{
∫

1IAg dµ; g ∈ Gs

}

.

On the other hand Lemma 4 insures that

sup

{
∫

1IAg dµ; g ∈ Gs

}

= µ(A)

(

1 −
(

1 +
1

(s− 1)µ(A)

)−1
)

=
µ(A)

1 + (s− 1)µ(A)
.

Thus, by our assumption, Bs ≤ β(s). We proceed in the same way for F−. Summing up, we
arrive at

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 4β(s)(

∫

|∇F+|2dµ+

∫

|∇F−|2dµ)

≤ 4β(s)

∫

|∇f |2dµ.

In the last bound we used the fact that since f is locally Lipschitz and µ is absolutely continuous,
the set {f = m} ∩ {∇f 6= 0} is µ-negligible. Indeed {f = m} ∩ {∇f 6= 0} ⊂ {x; |f −
m| is not differentiable at x} has Lebesgue measure zero since x 7→ |f(x)−m| is locally Lipschitz.

Lemma 2. Let (X,P ) be a probability space. Then for any function g ∈ L2(P ), for any s ≥ 1,
∫

g2dP − s

(
∫

|g|dP
)2

≤
∫

(g −m)2dP − (s− 1)

(
∫

|g −m|dP
)2

where m is a median of the law of g under P .

Proof. We write
∫

g2dP − s

(
∫

|g|dP
)2

= VarP (|g|) − (s − 1)

(
∫

|g|dP
)2

.

By the variational definition of the median and the variance respectively, we have VarP (|g|) ≤
VarP (g) ≤

∫

(g −m)2dP and
∫

|g −m|dP ≤
∫

|g|dP . The result follows.

Lemma 3 ((9)). Let ϕ be a non-negative integrable function on a probability space (X,P ). Let
A ≥ 0 and a ∈ (0, 1), then

∫

ϕdP −A

(
∫

ϕadP

)
1
a

= sup

{
∫

ϕg dP ; g : X → (−∞, 1) and

∫

(1 − g)
a

a−1dP ≤ A
a

a−1

}

≤ sup

{
∫

ϕg dP ; g : X → [0, 1) and

∫

(1 − g)
a

a−1 dP ≤ 1 +A
a

a−1

}

.
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Note that in (9) it is assumed that A > 0. The case A = 0 is easy.

Lemma 4 ((9)). Let a ∈ (0, 1). Let Q be a finite positive measure on a space X and let
K > Q(X). Let A ⊂ X be measurable with Q(A) > 0. Then

sup

{
∫

X
1IAg dQ; g : X → [0, 1) and

∫

X
(1 − g)

a
a−1dQ ≤ K

}

= Q(A)

(

1 −
(

1 +
K −Q(X)

Q(A)

)
a−1

a

)

.

Theorem 5. Let G be a family of non-negative Borel functions on M , Ω ⊂M with µ(Ω) ≤ 1/2
and for any measurable function f vanishing on Ωc set

Φ(f) = sup
g∈G

∫

Ω
fg dµ.

Let B denote the smallest constant such that for all A ⊂ Ω with µ(A) < 1/2 one has

B Capµ(A) ≥ Φ(1IA).

Then for every smooth function f : M → R vanishing on Ωc it holds

Φ(f2) ≤ 4B

∫

|∇f |2dµ.

Proof. We start with a result of Maz’ja (33), also discussed in (8, Proposition 13): given two
absolutely continuous positive measures µ, ν on M , denote by Bν the smallest constant such
that for all A ⊂ Ω one has

BνCapµ(A,Ω) ≥ ν(A).

Then for every smooth function f : M → R vanishing on Ωc

∫

f2dν ≤ 4Bν

∫

|∇f |2dµ.

Following an idea of Bobkov and Götze (13) we apply the previous inequality to the measures
dν = gdµ for g ∈ G. Thus for f as above

Φ(f) = sup
g∈G

∫

Ω
fg dµ ≤ 4 sup

g∈G
Bg dµ

∫

|∇f |2dµ.

It remains to check that the constant B is at most supg∈G Bg dµ. This follows from the definition
of Φ and the inequality Capµ(A) ≤ Capµ(A,Ω).

Corollary 6. Assume that β : [1,+∞) → R
+ is non-increasing and that s 7→ sβ(s) is non-

decreasing on [2,+∞). Then, for every a ∈ (0, 1/2),

1

2

a

β(1/a)
≤ sup

s≥1

a

1 + (s− 1)a

1

β(s)
≤ 2

a

β(1/a)
. (2)
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In particular, if for every measurable A ⊂M with µ(A) < 1/2, one has

Capµ(A) ≥ µ(A)

β(1/µ(A))
,

then, for every f : M → R and every s ≥ 1 one has

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ 8β(s)

∫

|∇f |2dµ.

Proof. The choice s = 1/a gives the first inequality in (2). For the second part of (2), we
consider two cases:

If a(s− 1) ≤ 1/2 then s ≤ 1 + 1
2a ≤ 1

a , where we have used a < 1/2. Hence, the monotonicity of
β yields

a

1 + (s− 1)a

1

β(s)
≤ a

β(s)
≤ a

β(1/a)
·

If a(s − 1) > 1/2, note that a/(1 + (s − 1)a) ≤ 1/s. Thus by monotonicity of s 7→ sβ(s) and
since s ≥ 1 + 1/2a = 1+2a

2a ≥ 2,

a

1 + (s− 1)a

1

β(s)
≤ 1

sβ(s)
≤ 2a

(1 + 2a)β(1 + 1
2a)

≤ 2a

β(1/a)
·

The last step uses the inequality 1 + 1
2a ≤ 1

a and the monotonicity of β.

The second part of the Corollary is a direct consequence of Theorem 1 and (2) (replacing β in
Theorem 1 by 2β).

3 Beckner type versus super Poincaré inequality

In this section we use Corollary 6 to derive super Poincaré inequality from Beckner type inequal-
ity.

The following criterion was established in (8, Theorem 18 and Lemma 19) in the particular case
of M = R

n. As mentioned in the introduction of (8) the extension to Riemannian manifolds is
straightforward.

