|
|
|
| | | | | |
|
|
|
|
|
Spherical and Hyperbolic Fractional Brownian Motion
|
Jacques Istas, Université Pierre Mendès |
Abstract
We define a Fractional Brownian Motion indexed by a sphere, or more
generally by a compact rank one symmetric space, and prove
that it exists if, and only if, 0< H leq 1/2. We then prove that
Fractional Brownian Motion indexed by an hyperbolic space exists if,
and only if,
0 < H leq 1/2. At last, we prove that Fractional Brownian Motion
indexed by a real tree exists when 0 < H leq 1/2.
|
Full text: PDF
Pages: 254-262
Published on: December 21, 2005
|
Bibliography
| Clerc, Maureen; Mallat, Stéphane. Estimating deformations of stationary processes.
Ann. Statist. 31 (2003), no. 6, 1772--1821. MR2036390 (2004k:62196) |
Cohen,Serge;
Guyon,Xavier; PerrinOlivier; Pontier,Monique. Identification of an
isometric transformation of the standard {B}rownian sheet.
J. Stat. Plann. Inference. 136
(2006), no. 4, 1317--1330.
|
Dress, Andreas; Moulton, Vincent; Terhalle, Werner. $T$-theory: an overview.
Discrete metric spaces (Bielefeld, 1994).
European J. Combin. 17 (1996), no. 2-3, 161--175. MR1379369 (97e:05069) |
Faraut, Jacques. Fonction brownienne sur une variété riemannienne.
(French) Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971-1972),
pp. 61--76. Lecture Notes in Math., Vol. 321, Springer, Berlin, 1973. MR0391284 (52 #12105) |
Faraut, Jacques; Harzallah, Khélifa. Distances hilbertiennes invariantes sur un espace homogène.
(French) Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, xiv, 171--217. MR0365042 (51 #1295) |
Gangolli, Ramesh. Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters.
Ann. Inst. H. Poincaré Sect. B (N.S.) 3 1967 121--226. MR0215331 (35 #6172) |
Genton, Marc G.; Perrin, Olivier. On a time deformation reducing nonstationary stochastic processes to local stationarity.
J. Appl. Probab. 41 (2004), no. 1, 236--249. MR2036285 (2005h:62243) |
Guyon, Xavier; Perrin, Olivier. Identification of space deformation using linear and superficial quadratic variations.
Statist. Probab. Lett. 47 (2000), no. 3, 307--316. MR1747492 (2000k:60100) |
Helgason, Sigurdbar ur. Differential geometry and symmetric spaces.
Pure and Applied Mathematics, Vol. XII. Academic Press, New York-London 1962 xiv+486 pp. MR0145455 (26 #2986) |
Kolmogoroff, A. N. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum.
(German) C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, (1940). 115--118. MR0003441 (2,220c) |
Lévy, Paul. Processus stochastiques et mouvement brownien.
(French) Suivi d'une note de M. Loève. Deuxième édition revue et augmentée Gauthier-Villars & Cie, Paris 1965 vi+438 pp. MR0190953 (32 #8363) |
Mandelbrot, Benoit B.; Van Ness, John W. Fractional Brownian motions, fractional noises and applications.
SIAM Rev. 10 1968 422--437. MR0242239 (39 #3572) |
Perrin, Olivier. Quadratic variation for Gaussian processes and application to time deformation.
Stochastic Process. Appl. 82 (1999), no. 2, 293--305. MR1700011 (2000g:60065) |
Samorodnitsky, Gennady; Taqqu, Murad S. Stable non-Gaussian random processes.
Stochastic models with infinite variance.
Stochastic Modeling. Chapman & Hall, New York, 1994. xxii+632 pp. ISBN: 0-412-05171-0 MR1280932 (95f:60024) |
Schoenberg, I. J. Metric spaces and completely monotone functions.
Ann. of Math. (2) 39 (1938), no. 4, 811--841. MR1503439 |
Valette, Alain. Les représentations uniformément bornées associées à un arbre réel.
(French) [Uniformly bounded representations associated with a real tree] Algebra, groups and geometry.
Bull. Soc. Math. Belg. Sér. A 42 (1990), no. 3, 747--760. MR1316222 (96i:22011a) |
Wang, Hsien-Chung. Two-point homogeneous spaces.
Ann. of Math. (2) 55, (1952). 177--191. MR0047345 (13,863a) |
|
|
|
|
|
|
| | | | |
Electronic Communications in Probability. ISSN: 1083-589X |
|