Theorem 7 ((8)). Let T : [0, 1] → R
+ be non-decreasing and such that x 7→ T (x)/x is non-

increasing. Let C be the optimal constant such that for every smooth f : M → R one has
(Beckner type inequality)

sup
p∈(1,2)

∫

f2dµ−
(∫

|f |pdµ
)

2
p

T (2 − p)
≤ C

∫

|∇f |2dµ.

Then 1
6B(T ) ≤ C ≤ 20B(T ), where B(T ) is the smallest constant so that every A ⊂ M with

µ(A) < 1/2 satisfies

B(T )Capµ(A) ≥ µ(A)

T
(

1/ log
(

1 + 1
µ(A)

)

) .
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If M = R, m is a median of µ and ρµ is its density, we have more explicitly

1

6
max(B−(T ), B+(T )) ≤ C ≤ 20 max(B−(T ), B+(T ))

where

B+(T ) = sup
x>m

µ([x,+∞))
1

T
(

1/ log
(

1 + 1
µ([x,+∞))

)

)

∫ x

m

1

ρµ

B−(T ) = sup
x<m

µ((−∞, x])
1

T
(

1/ log
(

1 + 1
µ((−∞,x])

)

)

∫ m

x

1

ρµ
.

The relations between Beckner-type and super-Poincaré inequalities have been explained by
Wang, via F -Sobolev inequalities. Here we give an explicit connection under a natural condition
on the rate function T .

Corollary 8 (From Beckner to Super Poincaré). Let T : [0, 1] → R
+ be non-decreasing and

such that x 7→ T (x)/x is non-increasing. Assume that there exists a constant C such that for
every smooth f : M → R one has

sup
p∈(1,2)

∫

f2dµ−
(∫

|f |pdµ
)

2
p

T (2 − p)
≤ C

∫

|∇f |2dµ. (3)

Define β(s) = T (1/ log(1 + s)) for s ≥ e− 1 and β(s) = T (1) for s ∈ [1, e − 1].

Then, every smooth f : M → R satisfies for every s ≥ 1,

∫

f2dµ − s

(
∫

|f |dµ
)2

≤ 48Cβ(s)

∫

|∇f |2dµ.

Proof. By Theorem 7, Inequality (3) implies that every A ⊂M with µ(A) < 1/2 satisfies

6C Capµ(A) ≥ µ(A)

T
(

1/ log
(

1 + 1
µ(A)

)) =
µ(A)

β
(

1
µ(A)

) ·

Since T is non-decreasing, β is non-increasing on [1,∞). On the other hand, for s ≥ e − 1, we
have

sβ(s) = sT (1/ log(1 + s)) = log(1 + s)T (1/ log(1 + s))
s

log(1 + s)
·

The map x 7→ T (x)/x is non-increasing and s 7→ s
log(1+s) is non-decreasing. It follows that

s 7→ sβ(s) is non-decreasing. Corollary 6 therefore applies and yields the claimed inequality.

A remarkable feature of Beckner type inequalities (3) is the tensorization property: if µ1 and
µ2 both satisfy (3) with constant C, then so does µ1 ⊗ µ2 (29). For this reason inequalities for
measures on the real line are inherited by their infinite products. In dimension 1 the criterion
given in Theorem 7 allows us to deal with probability measures dµΦ(x) = Z−1

Φ e−Φ(|x|)dx with
quite general potentials Φ:
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Proposition 9. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) = 0 and consider
the probability measure dµΦ(x) = Z−1

Φ e−Φ(|x|)dx. Assume that Φ is C2 on [Φ−1(1),+∞) and that√
Φ is concave. Define T (x) = [1/Φ′ ◦Φ−1(1/x)]2 for x > 0 and β(s) = [1/Φ′ ◦Φ−1(log(1 + s))]2

for s ≥ e− 1 and β(s) = [1/Φ′ ◦ Φ−1(1)]2 for s ∈ [1, e − 1]. Then there exists a constant C > 0
such that for any n ≥ 1, every smooth function f : R

n → R satisfies

sup
p∈(1,2)

∫

f2dµn
Φ −

(∫

|f |pdµn
Φ

)
2
p

T (2 − p)
≤ C

∫

|∇f |2dµn
Φ.

In turn, for any n ≥ 1, every smooth function f : R
n → R and every s ≥ 1,

∫

f2dµn
φ − s

(
∫

|f |dµn
Φ

)2

≤ 48Cβ(s)

∫

|∇f |2dµn
Φ.

Proof. The proof of the Beckner type inequality comes from (8, proof of Corollary 32): the
hypotheses on Φ allow to compute an equivalent of µΦ([x,+∞)) when x tends to infinity (namely
e−φ/φ′) and thus to bound from above the quantities B+(T ) and B−(T ) of Theorem 7. This
yields the Beckner type inequality in dimension 1. Next we use the tensorization property.

The second part follows from Corollary 8 (the hypotheses on Φ ensure that T is non-decreasing
and T (x)/x is non-increasing).

Example 1. A first family of examples is given by the measures dµp(x) = e−|x|pdx/(2Γ(1+1/p)),

p ∈ [1, 2]. The potential x 7→ |x|p fulfills the hypotheses of Proposition 9 with Tp(x) = 1
p2x

2(1− 1
p
)
.

Thus, by Proposition 9, for any n ≥ 1, µn
p satisfies a super Poincaré inequality with function

β(s) = cp/ log(1 + s)2(1−
1
p
) where cp depends only on p and not on the dimension n.

Note that the corresponding Beckner type inequality

sup
q∈(1,2)

∫

f2dµn
p −

(∫

|f |qdµn
p

)
2
q

(2 − q)
2(1− 1

p
)

≤ c̃p

∫

|∇f |2dµn
p ,

goes back to Lata la and Oleszkiewicz (29) with a different proof, see also (9).

Example 2. Consider now the larger family of examples given by dµp,α(x) =
Z−1

p,αe
−|x|p(log(γ+|x|))α

dx, p ∈ [1, 2], α ≥ 0 and γ = eα/(2−p). One can see that µn
p,α satisfies a

super Poincaré inequality with function

β(s) =
cp,α

(log(1 + s))2(1−
1
p
)(log log(e+ s))2α/p

, s ≥ 1.

4 Isoperimetric inequalities

In this section we collect results which relate super-Poincaré inequalities with isoperimetry. They
follow Ledoux approach of Buser’s inequality (30). This method was developed by Bakry-Ledoux
(4) and Wang (36; 42), see also (24; 8).

The following result, a particular case of (4, Inequality (4.3)), allows to derive isoperimetric
estimates from semi-group bounds.
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Theorem 10 ((4; 36)). Let µ be a probability measure on (M,g) with density e−V with respect
to the volume measure. Assume that V is C2 and such that Ricci +D2V ≥ −Rg for some R ≥ 0.
Let (Pt)t≥0 be the corresponding semi-group with generator L = ∆ − ∇V · ∇. Then, for t > 0,
every measurable set A ⊂M satisfies

arg tanh
(√

1 − e−4Rt
)

2
√
R

µs(∂A) ≥ µ(A) −
∫

(Pt1IA)2dµ

= µ(Ac) −
∫

(Pt1IAc)2dµ.

For R = 0 the left-hand side term should be understood as its limit
√
t µs(∂A).

Remark 3. The condition Ricci + D2V ≥ −Rg was introduced by Bakry and Emery (3, Propo-
sition 3). The left hand side term is a natural notion of curvature for manifolds with measures
e−V dVol, which takes into account the curvature of the space and the contribution of the po-
tential V .

Proof. We briefly reproduce the line of reasoning of Bakry-Ledoux (4) and its slight improvement
given by Röckner-Wang (36). Let f, g be smooth bounded functions. We start with Inequality
(4.2) in (4), which describes a regularizing effect of the semigroup:

|∇Psg|2 ≤ R

1 − e−2Rs
‖g‖2

∞.

By reversibility, integration by parts and Cauchy-Schwarz inequality, it follows that, for any
t ≥ 0,

∫

g(f − P2tf)dµ = −
∫

g

(
∫ 2t

0
LPsfds

)

dµ = −
∫ 2t

0

∫

gLPsfdµds

= −
∫ 2t

0

∫

PsgLfdµds =

∫ 2t

0

∫

∇Psg · ∇fdµds

≤
∫

|∇f |
∫ 2t

0
|∇Psg|dsdµ

≤
∫

|∇f |dµ
∫ 2t

0

√

R

1 − e−2Rs
ds ‖g‖∞

=
1√
R

arg tanh
(
√

1 − e−4Rt
)

∫

|∇f |dµ ‖g‖∞.

This is true for any choice of g so by duality we obtain
∫

|f − P2tf | dµ ≤ 1√
R

arg tanh
(

√

1 − e−4Rt
)

∫

|∇f |dµ.

Applying this to approximations of the characteristic function of the set A ⊂ M and using the
relation

∫

1IAP2t1IA dµ =
∫

(Pt1IA)2dµ leads to the expected result.

In order to exploit this result we need the following proposition due to Wang (42). We sketch
the proof for completeness.
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Proposition 11 ((42)). Let µ be a probability measure on M with density e−V with respect to
the volume measure. Assume that V is C2. Let (Pt)t≥0 be the corresponding semi-group with
generator L := ∆ −∇V · ∇. Then the following are equivalent
(i) µ satisfies a Super Poincaré inequality: every smooth f : M → R satisfies for every s ≥ 1

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ.

(ii) For every t ≥ 0, every smooth f : M → R, and all s ≥ 1

∫

(Ptf)2dµ ≤ e
− 2t

β(s)

∫

f2dµ+ s(1 − e
− 2t

β(s) )

(
∫

|f |dµ
)2

.

Proof. (i) follows from (ii) by differentiation at t = 0.

On the other hand, if u(t) =
∫

(Ptf)2dµ, (i) implies that

u′(t) = 2

∫

PtfLPtf dµ = −2

∫

|∇Ptf |2dµ ≤ − 2

β(s)

[

u(t) − s

(
∫

|f |dµ
)2
]

since
∫

|Ptf |dµ ≤
∫

|f |dµ. The result follows by integration.

Theorem 12 ((42)). Let µ be a probability measure on (M,g) with density e−V with respect to
the volume measure. Assume that V is C2 and such that Ricci + D2V ≥ −Rg for some R ≥ 0.
Let (Pt)t≥0 be the corresponding semi-group with generator ∆ − ∇V · ∇. Assume that every
smooth f : M → R satisfies for every s ≥ 1

∫

f2dµ− s

(
∫

|f |dµ
)2

≤ β(s)

∫

|∇f |2dµ,

with β decreasing. Then there exists a positive number C(R,β(1)) such that every measurable
set A ⊂M satisfies

µs(∂A) ≥ C(R,β(1))µ(A)(1 − µ(A)).

If β(+∞) = 0, any measurable set A ⊂ M with p := min(µ(A), µ(Ac)) ≤
min(1/2, 1/(2β−1(1/R))) satisfies

µs(∂A) ≥ 1

3

p
√

β
(

1
2p

)

.

Proof. From the super-Poincaré inequality and Proposition 11 we have for any smooth f : M →
R and all s ≥ 1

∫

(Ptf)2dµ ≤ e
− 2t

β(s)

∫

f2dµ+ s(1 − e
− 2t

β(s) )

(
∫

|f |dµ
)2

.

Applying this to approximations of characteristic functions we get for any measurable set A ⊂M ,
∫

(Pt1IA)2dµ ≤ e
− 2t

β(s)µ(A) + s(1 − e
− 2t

β(s) )µ(A)2 ∀s ≥ 1.
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Hence by Theorem 10, we have for all t > 0, s ≥ 1,

µs(∂A) ≥ µ(A)(1 − sµ(A))2
√
R

1 − e
− 2t

β(s)

arg tanh
(√

1 − e−4tR
) . (4)

The first isoperimetric inequality is obtained when choosing s = 1, t = β(1). In fact this is almost
exactly the method used by Ledoux to derive Cheeger’s inequality from Poincaré inequality when
the curvature is bounded from below (30).

For a set A of measure at most 1/2, taking s = 1/(2µ(A)) and t = β(s)/2 = 1
2β
(

1
2µ(A)

)

µs(∂A) ≥ µ(A)

√
R

√

2Rβ
(

1
2µ(A)

)

(1 − e−1)

√

2Rβ
(

1
2µ(A)

)

arg tanh

√

1 − e
−2Rβ( 1

2µ(A)
)

≥ µ(A)
1

√

β
(

1
2µ(A)

)

(1 − e−1)

arg tanh
√

1 − e−2

≥ 1

3

µ(A)
√

β
(

1
2µ(A)

)

,

where we have used 2Rβ(1/(2µ(A))) ≤ 2 together with the fact that x 7→
(arg tanh

√
1 − e−x)/

√
x is increasing, a consequence of the convexity of the function

(arg tanh
√

1 − e−x)2. For sets with µ(A) > 1/2 we work instead with the expression involv-
ing Ac in Theorem 10.

Combining Theorem 7, the tensorization property of Beckner type-inequalities, Corollary 8 and
Theorem 12 allows to derive dimension-free isoperimetric inequalities for the products of large
classes of probability measures on the real line. In the next section we focus on log-concave
densities.

5 Isoperimetric profile for log-concave measures

Here we apply the previous results to infinite product of the measures: µΦ(dx) =
Z−1

Φ exp{−Φ(|x|)}dx = ϕ(x)dx, x ∈ R, with Φ convex and
√

Φ concave. The isoperimetric
profile of a symmetric log-concave density on the line (with the usual metric) was calculated by
Borell (20) (see also Bobkov (11)). He showed that half-lines have minimal boundary among
sets of given measure. Since the boundary measure of (−∞, x] is given by the density of the
measure at x, the isoperimetric profile is IΦ(t) = ϕ(H−1(min(t, 1 − t)) = ϕ(H−1(t)), t ∈ [0, 1]
where H is the distribution function of µΦ. It compares to the function

LΦ(t) = min(t, 1 − t)Φ′ ◦ Φ−1

(

log
1

min(t, 1 − t)

)

,

where Φ′ is the right derivative. More precisely,
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Proposition 13. Let Φ : R
+ → R

+ be an increasing convex function. Assume that in a
neighborhood of +∞, the function Φ is C2 and

√
Φ is concave.

Let dµΦ(x) = Z−1
Φ e−Φ(|x|)dx be a probability measure with density ϕ. Let H be the distribution

function of µ and IΦ(t) = ϕ(H−1(t)), t ∈ [0, 1]. Then,

lim
t→0

IΦ(t)

tΦ′ ◦ Φ−1(log 1
t )

= 1.

Consequently, if Φ(0) < log 2, LΦ is defined on [0, 1] and there exist constants k1, k2 > 0 such
that for all t ∈ [0, 1],

k1LΦ(t) ≤ IΦ(t) ≤ k2LΦ(t).

This result appears in (5; 18) in the particular case Φ(x) = |x|p.

Proof. Since Φ is convex and (strictly) increasing, note that Φ′ may vanish only at 0. Under
our assumptions on Φ we have H(y) =

∫ y
−∞ Z−1

Φ e−Φ(|x|)dx ∼ Z−1
Φ e−Φ(|y|)/Φ′(|y|) when y tends

to −∞. Thus using the change of variable y = H−1(t), we get

lim
t→0

IΦ(t)

tΦ′ ◦ Φ−1(log 1
t )

= lim
y→−∞

e−Φ(|y|)

ZΦH(y)Φ′ ◦ Φ−1(log 1
H(y))

= lim
y→−∞

Φ′(|y|)
Φ′ ◦ Φ−1(log 1

H(y))
.

A Taylor expansion of Φ′ ◦ Φ−1 between log 1
H(y) and Φ(|y|) gives

Φ′ ◦ Φ−1(log 1
H(y))

Φ′(|y|) = 1 +
1

Φ′(|y|)

(

log
1

H(y)
− Φ(|y|)

)

Φ′′ ◦ Φ−1(cy)

Φ′ ◦ Φ−1(cy)

for some cy ∈ [min(Φ(|y|), log 1
H(y) ),∞).

Since for y ≪ −1
1

2

e−Φ(|y|)

ZΦΦ′(|y|) ≤ H(y) ≤ 2
e−Φ(|y|)

ZΦΦ′(|y|)
we have

− log 2 + log(ZΦΦ′(|y|)) ≤ log
1

H(y)
− Φ(|y|) ≤ log 2 + log(ZΦΦ′(|y|)). (5)

On the other hand, when
√

Φ is concave and C2, (
√

Φ)′′ is non positive when it is defined. This
leads to Φ′′

Φ′ ≤ Φ′

2Φ . Since (
√

Φ)′ is decreasing, it follows that Φ′(x) ≤ c
√

Φ(x) for x large enough

and for some constant c > 0. Finally we get Φ′′(x)
Φ′(x) ≤ c√

Φ(x)
for x large enough.

All these computations together give

∣

∣

∣

∣

1

Φ′(|y|)

(

log
1

H(y)
− Φ(|y|)

)

Φ′′ ◦ Φ−1(cy)

Φ′ ◦ Φ−1(cy)

∣

∣

∣

∣

≤ log 2 + | log(ZΦΦ′(|y|))|
|Φ′(|y|)|

c
√
cy

which goes to 0 as y goes to −∞. This ends the proof.
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The following comparison result will allow us to modify measures without loosing much on their
isoperimetric profile. It also shows that even log-concave measures on the real line play a central
role.

Theorem 14 ((6; 37)). Let m be a probability measure on (R, |.|) with even log-concave density.
Let µ be a probability measure on (M,g) such that Iµ ≥ cIm. Then for all n ≥ 1, Iµn ≥ cImn .

Now we show the following infinite dimensional isoperimetric inequality.

Theorem 15. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) = 0 and consider
the probability measure dµΦ(x) = Z−1

Φ e−Φ(|x|)dx. Assume that Φ is C2 on [Φ−1(1),+∞) and that√
Φ is concave.

Then there exists a constant K > 0 such that for all t ∈ [0, 1] one has

Iµ∞

Φ
(t) ≥ KLΦ(t).

Since Iµ∞

Φ
(t) ≤ IµΦ

(t) ≤ k2LΦ(t), we have, up to constants, the value of the isoperimetric profile
of the infinite product.

Proof. For simplicity we assume first that x 7→ Φ(|x|) is C2. We shall explain later how to
deal with the general case. Applying Proposition 9 to the measure µΦ provides a Beckner-type
inequality, with rate function T expressed in terms of Φ. By tensorization the powers of this
measure enjoy the same property, which implies a super-Poincaré inequality by Corollary 8.
Hence there exists a constant C independent of the dimension n such that for every smooth
f : R

n → R one has

∫

f2dµn
Φ − s

(
∫

|f |dµn
Φ

)2

≤ Cβ(s)

∫

|∇f |2dµn
Φ ∀s ≥ 1,

where β(s) = [1/Φ′ ◦Φ−1(log(1+ s))]2 for s ≥ e−1 and β(s) = [1/Φ′ ◦Φ−1(1)]2 for s ∈ [1, e−1].

Next we apply Theorem 12 to the measure µn
Φ. Consider first the case limx→∞ Φ′(x) = α < +∞.

The first inequality in Theorem 12 yields

Iµn
Φ

(t) ≥ K1Φ′ ◦ Φ−1(1) min(t, 1 − t) ≥ K2LΦ(t),

where the constants K1,K2 > 0 are independent of n and t.

If Φ′ tends to infinity, the second part of Theorem 12 allows to conclude that for t ∈ [0, 1] (note
that Φ′′ ≥ 0 and thus we may take R = 0)

Iµn
Φ

(t) ≥ K3 min(t, 1 − t)Φ′ ◦ Φ−1(log(1 +
1

2 min(t, 1 − t)
)).

Next we use elementary inequalities to bound from below Φ′ ◦ Φ−1(log(1 + 1
2min(t,1−t))) by

Φ′ ◦Φ−1(log( 1
min(t,1−t) )). Their proof is postponed to the next lemma. Using the bound 1+ 1

2x ≥
( 1

x)
1
2 for 0 < x ≤ 1/2 we have Φ′[Φ−1(log(1 + 1

2x))] ≥ Φ′[Φ−1(log( 1
x)/2)]. Then, (i) and (iii) of

Lemma 16 ensure that Φ′[Φ−1(log(1 + 1
2x))] ≥ 1

2Φ′[Φ−1(log( 1
x))]. Thus there exists a constant

K4 > 0 such that for any n

Iµn
Φ

(t) ≥ K4LΦ(t) ∀t ∈ [0, 1].
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This is the expected result in this case.

We now turn to the general case. Assume that Φ is C2 on [Φ−1(1),+∞). Choose an even convex
function Ψ : R

+ 7→ R which is C2, increasing on [0,+∞) and that coincides with Φ outside an
interval [0, a]. We also consider the probability measure dµΨ(x) = Z−1

Ψ e−Ψ(|x|). In the large
its density differs from the one of µΦ exactly by the multiplicative factor ZΦ/ZΨ. The first
statement of Proposition 13 shows that the isoperimetric profiles of µΦ and µΨ are equivalent
when t tends to 0 or 1. Since they are continuous, there exists constants c1, c2 > 0 such that

c1IµΦ
≥ IµΨ

≥ c2IµΦ
. (6)

The second inequality in the above formula implies that the monotone map T : R → R defined
by T (x) = H−1

Ψ ◦ HΦ is Lipschitz (just compute its derivative). Here HΦ is the distribution
function of µΦ. Moreover, by construction the image measure of µΦ by T is µΨ. This easily
implies that any Sobolev type inequality satisfied by µΦ can be transported to µΨ with a change
in the constant, see e.g. (31; 5) for more on these methods. As before, applying Proposition 9 to
the measure µΦ provides a Beckner-type inequality, with rate function T expressed in terms of
Φ. For the above reasons it is inherited by µΨ (we could also have used the perturbation results
recalled in the last section of the paper). We get by tensorization and Corollary 8 that there
exists a constant C ′ independent of the dimension n such that for every smooth f : R

n → R one
has

∫

f2dµn
Ψ − s

(
∫

|f |dµn
Ψ

)2

≤ C ′β(s)

∫

|∇f |2dµn
Ψ ∀s ≥ 1,

where β(s) = [1/Φ′ ◦Φ−1(log(1+ s))]2 for s ≥ e−1 and β(s) = [1/Φ′ ◦Φ−1(1)]2 for s ∈ [1, e−1].
Following exactly the reasoning of the smooth case, we get that there exists a constant K ′

4 such
that for any n,

Iµn
Ψ

(t) ≥ K4LΦ(t) ∀t ∈ [0, 1].

The first inequality in (6) and Theorem 14 imply that IµΦn ≥ 1
c1
IµΨn . This achieves the proof.

Remark 4. The above theorem can be extended in many ways. The regularity assumption and
the concavity of

√
Φ need only be satisfied in the large. Proving this requires in particular to

modify the function T in Proposition 9.

Example 5. The previous theorem applies to the family of measures dνp(x) = e−|x|pdx/(2Γ(1 +
1/p)), p ∈ [1, 2]. This recovers results in (15; 8).

Example 6. More generally, for dµp,α(x) = Z−1
p,αe

−|x|p(log(γ+|x|))α
dx, p ∈ [1, 2], α ≥ 0 and γ =

e2α/(2−p) we get the following isoperimetric inequality: there exists a constant cp,α such that for
any dimension n and any Borel set A with µn

p,α(A) ≤ 1/2,

(µn
p,α)s(∂A) ≥ cp,α

(

log
( 1

µn
p,α(A)

)

)1− 1
p
(

log log
(

e+
1

µn
p,α(A)

)

)α/p

.

Lemma 16. Let Φ : R
+ → R

+ be an increasing convex function with Φ(0) = 0. Assume that√
Φ is concave. Then,

(i) for every x ≥ 0: Φ−1

(

1

2
x

)

≥ 1

2
Φ−1(x);
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(ii) for every x ≥ 0: Φ(2x) ≤ 4Φ(x);

(iii) for every x ≥ 0: Φ′

(

1

2
x

)

≥ 1

2
Φ′(x).

Proof. Since Φ is convex, the slope function (Φ(x)−Φ(0))/x = Φ(x)/x is non-decreasing. Com-
paring the values at x and 2x shows that 2Φ(x) ≤ Φ(2x). The claim of (i) follows.

Assertion (ii) is proved along the same line. Since
√

Φ is concave and vanishes at 0, the ratio
√

Φ(x)/x is non-increasing. Comparing its values at x and 2x yields the inequality.

Point (iii) is a direct consequence of (ii). Indeed, since
√

Φ is concave, Φ′/(2
√

Φ) is non-
increasing. Comparing the values at x and 2x and using (ii) ensures that

Φ′(2x) ≤
√

Φ(2x)

Φ(x)
Φ′(x) ≤ 2Φ′(x).

This completes the proof.

6 F -Sobolev versus super-Poincaré inequality

We have explained in Section 3 how to get a dimension free super-Poincaré inequality, using the
(tensorizable) Beckner inequality and Theorem 1. Another family of tensorizable inequalities is
discussed in (8), namely additive φ-Sobolev inequalities.

We shall say that µ satisfies a homogeneous F -Sobolev inequality if for all smooth f ,

∫

f2F

(

f2

∫

f2dµ

)

dµ ≤ CF

∫

|∇f |2dµ. (7)

Observe that necessarily F (1) ≤ 0 (for f = 1). When F = log this is the usual tight logarithmic
Sobolev inequality. In this case F (a/b) = F (a) − F (b) so that the previous homogeneous
inequality can be rewritten in an additive form. In general however this is not the case, so that
we have to introduce the additive φ-Sobolev inequality, i.e.

∫

φ(f2)dµ − φ

(
∫

f2dµ

)

≤ Cφ

∫

|∇f |2dµ, (8)

with for example φ(x) = xF (x). In general, Inequalities (7) and (8) have different features.
Note that (7) is an equality for constant f if F (1) = 0. We shall say that the inequality is tight
in this case, and is defective if F (1) < 0. Besides, Inequality (8) is tight by nature. The main
advantage of additive inequalities is that they enjoy the tensorization property, see (8) Lemma
12. Both kinds of Sobolev inequalities can be related to measure-capacity inequalities. We shall
below complete the picture in (8). The next Lemma shows how to tight a defective homogeneous
inequality, in a much more simple way than the extension of Rothaus lemma discussed in (8)
Lemma 9 and Theorem 10.

Lemma 17. Let F : (0,+∞) → R be a non-decreasing continuous function such that F (x) tends
to +∞ when x goes to +∞ and xF−(x) is bounded.
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Assume that µ satisfies the homogeneous F -Sobolev inequality with constant CF and a Poincaré
inequality with constant CP . Then for all a > max(F (2), 0) there exits C+(a) depending on a,
F , CF and CP such that for all smooth f

∫

f2(F − a)+

(

f2

∫

f2dµ

)

dµ ≤ C+(a)

∫

|∇f |2dµ .

Proof. Since F goes to ∞ at ∞, we may find ρ > 1 such that F (2ρ) = a. Define F̃ (u) = F (u)−a
which is thus non-positive on [0, 2ρ] and non-negative on [2ρ,+∞[ since F is non-decreasing.
Obviously µ still satisfies an F̃ -Sobolev inequality. If M = sup0≤u≤2ρ{−uF̃ (u)}, M < +∞
thanks to our hypotheses, so that for a non-negative f such that

∫

f2dµ = 1,
∫

f2F̃+(f2)dµ ≤ CF

∫

|∇f |2dµ+M. (9)

Let ψ defined on R
+ as follows : ψ(u) = 0 if u ≤

√
2, ψ(u) = u if u ≥ √

2ρ and ψ(u) =√
2ρ (u−

√
2)/(

√
2ρ−

√
2) if

√
2 ≤ u ≤ √

2ρ. Since ψ(f) ≤ f ,
∫

ψ2(f)dµ ≤ 1 so that
∫

f2F̃+(f2)dµ =

∫

ψ2(f)F̃+(ψ2(f))dµ

≤
∫

ψ2(f)F̃+

(

ψ2(f)
∫

ψ2(f)dµ

)

dµ

≤ ACF

∫

|∇f |2dµ+M

∫

ψ2(f)dµ

≤ ACF

∫

|∇f |2dµ+M

∫

f2≥2
f2dµ

where A = 2ρ/
(

(
√

2ρ−
√

2)
)2

. But as shown in (8, Remark 22),
∫

f2≥2
f2dµ ≤ 12CP

∫

|∇f |2dµ (10)

(recall that
∫

f2dµ = 1), so that we finally obtain the desired result.

The previous Lemma is a key to the result below, which we shall use in what follows.

Theorem 18. Let dµ = e−V dx a probability measure on R
d, with V a locally bounded potential.

Let F : (0,+∞) → R be a non decreasing, concave, C1 function satisfying for some γ and M

(i) F (x) tends to +∞ when x goes to +∞,

(ii) xF ′(x) ≤ γ for all x > 0,

(iii) F (xy) ≤ E + F (x) + F (y) for all x, y > 0.

If µ satisfies the homogeneous F -Sobolev inequality (7) with constant CF , then µ satisfies an
additive φ-Sobolev inequality with some constant Cφ and φ(x) = xF (x). Moreover there exists a
constant D such that, for all n, the product measure µn satisfies a measure-capacity inequality

µn(A)F

(

1

µn(A)

)

≤ DCapµn(A), (11)

for all A such that µn(A) ≤ 1/2.
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Proof. Since µ has a locally bounded potential V , it follows from the remark after Theorem 3.1
in (36) that it satisfies the following weak Poincaré inequality for some non increasing function
τ : (0, 1/4) → R

+: for every s ∈ (0, 1/4) and every locally Lipschitz function f : R
d → R it holds

Varµ(f) ≤ τ(s)

∫

|∇f |2dµ+ s
(

sup(f) − inf(f)
)2
.

By hypothesis, µ also satisfies a F -Sobolev inequality with F growing to infinity, so (1, Theo-
rem 2.11) ensures that it verifies a Poincaré inequality (actually we also need to check that the
function xF (x) is bounded from below; this is a consequence of (ii)).

In turn (see (8, Remark 20)), there exists a constant D′ > 0 such that for all n and all A with
µn(A) ≤ 1/2,

µn(A) ≤ D′Capµn(A). (12)

For technical reasons, we assume first that F (8) > 0. We shall explain in the end how this
assumption can be removed. By Lemma 17, µ satisfies an F̃ -Sobolev inequality for F̃ = (F−a)+,
where a is any number in (F (2), F (8)).

According to (8) Theorem 22 and Remark 23, µ will satisfy a measure-capacity inequality as
soon as we can find some x0 > 2 such that

(a) x 7→ F̃ (x)/x is non-increasing on (x0,+∞),

(b) there exists some λ > 4 such that 4F̃ (λx) ≤ λF̃ (x) for x ≥ x0.

For large values of x, the derivative of F̃ (x)/x has the sign of xF ′(x) − F (x) + a. This is non-
positive for x ≥ F−1(γ+a) thanks to (ii) and (i). So Property (a) is valid when x0 ≥ F−1(γ+a).
For (b) just remark that

F̃ (8x) ≤ E + a+ F̃ (8) + F̃ (x) ≤ 2F̃ (x), ∀x ≥ F̃−1(E + a+ F (8)),

thanks to (iii). We may choose x0 as the maximum of the two previous values. As explained in
(8) Remark 23, we then have µ(A)F̃ (1/µ(A)) ≤ K0Capµ(A) if µ(A) ≤ 1/x0. It follows that

µ(A)F̃

(

2

µ(A)

)

≤ µ(A)F̃

(

8

µ(A)

)

≤ 2µ(A)F̃

(

1

µ(A)

)

≤ 2K0Capµ(A).

for any A with µ(A) ≤ 1/x0. Using Poincaré inequality in the form of Equation (12), we find a
constant K1 such that

µ(A)F

(

2

µ(A)

)

≤ K1Capµ(A),

for all A with µ(A) ≤ 1/2. Theorem 26 in (8) furnishes the additive φ-Sobolev inequality (8)
with φ(x) = xF (x).

By the tensorization property of additive φ-Sobolev inequalities, the measures µn also satisfy
(8) (with a constant which does not depend on the dimension n). Consequently µn satisfies
a homogeneous

(

F − F (1)
)

-Sobolev inequality with a dimension-free constant and therefore a
homogeneous F -Sobolev inequality (since F (1) ≤ 0). Proceeding exactly as in the beginning of
the proof (for µn instead of µ) we deduce that

µn(A)F

(

2

µn(A)

)

≤ DφCapµn(A),
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for some constant Dφ (independent on n) and all A with µn(A) ≤ 1/2. This achieves the proof
when F (8) > 0.

Finally when F (8) ≤ 0, we choose ε ∈ (0, F (8) − F (1)) and define G := F − F (8) + ε ≥ F .
Note that G(8) > 0, G(1) ≤ 0 and that G also satisfies (i), (ii) and (iii) with possibly worse
constants. Hence if we show that µ satisfies a homogeneous G-Sobolev inequality the above
reasoning applies and gives the claim of the theorem. Now we show briefly that since µ satisfies
a Poincaré inequality, the F -Sobolev inequality may be upgraded to a G-Sobolev inequality. To
see this we apply Lemma 17 to get a (F − 1)+-Sobolev inequality. The function (F − 1)+ is zero
before x1 := F−1(1) > 8. Next we add up the latter Sobolev inequality with (1−F (8)+ε) times
the equivalent form of Poincaré inequality given in (10) to get a G1I[x1,∞)-Sobolev inequality.
Finally Lemma 21 in (8) yields the desired G-Sobolev inequality. Indeed this lemma allows any
C2 modification of the function on the interval [0, x1] provided it vanishes at 1; moreover since
G is concave and non-positive at 1 it can be upper bounded by such a function. The proof is
complete.

Remark 7. Part of the previous Theorem is proved in a slightly different form in (35).

We have seen in the proof that under the hypotheses of Theorem 18, µn satisfies (12). Thus, in
the capacity-measure inequality (11) we may replace F by 1 + F+ according to (12), changing
the constant D if necessary. As a consequence, using Corollary 6 and Theorem 18 we have

Corollary 19. Let µ and F as in Theorem 18. Then there exists a constant K such that for
all n, for all f : (Rd)n → R and every s ≥ 1 one has

∫

f2dµn − s

(
∫

|f |dµn

)2

≤ Kβ(s)

∫

|∇f |2dµn,

with β(s) = 1/(1 + F+)(s).

As the reader readily sees, the previous corollary is not as esthetic as the Beckner type approach
for two reasons: first F has to fulfill some hypotheses, second the constant K is not explicit
(the main difficulty is to get an estimate on the Poincaré constant from the weak spectral gap
property). Nonetheless combined with the results in Section 4, it allows us to obtain isoperimetric
inequalities for Boltzmann measures that do not enter the framework of Section 5 (see below).

Finally the results extend to Riemannian manifolds since any probability measure with a locally
bounded potential satisfies a local Poincaré inequality, see (36).

7 Further examples.

The main result of this section is Theorem 21. It provides more general examples of measures
µ for which the products µn satisfy a dimension free isoperimetric inequality. Its main interest
is to deal directly with measures µ on R

d.

We start with perturbation results. Let µ be a non-negative measure and dν = e−2V dµ be a
probability measure. It is easy to deal with a bounded perturbation V as for the logarithmic
Sobolev inequality (27) or the Poincaré inequality: if µ satisfies one of these inequalities with
constant C then so does ν with constant at most CeOsc(2V ), where Osc(V ) = supV − minV .
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Since Wang (43, Proposition 2.5) proved a similar result for the generalized Beckner inequality,
Corollary 8 applies to the perturbed measure ν. When considering unbounded perturbations V ,
some control on the derivatives seem to be needed. Here is a general result in this direction,
extending (8, Section 7.2.).

Lemma 20. Let µ be a non-negative measure and dν = e−2V dµ be a probability measure on
(M,g). Assume that µ satisfies a defective homogeneous L-Sobolev inequality:

∫

f2L

(

f2

∫

f2dµ

)

dµ ≤ C

∫

|∇f |2dµ+ C ′

∫

f2dµ ∀f.

Let F be a C1 function defined on (0,+∞), satisfying

(i) F (x) tends to +∞ when x goes to +∞,

(ii) There exists E ∈ R such that F (xy) ≤ E + F (x) + F (y) for all x, y > 0,

(iii) there exists K ∈ R such that xF (x) ≤ xL(x) + K/µ(M) for all x. If µ(M) = +∞ we
decide that K = 0.

(iv) F (e2V ) + C(∆µV − |∇V |2) is bounded from above.

Then there exists a constant B such that ν satisfies a homogeneous (F −B)-Sobolev inequality.
Here ∆µ is an analogue of the Laplace operator for µ with the integration by part property
∫

f ∆µg dµ = −
∫

∇f · ∇g dµ.

Proof. First of all thanks to (ii),

F (g2) = F (g2e−2V e2V ) ≤ E + F (e2V ) + F (g2e−2V ).

Hence if
∫

g2dν = 1 and f = g e−V (so that
∫

f2dµ = 1),
∫

g2F (g2)dν ≤ E +

∫

g2F (e2V )dν +

∫

f2F (f2)dµ

≤ (E +K) +

∫

g2F (e2V )dν +

∫

f2L(f2)dµ

≤ (E +K + C ′) +

∫

g2F (e2V )dν + C

∫

|∇f |2dµ

≤ (E +K + C ′) +

∫

g2
(

F (e2V ) + C(∆µV − |∇V |2)
)

dν

+C

∫

|∇g|2dν (13)

using (iii), the L-Sobolev inequality for µ and an immediate integration by parts. This gives the
expected result by (iv).

Remark 8. If in addition of the hypotheses (i), (ii), (iii), we assume that x 7→ xF (x) is convex,
one can replace Hypothesis (iv) by the weaker assumption

(iv′) ∃ε ∈ (0, 1) such that

∫

H

(

1

ε

(

F (e2V ) + C(∆µV − |∇V |2)
)

)

dν < +∞,
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where H is the convex conjugate of x 7→ xF (x). Indeed, Young’s inequality xy ≤ εxF (x) +
H(y/ε) allows to bound (13).

Theorem 21. Let dµ = e−2V dx be a probability measure on R
d with V a C2 potential such that

D2V ≥ −Rg for some R ≥ 0. Let F be a C1 function defined on (0,+∞), satisfying

(i) F (x) tends to +∞ when x goes to +∞,

(ii) there exists E ∈ R such that F (xy) ≤ E + F (x) + F (y) for all x, y > 0,

(iii) there exists E′ ∈ R such that F (x) ≤ E′ log+(x) for all x.

(iv) there exists γ > 0 such that xF ′(x) ≤ γ, for all x > 0,

(v) there exists C > 0 such that F (e2V ) + C(∆µV − |∇V |2) is bounded from above.

Then there exists θ > 0 such that for all n and all measurable sets A ⊂ (Rd)n with µn(A) ≤ 1/2

µn
s (∂A) ≥ θµn(A)

√

1 + F+

(

1

2µn(A)

)

.

Proof. The Euclidean logarithmic Sobolev inequality (see (22, Theorem 2.2.4)) asserts that for
any bounded smooth function f : R

d → R with
∫

f2dx = 1 and for every η > 0,

∫

f2 log+ f
2dx ≤ 2η

∫

|∇f |2dx+ 2 +
d

2
log

(

1

πη

)

.

Thus we can apply Lemma 20 with dµ = dx, L = E′ log+ choosing η = C/(2E′). This leads
to a homogeneous (F − B)-Sobolev inequality, for some constant B > 0. Corollary 19 applies
and leads to a super-Poincaré inequality with function β = 1/(1 + F+). Applying Theorem 12
achieves the proof.

Example 9. Let 1 < α < 2. Let V : R → R be a C2 function with V (x) = |x|α +log(1+ |x| sin2 x)
when |x| ≥ ε > 0. This potential is an unbounded perturbation of |x|α and is not convex.

Theorem 21 applies to V for F (u) = log(1 + u)2(1−
1
α

) − log(2)2(1−
1
α

).

Remark 10. As for the logarithmic Sobolev inequality in (21), the previous result allows us to
look at d dimensional spaces from the beginning. Nevertheless, if d = 1 it can be compared with
the tractable condition one can get for the Beckner type inequality in Section 3. Indeed assume
that V ′ does not vanish near ∞ and that V ′′/|V ′|2 goes to 0 at ∞. Then the Laplace method,
see e.g. (2, Corollaire 6.4.2), yields a sufficient condition for B+(T ) and B−(T ) in Theorem 7 to
be finite, namely :

|V ′|2T
(

1

V + log(|V ′|)

)

≥ C > 0, (14)

near ∞. If log(|V ′|) ≪ V near ∞, (14) becomes |V ′|2 ≥ C/T ( 1
V ) i.e. we have the formal relation

1/T (1/ log u) = F (u).

1234
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[14] S. G. Bobkov and C. Houdré. Characterization of Gaussian measures in terms of the
isoperimetric property of half-spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst.
Steklov. (POMI), 228:31–38, 1996. (Russian). MR1449845
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